1
|
Ten Barge JA, van den Bosch GE, Slater R, van den Hoogen NJ, Reiss IKM, Simons SHP. Visceral Pain in Preterm Infants with Necrotizing Enterocolitis: Underlying Mechanisms and Implications for Treatment. Paediatr Drugs 2025; 27:201-220. [PMID: 39752054 PMCID: PMC11829917 DOI: 10.1007/s40272-024-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a relatively rare but very severe gastrointestinal disease primarily affecting very preterm infants. NEC is characterized by excessive inflammation and ischemia in the intestines, and is associated with prolonged, severe visceral pain. Despite its recognition as a highly painful disease, current pain management for NEC is often inadequate, and research on optimal analgesic therapy for these patients is lacking. Insight into the mechanisms underlying intestinal pain in infants with NEC-visceral pain-could help identify the most effective analgesics for these vulnerable patients. Therefore, this comprehensive review aims to provide an overview of visceral nociception, including transduction, transmission, modulation, and experience, and discuss the implications for analgesic therapy in preterm infants with NEC. The transmission of visceral pain differs from that of somatic pain, contributing to the diffuse nature of visceral pain. Studies evaluating the effectiveness of analgesics for treating visceral pain in infants are scarce. However, research in visceral pain models highlights agents that may be particularly effective for treating visceral pain based on their mechanisms of action. Further research is necessary to determine whether agents that have shown promise for treating visceral pain in preclinical studies and adults are effective in infants with NEC as well.
Collapse
Affiliation(s)
- Judith A Ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Katagiri A, Yamada M, Sato H, Toyoda H, Niwa H, Kato T. Long-lasting adverse effects of short-term stress during the suckling-mastication transition period on masticatory function and intraoral sensation in rats. Odontology 2024; 112:906-916. [PMID: 38197987 PMCID: PMC11269417 DOI: 10.1007/s10266-023-00887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
Early-life stress affects brain development, eventually resulting in adverse behavioral and physical health consequences in adulthood. The present study assessed the hypothesis that short-term early-life stress during infancy before weaning, a period for the maturation of mastication and sleep, poses long-lasting adverse effects on masticatory function and intraoral sensations later in life.Rat pups were exposed to either maternal separation (MS) or intermittent hypoxia (IH-Infancy) for 6 h/day in the light/sleep phase from postnatal day (P)17 to P20 to generate "neglect" and "pediatric obstructive sleep apnea" models, respectively. The remaining rats were exposed to IH during P45-P48 (IH-Adult). Masticatory ability was evaluated based on the rats' ability to chew pellets and bite pasta throughout the growth period (P21-P70). Intraoral chemical and mechanical sensitivities were assessed using two-bottle preference drinking tests, and hind paw pain thresholds were measured in adulthood (after P60).No differences were found in body weight, grip force, and hind paw sensitivity in MS, IH-Infancy, and IH-Adult rats compared with naïve rats. Masticatory ability was lower in MS and IH-Infancy rats from P28 to P70 than in naïve rats. MS and IH-Infancy rats exhibited intraoral hypersensitivity to capsaicin and mechanical stimulations in adulthood. The IH-Adult rats did not display inferior masticatory ability or intraoral hypersensitivity.In conclusion, short-term early-life stress during the suckling-mastication transition period potentially causes a persistent decrease in masticatory ability and intraoral hypersensitivity in adulthood. The period is a "critical window" for the maturation of oral motor and sensory functions.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Masaharu Yamada
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Hajime Sato
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0283, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Fitzgerald M. The Bayliss-Starling Prize Lecture: The developmental physiology of spinal cord and cortical nociceptive circuits. J Physiol 2024; 602:1003-1016. [PMID: 38426221 DOI: 10.1113/jp283994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
When do we first experience pain? To address this question, we need to know how the developing nervous system processes potential or real tissue-damaging stimuli in early life. In the newborn, nociception preserves life through reflex avoidance of tissue damage and engagement of parental help. Importantly, nociception also forms the starting point for experiencing and learning about pain and for setting the level of adult pain sensitivity. This review, which arose from the Bayliss-Starling Prize Lecture, focuses on the basic developmental neurophysiology of early nociceptive circuits in the spinal cord, brainstem and cortex that form the building blocks of our first pain experience.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
4
|
Zandvoort CS, van der Vaart M, Robinson S, Usman F, Schmidt Mellado G, Evans Fry R, Worley A, Adams E, Slater R, Baxter L, de Vos M, Hartley C. Sensory event-related potential morphology predicts age in premature infants. Clin Neurophysiol 2024; 157:61-72. [PMID: 38064929 DOI: 10.1016/j.clinph.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE We investigated whether sensory-evoked cortical potentials could be used to estimate the age of an infant. Such a model could be used to identify infants who deviate from normal neurodevelopment. METHODS Infants aged between 28- and 40-weeks post-menstrual age (PMA) (166 recording sessions in 96 infants) received trains of visual and tactile stimuli. Neurodynamic response functions for each stimulus were derived using principal component analysis and a machine learning model trained and validated to predict infant age. RESULTS PMA could be predicted accurately from the magnitude of the evoked responses (training set mean absolute error and 95% confidence intervals: 1.41 [1.14; 1.74] weeks,p = 0.0001; test set mean absolute error: 1.55 [1.21; 1.95] weeks,p = 0.0002). Moreover, we show that their predicted age (their brain age) is correlated with a measure known to relate to maturity of the nervous system and is linked to long-term neurodevelopment. CONCLUSIONS Sensory-evoked potentials are predictive of age in premature infants and brain age deviations are related to biologically and clinically meaningful individual differences in nervous system maturation. SIGNIFICANCE This model could be used to detect abnormal development of infants' response to sensory stimuli in their environment and may be predictive of neurodevelopmental outcome.
Collapse
Affiliation(s)
- Coen S Zandvoort
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Shellie Robinson
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Fatima Usman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Ria Evans Fry
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alan Worley
- Newborn Care Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Eleri Adams
- Newborn Care Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Maarten de Vos
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, University Hospitals Leuven, Child Neurology, KU Leuven, Leuven, Belgium
| | - Caroline Hartley
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Duff IT, Krolick KN, Mahmoud HM, Chidambaran V. Current Evidence for Biological Biomarkers and Mechanisms Underlying Acute to Chronic Pain Transition across the Pediatric Age Spectrum. J Clin Med 2023; 12:5176. [PMID: 37629218 PMCID: PMC10455285 DOI: 10.3390/jcm12165176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic pain is highly prevalent in the pediatric population. Many factors are involved in the transition from acute to chronic pain. Currently, there are conceptual models proposed, but they lack a mechanistically sound integrated theory considering the stages of child development. Objective biomarkers are critically needed for the diagnosis, risk stratification, and prognosis of the pathological stages of pain chronification. In this article, we summarize the current evidence on mechanisms and biomarkers of acute to chronic pain transitions in infants and children through the developmental lens. The goal is to identify gaps and outline future directions for basic and clinical research toward a developmentally informed theory of pain chronification in the pediatric population. At the outset, the importance of objective biomarkers for chronification of pain in children is outlined, followed by a summary of the current evidence on the mechanisms of acute to chronic pain transition in adults, in order to contrast with the developmental mechanisms of pain chronification in the pediatric population. Evidence is presented to show that chronic pain may have its origin from insults early in life, which prime the child for the development of chronic pain in later life. Furthermore, available genetic, epigenetic, psychophysical, electrophysiological, neuroimaging, neuroimmune, and sex mechanisms are described in infants and older children. In conclusion, future directions are discussed with a focus on research gaps, translational and clinical implications. Utilization of developmental mechanisms framework to inform clinical decision-making and strategies for prevention and management of acute to chronic pain transitions in children, is highlighted.
Collapse
Affiliation(s)
- Irina T. Duff
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Kristen N. Krolick
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Hana Mohamed Mahmoud
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital, Cincinnati, OH 45242, USA; (K.N.K.); (H.M.M.)
| |
Collapse
|
6
|
Rupawala M, Bucsea O, Laudiano-Dray MP, Whitehead K, Meek J, Fitzgerald M, Olhede S, Jones L, Fabrizi L. A developmental shift in habituation to pain in human neonates. Curr Biol 2023; 33:1397-1406.e5. [PMID: 36931271 DOI: 10.1016/j.cub.2023.02.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Habituation to recurrent non-threatening or unavoidable noxious stimuli is an important aspect of adaptation to pain. Neonates, especially if preterm, are exposed to repeated noxious procedures during their clinical care. They can mount strong behavioral, autonomic, spinal, and cortical responses to a single noxious stimulus; however, it is not known whether the developing nervous system can adapt to the recurrence of these inputs. Here, we used electroencephalography to investigate changes in cortical microstates (representing the complex sequential processing of noxious inputs) following two consecutive clinically required heel lances in term and preterm infants. We show that stimulus repetition dampens the engagement of initial microstates and associated behavioral and autonomic responses in term infants, while preterm infants do not show signs of habituation. Nevertheless, both groups engage different longer-latency cortical microstates to each lance, which is likely to reflect changes in higher-level stimulus processing with repeated stimulation. These data suggest that while both age groups are capable of encoding contextual differences in pain, the preterm brain does not regulate the initial cortical, behavioral, and autonomic responses to repeated noxious stimuli. Habituation mechanisms to pain are already in place at term age but mature over the equivalent of the last trimester of gestation and are not fully functional in preterm neonates.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Oana Bucsea
- Faculty of Health, Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E 6DB, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Sofia Olhede
- Department of Statistical Science, University College London, London WC1E 6BT, UK; Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society-American Academy of Pain Medicine Pain Taxonomy Diagnostic Criteria for Acute Needle Pain. THE JOURNAL OF PAIN 2023; 24:387-402. [PMID: 36243317 DOI: 10.1016/j.jpain.2022.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Needle procedures are among the most common causes of pain and distress for individuals seeking health care. While needle pain is especially problematic for children needle pain and associated fear also has significant impact on adults and can lead to avoidance of appropriate medical care. Currently there is not a standard definition of needle pain. A taxonomy, or classification system, for acute needle pain would aid research efforts and enhance clinical care. To meet this need, the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks public-private partnership with the U.S. Food and Drug Administration, the American Pain Society, and the American Academy of Pain Medicine formed the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society-American Academy of Pain Medicine Pain Taxonomy initiative. One of the goals of this initiative was to develop taxonomies for acute pain disorders, including needle pain. To accomplish this, a working group of experts in needle pain was convened. Based on available literature and expert opinion, the working group used a 5-dimenional structure (diagnostic criteria, common features, modulating factors, impact and/or functional consequences, and putative mechanisms) to develop an acute pain taxonomy that is specific needle pain. As part of this, a set of 4 diagnostic criteria, with 2 modifiers to account for the influence of needle associated fear, are proposed to define the types of acute needle pain. PERSPECTIVE: This article presents a taxonomy for acute needle pain. This taxonomy could help to standardize definitions of acute pain in clinical studies of patients undergoing needle procedures.
Collapse
|
8
|
Ness TJ, DeWitte C, Randich A. Neonatal cystitis leads to alterations in spinal corticotropin releasing factor receptor-type 2 content and function in adult rats following bladder re-inflammation. Brain Res 2022; 1788:147927. [PMID: 35477003 PMCID: PMC11062479 DOI: 10.1016/j.brainres.2022.147927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023]
Abstract
Spinal mechanisms associated with visceral hypersensitivity are poorly understood. One model of bladder hypersensitivity with phenotypic features similar to the disorder interstitial cystitis/bladder pain syndrome is the neonatal bladder inflammation (NBI) model. In this model, rat pup bladders are infused with zymosan solutions on post-partum days 14-16 and then rats are retested as adults. Studies of other sites of deep tissue hypersensitivity have suggested a role for corticotropin-releasing factor (CRF) receptors type 1 and 2 (CRFR1 and CRFR2). Using neurochemical measures, pharmacological manipulations and both reflex and neuronal responses to urinary bladder distension as endpoints, the present study probed the role of CRFR2s in bladder hyperalgesia secondary to NBI and acute bladder re-inflammation as an adult (ABI). ELISA measures of the lumbosacral spinal cord demonstrated increased CRFR1s and CRFR2s following pretreatment with both NBI + ABI as well as NBI-related increases in the CRFR2 agonist urocortin 2. Intrathecal CRFR2 antagonists, but not a CRFR1 antagonist, blocked the augmentation of visceromotor responses to distension following pretreatment with both NBI + ABI. Lumbosacral dorsal horn neuronal responses to distension in rats pretreated with NBI + ABI were attenuated by the spinal topical administration of a CRFR2 antagonist. These studies suggest therapeutic value of CRFR2 antagonists in the treatment of painful bladder disorders.
Collapse
Affiliation(s)
- Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Cary DeWitte
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alan Randich
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Talluri B, Hoelzel F, Medda BK, Terashvili M, Sanvanson P, Shaker R, Banerjee A, Sengupta JN, Banerjee B. Identification and characterization of rostral ventromedial medulla neurons synaptically connected to the urinary bladder afferents in female rats with or without neonatal cystitis. J Comp Neurol 2022; 530:1129-1147. [PMID: 34628661 PMCID: PMC8967775 DOI: 10.1002/cne.25260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/06/2022]
Abstract
The neurons in the rostral ventromedial medulla (RVM) play a major role in pain modulation. We have previously shown that early-life noxious bladder stimuli in rats resulted in an overall spinal GABAergic disinhibition and a long-lasting bladder/colon sensitization when tested in adulthood. However, the neuromolecular alterations within RVM neurons in the pathophysiology of early life bladder inflammation have not been elucidated. In this study, we have identified and characterized RVM neurons that are synaptically linked to the bladder and colon and examined the effect of neonatal bladder inflammation on molecular expressions of these neurons. A transient bladder inflammation was induced by intravesicular instillation of protamine sulfate and zymosan during postnatal days 14 through 16 (P14-16) followed by pseudorabies virus PRV-152 and PRV-614 injections into the bladder and colon, respectively, on postnatal day P60. Tissues were examined 96 h postinoculation for serotonergic, GABAergic, and enkephalinergic expressions using in situ hybridization and/or immunohistochemistry techniques. The results revealed that > 50% of RVM neurons that are synaptically connected to the bladder (i.e., PRV-152+) were GABAergic, 40% enkephalinergic, and about 14% expressing serotonergic marker tryptophan hydroxylase 2 (TpH2). Neonatal cystitis resulted in a significant increase in converging neurons in RVM receiving dual synaptic inputs from the bladder and colon. In addition, neonatal cystitis significantly downregulated vesicular GABA transporter (VGAT) with a concomitant increase in TpH2 expression in bladder-linked RVM neurons, suggesting an alteration in supraspinal signaling. These alterations of synaptic connectivity and GABAergic/serotonergic expressions in RVM neurons may contribute to bladder pain modulation and cross-organ visceral sensitivity.
Collapse
Affiliation(s)
- Bhavana Talluri
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Faith Hoelzel
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bidyut K. Medda
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Maia Terashvili
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Patrick Sanvanson
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Reza Shaker
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jyoti N. Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
11
|
de Kort AR, Joosten EAJ, Patijn J, Tibboel D, van den Hoogen NJ. The development of descending serotonergic modulation of the spinal nociceptive network: a life span perspective. Pediatr Res 2022; 91:1361-1369. [PMID: 34257402 DOI: 10.1038/s41390-021-01638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment. Sprouting of descending serotonergic axons, originating from the rostroventral medulla, as well as changes in receptor function and expression take place in the first postnatal weeks of rodents, corresponding to human neonates in early infancy. Descending serotonergic modulation switches from facilitation in early life to bimodal control in adulthood, masking an already functional 5-HT inhibitory system at early ages. Specifically the 5-HT3 and 5-HT7 receptors seem distinctly important for pain facilitation at neonatal and early infancy, while the 5-HT1a, 5-HT1b, and 5-HT2 receptors mediate inhibitory effects at all ages. Analgesic therapy that considers the neurodevelopmental phase is likely to result in a more targeted treatment of neonatal pain and may improve both short- and long-term effects. IMPACT: The descending serotonergic system undergoes anatomical changes from birth to early infancy, as its sprouts and descending projections increase and the dorsal horn innervation pattern changes. Descending serotonergic modulation from the rostral ventral medulla switches from facilitation in early life via the 5-HT3 and 5-HT7 receptors to bimodal control in adulthood. A functional inhibitory serotonergic system mainly via 5-HT1a, 5-HT1b, and 5-HT2a receptors at the spinal level exists already at the neonatal phase but is masked by descending facilitation.
Collapse
Affiliation(s)
- Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands. .,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
de Kort AR, Joosten EA, Patijn J, Tibboel D, van den Hoogen NJ. Selective Targeting of Serotonin 5-HT1a and 5-HT3 Receptors Attenuates Acute and Long-Term Hypersensitivity Associated With Neonatal Procedural Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:872587. [PMID: 35571143 PMCID: PMC9091564 DOI: 10.3389/fpain.2022.872587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neonatal painful procedures causes acute pain and trigger long-term changes in nociceptive processing and anxiety behavior, highlighting the need for adequate analgesia during this critical time. Spinal serotonergic receptors 5-HT1a and 5-HT3 play an important role in modulating incoming nociceptive signals in neonates. The current study aims to attenuate acute and long-term hypersensitivity associated with neonatal procedural pain using ondansetron (a 5-HT3 antagonist) and buspirone (a 5-HT1a agonist) in a well-established rat model of repetitive needle pricking. Sprague-Dawley rat pups of both sexes received ondansetron (3 mg/kg), buspirone (3 mg/kg) or saline prior to repetitive needle pricks into the left hind-paw from postnatal day 0-7. Control animals received tactile stimulation or were left undisturbed. Acute, long-term, and post-operative mechanical sensitivity as well as adult anxiety were assessed. Neonatal 5-HT1a receptor agonism completely reverses acute hypersensitivity from P0-7. The increased duration of postoperative hypersensitivity after re-injury in adulthood is abolished by 5-HT3 receptor antagonism during neonatal repetitive needle pricking, without affecting baseline sensitivity. Moreover, 5-HT1a and 5-HT3 receptor modulation decreases adult state anxiety. Altogether, our data suggests that targeted pharmacological treatment based on the modulation of spinal serotonergic network via the 5-HT1a and 5-HT3 receptors in neonates may be of use in treatment of neonatal procedural pain and its long-term consequences. This may result in a new mechanism-based therapeutic venue in treatment of procedural pain in human neonates.
Collapse
Affiliation(s)
- Anne R. de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Nynke J. van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
de Kort AR, Joosten EA, Versantvoort EM, Patijn J, Tibboel D, van den Hoogen NJ. Anatomical changes in descending serotonergic projections from the rostral ventromedial medulla to the spinal dorsal horn following repetitive neonatal painful procedures. Int J Dev Neurosci 2022; 82:361-371. [PMID: 35393725 DOI: 10.1002/jdn.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/07/2022] Open
Abstract
Excessive noxious stimulation during the critical neonatal period impacts the nociceptive network lasting into adulthood. As descending serotonergic projections from the rostral ventromedial medulla (RVM) to the spinal dorsal horn develop postnatally, this study aims to investigate the long-term effect of repetitive neonatal procedural pain on the descending serotonergic RVM-spinal dorsal horn network. A well-established rat model of repetitive noxious procedures is used in which neonatal rats received four noxious needle pricks or tactile stimulation with a cotton swab per day in the left hind paw from day of birth to postnatal day 7. Control animals were left undisturbed. When animals reached adulthood, tissue was collected for quantitative immunohistochemical analysis of serotonin (5-hydroxytryptamine, 5-HT) in the RVM and spinal dorsal horn. Both repetitive noxious and tactile procedures in the neonate decreased the 5-HT staining intensity in the adult ipsilateral, but not contralateral spinal dorsal horn. Repetitive neonatal noxious procedures resulted in an increased area covered with 5-HT staining in the adult RVM ipsilateral to the side of injury, whereas repetitive neonatal tactile stimulation resulted in increased 5-HT staining intensity in both the ipsi- and contralateral RVM. The number of 5-HT cells in adult RVM is unaffected by neonatal conditions. This detailed anatomical study shows that not only neonatal noxious procedures, but also repetitive tactile procedures result in long-lasting anatomical changes of the descending serotonergic system within the RVM and spinal dorsal horn. Future studies should investigate whether these anatomical changes translate to functional differences in descending serotonergic modulation after neonatal adverse experiences.
Collapse
Affiliation(s)
- Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Eline M Versantvoort
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Berthézène CD, Rabiller L, Jourdan G, Cousin B, Pénicaud L, Casteilla L, Lorsignol A. Tissue Regeneration: The Dark Side of Opioids. Int J Mol Sci 2021; 22:7336. [PMID: 34298954 PMCID: PMC8307464 DOI: 10.3390/ijms22147336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Opioids are regarded as among the most effective analgesic drugs and their use for the management of pain is considered standard of care. Despite their systematic administration in the peri-operative period, their impact on tissue repair has been studied mainly in the context of scar healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss of tissue function, instead of the regenerative process that allows for recovery of both the morphology and function of tissue. Here, we review recent studies that highlight how opioids may prevent a regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect. These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted strategies for managing pain associated with tissue injury.
Collapse
Affiliation(s)
- Cécile Dromard Berthézène
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Lise Rabiller
- Alan Edwards Center for Research on Pain, Department of Physiology and Cell Information Systems, McGill University, Montreal, QC H3A 0G1, Canada;
| | - Géraldine Jourdan
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Béatrice Cousin
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Luc Pénicaud
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Louis Casteilla
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Anne Lorsignol
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| |
Collapse
|
15
|
van den Hoogen NJ, Kwok CHT, Trang T. Identifying the Neurodevelopmental Differences of Opioid Withdrawal. Cell Mol Neurobiol 2021; 41:1145-1155. [PMID: 33432504 PMCID: PMC11448592 DOI: 10.1007/s10571-020-01035-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
Abstract
Stopping opioid medications can result in a debilitating withdrawal syndrome in chronic users. Opioid withdrawal can occur at all ages, but mechanistic understanding of this condition is predominantly derived from adult studies. Here, we examined whether there are age-dependent differences in the behavioural phenotype and cellular indices of opioid withdrawal. We tested this by assessing the behavioural and cFos response (a surrogate marker for neuronal activation) to morphine withdrawal in C57BL/6J mice across key developmental stages-neonatal, adolescent, and adulthood. Mice in all age groups received escalating doses of morphine (10-50 mg/kg) over 5 days and withdrawal was precipitated by a single injection of the opioid receptor antagonist naloxone (2 mg/kg) two hours after the last morphine dose. In adult and adolescent mice, withdrawal behaviours were robust, with age-related differences in autonomic and somatic signs. In both groups, cFos expression was increased in spinally projecting neurons within the Periaqueductal Grey (PAG), Rostro-ventromedial Medulla (RVM), and Locus Coeruleus. Neonatal animals displayed both a distinct behavioural withdrawal and cFos expression profile. Notably, in young animals cFos expression was increased within the PAG and LC, but decreased in the RVM. In summary, naloxone challenge precipitated robust opioid withdrawal behaviours across all developmental stages with neonatal animals displaying differences in withdrawal behaviours and unique neuronal activation patterns within key brainstem regions.
Collapse
Affiliation(s)
- Nynke J van den Hoogen
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Charlie H T Kwok
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
16
|
Li J, Baccei ML. Intrinsic burst-firing in lamina I spinoparabrachial neurons during adolescence. Neurosci Lett 2021; 750:135794. [PMID: 33667599 DOI: 10.1016/j.neulet.2021.135794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
A subset of glutamatergic interneurons in the neonatal spinal superficial dorsal horn (SDH) exhibits intrinsic burst-firing (i.e. 'pacemaker' activity), which is tightly regulated by persistent, voltage-gated Na+ channels and classic inward-rectifying K+ (Kir2) channels and downregulated over the course of postnatal development. Ascending lamina I projection neurons targeting the parabrachial nucleus (PB) or periaqueductal gray (PAG) can also display pacemaker activity during early life. However, the degree to which the ionic mechanisms driving pacemaker activity are conserved across different cell types in the spinal dorsal horn, as well as whether the intrinsic bursting is restricted to newborn projection neurons, remains to be elucidated. Using in vitro patch clamp recordings from identified lamina I spinoparabrachial neurons in rat spinal cord slices, here we demonstrate that adolescent projection neurons retain their ability to generate pacemaker activity. In contrast to previous findings in lamina I interneurons, pacemaker projection neurons possessed higher membrane capacitance, lower membrane resistance, and a greater Kir-mediated conductance compared to adjacent spinoparabrachial neurons that lacked intrinsic burst-firing. Nonetheless, as previously seen in interneurons, the bath application of riluzole to block persistent Na+ channels significantly dampened pacemaker activity in projection neurons. Collectively, these results suggest that intrinsic burst-firing in the developing dorsal horn can be generated by multiple combinations of ionic conductances, and highlight the need for further investigation into the mechanisms governing pacemaker activity within the major output neurons of the SDH network.
Collapse
Affiliation(s)
- Jie Li
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
17
|
Kwok CHT, Learoyd AE, Canet-Pons J, Trang T, Fitzgerald M. Spinal interleukin-6 contributes to central sensitisation and persistent pain hypersensitivity in a model of juvenile idiopathic arthritis. Brain Behav Immun 2020; 90:145-154. [PMID: 32791212 PMCID: PMC7575902 DOI: 10.1016/j.bbi.2020.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Pain is the most debilitating symptom in juvenile idiopathic arthritis. As pain correlates poorly to the extent of joint pathology, therapies that control joint inflammation are often inadequate as analgesics. We test the hypothesis that juvenile joint inflammation leads to sensitisation of nociceptive circuits in the central nervous system, which is maintained by cytokine expression in the spinal cord. Here, transient joint inflammation was induced in postnatal day (P)21 and P40 male Sprague-Dawley rats with a single intra-articular ankle injection of complete Freund's adjuvant. Hindpaw mechanical pain sensitivity was assessed using von Frey hair and weight bearing tests. Spinal neuron activity was measured using in vivo extracellular recording and immunohistochemistry. Joint and spinal dorsal horn TNFα, IL1β and IL6 protein expression was quantified using western blotting. We observed greater mechanical hyperalgesia following joint inflammation in P21 compared to P40 rats, despite comparable duration of swelling and joint inflammatory cytokine levels. This is mirrored by spinal neuron hypersensitivity, which also outlasted the duration of active joint inflammation. The cytokine profile in the spinal cord differed at the two ages: prolonged upregulation of spinal IL6 was observed in P21, but not P40 rats. Finally, spinal application of anti-IL-6 antibody (30 ng) reduced the mechanical hyperalgesia and neuronal activation. Our results indicate that persistent upregulation of pro-inflammatory cytokines in the spinal dorsal horn is associated with neuronal sensitisation and mechanical hyperalgesia in juvenile rats, beyond the progress of joint pathology. In addition, we provide proof of concept that spinal IL6 is a key target for treating persistent pain in JIA.
Collapse
Affiliation(s)
- Charlie H T Kwok
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Annastazia E Learoyd
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Julia Canet-Pons
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| |
Collapse
|
18
|
Neonatal Injury Evokes Persistent Deficits in Dynorphin Inhibitory Circuits within the Adult Mouse Superficial Dorsal Horn. J Neurosci 2020; 40:3882-3895. [PMID: 32291327 DOI: 10.1523/jneurosci.0029-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/18/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Neonatal tissue damage induces long-term deficits in inhibitory synaptic transmission within the spinal superficial dorsal horn (SDH) that include a reduction in primary afferent-evoked, feedforward inhibition onto adult projection neurons. However, the subpopulations of mature GABAergic interneurons which are compromised by early-life injury have yet to be identified. The present research illuminates the persistent effects of neonatal surgical injury on the function of inhibitory SDH interneurons derived from the prodynorphin (DYN) lineage, a population that synapses directly onto lamina I spinoparabrachial neurons and is known to suppress mechanical pain and itch in adults. The results demonstrate that hindpaw incision at postnatal day 3 (P3) significantly decreased the strength of primary afferent-evoked glutamatergic drive onto DYN neurons within the adult mouse SDH while increasing the appearance of afferent-evoked inhibition onto the same population. Neonatal injury also dampened the intrinsic membrane excitability of mature DYN neurons, and reduced their action potential discharge in response to sensory input, compared with naive littermate controls. Furthermore, P3 incision decreased the efficacy of inhibitory DYN synapses onto adult spinoparabrachial neurons, which reflected a prolonged reduction in the probability of GABA release. Collectively, the data suggest that early-life tissue damage may persistently constrain the ability of spinal DYN interneurons to limit ascending nociceptive transmission to the adult brain. This is predicted to contribute to the loss of feedforward inhibition onto mature projection neurons, and the "priming" of nociceptive circuits in the developing spinal cord, following injuries during the neonatal period.SIGNIFICANCE STATEMENT Neonatal injury has lasting effects on pain processing in the adult CNS, including a reduction in feedforward inhibition onto ascending projection neurons in the spinal dorsal horn. While it is clear that spinal GABAergic interneurons are comprised of multiple subpopulations that play distinct roles in somatosensation, the identity of those interneurons which are compromised by tissue damage during early life remains unknown. Here we document persistent deficits in spinal inhibitory circuits involving dynorphin-lineage interneurons previously implicated in gating mechanical pain and itch. Notably, neonatal injury reduced the strength of dynorphin-lineage inhibitory synapses onto mature lamina I spinoparabrachial neurons, a major output of the spinal nociceptive network, which could contribute to the priming of pain pathways by early tissue damage.
Collapse
|
19
|
Brewer CL, Baccei ML. The development of pain circuits and unique effects of neonatal injury. J Neural Transm (Vienna) 2020; 127:467-479. [PMID: 31399790 PMCID: PMC7007840 DOI: 10.1007/s00702-019-02059-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Pain is a necessary sensation that prevents further tissue damage, but can be debilitating and detrimental in daily life under chronic conditions. Neuronal activity strongly regulates the maturation of the somatosensory system, and aberrant sensory input caused by injury or inflammation during critical periods of early postnatal development can have prolonged, detrimental effects on pain processing. This review will outline the maturation of neuronal circuits responsible for the transmission of nociceptive signals and the generation of pain sensation-involving peripheral sensory neurons, the spinal cord dorsal horn, and brain-in addition to the influences of the neuroimmune system on somatosensation. This summary will also highlight the unique effects of neonatal tissue injury on the maturation of these systems and subsequent consequences for adult somatosensation. Ultimately, this review emphasizes the need to account for age as an independent variable in basic and clinical pain research, and importantly, to consider the distinct qualities of the pediatric population when designing novel strategies for pain management.
Collapse
Affiliation(s)
- Chelsie L Brewer
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Mark L Baccei
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
20
|
Watson E, Khandelwal A, Freijer J, van den Anker J, Lefeber C, Eerdekens M. Population pharmacokinetic modeling to facilitate dose selection of tapentadol in the pediatric population. J Pain Res 2019; 12:2835-2850. [PMID: 31686902 PMCID: PMC6800464 DOI: 10.2147/jpr.s208454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The main aim of this analysis was to characterize the pharmacokinetics (PK) of the strong analgesic tapentadol in 2-year-old to <18-year-old patients with acute pain and to inform the optimal dosing strategy for a confirmatory efficacy trial in this patient population. METHODS The analysis dataset included tapentadol concentrations obtained from 92 pediatric patients receiving a single tapentadol oral solution (OS) dose of 1.0 mg/kg bodyweight in two single-dose PK clinical trials. Population PK analysis was performed using nonlinear mixed effects modeling. Simulations were performed to identify tapentadol OS doses in pediatric subjects (2 to <18 years) that would produce exposures similar to those in adults receiving safe and efficacious doses of tapentadol IR (50-100 mg every 4 hrs). RESULTS Tapentadol PK in children aged from 2 to <18 years was best described by a one-compartment model. Mean population apparent clearance and apparent volume of distribution for a typical subject weighing 45 kg were 170 L/h and 685 L, respectively. Clearance, expressed in bodyweight units as L/h/kg, decreased with increasing age whereas total clearance (L/h) increased with increasing age. Model-based simulations suggested that a tapentadol OS dose of 1.25 mg/kg to children and adolescents aged 2 to <18 years would result in efficacious tapentadol exposures similar to those in adults receiving tapentadol immediate release 50-100 mg every 4 hrs. The proposed tapentadol OS dose was subsequently applied in a confirmatory efficacy trial in 2 to <18-year-old patients suffering from acute postsurgical pain. CONCLUSION This analysis provides an example of a model-based approach for a dose recommendation to be used in an efficacy trial in the pediatric population. Uniform dosing based on bodyweight was proposed for the treatment of acute pain in children aged from 2 to <18 years.
Collapse
Affiliation(s)
| | | | | | - John van den Anker
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children’s Hospital, Basel, Switzerland
- Division of Clinical Pharmacology, Children’s National Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
21
|
Battell EE, Lillywhite A, Hathway GJ. The changing role of descending control of spinal nociception over postnatal development. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Abstract
Measuring brain activity in infants provides an objective surrogate approach with which to infer pain perception following noxious events. Here we discuss different approaches which can be used to measure noxious-evoked brain activity, and discuss how these measures can be used to assess the analgesic efficacy of pharmacological and non-pharmacological interventions. We review factors that can modulate noxious-evoked brain activity, which may impact infant pain experience, including gestational age, sex, prior pain, stress, and illness.
Collapse
Affiliation(s)
- Deniz Gursul
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, United Kingdom
| | - Caroline Hartley
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, United Kingdom
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, United Kingdom.
| |
Collapse
|
23
|
Eerdekens M, Beuter C, Lefeber C, van den Anker J. The challenge of developing pain medications for children: therapeutic needs and future perspectives. J Pain Res 2019; 12:1649-1664. [PMID: 31213880 PMCID: PMC6536714 DOI: 10.2147/jpr.s195788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
It is broadly accepted that children of all age groups including (preterm) neonates and young infants can perceive pain and that there is an absolute need to treat their pain safely and effectively. The approved treatment options for children, particularly (preterm) neonates and young infants, are very limited with only a few medications specifically labelled for this population. This article presents the challenges of developing pain medications for children. A short overview gives information on pain in children, including pain perception, prevalence of pain and the long-term consequences of leaving pain untreated in this vulnerable population. Current pain management practices are briefly discussed. The challenges of conducting pediatric clinical trials in general and trials involving analgesic medications in particular within the regulatory framework available to develop these medications for children are presented. Emphasis is given to the operational hurdles faced in conducting a pediatric clinical trial program. Some suggestions to overcome these hurdles are provided based on our experience during the pediatric trial program for the strong analgesic tapentadol used for the treatment of moderate to severe acute pain.
Collapse
Affiliation(s)
| | | | | | - John van den Anker
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children’s Hospital, Basel, Switzerland
- Division of Clinical Pharmacology, Children’s National Medical Center, Washington, DC, USA
| |
Collapse
|
24
|
Affiliation(s)
- Lucy F Donaldson
- School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, UK
| | - Bridget M Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK
| |
Collapse
|
25
|
Greenspon CM, Battell EE, Devonshire IM, Donaldson LF, Chapman V, Hathway GJ. Lamina-specific population encoding of cutaneous signals in the spinal dorsal horn using multi-electrode arrays. J Physiol 2018; 597:377-397. [PMID: 30390415 PMCID: PMC6332738 DOI: 10.1113/jp277036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/31/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Traditional, widely used in vivo electrophysiological techniques for the investigation of spinal processing of somatosensory information fail to account for the diverse functions of each lamina. To overcome this oversimplification, we have used multi-electrode arrays, in vivo, to simultaneously record neuronal activity across all laminae of the spinal dorsal horn. Multi-electrode arrays are sensitive enough to detect lamina- and region-specific encoding of different subtypes of afferent fibres and to detect short-lived changes in synaptic plasticity as measured by the application of cutaneous electrical stimulation of varying intensity and frequency. Differential encoding of innocuous and noxious thermal and mechanical stimuli were also detected across the laminae with the technique, as were the effects of the application of capsaicin. This new approach to the study of the dorsal spinal cord produces significantly more information per experiment, permitting accelerated research whilst also permitting the effects of pharmacological tools to modulate network responses. ABSTRACT The dorsal horn (DH) of the spinal cord is a complex laminar structure integrating peripheral signals into the central nervous system. Spinal somatosensory processing is commonly measured electrophysiologically in vivo by recording the activity of individual wide-dynamic-range neurons in the deep DH and extrapolating their behaviour to all cells in every lamina. This fails to account for the specialized processes that occur in each lamina and the considerable heterogeneity in cellular phenotype within and between laminae. Here we overcome this oversimplification by employing linear multi-electrode arrays (MEAs) in the DH of anaesthetized rats to simultaneously measure activity across all laminae. The MEAs, comprising 16 channels, were inserted into the lumbar dorsal horn and peripheral neurons activated electrically via transcutaneous electrodes and ethologically with von Frey hairs (vFHs) or an aluminium heating block. Ascending electrical stimuli showed fibre thresholds with distinct dorsoventral innervation profiles. Wind up was observed across the DH during the C-fibre and post-discharge latencies following 0.5 Hz stimulation. Intrathecal application of morphine (5 ng/50 μl) significantly reduced Aδ- and C-fibre-evoked activity in deep and superficial DH. Light vFHs (≤10 g) predominantly activated intermediate and deep laminae whereas noxious vFHs (26 g) also activated the superficial laminae. Noxious heat (55°C) induced significantly greater activity in the superficial and deep laminae than the innocuous control (30°C). The application of these arrays produced the first description of the processing of innocuous and noxious stimuli throughout the intact DH.
Collapse
Affiliation(s)
- Charles M Greenspon
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Emma E Battell
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ian M Devonshire
- Bio-Support Unit, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Lucy F Donaldson
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK.,Arthritis Research UK Pain Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Victoria Chapman
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK.,Arthritis Research UK Pain Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Gareth J Hathway
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
26
|
Goksan S, Baxter L, Moultrie F, Duff E, Hathway G, Hartley C, Tracey I, Slater R. The influence of the descending pain modulatory system on infant pain-related brain activity. eLife 2018; 7:37125. [PMID: 30201093 PMCID: PMC6133549 DOI: 10.7554/elife.37125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022] Open
Abstract
The descending pain modulatory system (DPMS) constitutes a network of widely distributed brain regions whose integrated function is essential for effective modulation of sensory input to the central nervous system and behavioural responses to pain. Animal studies demonstrate that young rodents have an immature DPMS, but comparable studies have not been conducted in human infants. In Goksan et al. (2015) we used functional MRI (fMRI) to show that pain-related brain activity in newborn infants is similar to that observed in adults. Here, we investigated whether the functional network connectivity strength across the infant DPMS influences the magnitude of this brain activity. FMRI scans were collected while mild mechanical noxious stimulation was applied to the infant's foot. Greater pre-stimulus functional network connectivity across the DPMS was significantly associated with lower noxious-evoked brain activity (p = 0.0004, r = -0.86, n = 13), suggesting that in newborn infants the DPMS may regulate the magnitude of noxious-evoked brain activity.
Collapse
Affiliation(s)
- Sezgi Goksan
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Eugene Duff
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Gareth Hathway
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Caroline Hartley
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Gainfully employing descending controls in acute and chronic pain management. Vet J 2018; 237:16-25. [DOI: 10.1016/j.tvjl.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
|
28
|
Abstract
Supplemental Digital Content is Available in the Text. Endocannabinoid signalling within brainstem centres that control top-down pain control changes significantly in early life in both rodents and humans. Significant age- and experience-dependent remodelling of spinal and supraspinal neural networks occur, resulting in altered pain responses in early life. In adults, endogenous opioid peptide and endocannabinoid (ECs) pain control systems exist which modify pain responses, but the role they play in acute responses to pain and postnatal neurodevelopment is unknown. Here, we have studied the changing role of the ECs in the brainstem nuclei essential for the control of nociception from birth to adulthood in both rats and humans. Using in vivo electrophysiology, we show that substantial functional changes occur in the effect of microinjection of ECs receptor agonists and antagonists in the periaqueductal grey (PAG) and rostroventral medulla (RVM), both of which play central roles in the supraspinal control of pain and the maintenance of chronic pain states in adulthood. We show that in immature PAG and RVM, the orphan receptor, GPR55, is able to mediate profound analgesia which is absent in adults. We show that tissue levels of endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol, within the PAG and RVM are developmentally regulated (using mass spectrometry). The expression patterns and levels of ECs enzymes and receptors were assessed using quantitative PCR and immunohistochemistry. In human brainstem, we show age-related alterations in the expression of key enzymes and receptors involved in ECs function using PCR and in situ hybridisation. These data reveal that significant changes on ECs that to this point have been unknown and which shed new light into the complex neurochemical changes that permit normal, mature responses to pain.
Collapse
|
29
|
Differential contributions of peripheral and central mechanisms to pain in a rodent model of osteoarthritis. Sci Rep 2018; 8:7122. [PMID: 29740093 PMCID: PMC5940779 DOI: 10.1038/s41598-018-25581-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/16/2018] [Indexed: 11/08/2022] Open
Abstract
The mechanisms underlying the transition from acute nociceptive pain to centrally maintained chronic pain are not clear. We have studied the contributions of the peripheral and central nervous systems during the development of osteoarthritis (OA) pain. Male Sprague-Dawley rats received unilateral intra-articular injections of monosodium iodoacetate (MIA 1 mg) or saline, and weight-bearing (WB) asymmetry and distal allodynia measured. Subgroups of rats received intra-articular injections of, QX-314 (membrane impermeable local anaesthetic) + capsaicin, QX-314, capsaicin or vehicle on days 7, 14 or 28 post-MIA and WB and PWT remeasured. On days 7&14 post-MIA, but not day 28, QX-314 + capsaicin signficantly attenuated changes in WB induced by MIA, illustrating a crucial role for TRPV1 expressing nociceptors in early OA pain. The role of top-down control of spinal excitability was investigated. The mu-opioid receptor agonist DAMGO was microinjected into the rostroventral medulla, to activate endogenous pain modulatory systems, in MIA and control rats and reflex excitability measured using electromyography. DAMGO (3 ng) had a significantly larger inhibitory effect in MIA treated rats than in controls. These data show distinct temporal contribtuions of TRPV1 expressing nociceptors and opioidergic pain control systems at later timepoints.
Collapse
|
30
|
Abstract
Purpose of review Pain management presents a major challenge in neonatal care. Newborn infants who require medical treatment can undergo frequent invasive procedures during a critical period of neurodevelopment. However, adequate analgesic provision is infrequently and inconsistently provided for acute noxious procedures because of limited and conflicting evidence regarding analgesic efficacy and safety of most commonly used pharmacological agents. Here, we review recent advances in the measurement of infant pain and discuss clinical trials that assess the efficacy of pharmacological analgesia in infants. Recent findings Recently developed measures of noxious-evoked brain activity are sensitive to analgesic modulation, providing an objective quantitative outcome measure that can be used in clinical trials of analgesics. Summary Noxious stimulation evokes changes in activity across all levels of the infant nervous system, including reflex activity, altered brain activity and behaviour, and long-lasting changes in infant physiological stability. A multimodal approach is needed if we are to identify efficacious and well tolerated analgesic treatments. Well designed clinical trials are urgently required to improve analgesic provision in the infant population.
Collapse
|
31
|
Early Procedural Pain Is Associated with Regionally-Specific Alterations in Thalamic Development in Preterm Neonates. J Neurosci 2017; 38:878-886. [PMID: 29255007 DOI: 10.1523/jneurosci.0867-17.2017] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/01/2023] Open
Abstract
Very preterm human neonates are exposed to numerous invasive procedures as part of life-saving care. Evidence suggests that repetitive neonatal procedural pain precedes long-term alterations in brain development. However, to date the link between pain and brain development has limited temporal and anatomic specificity. We hypothesized that early exposure to painful stimuli during a period of rapid brain development, before pain modulatory systems reach maturity, will predict pronounced changes in thalamic development, and thereby cognitive and motor function. In a prospective cohort study, 155 very preterm neonates (82 males, 73 females) born 24-32 weeks' gestation underwent two MRIs at median postmenstrual ages 32 and 40 weeks that included structural, metabolic, and diffusion imaging. Detailed day-by-day clinical data were collected. Cognitive and motor abilities were assessed at 3 years, corrected age. The association of early (skin breaks, birth-Scan 1) and late pain (skin breaks, Scans 1-2) with thalamic volumes and N-acetylaspartate (NAA)/choline (Cho), and fractional anisotropy of white-matter pathways was assessed. Early pain was associated with slower thalamic macrostructural growth, most pronounced in extremely premature neonates. Deformation-based morphometry analyses confirmed early pain-related volume losses were localized to somatosensory regions. In extremely preterm neonates early pain was associated with decreased thalamic NAA/Cho and microstructural alterations in thalamocortical pathways. Thalamic growth was in turn related to cognitive and motor outcomes. We observed regionally-specific alterations in the lateral thalamus and thalamocortical pathways in extremely preterm neonates exposed to more procedural pain. Findings suggest a sensitive period leading to lasting alterations in somatosensory-system development.SIGNIFICANCE STATEMENT Early exposure to repetitive procedural pain in very preterm neonates may disrupt the development of regions involved in somatosensory processing, leading to poor functional outcomes. We demonstrate that early pain is associated with thalamic volume loss in the territory of the somatosensory thalamus and is accompanied by disruptions thalamic metabolic growth and thalamocortical pathway maturation, particularly in extremely preterm neonates. Thalamic growth was associated with cognitive and motor outcome at 3 years corrected age. Findings provide evidence for a developmentally sensitive period whereby subcortical structures in young neonates may be most vulnerable to procedural pain. Furthermore, results suggest that the thalamus may play a key role underlying the association between neonatal pain and poor neurodevelopmental outcomes in these high-risk neonates.
Collapse
|
32
|
Jones L, Fabrizi L, Laudiano-Dray M, Whitehead K, Meek J, Verriotis M, Fitzgerald M. Nociceptive Cortical Activity Is Dissociated from Nociceptive Behavior in Newborn Human Infants under Stress. Curr Biol 2017; 27:3846-3851.e3. [PMID: 29199079 PMCID: PMC5742634 DOI: 10.1016/j.cub.2017.10.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/20/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
Abstract
Newborn infants display strong nociceptive behavior in response to tissue damaging stimuli, and this is accompanied by nociceptive activity generated in subcortical and cortical areas of the brain [1, 2]. In the absence of verbal report, these nociceptive responses are used as measures of pain sensation in newborn humans, as they are in animals [3, 4]. However, many infants are raised in a physiologically stressful environment, and little is known about the effect of background levels of stress upon their pain responses. In adults, acute physiological stress causes hyperalgesia [5, 6, 7], and increased background stress increases pain [8, 9, 10], but these data cannot necessarily be extrapolated to infants. Here we have simultaneously measured nociceptive behavior, brain activity, and levels of physiological stress in a sample of 56 newborn human infants aged 36–42 weeks. Salivary cortisol (hypothalamic pituitary axis), heart rate variability (sympathetic adrenal medullary system), EEG event-related potentials (nociceptive cortical activity), and facial expression (behavior) were acquired in individual infants following a clinically required heel lance. We show that infants with higher levels of stress exhibit larger amplitude cortical nociceptive responses, but this is not reflected in their behavior. Furthermore, while nociceptive behavior and cortical activity are normally correlated, this relationship is disrupted in infants with high levels of physiological stress. Brain activity evoked by noxious stimulation is therefore enhanced by stress, but this cannot be deduced from observation of pain behavior. This may be important in the prevention of adverse effects of early repetitive pain on brain development. Infant pain behavior and nociceptive brain activity are generally correlated Stress disrupts the relationship between infant pain brain activity and behavior Stress is associated with increased nociceptive brain activity, but not behavior Stress is an important factor when assessing infant pain experience
Collapse
Affiliation(s)
- Laura Jones
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Maria Laudiano-Dray
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E6DB, UK
| | - Madeleine Verriotis
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK.
| |
Collapse
|
33
|
Walco GA, Krane EJ, Schmader KE, Weiner DK. Applying a Lifespan Developmental Perspective to Chronic Pain: Pediatrics to Geriatrics. THE JOURNAL OF PAIN 2017; 17:T108-17. [PMID: 27586828 DOI: 10.1016/j.jpain.2015.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED An ideal taxonomy of chronic pain would be applicable to people of all ages. Developmental sciences focus on lifespan developmental approaches, and view the trajectory of processes in the life course from birth to death. In this article we provide a review of lifespan developmental models, describe normal developmental processes that affect pain processing, and identify deviations from those processes that lead to stable individual differences of clinical interest, specifically the development of chronic pain syndromes. The goals of this review were 1) to unify what are currently separate purviews of "pediatric pain," "adult pain," and "geriatric pain," and 2) to generate models so that specific elements of the chronic pain taxonomy might include important developmental considerations. PERSPECTIVE A lifespan developmental model is applied to the forthcoming Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society Pain Taxonomy to ascertain the degree to which general "adult" descriptions apply to pediatric and geriatric populations, or if age- or development-related considerations need to be invoked.
Collapse
Affiliation(s)
- Gary A Walco
- Departments of Anesthesiology and Pain Medicine, Pediatrics, and Psychiatry, University of Washington School of Medicine, Seattle, Washington; Seattle Children's Hospital, Seattle, Washington.
| | - Elliot J Krane
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California; Stanford Children's Health, Palo Alto, California
| | - Kenneth E Schmader
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; GRECC, Durham VA Medical Center, Durham, North Carolina
| | - Debra K Weiner
- VA Pittsburgh Geriatric Research, Education and Clinical Center, Pittsburgh, Pennsylvania; Departments of Medicine, Psychiatry, and Anesthesiology, Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Compensatory Activation of Cannabinoid CB2 Receptor Inhibition of GABA Release in the Rostral Ventromedial Medulla in Inflammatory Pain. J Neurosci 2017; 37:626-636. [PMID: 28100744 DOI: 10.1523/jneurosci.1310-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
The rostral ventromedial medulla (RVM) is a relay in the descending pain modulatory system and an important site of endocannabinoid modulation of pain. Endocannabinoids inhibit GABA release in the RVM, but it is not known whether this effect persists in chronic pain states. In the present studies, persistent inflammation induced by complete Freund's adjuvant (CFA) increased GABAergic miniature IPSCs (mIPSCs). Endocannabinoid activation of cannabinoid (CB1) receptors known to inhibit presynaptic GABA release was significantly reduced in the RVM of CFA-treated rats compared with naive rats. The reduction in CFA-treated rats correlated with decreased CB1 receptor protein expression and function in the RVM. Paradoxically, the nonselective CB1/CB2 receptor agonist WIN55212 inhibited GABAergic mIPSCs in both naive and CFA-treated rats. However, WIN55212 inhibition was reversed by the CB1 receptor antagonist rimonabant in naive rats but not in CFA-treated rats. WIN55212-mediated inhibition in CFA-treated rats was blocked by the CB2 receptor-selective antagonist SR144528, indicating that CB2 receptor function in the RVM is increased during persistent inflammation. Consistent with these results, CB2 receptor agonists AM1241 and GW405833 inhibited GABAergic mIPSC frequency only in CFA-treated rats, and the inhibition was reversed with SR144528. When administered alone, SR144528 and another CB2 receptor-selective antagonist AM630 increased mIPSC frequency in the RVM of CFA-treated rats, indicating that CB2 receptors are tonically activated by endocannabinoids. Our data provide evidence that CB2 receptor function emerges in the RVM in persistent inflammation and that selective CB2 receptor agonists may be useful for treatment of persistent inflammatory pain. SIGNIFICANCE STATEMENT These studies demonstrate that endocannabinoid signaling to CB1 and CB2 receptors in adult rostral ventromedial medulla is altered in persistent inflammation. The emergence of CB2 receptor function in the rostral ventromedial medulla provides additional rationale for the development of CB2 receptor-selective agonists as useful therapeutics for chronic inflammatory pain.
Collapse
|
35
|
Martakis K, Hünseler C, Herkenrath P, Thangavelu K, Kribs A, Roth B. The flexion withdrawal reflex increases in premature infants at 22-26 weeks of gestation due to changes in spinal cord excitability. Acta Paediatr 2017; 106:1079-1084. [PMID: 28370492 PMCID: PMC5488190 DOI: 10.1111/apa.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/27/2017] [Indexed: 01/12/2023]
Abstract
Aim Our aim was to study the development of the cutaneous flexion withdrawal reflex among premature infants admitted to the neonatal intensive care unit of the Children's Hospital, University of Cologne, in 2013. Methodology This longitudinal cohort study explored the development of spinal cord excitability of 19 premature infants born at 22–26 weeks of gestation. We performed five investigations per subject and studied changes in the reflex threshold with increasing postnatal age at different behavioural states. The premature infants were stimulated with von Frey filaments on the plantar surface of the foot near the first metatarsophalangeal joint during the first 3 days of life and at postnatal ages of 10–14 days, 21–28 days, 49–59 days and a corrected gestational age of 37–40 weeks. Results The mean gestational age of the premature infants included in the study was 24 weeks. Premature infants with a gestational age of less than 26 weeks presented a flexion withdrawal reflex with a low threshold (0.5–2.85 milli‐Newton) in the first 72 hours of life. Conclusion The flexion withdrawal reflex among premature infants born at less than 26 weeks showed a continuous threshold increase with increasing postnatal age, reflecting changes in spinal cord excitability.
Collapse
Affiliation(s)
- Kyriakos Martakis
- Department of International Health; School CAPHRI; Care and Public Health Research Institute; Maastricht University; Maastricht The Netherlands
- Children's and Adolescents’ Hospital; University Hospital of Cologne; Cologne Germany
- Center of Prevention and Rehabilitation; University Hospital of Cologne; Cologne Germany
| | - Christoph Hünseler
- Children's and Adolescents’ Hospital; University Hospital of Cologne; Cologne Germany
| | - Peter Herkenrath
- Children's and Adolescents’ Hospital; University Hospital of Cologne; Cologne Germany
| | - Kruthika Thangavelu
- Department of Otorhinolaryngology; Head and Neck Surgery; University Hospital Essen, University Duisburg-Essen; Essen Germany
| | - Angela Kribs
- Children's and Adolescents’ Hospital; University Hospital of Cologne; Cologne Germany
| | - Bernhard Roth
- Children's and Adolescents’ Hospital; University Hospital of Cologne; Cologne Germany
| |
Collapse
|
36
|
Nuseir KQ, Alzoubi KH, Alhusban A, Bawaane A, Al-Azzani M, Khabour OF. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin. Physiol Behav 2017; 179:213-219. [PMID: 28663110 DOI: 10.1016/j.physbeh.2017.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
Abstract
Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels.
Collapse
Affiliation(s)
- Khawla Q Nuseir
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Karem H Alzoubi
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Alhusban
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Areej Bawaane
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed Al-Azzani
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of medical laboratory sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
37
|
The developmental emergence of differential brainstem serotonergic control of the sensory spinal cord. Sci Rep 2017; 7:2215. [PMID: 28533557 PMCID: PMC5440407 DOI: 10.1038/s41598-017-02509-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022] Open
Abstract
Descending connections from brainstem nuclei are known to exert powerful control of spinal nociception and pain behaviours in adult mammals. Here we present evidence that descending serotonergic fibres not only inhibit nociceptive activity, but also facilitate non-noxious tactile activity in the healthy adult rat spinal dorsal horn via activation of spinal 5-HT3 receptors (5-HT3Rs). We further show that this differential serotonergic control in the adult emerges from a non-modality selective system in young rats. Serotonergic fibres exert background 5-HT3R mediated facilitation of both tactile and nociceptive spinal activity in the first three postnatal weeks. Thus, differential descending serotonergic control of spinal touch and pain processing emerges in late postnatal life to allow flexible and context-dependent brain control of somatosensation.
Collapse
|
38
|
Li Z, Yin P, Chen J, Jin S, Liu J, Luo F. CaMKIIα may modulate fentanyl-induced hyperalgesia via a CeLC-PAG-RVM-spinal cord descending facilitative pain pathway in rats. PLoS One 2017; 12:e0177412. [PMID: 28489932 PMCID: PMC5425219 DOI: 10.1371/journal.pone.0177412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
Each of the lateral capsular division of central nucleus of amygdala(CeLC), periaqueductal gray (PAG), rostral ventromedial medulla(RVM) and spinal cord has been proved to contribute to the development of opioid-induced hyperalgesia(OIH). Especially, Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) in CeLC and spinal cord seems to play a key role in OIH modulation. However, the pain pathway through which CaMKIIα modulates OIH is not clear. The pathway from CeLC to spinal cord for this modulation was explored in the present study. Mechanical and thermal hyperalgesia were tested by von Frey test or Hargreaves test, respectively. CaMKIIα activity (phospho-CaMKIIα, p-CaMKIIα) was evaluated by western blot analysis. CaMKIIα antagonist (KN93) was micro-infused into CeLC, spinal cord or PAG, respectively, to evaluate its effect on behavioral hyperalgesia and p-CaMKIIα expression in CeLC, PAG, RVM and spinal cord. Then the underlying synaptic mechanism was explored by recording miniature excitatory postsynaptic currents (mEPSCs) on PAG slices using whole-cell voltage-clamp methods. Results showed that inhibition of CeLC, PAG or spinal CaMKIIα activity respectively by KN93, reversed both mechanical and thermal hyperalgesia. Microinjection of KN93 into CeLC decreased p-CaMKIIα expression in CeLC, PAG, RVM and spinal cord; while intrathecal KN93 can only block spinal but not CeLC CaMKIIα activity. KN93 injected into PAG just decreased p-CaMKIIα expression in PAG, RVM and spinal cord, but not in the CeLC. Similarly, whole-cell voltage-clamp recording found the frequency and amplitude of mEPSCs in PAG cells were decreased by KN93 added in PAG slice or micro-infused into CeLC in vivo. These results together with previous findings suggest that CaMKIIα may modulate OIH via a CeLC-PAG-RVM-spinal cord descending facilitative pain pathway.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Yin
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Shenglan Jin
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieqiong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Gong X, Chen Y, Fu B, Jiang J, Zhang M. Infant nerve injury induces delayed microglial polarization to the M1 phenotype, and exercise reduces delayed neuropathic pain by modulating microglial activity. Neuroscience 2017; 349:76-86. [DOI: 10.1016/j.neuroscience.2017.02.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023]
|
40
|
Zouikr I, Karshikoff B. Lifetime Modulation of the Pain System via Neuroimmune and Neuroendocrine Interactions. Front Immunol 2017; 8:276. [PMID: 28348566 PMCID: PMC5347117 DOI: 10.3389/fimmu.2017.00276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is a debilitating condition that still is challenging both clinicians and researchers. Despite intense research, it is still not clear why some individuals develop chronic pain while others do not or how to heal this disease. In this review, we argue for a multisystem approach to understand chronic pain. Pain is not only to be viewed simply as a result of aberrant neuronal activity but also as a result of adverse early-life experiences that impact an individual's endocrine, immune, and nervous systems and changes which in turn program the pain system. First, we give an overview of the ontogeny of the central nervous system, endocrine, and immune systems and their windows of vulnerability. Thereafter, we summarize human and animal findings from our laboratories and others that point to an important role of the endocrine and immune systems in modulating pain sensitivity. Taking "early-life history" into account, together with the past and current immunological and endocrine status of chronic pain patients, is a necessary step to understand chronic pain pathophysiology and assist clinicians in tailoring the best therapeutic approach.
Collapse
Affiliation(s)
- Ihssane Zouikr
- Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN BSI , Wako , Japan
| | - Bianka Karshikoff
- Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Solna, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
41
|
|
42
|
Postnatal maturation of the spinal-bulbo-spinal loop: brainstem control of spinal nociception is independent of sensory input in neonatal rats. Pain 2016; 157:677-686. [PMID: 26574823 PMCID: PMC4751743 DOI: 10.1097/j.pain.0000000000000420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rostroventral medial medulla (RVM) is part of a rapidly acting spino-bulbo-spinal loop that is activated by ascending nociceptive inputs and drives descending feedback modulation of spinal nociception. In the adult rat, the RVM can facilitate or inhibit dorsal horn neuron inputs but in young animals descending facilitation dominates. It is not known whether this early life facilitation is part of a feedback loop. We hypothesized that the newborn RVM functions independently of sensory input, before the maturation of feedback control. We show here that noxious hind paw pinch evokes no fos activation in the RVM or the periaqueductal gray at postnatal day (P) 4 or P8, indicating a lack of nociceptive input at these ages. Significant fos activation was evident at P12, P21, and in adults. Furthermore, direct excitation of RVM neurons with microinjection of DL-homocysteic acid did not alter the net activity of dorsal horn neurons at P10, suggesting an absence of glutamatergic drive, whereas the same injections caused significant facilitation at P21. In contrast, silencing RVM neurons at P8 with microinjection of lidocaine inhibited dorsal horn neuron activity, indicating a tonic descending spinal facilitation from the RVM at this age. The results support the hypothesis that early life descending facilitation of spinal nociception is independent of sensory input. Since it is not altered by RVM glutamatergic receptor activation, it is likely generated by spontaneous brainstem activity. Only later in postnatal life can this descending activity be modulated by ascending nociceptive inputs in a functional spinal-bulbo-spinal loop.
Collapse
|
43
|
DiLorenzo M, Pillai Riddell R, Holsti L. Beyond Acute Pain: Understanding Chronic Pain in Infancy. CHILDREN (BASEL, SWITZERLAND) 2016; 3:E26. [PMID: 27834860 PMCID: PMC5184801 DOI: 10.3390/children3040026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022]
Abstract
This topical review presents the current challenges in defining chronic pain in infants, summarizes evidence from animal and human infant studies regarding the biological processes necessary for chronic pain signaling, and presents observational/experiential evidence from clinical experts. A literature search of four databases (CINAHL, EMBASE, PsycINFO, and MEDLINE) was conducted, along with hand searches of reference lists. Evidence from animal studies suggest that important neurophysiological mechanisms, such as the availability of key neurotransmitters needed for maintenance of chronic pain, may be immature or absent in the developing neonate. In some cases, human infants may be significantly less likely to develop chronic pain. However, evidence also points to altered pain perception, such as allodynia and hyperalgesia, with significant injury. Moreover, clinicians and parents in pediatric intensive care settings describe groups of infants with altered behavioral responses to repeated or prolonged painful stimuli, yet agreement on a working definition of chronic pain in infancy remains elusive. While our understanding of infant chronic pain is still in the rudimentary stages, a promising avenue for the future assessment of chronic pain in infancy would be to develop a clinical tool that uses both neurophysiological approaches and clinical perceptions already presented in the literature.
Collapse
Affiliation(s)
- Miranda DiLorenzo
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Rebecca Pillai Riddell
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Psychiatry, The Hospital for Sick Children and the Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| | - Liisa Holsti
- Department of Occupational Science and Occupational Therapy, B.C. Children's Hospital Research, Vancouver, BC, V5Z 4H4, Canada.
- Women's Health Research Institute, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
44
|
Fitzgerald M. What do we really know about newborn infant pain? Exp Physiol 2016; 100:1451-7. [PMID: 26446174 DOI: 10.1113/ep085134] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the topic of this review? Pain in infancy. What advances does it highlight? New neurophysiological research on pain processing in the human infant brain. Increased awareness of pain in the newborn has led to the development of numerous assessment tools for use in neonatal intensive care units. Here, I argue that we still know too little about the neurophysiological basis for infant pain to interpret data from clinical observational measures. With increased understanding of how the neural activity and CNS connections that underlie pain behaviour and perception develop in the newborn will come better measurement and treatment of their pain. This review focuses upon two interconnected nociceptive circuits, the spinal cord dorsal horn and the somatosensory cortex in the brain, to highlight what we know and what we do not know about infant pain. The effectiveness of oral sucrose, widely used in clinical practice to relieve infant pain, is discussed as a specific example of what we do not know. This 'hot topic review' highlights the importance of new laboratory-based neurophysiological research for the treatment of newborn infant pain.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
45
|
Hartley C, Moultrie F, Gursul D, Hoskin A, Adams E, Rogers R, Slater R. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development. Curr Biol 2016; 26:1998-2002. [PMID: 27374336 PMCID: PMC4985558 DOI: 10.1016/j.cub.2016.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/25/2016] [Accepted: 05/24/2016] [Indexed: 01/28/2023]
Abstract
In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3, 4, 5, 6]. From approximately 35 weeks’ gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7, 8, 9, 10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28–42 weeks’ gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. Noxious-evoked brain activity increases in magnitude across the preterm period Maturation of nociceptive brain activity coincides with reflex activity refinement This may relate to the emergence of top-down inhibition in human infants
Collapse
Affiliation(s)
- Caroline Hartley
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Deniz Gursul
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Amy Hoskin
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Eleri Adams
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Richard Rogers
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
46
|
Mermet-Joret N, Chatila N, Pereira B, Monconduit L, Dallel R, Antri M. Lamina specific postnatal development of PKCγ interneurons within the rat medullary dorsal horn. Dev Neurobiol 2016; 77:102-119. [PMID: 27346325 DOI: 10.1002/dneu.22414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023]
Abstract
Protein kinase C gamma (PKCγ) interneurons, located in the superficial spinal (SDH) and medullary dorsal horns (MDH), have been shown to play a critical role in cutaneous mechanical hypersensitivity. However, a thorough characterization of their development in the MDH is lacking. Here, it is shown that the number of PKCγ-ir interneurons changes from postnatal day 3 (P3) to P60 (adult) and such developmental changes differ according to laminae. PKCγ-ir interneurons are already present at P3-5 in laminae I, IIo, and III. In lamina III, they then decrease from P11-P15 to P60. Interestingly, PKCγ-ir interneurons appear only at P6 in lamina IIi, and they conversely increase to reach adult levels at P11-15. Analysis of neurogenesis using bromodeoxyuridine (BrdU) does not detect any PKCγ-BrdU double-labeling in lamina IIi. Quantification of the neuronal marker, NeuN, reveals a sharp neuronal decline (∼50%) within all superficial MDH laminae during early development (P3-15), suggesting that developmental changes in PKCγ-ir interneurons are independent from those of other neurons. Finally, neonatal capsaicin treatment, which produces a permanent loss of most unmyelinated afferent fibers, has no effect on the development of PKCγ-ir interneurons. Together, the results show that: (i) the expression of PKCγ-ir interneurons in MDH is developmentally regulated with a critical period at P11-P15, (ii) PKCγ-ir interneurons are developmentally heterogeneous, (iii) lamina IIi PKCγ-ir interneurons appear less vulnerable to cell death, and (iv) postnatal maturation of PKCγ-ir interneurons is due to neither neurogenesis, nor neuronal migration, and is independent of C-fiber development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 102-119, 2017.
Collapse
Affiliation(s)
- Noemie Mermet-Joret
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Nadwa Chatila
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, F-63100, France
| | - Lénaic Monconduit
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Radhouane Dallel
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France.,Service D'Odontologie, CHU Clermont-Ferrand, Clermont-Ferrand, F-63000, France
| | - Myriam Antri
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| |
Collapse
|
47
|
Nieto FR, Clark AK, Grist J, Hathway GJ, Chapman V, Malcangio M. Neuron-immune mechanisms contribute to pain in early stages of arthritis. J Neuroinflammation 2016; 13:96. [PMID: 27130316 PMCID: PMC4851814 DOI: 10.1186/s12974-016-0556-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) patients frequently show weak correlations between the magnitude of pain and inflammation suggesting that mechanisms other than overt peripheral inflammation contribute to pain in RA. We assessed changes in microglial reactivity and spinal excitability and their contribution to pain-like behaviour in the early stages of collagen-induced arthritis (CIA) model. METHODS Mechanically evoked hypersensitivity, spinal nociceptive withdrawal reflexes (NWRs) and hind paw swelling were evaluated in female Lewis rats before and until 13 days following collagen immunization. In the spinal dorsal horn, microgliosis was assayed using immunohistochemistry (Iba-1/p-p38) and cyto(chemo)kine levels in the cerebrospinal fluid (CSF). Intrathecal administration of microglia-targeting drugs A-438079 (P2X7 antagonist) and LHVS (cathepsin S inhibitor) were examined upon hypersensitivity, NWRs, microgliosis and cyto(chemo)kine levels in the early phase of CIA. RESULTS The early phase of CIA was associated with mechanical allodynia and exaggerated mechanically evoked spinal NWRs, evident before hind paw swelling, and exacerbated with the development of swelling. Concomitant with the development of hypersensitivity was the presence of reactive spinal microgliosis and an increase of IL-1β levels in CSF (just detectable in plasma). Prolonged intrathecal administration of microglial inhibitors attenuated the development of mechanical allodynia, reduced microgliosis and attenuated IL-1β increments. Acute spinal application of either microglial inhibitor significantly diminished the sensitization of the spinal NWRs. CONCLUSIONS Mechanical hypersensitivity in the early phase of CIA is associated with central sensitization that is dependent upon microglial-mediated release of IL-1β in the spinal cord. Blockade of these spinal events may provide pain relief in RA patients.
Collapse
Affiliation(s)
- Francisco R Nieto
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - Anna K Clark
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - John Grist
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - Gareth J Hathway
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Victoria Chapman
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK.
| |
Collapse
|
48
|
Craig MM, Bajic D. Long-term behavioral effects in a rat model of prolonged postnatal morphine exposure. Behav Neurosci 2015; 129:643-55. [PMID: 26214209 PMCID: PMC4586394 DOI: 10.1037/bne0000081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prolonged morphine treatment in neonatal pediatric populations is associated with a high incidence of opioid tolerance and dependence. Despite the clinical relevance of this problem, our knowledge of long-term consequences is sparse. The main objective of this study was to investigate whether prolonged morphine administration in a neonatal rat is associated with long-term behavioral changes in adulthood. Newborn animals received either morphine (10 mg/kg) or equal volume of saline subcutaneously twice daily for the first 2 weeks of life. Morphine-treated animals underwent 10 days of morphine weaning to reduce the potential for observable physical signs of withdrawal. Animals were subjected to nonstressful testing (locomotor activity recording and a novel-object recognition test) at a young age (Postnatal Days [PDs] 27-31) or later in adulthood (PDs 55-56), as well as stressful testing (calibrated forceps test, hot plate test, and forced swim test) only in adulthood. Analysis revealed that prolonged neonatal morphine exposure resulted in decreased thermal but not mechanical threshold. Importantly, no differences were found for total locomotor activity (proxy of drug reward/reinforcement behavior), individual forced swim test behaviors (proxy of affective processing), or novel-object recognition test. Performance on the novel-object recognition test was compromised in the morphine-treated group at the young age, but the effect disappeared in adulthood. These novel results provide insight into the long-term consequences of opioid treatment during an early developmental period and suggest long-term neuroplastic differences in sensory processing related to thermal stimuli.
Collapse
Affiliation(s)
- Michael M. Craig
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, USA
| |
Collapse
|
49
|
Devonshire I, Greenspon C, Hathway G. Developmental alterations in noxious-evoked EEG activity recorded from rat primary somatosensory cortex. Neuroscience 2015; 305:343-50. [DOI: 10.1016/j.neuroscience.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/27/2015] [Accepted: 08/01/2015] [Indexed: 01/29/2023]
|
50
|
Hartley C, Goksan S, Poorun R, Brotherhood K, Mellado GS, Moultrie F, Rogers R, Adams E, Slater R. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants. Sci Rep 2015; 5:12519. [PMID: 26228435 PMCID: PMC4521152 DOI: 10.1038/srep12519] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022] Open
Abstract
Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p < 0.001), significantly correlated (r = 0.53, p = 0.001) and elicited at an intensity that does not evoke changes in clinical pain scores (p = 0.55). The strong correlation between reflex withdrawal and nociceptive brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures.
Collapse
Affiliation(s)
| | - Sezgi Goksan
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | - Ravi Poorun
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK
| | | | | | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, OX3 9DU, UK
| | - Richard Rogers
- Nuffield Department of Anaesthesia, John Radcliffe Hospital, OX3 9DU, UK
| | - Eleri Adams
- Department of Paediatrics, University of Oxford, OX3 9DU, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, OX3 9DU, UK
| |
Collapse
|