1
|
Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka KF, Hiroi N, Makinodan M. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. Mol Psychiatry 2024; 29:1338-1349. [PMID: 38243072 PMCID: PMC11189755 DOI: 10.1038/s41380-024-02413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglial Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglial BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administering doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological function in the mPFC, whereas normalizing BDNF from later ages (p45-p50) did not normalize electrophysiological abnormalities in the mPFC, despite the improved sociability. To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible proxy for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. In summary, our study demonstrated the influence of microglial BDNF on the development of experience-dependent social behaviors in mice, emphasizing its specific impact on the maturation of mPFC function, particularly during the juvenile period. Furthermore, our results propose a translational implication by suggesting a potential link between BDNF secretion from macrophages and childhood experiences in humans.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | | | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Mori
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
2
|
Homberg JR, Brivio P, Greven CU, Calabrese F. Individuals being high in their sensitivity to the environment: Are sensitive period changes in play? Neurosci Biobehav Rev 2024; 159:105605. [PMID: 38417743 DOI: 10.1016/j.neubiorev.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
All individuals on planet earth are sensitive to the environment, but some more than others. These individual differences in sensitivity to environments are seen across many animal species including humans, and can influence personalities as well as vulnerability and resilience to mental disorders. Yet, little is known about the underlying brain mechanisms. Key genes that contribute to individual differences in environmental sensitivity are the serotonin transporter, dopamine D4 receptor and brain-derived neurotrophic factor genes. By synthesizing neurodevelopmental findings of these genetic factors, and discussing them through the lens of mechanisms related to sensitive periods, which are phases of heightened neuronal plasticity during which a certain network is being finetuned by experiences, we propose that these genetic factors delay but extend postnatal sensitive periods. This may explain why sensitive individuals show behavioral features that are characteristic of a young brain state at the level of sensory information processing, such as reduced filtering or blockade of irrelevant information, resulting in a sensory processing system that 'keeps all options open'.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Corina U Greven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Center, London, United Kingdom
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Makinodan M, Komori T, Okamura K, Ikehara M, Yamamuro K, Endo N, Okumura K, Yamauchi T, Ikawa D, Ouji-Sageshima N, Toritsuka M, Takada R, Kayashima Y, Ishida R, Mori Y, Kamikawa K, Noriyama Y, Nishi Y, Ito T, Saito Y, Nishi M, Kishimoto T, Tanaka K, Hiroi N. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. RESEARCH SQUARE 2023:rs.3.rs-3094335. [PMID: 37461488 PMCID: PMC10350236 DOI: 10.21203/rs.3.rs-3094335/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Microglia and brain-derived neurotrophic factor (BDNF) are essential for the neuroplasticity that characterizes critical developmental periods. The experience-dependent development of social behaviors-associated with the medial prefrontal cortex (mPFC)-has a critical period during the juvenile period in mice. However, whether microglia and BDNF affect social development remains unclear. Herein, we aimed to elucidate the effects of microglia-derived BDNF on social behaviors and mPFC development. Mice that underwent social isolation during p21-p35 had increased Bdnf in the microglia accompanied by reduced adulthood sociability. Additionally, transgenic mice overexpressing microglia Bdnf-regulated using doxycycline at different time points-underwent behavioral, electrophysiological, and gene expression analyses. In these mice, long-term overexpression of microglia BDNF impaired sociability and excessive mPFC inhibitory neuronal circuit activity. However, administration of doxycycline to normalize BDNF from p21 normalized sociability and electrophysiological functions; this was not observed when BDNF was normalized from a later age (p45-p50). To evaluate the possible role of BDNF in human sociability, we analyzed the relationship between adverse childhood experiences and BDNF expression in human macrophages, a possible substitute for microglia. Results show that adverse childhood experiences positively correlated with BDNF expression in M2 but not M1 macrophages. Thus, microglia BDNF might regulate sociability and mPFC maturation in mice during the juvenile period. Furthermore, childhood experiences in humans may be related to BDNF secretion from macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - T Ito
- Keio University School of Medicine
| | | | | | | | | | - Noboru Hiroi
- University of Texas Health Science Center at San Antonio
| |
Collapse
|
5
|
Asadi MR, Gharesouran J, Sabaie H, Moslehian MS, Dehghani H, Arsang-Jang S, Taheri M, Mortazavi D, Hussen BM, Sayad A, Rezazadeh M. Assessing the expression of two post-transcriptional BDNF regulators, TTP and miR-16 in the peripheral blood of patients with Schizophrenia. BMC Psychiatry 2022; 22:771. [PMID: 36476595 PMCID: PMC9730652 DOI: 10.1186/s12888-022-04442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder with an unknown pathophysiology. Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that has been associated with synapse plasticity, learning, and memory, as well as neurodevelopment and neuroprotection. The importance of neurodevelopmental and neurotoxicity-related components in the pathophysiology of SCZ has been highlighted in research on the neurobiology of this disease. The purpose of this research is to investigate the significant expression of two variables, tristetraprolin (TTP) and miR-16, which are known to be regulators of BDNF expression. Fifty Iranian Azeri SCZ patients were enrolled, and fifty healthy volunteers were age- and gender-matched as controls. A quantitative polymerase chain reaction measured the expression levels of the TTP and miR-16 in the peripheral blood (PB) of SCZ patients and healthy people. TTP expression levels in patients were higher than in controls, regardless of gender or age (posterior beta = 1.532, adjusted P-value = 0.012). TTP and miR-16 expression levels were found to be significantly correlated in both SCZ patients and healthy controls (r = 0.701, P < 0.001 and r = 0.777, P < 0.001, respectively). Due to the increased expression of TTP in SCZ and the existence of a significant correlation between TTP and miR-16, which helps to act on target mRNAs with AU-rich elements, this mechanism can be considered an influencing factor in SCZ.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Dehghani
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahram Arsang-Jang
- Cancer Gene therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan university of medical sciences, Isfahan, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Ghafouri-Fard S, Safarzadeh A, Mahmud Hussen B, Akhavan-Bahabadi M, Taheri M, Sharifi G. In silico characterization of competing endogenous RNA network in glioblastoma multiforme with a systems biology approach. Front Oncol 2022; 12:1024567. [PMID: 36313669 PMCID: PMC9608873 DOI: 10.3389/fonc.2022.1024567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent malignant type of primary brain cancers and is a malignancy with poor prognosis. Thus, it is necessary to find novel therapeutic modalities based on molecular events occur at different stages of tumor progression. We used expression profiles of GBM tissues that contained long non-coding RNA (lncRNA), microRNA (miRNA) and mRNA signatures to make putative ceRNA networks. Our strategy led to identification of 1080 DEmRNAs, including 777 downregulated DEmRNAs (such as GJB6 and SLC12A5) and 303 upregulated DEmRNAs (such as TOP2A and RRM2), 19 DElncRNAs, including 16 downregulated DElncRNAs (such as MIR7-3HG and MIR124-2HG) and 3 upregulated DElncRNAs (such as CRNDE and XIST) and 49 DEmiRNAs, including 10 downregulated DEmiRNAs (such as hsa-miR-10b-5p and hsa-miR-1290) and 39 upregulated DEmiRNAs (such as hsa-miR-219a-2-3p and hsa-miR-338-5p). We also identified DGCR5, MIAT, hsa-miR-129-5p, XIST, hsa-miR-128-3p, PART1, hsa-miR-10b-5p, LY86-AS1, CRNDE, and DLX6-AS1 as 10 hub genes in the ceRNA network. The current study provides novel insight into molecular events during GBM pathogenesis. The identified molecules can be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | | | - Mohammad Taheri
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
7
|
Almeida FB, Nin MS, Barros HMT. The role of allopregnanolone in depressive-like behaviors: Focus on neurotrophic proteins. Neurobiol Stress 2020; 12:100218. [PMID: 32435667 PMCID: PMC7231971 DOI: 10.1016/j.ynstr.2020.100218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Allopregnanolone (3α,5α-tetrahydroprogesterone; pharmaceutical formulation: brexanolone) is a neurosteroid that has recently been approved for the treatment of postpartum depression, promising to fill part of a long-lasting gap in the effectiveness of pharmacotherapies for depressive disorders. In this review, we explore the experimental research that characterized the antidepressant-like effects of allopregnanolone, with a particular focus on the neurotrophic adaptations induced by this neurosteroid in preclinical studies. We demonstrate that there is a consistent decrease in allopregnanolone levels in limbic brain areas in rodents submitted to stress-induced models of depression, such as social isolation and chronic unpredictable stress. Further, both the drug-induced upregulation of allopregnanolone or its direct administration reduce depressive-like behaviors in models such as the forced swim test. The main drugs of interest that upregulate allopregnanolone levels are selective serotonin reuptake inhibitors (SSRIs), which present the neurosteroidogenic property even in lower, non-SSRI doses. Finally, we explore how these antidepressant-like behaviors are related to neurogenesis, particularly in the hippocampus. The protagonist in this mechanism is likely the brain-derived neurotrophic factor (BFNF), which is decreased in animal models of depression and may be restored by the normalization of allopregnanolone levels. The role of an interaction between GABA and the neurotrophic mechanisms needs to be further investigated.
Collapse
Key Words
- 3α,5α-tetrahydroprogesterone
- BDNF
- BDNF, brain-derived neurotrophic factor
- Brexanolone
- CSF, cerebrospinal fluid
- CUS, chronic unpredictable stress
- Depression
- EKR, extracellular signal-regulated kinase
- FST, forced swim test
- GABA, γ-aminobutyric acid
- GABAAR, GABA type A receptor
- HSD, hydroxysteroid dehydrogenase
- NGF, nerve growth factor
- Neurosteroid
- PTSD, post-traumatic stress disorder
- PXR, pregnane xenobiotic receptor
- SBSS, selective brain steroidogenic stimulant
- SSRI, selective serotonin reuptake inhibitor
- Selective brain steroidogenic stimulant
- THP, tetrahydroprogesterone
- TSPO, 18 kDa translocator protein
- TrkB, tropomyosin receptor kinase B
- USV, ultrasonic vocalization
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil.,Centro Universitário Metodista do IPA, 90420-060, Porto Alegre, RS, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), 90040-060, Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Jannati A, Block G, Ryan MA, Kaye HL, Kayarian FB, Bashir S, Oberman LM, Pascual-Leone A, Rotenberg A. Continuous Theta-Burst Stimulation in Children With High-Functioning Autism Spectrum Disorder and Typically Developing Children. Front Integr Neurosci 2020; 14:13. [PMID: 32231523 PMCID: PMC7083078 DOI: 10.3389/fnint.2020.00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives: A neurophysiologic biomarker for autism spectrum disorder (ASD) is highly desirable and can improve diagnosis, monitoring, and assessment of therapeutic response among children with ASD. We investigated the utility of continuous theta-burst stimulation (cTBS) applied to the motor cortex (M1) as a biomarker for children and adolescents with high-functioning (HF) ASD compared to their age- and gender-matched typically developing (TD) controls. We also compared the developmental trajectory of long-term depression- (LTD-) like plasticity in the two groups. Finally, we explored the influence of a common brain-derived neurotrophic factor (BDNF) polymorphism on cTBS aftereffects in a subset of the ASD group. Methods: Twenty-nine children and adolescents (age range 10-16) in ASD (n = 11) and TD (n = 18) groups underwent M1 cTBS. Changes in MEP amplitude at 5-60 min post-cTBS and their cumulative measures in each group were calculated. We also assessed the relationship between age and maximum cTBS-induced MEP suppression (ΔMEPMax) in each group. Finally, we compared cTBS aftereffects in BDNF Val/Val (n = 4) and Val/Met (n = 4) ASD participants. Results: Cumulative cTBS aftereffects were significantly more facilitatory in the ASD group than in the TD group (P FDR's < 0.03). ΔMEPMax was negatively correlated with age in the ASD group (r = -0.67, P = 0.025), but not in the TD group (r = -0.12, P = 0.65). Cumulative cTBS aftereffects were not significantly different between the two BDNF subgroups (P-values > 0.18). Conclusions: The results support the utility of cTBS measures of cortical plasticity as a biomarker for children and adolescents with HF-ASD and an aberrant developmental trajectory of LTD-like plasticity in ASD.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle Block
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Harper L. Kaye
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Lindsay M. Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E. P. Bradley Hospital, Warren Alpert Medical School, Brown University, East Providence, RI, United States
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Meis S, Endres T, Munsch T, Lessmann V. Impact of Chronic BDNF Depletion on GABAergic Synaptic Transmission in the Lateral Amygdala. Int J Mol Sci 2019; 20:ijms20174310. [PMID: 31484392 PMCID: PMC6747405 DOI: 10.3390/ijms20174310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/14/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABAA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF+/−). Analysis of miniature and evoked inhibitory postsynaptic currents (IPSCs) in the lateral amygdala (LA) revealed neither pre- nor postsynaptic differences in BDNF+/− mice compared to wild-type littermates. In addition, long-term potentiation (LTP) of IPSCs was similar in both genotypes. In contrast, facilitation of spontaneous IPSCs (sIPSCs) by norepinephrine (NE) was significantly reduced in BDNF+/− mice. These results argue against a generally impaired efficacy and plasticity at GABAergic synapses due to a chronic BDNF deficit. Importantly, the increase in GABAergic tone mediated by NE is reduced in BDNF+/− mice. As release of NE is elevated during aversive behavioral states in the amygdala, effects of a chronic BDNF deficit on GABAergic inhibition may become evident in response to states of high arousal, leading to amygdala hyper-excitability and impaired amygdala function.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| |
Collapse
|
10
|
Meis S, Endres T, Munsch T, Lessmann V. The Relation Between Long-Term Synaptic Plasticity at Glutamatergic Synapses in the Amygdala and Fear Learning in Adult Heterozygous BDNF-Knockout Mice. Cereb Cortex 2019; 28:1195-1208. [PMID: 28184413 DOI: 10.1093/cercor/bhx032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 01/21/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) heterozygous knockout mice (BDNF+/- mice) show fear learning deficits from 3 months of age onwards. Here, we addressed the question how this learning deficit correlates with altered long-term potentiation (LTP) in the cortical synaptic input to the lateral amygdala (LA) and at downstream intra-amygdala synapses in BDNF+/- mice. Our results reveal that the fear learning deficit in BDNF+/- mice was not paralleled by a loss of LTP, neither at cortical inputs to the LA nor at downstream intra-amygdala glutamatergic synapses. As we did observe early fear memory (30 min after training) in BDNF+/- mice while long-term memory (24 h post-training) was absent, the stable LTP in cortico-LA and downstream synapses is in line with the intact acquisition of fear memories. Ex vivo recordings in acute slices of fear-conditioned wildtype (WT) mice revealed that fear learning induces long-lasting changes at cortico-LA synapses that occluded generation of LTP 4 and 24 h after training. Overall, our data show that the intact LTP in the tested amygdala circuits is consistent with intact acquisition of fear memories in both WT and BDNF+/- mice. In addition, the lack of learning-induced long-term changes at cortico-LA synapses in BDNF+/- mice parallels the observed deficit in fear memory consolidation.
Collapse
Affiliation(s)
- S Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - T Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - T Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - V Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| |
Collapse
|
11
|
Jannati A, Fried PJ, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Test-Retest Reliability of the Effects of Continuous Theta-Burst Stimulation. Front Neurosci 2019; 13:447. [PMID: 31156361 PMCID: PMC6533847 DOI: 10.3389/fnins.2019.00447] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES The utility of continuous theta-burst stimulation (cTBS) as index of cortical plasticity is limited by inadequate characterization of its test-retest reliability. We thus evaluated the reliability of cTBS aftereffects, and explored the roles of age and common single-nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) genes. METHODS Twenty-eight healthy adults (age range 21-65) underwent two identical cTBS sessions (median interval = 9.5 days) targeting the motor cortex. Intraclass correlation coefficients (ICCs) of the log-transformed, baseline-corrected amplitude of motor evoked potentials (ΔMEP) at 5-60 min post-cTBS (T5-T60) were calculated. Adjusted effect sizes for cTBS aftereffects were then calculated by taking into account the reliability of each cTBS measure. RESULTS ΔMEP at T50 was the most-reliable cTBS measure in the whole sample (ICC = 0.53). Area under-the-curve (AUC) of ΔMEPs was most reliable when calculated over the full 60 min post-cTBS (ICC = 0.40). cTBS measures were substantially more reliable in younger participants (< 35 years) and in those with BDNF Val66Val and APOE ε4- genotypes. CONCLUSION cTBS aftereffects are most reliable when assessed 50 min post-cTBS, or when cumulative ΔMEP measures are calculated over 30-60 min post-cTBS. Reliability of cTBS aftereffects is influenced by age, and BDNF and APOE polymorphisms. Reliability coefficients are used to adjust effect-size calculations for interpretation and planning of cTBS studies.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lindsay M. Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E.P. Bradley Hospital, Warren Alpert Medical School, Brown University, East Providence, RI, United States
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Selvam R, Yeh ML, Levine ES. Endogenous cannabinoids mediate the effect of BDNF at CA1 inhibitory synapses in the hippocampus. Synapse 2018; 73:e22075. [PMID: 30334291 PMCID: PMC6470051 DOI: 10.1002/syn.22075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), traditionally known for promoting neuronal growth and development, is also a modulator of synaptic transmission. In addition to the well-characterized effects at excitatory synapses, BDNF has been shown to acutely suppress inhibitory neurotransmission; however, the underlying mechanisms are unclear. We have previously shown that at inhibitory synapses in layer 2/3 of the somatosensory cortex, BDNF induces the mobilization of endogenous cannabinoids (eCBs) that act retrogradely to suppress GABA release. Here, we hypothesized that in the hippocampus, BDNF acts similarly via eCB signaling to suppress GABAergic transmission. We found that the acute application of BDNF reduced the spontaneous inhibitory postsynaptic currents (sIPSCs) via postsynaptic TrkB receptor activation. The suppressive effects of BDNF required eCB signaling, as this effect on sIPSCs was prevented by a CB1 receptor antagonist. Further, blocking the postsynaptic eCB release prevented the effect of BDNF, whereas eCB reuptake inhibition enhanced the effect of BDNF. These results suggest that BDNF triggers the postsynaptic release of eCBs. To identify the specific eCB release by BDNF, we tested the effects of disrupting the synthesis or degradation of 2-arachidonoylcglycerol (2-AG). Blocking 2-AG synthesis prevented the effect of BDNF and blocking 2-AG degradation enhanced the effect of BDNF. However, there was no change in the effect of BDNF when anandamide degradation was blocked. Collectively, these results suggest that in the hippocampus, BDNF-TrkB signaling induces the postsynaptic release of the endogenous cannabinoid 2-AG, which acts retrogradely on the presynaptic CB1 receptors to suppress GABA release.
Collapse
Affiliation(s)
- Rajamani Selvam
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Mason L Yeh
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
13
|
Neuronal excitability and spontaneous synaptic transmission in the entorhinal cortex of BDNF heterozygous mice. Neurosci Lett 2018; 690:69-75. [PMID: 30316983 DOI: 10.1016/j.neulet.2018.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 02/04/2023]
Abstract
Brain Derived Neurotropic Factor (BDNF) is a neutrophic factor that is required for the normal neuronal development and function. BDNF is involved in regulation of synapses as well as neuronal excitability. Entorhinal Cortex (EC) is a key brain area involved in many physiological and pathological processes. In this study we investigated the effects of chronically reduced BDNF levels on layer 3 pyramidal neurons of EC. We aimed to assess the effects of reduced levels of BDNF on firing properties, spontaneous synaptic currents and excitation/inhibition balance from acute brain slices. Patch clamp recordings were obtained from pyramidal neurons of Entorhinal Cortex Layer 3. Findings of BDNF heterozygous (BDNF (+/-)) mice compared to their wild-type littermates at the age of 23-28 days. Action potential threshold was shifted (p = 0,002) to depolarized potentials and spike frequency was smaller in response to somatic current injection steps in BDNF (+/-) mice. Spontaneous synaptic currents were also affected. sEPSC amplitude (p = 0,009), sIPSC frequency (p = 0,001) and sIPSC amplitudes (p = 0,023) were reduced in BDNF (+/-). Decay times of sIPSCs were longer in BDNF (+/-) (p = 0,014). Calculated balance of excitatory/inhibitory balance was shifted in the favor of excitation in BDNF (+/-) mice (p = 0,01). These findings suggest that reductions in concentrations of BDNF results in altered status of excitability and excitation/inhibition imbalance. However, these differences observed in BDNF (+/-) seem to have opposing effects on neuronal activity.
Collapse
|
14
|
Postnatal TrkB ablation in corticolimbic interneurons induces social dominance in male mice. Proc Natl Acad Sci U S A 2018; 115:E9909-E9915. [PMID: 30282736 DOI: 10.1073/pnas.1812083115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tight balance between synaptic excitation and inhibition (E/I) within neocortical circuits in the mammalian brain is important for complex behavior. Many loss-of-function studies have demonstrated that brain-derived neurotrophic factor (BDNF) and its cognate receptor tropomyosin receptor kinase B (TrkB) are essential for the development of inhibitory GABAergic neurons. However, behavioral consequences of impaired BDNF/TrkB signaling in GABAergic neurons remain unclear, largely due to confounding motor function deficits observed in previous animal models. In this study, we generated conditional knockout mice (TrkB cKO) in which TrkB was ablated from a majority of corticolimbic GABAergic interneurons postnatally. These mice showed intact motor coordination and movement, but exhibited enhanced dominance over other mice in a group-housed setting. In addition, immature fast-spiking GABAergic neurons of TrkB cKO mice resulted in an E/I imbalance in layer 5 microcircuits within the medial prefrontal cortex (mPFC), a key region regulating social dominance. Restoring the E/I imbalance via optogenetic modulation in the mPFC of TrkB cKO mice normalized their social dominance behavior. Taken together, our results provide strong evidence for a role of BDNF/TrkB signaling in inhibitory synaptic modulation and social dominance behavior in mice.
Collapse
|
15
|
Vandenberg A, Lin WC, Tai LH, Ron D, Wilbrecht L. Mice engineered to mimic a common Val66Met polymorphism in the BDNF gene show greater sensitivity to reversal in environmental contingencies. Dev Cogn Neurosci 2018; 34:34-41. [PMID: 29909248 PMCID: PMC6596311 DOI: 10.1016/j.dcn.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/30/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
A new line of mice,Val68Met, mimic human BDNF Val66Met polymorphism. New knock-in BDNF Met mice reverse more efficiently than Val in two separate tasks. Supports theory that BDNF Met allele confers greater sensitivity to the environment. Reversal performance can be dissociated from go/no-go and extinction performance. Phenotypes differ between newer and older BDNF Val66Met mouse models.
A common human polymorphism in the gene that encodes brain derived neurotrophic factor (BDNF), Val66Met, is considered a marker of vulnerability for mental health issues and has been associated with cognitive impairment. An alternate framework has been proposed in which “risk alleles” are reinterpreted as “plasticity alleles” that confer vulnerability in adverse environments and positive effects in neutral or positive environments (Belsky et al., 2009). These frameworks produce divergent predictions for tests of learning and cognitive flexibility. Here, we examined multiple aspects of learning and cognitive flexibility in a relatively new BDNF Val66Met mouse model (BDNF Val68Met, Warnault et al., 2016), including multiple choice discrimination and reversal, go/no-go learning and reversal, and appetitive extinction learning. We found that mice homozygous for the Met allele show more efficient reversal learning in two different paradigms, but learn at rates comparable to Val homozygotes on the multiple choice discrimination task, a go/no-go task, and in appetitive extinction. Our results dissociate reversal performance from go/no-go learning and appetitive extinction and support the plasticity allele framework that suggests BDNF Met carriers are potentially more sensitive to changes in the environment.
Collapse
Affiliation(s)
- Angela Vandenberg
- Neuroscience Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, CA, 94720, USA
| | - Lung-Hao Tai
- Department of Psychology, University of California, Berkeley, CA, 94720, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720 USA.
| |
Collapse
|
16
|
Du X, Serena K, Hwang WJ, Grech A, Wu Y, Schroeder A, Hill R. Prefrontal cortical parvalbumin and somatostatin expression and cell density increase during adolescence and are modified by BDNF and sex. Mol Cell Neurosci 2018; 88:177-188. [DOI: 10.1016/j.mcn.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 01/21/2023] Open
|
17
|
Gu F, Parada I, Yang T, Longo FM, Prince DA. Partial TrkB receptor activation suppresses cortical epileptogenesis through actions on parvalbumin interneurons. Neurobiol Dis 2018; 113:45-58. [PMID: 29408225 DOI: 10.1016/j.nbd.2018.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 01/17/2023] Open
Abstract
Post-traumatic epilepsy is one of the most common and difficult to treat forms of acquired epilepsy worldwide. Currently, there is no effective way to prevent post-traumatic epileptogenesis. It is known that abnormalities of interneurons, particularly parvalbumin-containing interneurons, play a critical role in epileptogenesis following traumatic brain injury. Thus, enhancing the function of existing parvalbumin interneurons might provide a logical therapeutic approach to prevention of post-traumatic epilepsy. The known positive effects of brain-derived neurotrophic factor on interneuronal growth and function through activation of its receptor tropomyosin receptor kinase B, and its decrease after traumatic brain injury, led us to hypothesize that enhancing trophic support might improve parvalbumin interneuronal function and decrease epileptogenesis. To test this hypothesis, we used the partial neocortical isolation ('undercut', UC) model of posttraumatic epileptogenesis in mature rats that were treated for 2 weeks, beginning on the day of injury, with LM22A-4, a newly designed partial agonist at the tropomyosin receptor kinase B. Effects of treatment were assessed with Western blots to measure pAKT/AKT; immunocytochemistry and whole cell patch clamp recordings to examine functional and structural properties of GABAergic interneurons; field potential recordings of epileptiform discharges in vitro; and video-EEG recordings of PTZ-induced seizures in vivo. Results showed that LM22A-4 treatment 1) increased pyramidal cell perisomatic immunoreactivity for VGAT, GAD65 and parvalbumin; 2) increased the density of close appositions of VGAT/gephyrin immunoreactive puncta (putative inhibitory synapses) on pyramidal cell somata; 3) increased the frequency of mIPSCs in pyramidal cells; and 4) decreased the incidence of spontaneous and evoked epileptiform discharges in vitro. 5) Treatment of rats with PTX BD4-3, another partial TrkB receptor agonist, reduced the incidence of bicuculline-induced ictal episodes in vitro and PTZ induced electrographic and behavioral ictal episodes in vivo. 6) Inactivation of TrkB receptors in undercut TrkBF616A mice with 1NMPP1 abolished both LM22A-4-induced effects on mIPSCs and on increased perisomatic VGAT-IR. Results indicate that chronic activation of the tropomyosin receptor kinase B by a partial agonist after cortical injury can enhance structural and functional measures of GABAergic inhibition and suppress posttraumatic epileptogenesis. Although the full agonist effects of brain-derived neurotrophic factor and tropomyosin receptor kinase B activation in epilepsy models have been controversial, the present results indicate that such trophic activation by a partial agonist may potentially serve as an effective therapeutic option for prophylactic treatment of posttraumatic epileptogenesis, and treatment of other neurological and psychiatric disorders whose pathogenesis involves impaired parvalbumin interneuronal function.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States.
| |
Collapse
|
18
|
Tezcan B, Hacıoğlu G, Abidin SA, Abidin İ. Apoptotic Effects of Reduced Brain Derived Neurotrophic Factor (BDNF) on Mouse Liver and Kidney. DICLE MEDICAL JOURNAL 2017. [DOI: 10.5798/dicletip.362276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Jannati A, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Interindividual variability in response to continuous theta-burst stimulation in healthy adults. Clin Neurophysiol 2017; 128:2268-2278. [PMID: 29028501 DOI: 10.1016/j.clinph.2017.08.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/10/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We used complete-linkage cluster analysis to identify healthy subpopulations with distinct responses to continuous theta-burst stimulation (cTBS). METHODS 21 healthy adults (age±SD, 36.9±15.2years) underwent cTBS of left motor cortex. Natural log-transformed motor evoked potentials (LnMEPs) at 5-50min post-cTBS (T5-T50) were calculated. RESULTS Two clusters were found; Group 1 (n=12) that showed significant MEP facilitation at T15, T20, and T50 (p's<0.006), and Group 2 (n=9) that showed significant suppression at T5-T15 (p's<0.022). LnMEPs at T10 and T40 were best predictors of, and together accounted for 80% of, cluster assignment. In an exploratory analysis, we examined the roles of brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) polymorphisms in the cTBS response. Val66Met participants showed greater facilitation at T10 than Val66Val participants (p=0.025). BDNF and cTBS intensity predicted 59% of interindividual variability in LnMEP at T10. APOE did not significantly affect LnMEPs at any time point (p's>0.32). CONCLUSIONS Data-driven cluster analysis can identify healthy subpopulations with distinct cTBS responses. T10 and T40 LnMEPs were best predictors of cluster assignment. T10 LnMEP was influenced by BDNF polymorphism and cTBS intensity. SIGNIFICANCE Healthy adults can be sorted into subpopulations with distinct cTBS responses that are influenced by genetics.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lindsay M Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E.P. Bradley Hospital, Warrent Alpert Medical School of Brown University, East Providence, RI, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
20
|
Chen KW, Chen L. Epigenetic Regulation of BDNF Gene during Development and Diseases. Int J Mol Sci 2017; 18:ijms18030571. [PMID: 28272318 PMCID: PMC5372587 DOI: 10.3390/ijms18030571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE).
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Linyi Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
21
|
Galati DF, Hiester BG, Jones KR. Computer Simulations Support a Morphological Contribution to BDNF Enhancement of Action Potential Generation. Front Cell Neurosci 2016; 10:209. [PMID: 27683544 PMCID: PMC5021759 DOI: 10.3389/fncel.2016.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/22/2016] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates both action potential (AP) generation and neuron morphology. However, whether BDNF-induced changes in neuron morphology directly impact AP generation is unclear. We quantified BDNF’s effect on cultured cortical neuron morphological parameters and found that BDNF stimulates dendrite growth and addition of dendrites while increasing both excitatory and inhibitory presynaptic inputs in a spatially restricted manner. To gain insight into how these combined changes in neuron structure and synaptic input impact AP generation, we used the morphological parameters we gathered to generate computational models. Simulations suggest that BDNF-induced neuron morphologies generate more APs under a wide variety of conditions. Synapse and dendrite addition have the greatest impact on AP generation. However, subtle alterations in excitatory/inhibitory synapse ratio and strength have a significant impact on AP generation when synaptic activity is low. Consistent with these simulations, BDNF rapidly enhances spontaneous activity in cortical cultures. We propose that BDNF promotes neuron morphologies that are intrinsically more efficient at translating barrages of synaptic activity into APs, which is a previously unexplored aspect of BDNF’s function.
Collapse
Affiliation(s)
- Domenico F Galati
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder Boulder, CO, USA
| | - Brian G Hiester
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder Boulder, CO, USA
| | - Kevin R Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder Boulder, CO, USA
| |
Collapse
|
22
|
Experience Affects Critical Period Plasticity in the Visual Cortex through an Epigenetic Regulation of Histone Post-Translational Modifications. J Neurosci 2016; 36:3430-40. [PMID: 27013673 DOI: 10.1523/jneurosci.1787-15.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED During an early phase of enhanced sensitivity called the critical period (CP), monocular deprivation causes a shift in the response of visual cortex binocular neurons in favor of the nondeprived eye, a process named ocular dominance (OD) plasticity. While the time course of the CP for OD plasticity can be modulated by genetic/pharmacological interventions targeting GABAergic inhibition, whether an increased sensory-motor experience can affect this major plastic phenomenon is not known. We report that exposure to environmental enrichment (EE) accelerated the closure of the CP for OD plasticity in the rat visual cortex. Histone H3 acetylation was developmentally regulated in primary visual cortex, with enhanced levels being detectable early in enriched pups, and chromatin immunoprecipitation revealed an increase at the level of the BDNF P3 promoter. Administration of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) to animals reared in a standard cage mimicked the increase in H3 acetylation observed in the visual cortex and resulted in an accelerated decay of OD plasticity. Finally, exposure to EE in adulthood upregulated H3 acetylation and was paralleled by a reopening of the CP. These findings demonstrate a critical involvement of the epigenetic machinery as a mediator of visual cortex developmental plasticity and of the impact of EE on OD plasticity. SIGNIFICANCE STATEMENT While it is known that an epigenetic remodeling of chromatin structure controls developmental plasticity in the visual cortex, three main questions have remained open. Which is the physiological time course of histone modifications? Is it possible, by manipulating the chromatin epigenetic state, to modulate plasticity levels during the critical period? How can we regulate histone acetylation in the adult brain in a noninvasive manner? We show that the early exposure of rat pups to enriching environmental conditions accelerates the critical period for plasticity in the primary visual cortex, linking this effect to increased histone acetylation, specifically at the BDNF gene level. Moreover, we report that the exposure of adult animals to environmental enrichment enhances histone acetylation and reopens juvenile-like plasticity.
Collapse
|
23
|
Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:388-93. [PMID: 27279982 PMCID: PMC4887711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. MATERIALS AND METHODS Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. RESULTS Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. CONCLUSION As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.
Collapse
|
24
|
Prince D, Gu F, Parada I. Antiepileptogenic repair of excitatory and inhibitory synaptic connectivity after neocortical trauma. PROGRESS IN BRAIN RESEARCH 2016; 226:209-27. [DOI: 10.1016/bs.pbr.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Jin P, Yu HL, Tian-Lan, Zhang F, Quan ZS. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 2015; 133:146-54. [PMID: 25864425 DOI: 10.1016/j.pbb.2015.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/22/2022]
Abstract
Oleoylethanolamide (OEA) is an endocannabinoid analog that belongs to a family of endogenous acylethanolamides. Increasing evidence suggests that OEA may act as an endogenous neuroprotective factor and participate in the control of mental disorder-related behaviors. In this study, we examined whether OEA is effective against depression and investigated the role of circulating endogenous acylethanolamides during stress. Mice were subjected to 28days of chronic unpredictable mild stress (CUMS), and during the last 21days, treated with oral OEA (1.5-6mg/kg) or 6mg/kg fluoxetine. Sucrose preference and open field test activity were used to evaluate depression-like behaviors during CUMS and after OEA treatment. Weights of the prefrontal cortex and hippocampus were determined, and the adrenal index was measured. Furthermore, changes in serum adrenocorticotropic hormone (ACTH), corticosterone (CORT) and total antioxidant capacity (T-AOC), brain-derived neurotrophic factor (BDNF), and lipid peroxidation product malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities in the hippocampus and prefrontal cortex were detected. Our findings indicate that OEA normalized sucrose preferences, locomotion distances, rearing frequencies, prefrontal cortex and hippocampal atrophy, and adrenal indices. In addition, OEA reversed the abnormalities of BDNF and MDA levels and SOD activities in the hippocampus and prefrontal cortex, as well as changes in serum levels of ACTH, CORT, and T-AOC. The antidepressant effects of OEA may be related to the regulation of BDNF levels in the hippocampus and prefrontal cortex, antioxidant defenses, and normalizing hyperactivity in the hypothalamic-pituitary-adrenal axis (HPA).
Collapse
Affiliation(s)
- Peng Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji 133000, PR China; Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Cancer Research Institute, College of Medicine, Seoul National University, Yongon-dong 28, Chongno-gu, Seoul 110-799, Republic of Korea; Department of Biomedical Science, Ischemic/Hypoxic Disease Institute, Cancer Research Institute, College of Medicine, Seoul National University, Yongon-dong 28, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Hai-Ling Yu
- College of Medicine, Yanbian University, Park Street 977, Yanji, 133002 Jilin, PR China.
| | - Tian-Lan
- College of Medicine, Yanbian University, Park Street 977, Yanji, 133002 Jilin, PR China
| | - Feng Zhang
- College of Medicine, Yanbian University, Park Street 977, Yanji, 133002 Jilin, PR China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji 133000, PR China.
| |
Collapse
|
26
|
ERV enhances spatial learning and prevents the development of infarcts, accompanied by upregulated BDNF in the cortex. Brain Res 2015; 1610:110-23. [PMID: 25842373 DOI: 10.1016/j.brainres.2015.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 01/18/2023]
Abstract
PURPOSES An anti-allergic and analgesic drug, "an extract derived from the inflamed cutaneous tissue of rabbits inoculated with vaccinia virus (ERV)", has been used in medical practice in Japan and some other countries. We examined the effect of ERV, prior to induction of ischemia, on the development of cerebral infarction, on learning and memory, or on brain-derived neurotrophic factor (BDNF) levels in C57BL/6J mice. METHODS Following oral administration of ERV (the same in humans: ×1) or vehicle, daily for three consecutive weeks, temporary focal ischemia was induced by the three vessel occlusion technique. In the other group of animals, after daily ERV (Low: ×1; Med: ×3, or High dose: ×9) or vehicle administration for three weeks, we performed a quantitative assessment of spatial learning or intracerebral BDNF levels. RESULTS The volumes of infarcted lesions, brain edema and the extent of the neurological deficits were significantly reduced in the ERV-treated group. ERV treatment also enhanced spatial learning, accompanied by upregulated BDNF in the cortex. CONCLUSIONS Daily oral intake of ERV, at a clinically relevant dose, protects the brain from ischemic stroke, and also enhances the learning function in normal mice. As millions of people are currently taking the drug safely, and have been for many years in some cases, there is a need to test the inhibitory actions of the drug on progressive dementia encountered in humans with recurrent ischemic attacks or Alzheimer's disease.
Collapse
|
27
|
Psotta L, Rockahr C, Gruss M, Kirches E, Braun K, Lessmann V, Bock J, Endres T. Impact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model. Front Behav Neurosci 2015; 9:58. [PMID: 25852506 PMCID: PMC4367180 DOI: 10.3389/fnbeh.2015.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/18/2015] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that brain-derived neurotrophic factor (BDNF) plays a crucial role in Alzheimer’s disease (AD) pathology. A number of studies demonstrated that AD patients exhibit reduced BDNF levels in the brain and the blood serum, and in addition, several animal-based studies indicated a potential protective effect of BDNF against Aβ-induced neurotoxicity. In order to further investigate the role of BDNF in the etiology of AD, we created a novel mouse model by crossing a well-established AD mouse model (APP/PS1) with a mouse exhibiting a chronic BDNF deficiency (BDNF+/−). This new triple transgenic mouse model enabled us to further analyze the role of BDNF in AD in vivo. We reasoned that in case BDNF has a protective effect against AD pathology, an AD-like phenotype in our new mouse model should occur earlier and/or in more severity than in the APP/PS1-mice. Indeed, the behavioral analysis revealed that the APP/PS1-BDNF+/−-mice show an earlier onset of learning impairments in a two-way active avoidance task in comparison to APP/PS1- and BDNF+/−-mice. However in the Morris water maze (MWM) test, we could not observe an overall aggrevated impairment in spatial learning and also short-term memory in an object recognition task remained intact in all tested mouse lines. In addition to the behavioral experiments, we analyzed the amyloid plaque pathology in the APP/PS1 and APP/PS1-BDNF+/−-mice and observed a comparable plaque density in the two genotypes. Moreover, our results revealed a higher plaque density in prefrontal cortical compared to hippocampal brain regions. Our data reveal that higher cognitive tasks requiring the recruitment of cortical networks appear to be more severely affected in our new mouse model than learning tasks requiring mainly sub-cortical networks. Furthermore, our observations of an accelerated impairment in active avoidance learning in APP/PS1-BDNF+/−-mice further supports the hypothesis that BDNF deficiency amplifies AD-related cognitive dysfunctions.
Collapse
Affiliation(s)
- Laura Psotta
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Carolin Rockahr
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Michael Gruss
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Elmar Kirches
- Institute of Neuropathology, Faculty of Medicine, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Thomas Endres
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| |
Collapse
|
28
|
Vandenberg A, Piekarski DJ, Caporale N, Munoz-Cuevas FJ, Wilbrecht L. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent. Front Neural Circuits 2015; 9:5. [PMID: 25762898 PMCID: PMC4329800 DOI: 10.3389/fncir.2015.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/14/2015] [Indexed: 11/23/2022] Open
Abstract
The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs) in Layer 5 cell-types in the mouse anterior cingulate (Cg) across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral Cg and ipsilateral pons. We found that YFP− neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21–25). YFP− neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21–25 vs. P40–50), which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB) signaling during P23–50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs). Our data suggest that the maturation of inhibitory inputs onto Layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.
Collapse
Affiliation(s)
- Angela Vandenberg
- Neuroscience Graduate Program, University of California San Francisco, CA, USA
| | - David J Piekarski
- Department of Psychology, University of California Berkeley, CA, USA
| | - Natalia Caporale
- Department of Psychology, University of California Berkeley, CA, USA
| | | | - Linda Wilbrecht
- Department of Psychology, University of California Berkeley, CA, USA ; Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
| |
Collapse
|
29
|
Varendi K, Mätlik K, Andressoo JO. From microRNA target validation to therapy: lessons learned from studies on BDNF. Cell Mol Life Sci 2015; 72:1779-94. [PMID: 25601223 PMCID: PMC4412727 DOI: 10.1007/s00018-015-1836-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/22/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
During the past decade, the identification of microRNA (miR) targets has become common laboratory practice, and various strategies are now used to detect interactions between miRs and their mRNA targets. However, the current lack of a standardized identification process often leads to incomplete and/or conflicting results. Here, we review the problems most commonly encountered when verifying miR–mRNA interactions, and we propose a workflow for future studies. To illustrate the challenges faced when validating a miR target, we discuss studies in which the regulation of brain-derived neurotrophic factor by miRs was investigated, and we highlight several controversies that emerged from these studies. Finally, we discuss the therapeutic use of miR inhibitors, and we discuss several questions that should be addressed before proceeding to preclinical testing.
Collapse
Affiliation(s)
- Kärt Varendi
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
30
|
BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain. J Neurosci 2015; 34:14739-51. [PMID: 25355226 DOI: 10.1523/jneurosci.0860-14.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Painful experiences are multilayered, composed of sensory, affective, cognitive and behavioral facets. Whereas it is well accepted that the development of chronic pain is due to maladaptive neuronal changes, the underlying molecular mechanisms, their relationship to the different pain modalities, and indeed the localization of these changes are still unknown. Brain-derived neurotrophic factor (BDNF) is an activity-dependent neuromodulator in the adult brain, which enhances neuronal excitability. In the spinal cord, BDNF underlies the development and maintenance of inflammatory and neuropathic pain. Here, we hypothesized that BDNF could be a trigger of some of these plastic changes. Our results demonstrate that BDNF is upregulated in the anterior cingulate cortex (ACC) and the primary sensory cortex (S1) in rats with inflammatory pain. Injections of recombinant BDNF (into the ACC) or a viral vector synthesizing BDNF (into the ACC or S1) triggered both neuronal hyperexcitability, as shown by elevated long-term potentiation, and sustained pain hypersensitivity. Finally, pharmacological blockade of BDNF-tropomyosin receptor kinase B (TrkB) signaling in the ACC, through local injection of cyclotraxin-B (a novel, highly potent, and selective TrkB antagonist) prevented neuronal hyperexcitability, the emergence of cold hypersensitivity, and passive avoidance behavior. These findings show that BDNF-dependent neuronal plasticity in the ACC, a structure known to be involved in the affective-emotional aspect of pain, is a key mechanism in the development and maintenance of the emotional aspect of chronic pain.
Collapse
|
31
|
Puskarjov M, Ahmad F, Khirug S, Sivakumaran S, Kaila K, Blaesse P. BDNF is required for seizure-induced but not developmental up-regulation of KCC2 in the neonatal hippocampus. Neuropharmacology 2015; 88:103-9. [PMID: 25229715 DOI: 10.1016/j.neuropharm.2014.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023]
Abstract
A robust increase in the functional expression of the neuronal K-Cl cotransporter KCC2 during CNS development is necessary for the emergence of hyperpolarizing ionotropic GABAergic transmission. BDNF-TrkB signaling has been implicated in the developmental up-regulation of KCC2 and, in mature animals, in fast activity-dependent down-regulation of KCC2 function following seizures and trauma. In contrast to the decrease in KCC2 expression observed in the adult hippocampus following trauma, seizures in the neonate trigger a TrkB-dependent up-regulation of neuronal Cl(-) extrusion capacity associated with enhanced surface expression of KCC2. Here, we show that this effect is transient, and impaired in the hippocampus of Bdnf(-/-) mice. Notably, however, a complete absence of BDNF does not compromise the increase in KCC2 protein or K-Cl transport functionality during neuronal development. Furthermore, we present data indicating that the functional up-regulation of KCC2 by neonatal seizures is temporally limited by calpain activity.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Faraz Ahmad
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Stanislav Khirug
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sudhir Sivakumaran
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Peter Blaesse
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
32
|
Deidda G, Allegra M, Cerri C, Naskar S, Bony G, Zunino G, Bozzi Y, Caleo M, Cancedda L. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat Neurosci 2014; 18:87-96. [PMID: 25485756 PMCID: PMC4338533 DOI: 10.1038/nn.3890] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
Hyperpolarizing and inhibitory GABA regulates critical periods for plasticity in sensory cortices. Here we examine the role of early, depolarizing GABA in the control of plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical-period plasticity in visual cortical circuits without affecting the overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, downregulation of brain-derived neurotrophic factor (BDNF) expression and reduced density of extracellular matrix perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and a pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF.
Collapse
Affiliation(s)
- Gabriele Deidda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Manuela Allegra
- 1] Scuola Normale Superiore, Pisa, Italy. [2] CNR Neuroscience Institute, Pisa, Italy
| | | | - Shovan Naskar
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Guillaume Bony
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- 1] CNR Neuroscience Institute, Pisa, Italy. [2] Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Laura Cancedda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
33
|
Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. World J Biol Chem 2014; 5:409-428. [PMID: 25426265 PMCID: PMC4243146 DOI: 10.4331/wjbc.v5.i4.409] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/10/2014] [Accepted: 08/31/2014] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.
Collapse
|
34
|
Kumar A, Varendi K, Peränen J, Andressoo JO. Tristetraprolin is a novel regulator of BDNF. SPRINGERPLUS 2014; 3:502. [PMID: 25279294 PMCID: PMC4164675 DOI: 10.1186/2193-1801-3-502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/25/2014] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates multiple biological processes ranging from central nervous system development and function to neuroinflammation and myogenic differentiation and repair. While coordination of BDNF levels is central in determining the biological outcome, mechanisms involved in controlling BDNF levels are not fully understood. Here we find that both short (BDNF-S) and long (BDNF-L) BDNF 3’UTR isoforms contain conserved adenylate- and uridylate rich elements (AREs) that may serve as binding sites for RNA-binding proteins (ARE-BPs). We demonstrate that ARE-BPs tristetraprolin (TTP) and its family members butyrate response factor 1 (BRF1) and 2 (BRF2) negatively regulate expression from both BDNF-S and BDNF-L containing transcripts in several cell-lines and that interaction between TTP and AU-rich region in proximal 5’ end of BDNF 3’UTR is direct. In line with the above, endogenous BDNF mRNA co-immunoprecipitates with endogenous TTP in differentiated mouse myoblast C2C12 cells and TTP overexpression destabilizes BDNF-S containing transcript. Finally, RNAi-mediated knock-down of TTP increases the levels of endogenous BDNF protein in C2C12 cells. Our findings uncover TTP as a novel regulator of BDNF assisting future studies in different physiological and pathological contexts.
Collapse
Affiliation(s)
- Anmol Kumar
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014 Finland
| | - Kärt Varendi
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014 Finland
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014 Finland
| | | |
Collapse
|
35
|
Varendi K, Kumar A, Härma MA, Andressoo JO. miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol Life Sci 2014; 71:4443-56. [PMID: 24804980 PMCID: PMC4207943 DOI: 10.1007/s00018-014-1628-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/01/2014] [Accepted: 04/13/2014] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a secreted protein of the neurotrophin family that regulates brain development, synaptogenesis, memory and learning, as well as development of peripheral organs, such as angiogenesis in the heart and postnatal growth and repair of skeletal muscle. However, while precise regulation of BDNF levels is an important determinant in defining the biological outcome, the role of microRNAs (miRs) in modulating BDNF expression has not been extensively analyzed. Using in silico approaches, reporter systems, and analysis of endogenous BDNF, we show that miR-1, miR-10b, miR-155, and miR-191 directly repress BDNF through binding to their predicted sites in BDNF 3′UTR. We find that the overexpression of miR-1 and miR-10b suppresses endogenous BDNF protein levels and that silencing endogenous miR-10b increases BDNF mRNA and protein levels. Furthermore, we show that miR-1/206 binding sites within BDNF 3′UTR are used in differentiated myotubes but not in undifferentiated myoblasts. Finally, our data from two cell lines suggest that endogenous miR-1/206 and miR-10 family miRs act cooperatively in suppressing BDNF through their predicted sites in BDNF 3′UTR. In conclusion, our results highlight miR-1, miR-10b, miR-155, and miR-191 as novel regulators of BDNF long and short 3′UTR isoforms, supporting future research in different physiological and pathological contexts.
Collapse
Affiliation(s)
- Kärt Varendi
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | | | | | | |
Collapse
|
36
|
mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res 2014; 264:82-90. [DOI: 10.1016/j.bbr.2014.02.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/15/2022]
|
37
|
|
38
|
Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 2014; 76 Pt C:628-38. [DOI: 10.1016/j.neuropharm.2013.05.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022]
|
39
|
Schildt S, Endres T, Lessmann V, Edelmann E. Acute and chronic interference with BDNF/TrkB-signaling impair LTP selectively at mossy fiber synapses in the CA3 region of mouse hippocampus. Neuropharmacology 2013; 71:247-54. [DOI: 10.1016/j.neuropharm.2013.03.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 11/27/2022]
|
40
|
Agostino PV, Cheng RK, Williams CL, West AE, Meck WH. Acquisition of response thresholds for timed performance is regulated by a calcium-responsive transcription factor, CaRF. GENES BRAIN AND BEHAVIOR 2013; 12:633-44. [DOI: 10.1111/gbb.12059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 01/25/2023]
Affiliation(s)
- P. V. Agostino
- Laboratory of Chronobiology, Department of Science and Technology; National University of Quilmes; Buenos Aires; Argentina
| | - R.-K. Cheng
- A*STAR/Duke-NUS Neuroscience Research Partnership; Singapore; Singapore
| | | | - A. E. West
- Department of Neurobiology; Duke University; Durham; NC; USA
| | | |
Collapse
|
41
|
Kjaerby C, Broberg BV, Kristiansen U, Dalby NO. Impaired GABAergic inhibition in the prefrontal cortex of early postnatal phencyclidine (PCP)-treated rats. Cereb Cortex 2013; 24:2522-32. [PMID: 23613110 DOI: 10.1093/cercor/bht109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A compromised γ-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-D-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmission in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl-methylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid, and also diminished currents passed by δ-subunit-containing GABAA receptors in layer II/III pyramidal neurons. The observed impairments in GABAergic function are compatible with the alteration of GABAergic markers as well as cognitive dysfunction observed in early postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life.
Collapse
Affiliation(s)
- Celia Kjaerby
- Synaptic Transmission I, H. Lundbeck A/S, 2500 Valby, Denmark Department of Pharmacology and Pharmacotherapy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Brian V Broberg
- Synaptic Transmission I, H. Lundbeck A/S, 2500 Valby, Denmark Center for Psychiatric Schizophrenia Research, Psychiatric Center Glostrup, 2600 Glostrup, Denmark
| | - Uffe Kristiansen
- Department of Pharmacology and Pharmacotherapy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nils Ole Dalby
- Synaptic Transmission I, H. Lundbeck A/S, 2500 Valby, Denmark
| |
Collapse
|
42
|
Li W, Pozzo-Miller L. BDNF deregulation in Rett syndrome. Neuropharmacology 2013; 76 Pt C:737-46. [PMID: 23597512 DOI: 10.1016/j.neuropharm.2013.03.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 03/15/2013] [Indexed: 12/21/2022]
Abstract
BDNF is the best-characterized neurotrophin in terms of its gene structure and modulation, secretion processing, and signaling cascades following its release. In addition to diverse features at the genetic and molecular levels, the abundant expression in several regions of the central nervous system has implicated BDNF as a potent modulator in many aspects of neuronal development, as well as synaptic transmission and plasticity. Impairments in any of these critical functions likely contribute to a wide array of neurodevelopmental, neurodegenerative, and neuropsychiatric diseases. In this review, we focus on a prevalent neurodevelopmental disorder, Rett syndrome (RTT), which afflicts 1:15,000 women world-wide. We describe the consequences of loss-of-function mutations in the gene encoding the transcription factor methyl-CpG binding protein 2 (MeCP2) in RTT, and then elaborate on the current understanding of how MeCP2 controls BDNF expression. Finally, we discuss the literature regarding alterations in BDNF levels in RTT individuals and MeCP2-based mouse models, as well as recent progress in searching for rational therapeutic interventions. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
43
|
Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology 2013; 76 Pt C:709-18. [PMID: 23587647 DOI: 10.1016/j.neuropharm.2013.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 01/11/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Nina N Karpova
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.
| |
Collapse
|
44
|
Shift from phasic to tonic GABAergic transmission following laser-lesions in the rat visual cortex. Pflugers Arch 2012; 465:879-93. [PMID: 23224682 DOI: 10.1007/s00424-012-1191-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
Reduction in the strength of GABAergic neurotransmission has often been reported following brain lesions. This weakened inhibition is believed to influence neurological deficits, neuronal hyperexcitability and functional recovery after brain injuries. Uncovering the mechanisms underlying the altered inhibition is therefore crucial. In the present study we used an ex vivo-in vitro model of laser lesions in the rat visual cortex to characterize the cellular correlates of changes in GABAergic transmission in the tissue adjacent to the injury. In the first week post-injury the number of VGAT positive GABAergic terminals as well as the expression level of the GABA synthesizing enzymes GAD67 and GAD65 remained unaltered. However, a reduced frequency of miniature inhibitory postsynaptic currents (mIPSCs) together with an increased paired-pulse ratio (PPR) of evoked IPSCs suggested a functional reduction of phasic GABA release. In parallel, we found an enhancement in the GABAA receptor-mediated tonic inhibition. On the basis of these findings, we propose that cortical lesions provoke a shift in GABAergic transmission, decreasing the phasic and reinforcing the tonic component. We therefore suggest that it is not, as traditionally assumed, the overall inhibitory strength to be primarily compromised by a cortical lesion but rather the temporal accuracy of the GABAergic synaptic signaling.
Collapse
|
45
|
Laudes T, Meis S, Munsch T, Lessmann V. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice. Neuroscience 2012; 222:215-27. [DOI: 10.1016/j.neuroscience.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023]
|
46
|
Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. J Neurosci 2012; 32:5398-413. [PMID: 22514304 DOI: 10.1523/jneurosci.4515-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BDNF plays a critical role in the regulation of synaptic strength and is essential for long-term potentiation, a phenomenon that underlies learning and memory. However, whether BDNF acts in a diffuse manner or is targeted to specific neuronal subcompartments or synaptic sites to affect circuit function remains unknown. Here, using photoactivation of BDNF or syt-IV (a regulator of exocytosis present on BDNF-containing vesicles) in transfected rat hippocampal neurons, we discovered that distinct subsets of BDNF vesicles are targeted to axons versus dendrites and are not shared between these compartments. Moreover, syt-IV- and BDNF-harboring vesicles are recruited to both presynaptic and postsynaptic sites in response to increased neuronal activity. Finally, using syt-IV knockout mouse neurons, we found that syt-IV is necessary for both presynaptic and postsynaptic scaling of synaptic strength in response to changes in network activity. These findings demonstrate that BDNF-containing vesicles can be targeted to specific sites in neurons and suggest that syt-IV-regulated BDNF secretion is subject to spatial control to regulate synaptic function in a site-specific manner.
Collapse
|
47
|
Uribe V, Wong BK, Graham RK, Cusack CL, Skotte NH, Pouladi MA, Xie Y, Feinberg K, Ou Y, Ouyang Y, Deng Y, Franciosi S, Bissada N, Spreeuw A, Zhang W, Ehrnhoefer DE, Vaid K, Miller FD, Deshmukh M, Howland D, Hayden MR. Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Hum Mol Genet 2012; 21:1954-67. [PMID: 22262731 PMCID: PMC3315204 DOI: 10.1093/hmg/dds005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/09/2012] [Indexed: 11/13/2022] Open
Abstract
Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.
Collapse
Affiliation(s)
- Valeria Uribe
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Bibiana K.Y. Wong
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rona K. Graham
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Corey L. Cusack
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, NC27599-7250, USA
| | - Niels H. Skotte
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medical Genetics, Institute of Cellular and Molecular Medicine, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yuanyun Xie
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Konstantin Feinberg
- Developmental and Stem Cell Biology Group, Hospital for Sick Children, Toronto, OntarioM5G1L7, Canada
| | - Yimiao Ou
- Developmental and Stem Cell Biology Group, Hospital for Sick Children, Toronto, OntarioM5G1L7, Canada
| | | | - Yu Deng
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sonia Franciosi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nagat Bissada
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Amanda Spreeuw
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Weining Zhang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Dagmar E. Ehrnhoefer
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kuljeet Vaid
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Freda D. Miller
- Developmental and Stem Cell Biology Group, Hospital for Sick Children, Toronto, OntarioM5G1L7, Canada
- Department of Molecular Genetics and
- Department of Physiology, University of Toronto, Toronto, OntarioM5G1X5, Canada
| | - Mohanish Deshmukh
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, NC27599-7250, USA
| | | | - Michael R. Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
48
|
Fretham SJB, Carlson ES, Wobken J, Tran PV, Petryk A, Georgieff MK. Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus 2012; 22:1691-702. [PMID: 22367974 DOI: 10.1002/hipo.22004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2011] [Indexed: 12/17/2022]
Abstract
Iron is a necessary substrate for neuronal function throughout the lifespan, but particularly during development. Early life iron deficiency (ID) in humans (late gestation through 2-3 yr) results in persistent cognitive and behavioral abnormalities despite iron repletion. Animal models of early life ID generated using maternal dietary iron restriction also demonstrate persistent learning and memory deficits, suggesting a critical requirement for iron during hippocampal development. Precise definition of the temporal window for this requirement has been elusive due to anemia and total body and brain ID inherent to previous dietary restriction models. To circumvent these confounds, we developed transgenic mice that express tetracycline transactivator regulated, dominant negative transferrin receptor (DNTfR1) in hippocampal neurons, disrupting TfR1 mediated iron uptake specifically in CA1 pyramidal neurons. Normal iron status was restored by doxycycline administration. We manipulated the duration of ID using this inducible model to examine long-term effects of early ID on Morris water maze learning, CA1 apical dendrite structure, and defining factors of critical periods including parvalbmin (PV) expression, perineuronal nets (PNN), and brain-derived neurotrophic factor (BDNF) expression. Ongoing ID impaired spatial memory and resulted in disorganized apical dendrite structure accompanied by altered PV and PNN expression and reduced BDNF levels. Iron repletion at P21, near the end of hippocampal dendritogenesis, restored spatial memory, dendrite structure, and critical period markers in adult mice. However, mice that remained hippocampally iron deficient until P42 continued to have spatial memory deficits, impaired CA1 apical dendrite structure, and persistent alterations in PV and PNN expression and reduced BDNF despite iron repletion. Together, these findings demonstrate that hippocampal iron availability is necessary between P21 and P42 for development of normal spatial learning and memory, and that these effects may reflect disruption of critical period closure by early life ID.
Collapse
Affiliation(s)
- S J B Fretham
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
49
|
Monocular enucleation profoundly reduces secretogranin II expression in adult mouse visual cortex. Neurochem Int 2011; 59:1082-94. [DOI: 10.1016/j.neuint.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/12/2011] [Indexed: 11/21/2022]
|
50
|
Abidin I, Yildirim M, Aydin-Abidin S, Kalay E, Cansu A, Akca M, Mittmann T. Penicillin induced epileptiform activity and EEG spectrum analysis of BDNF heterozygous mice: An in vivo electrophysiological study. Brain Res Bull 2011; 86:159-64. [DOI: 10.1016/j.brainresbull.2011.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/01/2011] [Accepted: 06/25/2011] [Indexed: 11/29/2022]
|