1
|
Getsy PM, May WJ, Henderson F, Seckler JM, Grossfield A, Baby SM, Lewis SJ. Nitrosyl factors play a vital role in the ventilatory depressant effects of fentanyl in freely moving guinea pigs. Biomed Pharmacother 2025; 183:117847. [PMID: 39862705 DOI: 10.1016/j.biopha.2025.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
An understanding of intracellular mechanisms by which fentanyl and other synthetic opioids exert adverse effects on breathing is needed. Using freely moving adult male guinea pigs, we administered the nitric oxide synthase (NOS) inhibitor, L-NAME (NG-nitro-L-arginine methyl ester), to determine whether nitrosyl factors, such as nitric oxide and S-nitrosothiols, play a role in fentanyl-induced respiratory depression. Ventilatory parameters were recorded by whole body plethysmography to determine the effects of fentanyl (75 μg/kg, IV) in guinea pigs that had received a prior injection of vehicle (saline), L-NAME or the inactive D-isomer, D-NAME (both at 50 μmol/kg, IV), 15 min beforehand. L- and D-NAME elicited minor effects on most parameters, including frequency of breathing, tidal volume and minute ventilation, although L-NAME did decrease end expiratory pause and non-eupneic breathing index (NEBI). Subsequent injection of fentanyl in guinea pigs pre-treated with vehicle produced profound and sustained reductions in frequency, tidal volume, minute ventilation, peak inspiratory flow, and inspiratory and expiratory drives, while increasing inspiratory time, expiratory time, end inspiratory pause, and NEBI. These ventilatory depressant effects of fentanyl seen in guinea pigs pre-treated with vehicle were markedly diminished in guinea pigs pre-treated with L-NAME. Moreover, the adverse effects of fentanyl on many recorded breathing parameters were converted to stimulatory effects. In contrast, D-NAME did not alter any of the effects of fentanyl on breathing. This study is the first to characterize the role nitrosyl factors play in the intracellular mechanisms involved in fentanyl-induced respiratory depression in guinea pigs.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Fraser Henderson
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Santhosh M Baby
- Section of Biology, Galleon Pharmaceuticals, Inc, Horsham, PA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Chowdhuri S, Badr MS. Opioid-related sleep-disordered breathing: correlates and conundrums. Sleep 2024; 47:zsae104. [PMID: 39096239 DOI: 10.1093/sleep/zsae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Susmita Chowdhuri
- John D. Dingell VA Medical Center, Medicine Service, Detroit, MI, USA
- Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, MI, USA
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Medicine Service, Detroit, MI, USA
- Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Orr JE, Malhotra A, Gruenberg E, Marin T, Sands SA, Alex RM, Owens RL, Schmickl CN. Pathogenesis of sleep-disordered breathing in the setting of opioid use: a multiple mediation analysis using physiology. Sleep 2024; 47:zsae090. [PMID: 38605676 DOI: 10.1093/sleep/zsae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
STUDY OBJECTIVES Opioid medications are commonly used and are known to impact both breathing and sleep and are linked with adverse health outcomes including death. Clinical data indicate that chronic opioid use causes central sleep apnea, and might also worsen obstructive sleep apnea. The mechanisms by which opioids influence sleep-disordered breathing (SDB) pathogenesis are not established. METHODS Patients who underwent clinically indicated polysomnography confirming SDB (AHI ≥ 5/hour) were included. Each patient using opioids was matched by sex, age, and body mass index (BMI) to three control individuals not using opioids. Physiology known to influence SDB pathogenesis was determined from validated polysomnography-based signal analysis. PSG and physiology parameters of interest were compared between opioid and control individuals, adjusted for covariates. Mediation analysis was used to evaluate the link between opioids, physiology, and polysomnographic metrics. RESULTS One hundred and seventy-eight individuals using opioids were matched to 534 controls (median [IQR] age 59 [50,65] years, BMI 33 [29,41] kg/m2, 57% female, and daily morphine equivalent 30 [20,80] mg). Compared with controls, opioids were associated with increased central apneas (2.8 vs. 1.7 events/hr; p = .001) and worsened hypoxemia (5 vs. 3% sleep with SpO2 < 88%; p = .013), with similar overall apnea-hypopnea index. The use of opioids was associated with higher loop gain, a lower respiratory rate (RR), and higher RR variability. Higher loop gain and increased RR variability mediated the effect of opioids on central apnea, but did not mediate the effect on hypoxemia. CONCLUSIONS Opioids have multi-level effects impacting SDB. Targeting these factors may help mitigate the deleterious respiratory consequences of chronic opioid use.
Collapse
Affiliation(s)
- Jeremy E Orr
- Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, La Jolla, CA, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, La Jolla, CA, USA
| | - Eli Gruenberg
- Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, La Jolla, CA, USA
| | - Traci Marin
- Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, La Jolla, CA, USA
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Raichel M Alex
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Robert L Owens
- Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, La Jolla, CA, USA
| | - Christopher N Schmickl
- Division of Pulmonary, Critical Care, and Sleep Medicine, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Guillet C, Endomba FT, Aravantinos D, Hussami A, Beye F, Girod JC, Georges M, Aho Glélé LS. Sleep apnea syndrome in patients with methadone or buprenorphine. L'ENCEPHALE 2024:S0013-7006(24)00195-7. [PMID: 39510877 DOI: 10.1016/j.encep.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES This work aimed to assess the association between sleep apnea syndrome (SAS) and opioid substitution treatments (OST) dose/timing of administration in patients receiving methadone or buprenorphine for an opioid use disorder (OUD). METHODS We conducted a retrospective cross-sectional study by including files of adult patients treated between November 2015 and January 2023 with methadone or buprenorphine and who had a nocturnal respiratory polygraphy. We collected information on treatments and polygraphical recording data such as the apnea-hypopnea index (AHI). RESULTS We enrolled 60 patients on methadone and 15 on buprenorphine. The sample encompassed 72% of males, and the mean age was 36±7.49years. Moderate to severe and severe SAS were significantly associated with the daily dose and the evening administration but was not predicted by the type of OST. However, the mean and median values of AIH were significantly greater with methadone. Contrary to methadone, there was no significant correlation between the buprenorphine daily dose and the AHI. The best sensitivities and specificities for the prediction of an AHI≥15 events/h and an AHI≥30 events/h were respectively obtained with methadone dose thresholds of 77.5mg/day. CONCLUSIONS In this sample, the methadone daily dose of 77.5mg was the best cut-point to predict moderate to severe SAS, especially while taken in the evening, and we found no correlation between buprenorphine and the AHI. These results draw clinicians' attention to buprenorphine use as an alternative for patients treated with methadone and having SAS.
Collapse
Affiliation(s)
- Clément Guillet
- Sleep Exploration Centre, La Chartreuse Psychiatric Hospital, 21000 Dijon, France; Depression Unit, La Chartreuse Psychiatric Hospital, 21000 Dijon, France.
| | - Francky Teddy Endomba
- Service de Psychiatrie Adultes, Centre Hospitalier Universitaire de Dijon, Dijon, France; INSERM LNC UMR1231, University of Burgundy, Dijon, France.
| | - David Aravantinos
- Sleep Exploration Centre, La Chartreuse Psychiatric Hospital, 21000 Dijon, France; Addictology Unit, La Chartreuse Psychiatric Hospital, 21000 Dijon, France.
| | - Aymard Hussami
- Sleep Exploration Centre, La Chartreuse Psychiatric Hospital, 21000 Dijon, France; Service de Neurophysiologie Clinique, Centre Hospitalier Universitaire de Dijon, Dijon, France.
| | - Florence Beye
- Pharmacy Unit, La Chartreuse Psychiatric Hospital, 21000 Dijon, France.
| | - Jean Claude Girod
- Sleep Exploration Centre, La Chartreuse Psychiatric Hospital, 21000 Dijon, France.
| | - Marjolaine Georges
- Reference Center for Rare Pulmonary Diseases, Pulmonary Medicine and Intensive Care Unit, Dijon University Hospital, BP 77908, 21079 Dijon, France.
| | - Ludwig Serge Aho Glélé
- Service d'épidémiologie et d'hygiène hospitalière, CHU hôpital d'enfants, 14, rue Paul-Gaffarel, 21079 Dijon, France.
| |
Collapse
|
5
|
Davis MP, DiScala S, Davis A. Respiratory Depression Associated with Opioids: A Narrative Review. Curr Treat Options Oncol 2024; 25:1438-1450. [PMID: 39432171 DOI: 10.1007/s11864-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
OPINION All opioids have a risk of causing respiratory depression and reduced cerebral circulation. Fentanyl has the greatest risk of causing both. This is particularly a concern when combined with illicit opioids such as diamorphine (also known as heroin). Fentanyl should not be used as a frontline potent opioid due its significant risks. Buprenorphine, a schedule III opioid, morphine, or hydromorphone is preferred, followed by oxycodone, which has a significant risk of abuse relative to buprenorphine and morphine. Although all opioids were equally effective in producing analgesia, the relative safety of each opioid is no longer a secondary concern when prescribing. In the face of an international opioid epidemic, clinicians need to choose opioid analgesics safely, wisely, and carefully.
Collapse
Affiliation(s)
| | - Sandra DiScala
- West Palm Beach VA Healthcare System, West Palm Beach, Florida, USA
| | - Amy Davis
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Javaheri S, Randerath WJ, Safwan Badr M, Javaheri S. Medication-induced central sleep apnea: a unifying concept. Sleep 2024; 47:zsae038. [PMID: 38334297 DOI: 10.1093/sleep/zsae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Medication-induced central sleep apnea (CSA) is one of the eight categories of causes of CSA but in the absence of awareness and careful history may be misclassified as primary CSA. While opioids are a well-known cause of respiratory depression and CSA, non-opioid medications including sodium oxybate, baclofen, valproic acid, gabapentin, and ticagrelor are less well-recognized. Opioids-induced respiratory depression and CSA are mediated primarily by µ-opioid receptors, which are abundant in the pontomedullary centers involved in breathing. The non-opioid medications, sodium oxybate, baclofen, valproic acid, and gabapentin, act upon brainstem gamma-aminobutyric acid (GABA) receptors, which co-colonize with µ-opioid receptors and mediate CSA. The pattern of ataxic breathing associated with these medications is like that induced by opioids on polysomnogram. Finally, ticagrelor also causes periodic breathing and CSA by increasing central chemosensitivity and ventilatory response to carbon dioxide. Given the potential consequences of CSA and the association between some of these medications with mortality, it is critical to recognize these adverse drug reactions, particularly because discontinuation of the offending agents has been shown to eliminate CSA.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, OH, USA
- Adjunct Professor of Medicine, Division of Cardiology, The Ohio State University, Columbus, Ohio, USA
- Emeritus Professor of Medicine, Division of Pulmonary and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Winfried J Randerath
- Professor and Head Physician, Institute of Pneumology, University of Cologne, Bethanien Hospital, Solingen, Germany
| | - M Safwan Badr
- Professor and Chair, Department of Internal Medicine, Wayne State University School of Medicine Detroit, Staff Physician, John D. Dingell VA Medical Center, MI, USA
| | - Sogol Javaheri
- Assistant Professor of Sleep Medicine, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Garcia-Marcinkiewicz AG, Lee LK, Haydar B, Fiadjoe JE, Matava CT, Kovatsis PG, Peyton J, Stein ML, Park R, Taicher BM, Templeton TW. Difficult or impossible facemask ventilation in children with difficult tracheal intubation: a retrospective analysis of the PeDI registry. Br J Anaesth 2023:S0007-0912(23)00122-8. [PMID: 37076335 DOI: 10.1016/j.bja.2023.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Difficult facemask ventilation is perilous in children whose tracheas are difficult to intubate. We hypothesised that certain physical characteristics and anaesthetic factors are associated with difficult mask ventilation in paediatric patients who also had difficult tracheal intubation. METHODS We queried a multicentre registry for children who experienced "difficult" or "impossible" facemask ventilation. Patient and case factors known before mask ventilation attempt were included for consideration in this regularised multivariable regression analysis. Incidence of complications, and frequency and efficacy of rescue placement of a supraglottic airway device were also tabulated. Changes in quality of mask ventilation after injection of a neuromuscular blocking agent were assessed. RESULTS The incidence of difficult mask ventilation was 9% (483 of 5453 patients). Infants and patients having increased weight, being less than 5th percentile in weight for age, or having Treacher-Collins syndrome, glossoptosis, or limited mouth opening were more likely to have difficult mask ventilation. Anaesthetic induction using facemask and opioids was associated with decreased risk of difficult mask ventilation. The incidence of complications was significantly higher in patients with "difficult" mask ventilation than in patients without. Rescue placement of a supraglottic airway improved ventilation in 71% (96 of 135) of cases. Administration of neuromuscular blocking agents was more frequently associated with improvement or no change in quality of ventilation than with worsening. CONCLUSIONS Certain abnormalities on physical examination should increase suspicion of possible difficult facemask ventilation. Rescue use of a supraglottic airway device in children with difficult or impossible mask ventilation should be strongly considered.
Collapse
Affiliation(s)
| | - Lisa K Lee
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Bishr Haydar
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - John E Fiadjoe
- Department of Anesthesiology, Critical Care & Pain Medicine, Children's Hospital of Boston, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Clyde T Matava
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Pete G Kovatsis
- Department of Anesthesiology, Critical Care & Pain Medicine, Children's Hospital of Boston, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - James Peyton
- Department of Anesthesiology, Critical Care & Pain Medicine, Children's Hospital of Boston, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Mary L Stein
- Department of Anesthesiology, Critical Care & Pain Medicine, Children's Hospital of Boston, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Raymond Park
- Department of Anesthesiology, Critical Care & Pain Medicine, Children's Hospital of Boston, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Brad M Taicher
- Department of Anesthesiology, Duke Children's Hospital & Health Center, Durham, NC, USA
| | - Thomas W Templeton
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Bateman JT, Saunders SE, Levitt ES. Understanding and countering opioid-induced respiratory depression. Br J Pharmacol 2023; 180:813-828. [PMID: 34089181 PMCID: PMC8997313 DOI: 10.1111/bph.15580] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory depression is the proximal cause of death in opioid overdose, yet the mechanisms underlying this potentially fatal outcome are not well understood. The goal of this review is to provide a comprehensive understanding of the pharmacological mechanisms of opioid-induced respiratory depression, which could lead to improved therapeutic options to counter opioid overdose, as well as other detrimental effects of opioids on breathing. The development of tolerance in the respiratory system is also discussed, as are differences in the degree of respiratory depression caused by various opioid agonists. Finally, potential future therapeutic agents aimed at reversing or avoiding opioid-induced respiratory depression through non-opioid receptor targets are in development and could provide certain advantages over naloxone. By providing an overview of mechanisms and effects of opioids in the respiratory network, this review will benefit future research on countering opioid-induced respiratory depression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Jordan T Bateman
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Sandy E Saunders
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Erica S Levitt
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Eckert DJ, Yaggi HK. Opioid Use Disorder, Sleep Deficiency, and Ventilatory Control: Bidirectional Mechanisms and Therapeutic Targets. Am J Respir Crit Care Med 2022; 206:937-949. [PMID: 35649170 PMCID: PMC9801989 DOI: 10.1164/rccm.202108-2014ci] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
Opioid use continues to rise globally. So too do the associated adverse consequences. Opioid use disorder (OUD) is a chronic and relapsing brain disease characterized by loss of control over opioid use and impairments in cognitive function, mood, pain perception, and autonomic activity. Sleep deficiency, a term that encompasses insufficient or disrupted sleep due to multiple potential causes, including sleep disorders, circadian disruption, and poor sleep quality or structure due to other medical conditions and pain, is present in 75% of patients with OUD. Sleep deficiency accompanies OUD across the spectrum of this addiction. The focus of this concise clinical review is to highlight the bidirectional mechanisms between OUD and sleep deficiency and the potential to target sleep deficiency with therapeutic interventions to promote long-term, healthy recovery among patients in OUD treatment. In addition, current knowledge on the effects of opioids on sleep quality, sleep architecture, sleep-disordered breathing, sleep apnea endotypes, ventilatory control, and implications for therapy and clinical practice are highlighted. Finally, an actionable research agenda is provided to evaluate the basic mechanisms of the relationship between sleep deficiency and OUD and the potential for behavioral, pharmacologic, and positive airway pressure treatments targeting sleep deficiency to improve OUD treatment outcomes.
Collapse
Affiliation(s)
- Danny J. Eckert
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - H. Klar Yaggi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
- Clinical Epidemiology Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
10
|
Niakani S, Liu H, Liu WY, Horner RL. Differential pharmacological and sex-specific effects of antimuscarinic agents at the hypoglossal motor nucleus in vivo in rats. Sci Rep 2022; 12:14896. [PMID: 36050440 PMCID: PMC9437041 DOI: 10.1038/s41598-022-19233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Successful cholinergic-noradrenergic pharmacotherapy for obstructive sleep apnea (OSA) is thought to be due to effects at the hypoglossal motor nucleus (HMN). Clinical efficacy varies with muscarinic-receptor (MR) subtype affinities. We hypothesized that oxybutynin (cholinergic agent in successful OSA pharmacotherapy) is an effective MR antagonist at the HMN and characterized its efficacy with other antagonists. We recorded tongue muscle activity of isoflurane anesthetized rats (121 males and 60 females, 7-13 per group across 13 protocols) in response to HMN microperfusion with MR antagonists with and without: (i) eserine-induced increased endogenous acetylcholine at the HMN and (ii) muscarine. Eserine-induced increased acetylcholine decreased tongue motor activity (p < 0.001) with lesser cholinergic suppression in females versus males (p = 0.017). Motor suppression was significantly attenuated by the MR antagonists atropine, oxybutynin, and omadacycline (MR2 antagonist), each p < 0.001, with similar residual activity between agents (p ≥ 0.089) suggesting similar efficacy at the HMN. Sex differences remained with atropine and oxybutynin (p < 0.001 to 0.05) but not omadacycline (p = 0.722). Muscarine at the HMN also decreased motor activity (p < 0.001) but this was not sex-specific (p = 0.849). These findings have translational relevance to antimuscarinic agents in OSA pharmacotherapy and understanding potential sex differences in HMN suppression with increased endogenous acetylcholine related to sparing nicotinic excitation.
Collapse
Affiliation(s)
- Sepehr Niakani
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hattie Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Wen-Ying Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Richard L Horner
- Department of Physiology, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int J Mol Sci 2022; 23:ijms23169080. [PMID: 36012341 PMCID: PMC9409023 DOI: 10.3390/ijms23169080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a relatively common disease in the general population. Besides its interaction with many comorbidities, it can also interact with potentially painful conditions and modulate its course. The association between OSA and pain modulation has recently been a topic of concern for many scientists. The mechanism underlying OSA-related pain connection has been linked with different pathophysiological changes in OSA and various pain mechanisms. Furthermore, it may cause both chronic and acute pain aggravation as well as potentially influencing the antinociceptive mechanism. Characteristic changes in OSA such as nocturnal hypoxemia, sleep fragmentation, and systemic inflammation are considered to have a curtailing impact on pain perception. Hypoxemia in OSA has been proven to have a significant impact on increased expression of proinflammatory cytokines influencing the hyperalgesic priming of nociceptors. Moreover, hypoxia markers by themselves are hypothesized to modulate intracellular signal transduction in neurons and have an impact on nociceptive sensitization. Pain management in patients with OSA may create problems arousing from alterations in neuropeptide systems and overexpression of opioid receptors in hypoxia conditions, leading to intensification of side effects, e.g., respiratory depression and increased opioid sensitivity for analgesic effects. In this paper, we summarize the current knowledge regarding pain and pain treatment in OSA with a focus on molecular mechanisms leading to nociceptive modulation.
Collapse
|
12
|
Getsy PM, Baby SM, Gruber RB, Gaston B, Lewis THJ, Grossfield A, Seckler JM, Hsieh YH, Bates JN, Lewis SJ. S-Nitroso-L-Cysteine Stereoselectively Blunts the Deleterious Effects of Fentanyl on Breathing While Augmenting Antinociception in Freely-Moving Rats. Front Pharmacol 2022; 13:892307. [PMID: 35721204 PMCID: PMC9199495 DOI: 10.3389/fphar.2022.892307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Endogenous and exogenously administered S-nitrosothiols modulate the activities of central and peripheral systems that control breathing. We have unpublished data showing that the deleterious effects of morphine on arterial blood-gas chemistry (i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas exchange) were markedly diminished in anesthetized Sprague Dawley rats that received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-L-cysteine. The present study extends these findings by showing that unanesthetized adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine (100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of breathing, tidal volume, and minute ventilation. Our study also found that the ability of intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which was measured as a marked increase of the non-eupneic breathing index, was substantially reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine (100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and 50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine. In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on breathing, and opens the door for mechanistic studies designed to establish whether the pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1) the activation of plasma membrane ion channels and receptors, 2) selective intracellular entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in determining the potency/efficacy of fentanyl on breathing is an intriguing question.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ryan B. Gruber
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Altree TJ, Eckert DJ. Obstructive sleep apnea endotypes and their postoperative relevance. Int Anesthesiol Clin 2022; 60:1-7. [PMID: 35125480 DOI: 10.1097/aia.0000000000000357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Thomas J Altree
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Respiratory and Sleep Services, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, South Australia, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
14
|
Abstract
Opioid-induced ventilatory impairment is the primary mechanism of harm from opioid use. Opioids suppress the activity of the central respiratory centres and are sedating, leading to impairment of alveolar ventilation.Respiratory physiological changes induced with acute opioid use include depression of the hypercapnic ventilatory response and hypoxic ventilatory response. In chronic opioid use a compensatory increase in hypoxic ventilatory response maintains ventilation and contributes to the onset of sleep-disordered breathing patterns of central sleep apnoea and ataxic breathing. Supplemental oxygen use in those at risk of opioid-induced ventilatory impairment requires careful consideration by the clinician to prevent failure to detect hypoventilation, if oximetry is being relied on, and the overriding of hypoxic ventilatory drive. Obstructive sleep apnoea and opioid-induced ventilatory impairment are frequently associated, with this interrelationship being complex and often unpredictable. Monitoring the patient for opioid-induced ventilatory impairment poses challenges in the areas of reliability, avoidance of alarm fatigue, cost, and personnel demands. Many situations remain in which patients cannot be provided effective analgesia without opioids, and for these the clinician requires a comprehensive knowledge of opioid-induced ventilatory impairment.
Collapse
Affiliation(s)
- Gavin G Pattullo
- Department of Anaesthesia and Pain Management, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
15
|
Seckler JM, Grossfield A, May WJ, Getsy PM, Lewis SJ. Nitrosyl factors play a vital role in the ventilatory depressant effects of fentanyl in unanesthetized rats. Biomed Pharmacother 2022; 146:112571. [PMID: 34953397 PMCID: PMC8776621 DOI: 10.1016/j.biopha.2021.112571] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/03/2023] Open
Abstract
There is an urgent need to understand the intracellular mechanisms by which synthetic opioids, such as fentanyl, depress breathing. We used L-NAME (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor, to provide evidence for a role of nitric oxide (NO) and nitrosyl factors, including S-nitrosothiols, in fentanyl-induced suppression of breathing in rats. We measured breathing parameters using unrestrained plethysmography to record the changes produced by bolus administration of fentanyl (25 μg/kg, IV) in male Sprague Dawley rats that were pretreated with vehicle (saline), L-NAME (50 μmol/kg, IV) or the inactive D-isomer, D-NAME (50 μmol/kg, IV), 15 min previously. L-NAME produced a series of ventilatory changes that included (i) sustained elevations in breathing frequency, due to the reductions in the durations of inspiration and expiration, (ii) sustained elevations in minute ventilation, accompanied by minimal changes in tidal volume, and (iii) increases in inspiratory drive and expiratory drive, and peak inspiratory flow and peak expiratory flow. Subsequent administration of fentanyl in rats pretreated with vehicle produced negative effects on breathing, including decreases in frequency, tidal volume and therefore minute ventilation. Fentanyl elicited markedly different responses in rats that were pretreated with L-NAME, and conclusively, the negative effects of fentanyl were augmented by the NOS inhibitor. D-NAME did not alter ventilatory parameters or modulate the effects of fentanyl on breathing. Our study fully characterized the effects of L-NAME on ventilation in rats and is the first to suggest a potential role of nitrosyl factors in the ventilatory responses to fentanyl. Our data shows that nitrosyl factors reduce the expression of fentanyl-induced changes in ventilation.
Collapse
Affiliation(s)
- James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Freire C, Sennes LU, Polotsky VY. Opioids and obstructive sleep apnea. J Clin Sleep Med 2022; 18:647-652. [PMID: 34672945 PMCID: PMC8805010 DOI: 10.5664/jcsm.9730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023]
Abstract
Opioids are widely prescribed for pain management, and it is estimated that 40% of adults in the United States use prescription opioids every year. Opioid misuse leads to high mortality, with respiratory depression as the main cause of death. Animal and human studies indicate that opioid use may lead to sleep-disordered breathing. Opioids affect control of breathing and impair upper airway function, causing central apneas, upper airway obstruction, and hypoxemia during sleep. The presence of obstructive sleep apnea (OSA) increases the risk of opioid-induced respiratory depression. However, even if the relationship between opioids and central sleep apnea is firmly established, the question of whether opioids can aggravate OSA remains unanswered. While several reports have shown a high prevalence of OSA and nocturnal hypoxemia in patients receiving a high dose of opioids, other studies did not find a correlation between opioid use and obstructive events. These differences can be attributed to considerable interindividual variability, divergent effects of opioids on different phenotypic traits of OSA, and wide-ranging methodology. This review will discuss mechanistic insights into the effects of opioids on the upper airway and hypoglossal motor activity and the association of opioid use and obstructive sleep apnea. CITATION Freire C, Sennes LU, Polotsky VY. Opioids and obstructive sleep apnea. J Clin Sleep Med. 2022;18(2):647-652.
Collapse
Affiliation(s)
- Carla Freire
- Johns Hopkins Sleep Disorders Center, Baltimore, Maryland
- Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil
| | - Luiz U. Sennes
- Otolaryngology Department, University of São Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
17
|
Abstract
Opiates, such as morphine, and synthetic opioids, such as fentanyl, constitute a class of drugs acting on opioid receptors which have been used therapeutically and recreationally for centuries. Opioid drugs have strong analgesic properties and are used to treat moderate to severe pain, but also present side effects including opioid dependence, tolerance, addiction, and respiratory depression, which can lead to lethal overdose if not treated. This chapter explores the pathophysiology, the neural circuits, and the cellular mechanisms underlying opioid-induced respiratory depression and provides a translational perspective of the most recent research. The pathophysiology discussed includes the effects of opioid drugs on the respiratory system in patients, as well as the animal models used to identify underlying mechanisms. Using a combination of gene editing and pharmacology, the neural circuits and molecular pathways mediating neuronal inhibition by opioids are examined. By using pharmacology and neuroscience approaches, new therapies to prevent or reverse respiratory depression by opioid drugs have been identified and are currently being developed. Considering the health and economic burden associated with the current opioid epidemic, innovative research is needed to better understand the side effects of opioid drugs and to discover new therapeutic solutions to reduce the incidence of lethal overdoses.
Collapse
|
18
|
Tadjalli A, Seven YB, Sharma A, McCurdy CR, Bolser DC, Levitt ES, Mitchell GS. Acute morphine blocks spinal respiratory motor plasticity via long-latency mechanisms that require toll-like receptor 4 signalling. J Physiol 2021; 599:3771-3797. [PMID: 34142718 DOI: 10.1113/jp281362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS While respiratory complications following opioid use are mainly mediated via activation of mu opioid receptors, long-latency off-target signalling via innate immune toll-like receptor 4 (TLR4) may impair other essential elements of breathing control such as respiratory motor plasticity. In adult rats, pre-treatment with a single dose of morphine blocked long-term facilitation (LTF) of phrenic motor output via a long-latency TLR4-dependent mechanism. In the phrenic motor nucleus, morphine triggered TLR4-dependent activation of microglial p38 MAPK - a key enzyme that orchestrates inflammatory signalling and is known to undermine phrenic LTF. Morphine-induced LTF loss may destabilize breathing, potentially contributing to respiratory side effects. Therefore, we suggest minimizing TLR-4 signalling may improve breathing stability during opioid therapy. ABSTRACT Opioid-induced respiratory dysfunction is a significant public health burden. While respiratory effects are mediated via mu opioid receptors, long-latency off-target opioid signalling through innate immune toll-like receptor 4 (TLR4) may modulate essential elements of breathing control, particularly respiratory motor plasticity. Plasticity in respiratory motor circuits contributes to the preservation of breathing in the face of destabilizing influences. For example, respiratory long-term facilitation (LTF), a well-studied model of respiratory motor plasticity triggered by acute intermittent hypoxia, promotes breathing stability by increasing respiratory motor drive to breathing muscles. Some forms of respiratory LTF are exquisitely sensitive to inflammation and are abolished by even a mild inflammation triggered by TLR4 activation (e.g. via systemic lipopolysaccharides). Since opioids induce inflammation and TLR4 activation, we hypothesized that opioids would abolish LTF through a TLR4-dependent mechanism. In adult Sprague Dawley rats, pre-treatment with a single systemic injection of the prototypical opioid agonist morphine blocks LTF expression several hours later in the phrenic motor system - the motor pool driving diaphragm muscle contractions. Morphine blocked phrenic LTF via TLR4-dependent mechanisms because pre-treatment with (+)-naloxone - the opioid inactive stereoisomer and novel small molecule TLR4 inhibitor - prevented impairment of phrenic LTF in morphine-treated rats. Morphine triggered TLR4-dependent activation of microglial p38 MAPK within the phrenic motor system - a key enzyme that orchestrates inflammatory signalling and undermines phrenic LTF. Morphine-induced LTF loss may destabilize breathing, potentially contributing to respiratory side effects. We suggest minimizing TLR-4 signalling may improve breathing stability during opioid therapy by restoring endogenous mechanisms of plasticity within respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | | | - Donald C Bolser
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
A Pilot Crossover Trial of Sleep Medications for Sleep-disturbed Methadone Maintenance Patients. J Addict Med 2021; 14:126-131. [PMID: 30870203 DOI: 10.1097/adm.0000000000000531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Problems with sleep are a common and detrimental occurrence among individuals who receive methadone maintenance for opioid use disorder (OUD). METHODS We enrolled ten methadone-maintained persons with insomnia (60% female, mean age 40) in a double-blind trial using actigraphy to confirm daily sleep reports. After a no-medication week to establish baseline sleep patterns, each participant received 1 week each of mirtazapine (30 mg), zolpidem (sustained-release 12.5 mg), mirtazapine (30 mg IR) plus zolpidem (10 mg), and placebo, with a washout week between each medication week. Study medication order was randomized so that the order of each 1-week medication treatment was different for each participant, but all participants received all 4 regimens. RESULTS We found that mirtazapine alone improved total sleep (mean 23 minutes), sleep latency (mean 23 minutes), and sleep efficiency (mean 3%), surpassing the other regiments. CONCLUSIONS This pilot work suggests that mirtazapine is worthy of further testing as a sleep aid for persons with OUD receiving methadone maintenance.
Collapse
|
20
|
Doufas AG, Weingarten TN. Pharmacologically Induced Ventilatory Depression in the Postoperative Patient: A Sleep-Wake State-Dependent Perspective. Anesth Analg 2021; 132:1274-1286. [PMID: 33857969 DOI: 10.1213/ane.0000000000005370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pharmacologically induced ventilatory depression (PIVD) is a common postoperative complication with a spectrum of severity ranging from mild hypoventilation to severe ventilatory depression, potentially leading to anoxic brain injury and death. Recent studies, using continuous monitoring technologies, have revealed alarming rates of previously undetected severe episodes of postoperative ventilatory depression, rendering the recognition of such episodes by the standard intermittent assessment practice, quite problematic. This imprecise description of the epidemiologic landscape of PIVD has thus stymied efforts to understand better its pathophysiology and quantify relevant risk factors for this postoperative complication. The residual effects of various perianesthetic agents on ventilatory control, as well as the multiple interactions of these drugs with patient-related factors and phenotypes, make postoperative recovery of ventilation after surgery and anesthesia a highly complex physiological event. The sleep-wake, state-dependent variation in the control of ventilation seems to play a central role in the mechanisms potentially enhancing the risk for PIVD. Herein, we discuss emerging evidence regarding the epidemiology, risk factors, and potential mechanisms of PIVD.
Collapse
Affiliation(s)
- Anthony G Doufas
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Toby N Weingarten
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Summarize the effects of opioids on sleep including sleep architecture, sleep disordered breathing (SDB) and restless legs syndrome. RECENT FINDINGS Opioids are associated with the development of central sleep apnea (CSA) and ataxic breathing. Recent reports suggest that adaptive servo-ventilation may be an effective treatment for CSA associated with opioids. SUMMARY Opioids have multiple effects on sleep, sleep architecture and SDB. Although originally described with methadone use, most commonly used opioids have also been shown to affect sleep. In patients on chronic methadone, sleep architecture changes include decreases in N3 and REM sleep. However, in patients with chronic nonmalignant pain, opioids improve sleep quality and sleep time. Opioids, generally at a morphine equivalent dose more than 100 mg/day, are associated with an increased incidence of CSA and ataxic breathing as well as obstructive sleep apnea. Other risk factors may include concomitant use of other medications such as antidepressants, gabapentinoids and benzodiazepines. Opioid-induced CSA can be potentially treated with adaptive servo-ventilation. Finally, opioids are a potential therapeutic option for restless legs syndrome unresponsive to dopamine agonists and other medications. However, use in patients with restless legs syndrome should proceed with caution, taking into account the risk for dependence and development of SDB.
Collapse
|
22
|
Gurges P, Liu H, Horner RL. Modulation of TASK-1/3 channels at the hypoglossal motoneuron pool and effects on tongue motor output and responses to excitatory inputs in vivo: implications for strategies for obstructive sleep apnea pharmacotherapy. Sleep 2021; 44:5880005. [PMID: 32745213 PMCID: PMC7819847 DOI: 10.1093/sleep/zsaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
Obstructive sleep apnea (OSA) occurs exclusively during sleep due to reduced tongue motor activity. Withdrawal of excitatory inputs to the hypoglossal motor nucleus (HMN) from wake to sleep contributes to this reduced activity. Several awake-active neurotransmitters with inputs to the HMN (e.g. serotonin [5-HT]) inhibit K+ leak mediated by TASK-1/3 channels on hypoglossal motoneurons, leading to increased neuronal activity in vitro. We hypothesize that TASK channel inhibition at the HMN will increase tongue muscle activity in vivo and modulate responses to 5-HT. We first microperfused the HMN of anesthetized rats with TASK channel inhibitors: doxapram (75 μM, n = 9), A1899 (25 μM, n = 9), ML365 (25 μM, n = 9), acidified artificial cerebrospinal fluid (ACSF, pH = 6.25, n = 9); and a TASK channel activator terbinafine (50 μM, n = 9); all with and without co-applied 5-HT (10 mM). 5-HT alone at the HMN increased tongue motor activity (202.8% ± 45.9%, p < 0.001). However, neither the TASK channel inhibitors, nor activator, at the HMN changed baseline tongue activity (p > 0.716) or responses to 5-HT (p > 0.127). Tonic tongue motor responses to 5-HT at the HMN were also not different (p > 0.05) between ChAT-Cre:TASKf/f mice (n = 8) lacking TASK-1/3 channels on cholinergic neurons versus controls (n = 10). In freely behaving rats (n = 9), microperfusion of A1899 into the HMN increased within-breath phasic tongue motor activity in wakefulness only (p = 0.005) but not sleep, with no effects on tonic activity across all sleep-wake states. Together, the findings suggest robust maintenance of tongue motor activity despite various strategies for TASK channel manipulation targeting the HMN in vivo, and thus currently do not support this target and direction for potential OSA pharmacotherapy.
Collapse
Affiliation(s)
- Patrick Gurges
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Hattie Liu
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Richard L Horner
- Department of Medicine, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Glutathione ethyl ester reverses the deleterious effects of fentanyl on ventilation and arterial blood-gas chemistry while prolonging fentanyl-induced analgesia. Sci Rep 2021; 11:6985. [PMID: 33772077 PMCID: PMC7997982 DOI: 10.1038/s41598-021-86458-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
There is an urgent need to develop novel compounds that prevent the deleterious effects of opioids such as fentanyl on minute ventilation while, if possible, preserving the analgesic actions of the opioids. We report that L-glutathione ethyl ester (GSHee) may be such a novel compound. In this study, we measured tail flick latency (TFL), arterial blood gas (ABG) chemistry, Alveolar-arterial gradient, and ventilatory parameters by whole body plethysmography to determine the responses elicited by bolus injections of fentanyl (75 μg/kg, IV) in male adult Sprague-Dawley rats that had received a bolus injection of GSHee (100 μmol/kg, IV) 15 min previously. GSHee given alone had minimal effects on TFL, ABG chemistry and A-a gradient whereas it elicited changes in some ventilatory parameters such as an increase in breathing frequency. In vehicle-treated rats, fentanyl elicited (1) an increase in TFL, (2) decreases in pH, pO2 and sO2 and increases in pCO2 (all indicative of ventilatory depression), (3) an increase in Alveolar-arterial gradient (indicative of a mismatch in ventilation-perfusion in the lungs), and (4) changes in ventilatory parameters such as a reduction in tidal volume, that were indicative of pronounced ventilatory depression. In GSHee-pretreated rats, fentanyl elicited a more prolonged analgesia, relatively minor changes in ABG chemistry and Alveolar-arterial gradient, and a substantially milder depression of ventilation. GSHee may represent an effective member of a novel class of thiolester drugs that are able to prevent the ventilatory depressant effects elicited by powerful opioids such as fentanyl and their deleterious effects on gas-exchange in the lungs without compromising opioid analgesia.
Collapse
|
24
|
Badelt G, Goeters C, Becke-Jakob K, Deitmer T, Eich C, Höhne C, Stuck BA, Wiater A. S1-Leitlinie: Obstruktive Schlafapnoe im Rahmen von Tonsillenchirurgie mit oder ohne Adenotomie bei Kindern – perioperatives Management. SOMNOLOGIE 2021. [DOI: 10.1007/s11818-021-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Ahmad A, Ahmad R, Meteb M, Ryan CM, Leung RS, Montandon G, Luks V, Kendzerska T. The relationship between opioid use and obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med Rev 2021; 58:101441. [PMID: 33567395 DOI: 10.1016/j.smrv.2021.101441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
We conducted a systematic review to address limited evidence suggesting that opioids may induce or aggravate obstructive sleep apnea (OSA). All clinical trials or observational studies on adults from 1946 to 2018 found through MEDLINE, EMBASE, CINAHL, PsycINFO, Cochrane Databases were eligible. We assessed the quality of the studies using published guidelines. Fifteen studies (six clinical trials and nine observational) with only two of good quality were included. Fourteen studies investigated the impact of opioids on the presence or severity of OSA, four addressed the effects of treatment for OSA in opioid users, and none explored the consequences of opioid use in individuals with OSA. Eight of 14 studies found no significant relationship between opioid use or dose and apnea-hypopnea index (AHI) or degree of nocturnal desaturation. A random-effects meta-analysis (n = 10) determined the pooled mean change in AHI associated with opioid use of 1.47/h (-2.63-5.57; I2 = 65%). Three of the four studies found that continuous positive airway pressure (CPAP) therapy reduced AHI by 17-30/h in opioid users with OSA. Bilevel therapy with a back-up rate and adaptive servo-ventilation (ASV) without mandatory pressure support successfully normalized AHI (≤5) in opioid users. Limited by a paucity of good-quality studies, our review did not show a significant relationship between opioid use and the severity of OSA. There was some evidence that CPAP, Bilevel therapy, and ASV alleviate OSA for opioid users, with higher failure rates observed in patients on CPAP in opioid users.
Collapse
Affiliation(s)
- Aseel Ahmad
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ontario, Canada
| | - Randa Ahmad
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ontario, Canada
| | - Moussa Meteb
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Clodagh M Ryan
- University of Toronto, Toronto, Ontario, Canada; Toronto Rehabilitation Institute, University Health Network, Ontario, Canada
| | - Richard S Leung
- University of Toronto, Toronto, Ontario, Canada; St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gaspard Montandon
- University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
| | - Vanessa Luks
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ontario, Canada
| | - Tetyana Kendzerska
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ontario, Canada.
| |
Collapse
|
26
|
Selim B, Ramar K. Sleep-Related Breathing Disorders: When CPAP Is Not Enough. Neurotherapeutics 2021; 18:81-90. [PMID: 33150546 PMCID: PMC8116389 DOI: 10.1007/s13311-020-00955-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Three decades ago, continuous positive airway pressure (CPAP) was introduced to treat obstructive sleep apnea (OSA). Shortly after, bilevel positive airway pressure devices (BPAP) that independently adjusted inspiratory and expiratory positive airway pressure were developed to treat complex sleep-related breathing disorders unresponsive to CPAP. Based on the bilevel positive airway pressure platform (hardware) governed by propriety algorithms (software), advanced modes of noninvasive ventilation (NIV) were developed to address complex cardiorespiratory pathophysiology beyond OSA. This review summarizes key aspects of different bilevel PAP therapies (BPAP with/without backup rate, adaptive servoventilation, and volume-assured pressure support) to treat common sleep-related hypoventilation disorders, treatment-emergent central sleep apnea, and central sleep apnea syndromes.
Collapse
Affiliation(s)
- Bernardo Selim
- Pulmonary and Critical Care Division, Center for Sleep Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Kannan Ramar
- Pulmonary and Critical Care Division, Center for Sleep Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
27
|
Badelt G, Goeters C, Becke-Jakob K, Deitmer T, Eich C, Höhne C, Stuck BA, Wiater A. [German S1 guideline: obstructive sleep apnea in the context of tonsil surgery with or without adenoidectomy in children-perioperative management]. HNO 2020; 69:3-13. [PMID: 33354732 DOI: 10.1007/s00106-020-00970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Otolaryngologic surgery is one of the most frequent operative interventions performed in children. Tonsil surgery with or without adenoidectomy due to hyperplasia of the tonsils and adenoids with obstruction of the upper airways with or without tympanic ventilation disorder is the most common of these procedures. Children with a history of sleep apnoea (OSA) suffer from a significantly increased risk of perioperative respiratory complications. Cases of death and severe permanent neurologic damage have been reported due to apnoea and increased opioid sensitivity. The current guideline represents a pragmatic risk-adjusted approach. Patients with confirmed or suspected OSA should be treated perioperatively according to their individual risks and requirements, in order to avoid severe permanent damage.
Collapse
Affiliation(s)
- G Badelt
- Klinik für Anästhesie und Kinderanästhesie, Krankenhaus Barmherzige Brüder Regensburg, Klinik St. Hedwig, Steinmetzstraße 1-3, 93049, Regensburg, Deutschland. .,Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI)
- Wissenschaftlicher Arbeitskreis Kinderanästhesie (WAKKA), Nürnberg, Deutschland.
| | - C Goeters
- Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI)
- Wissenschaftlicher Arbeitskreis Kinderanästhesie (WAKKA), Nürnberg, Deutschland
| | - K Becke-Jakob
- Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI)
- Wissenschaftlicher Arbeitskreis Kinderanästhesie (WAKKA), Nürnberg, Deutschland
| | - T Deitmer
- Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e. V. (DGHNO KHC), Friedrich-Wilhelm-Str. 2, 53113, Bonn, Deutschland
| | - C Eich
- Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI)
- Wissenschaftlicher Arbeitskreis Kinderanästhesie (WAKKA), Nürnberg, Deutschland
| | - C Höhne
- Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI)
- Wissenschaftlicher Arbeitskreis Kinderanästhesie (WAKKA), Nürnberg, Deutschland
| | - B A Stuck
- Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e. V. (DGHNO KHC), Friedrich-Wilhelm-Str. 2, 53113, Bonn, Deutschland
| | - A Wiater
- Kinder- und Jugendmedizin/Schlafmedizin, Deutsche Gesellschaft für Schlafforschung und Schlafmedizin (DGSM)
- Arbeitsgruppe Pädiatrie im Konvent der Deutschen Gesllschaft für Kinder- und Jugendmedizin, Schwalmstadt-Treysa, Deutschland
| |
Collapse
|
28
|
Freire C, Pho H, Kim LJ, Wang X, Dyavanapalli J, Streeter SR, Fleury-Curado T, Sennes LU, Mendelowitz D, Polotsky VY. Intranasal Leptin Prevents Opioid-induced Sleep-disordered Breathing in Obese Mice. Am J Respir Cell Mol Biol 2020; 63:502-509. [PMID: 32603263 DOI: 10.1165/rcmb.2020-0117oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Respiratory depression is the main cause of morbidity and mortality associated with opioids. Obesity increases opioid-related mortality, which is mostly related to comorbid obstructive sleep apnea. Naloxone, a μ-opioid receptor blocker, is an effective antidote, but it reverses analgesia. Like humans with obesity, mice with diet-induced obesity hypoventilate during sleep and develop obstructive sleep apnea, which can be treated with intranasal leptin. We hypothesized that intranasal leptin reverses opioid-induced sleep-disordered breathing in obese mice without decreasing analgesia. To test this hypothesis, mice with diet-induced obesity were treated with morphine at 10 mg/kg subcutaneously and with leptin or placebo intranasally. Sleep and breathing were recorded by barometric plethysmography, and pain sensitivity was measured by the tail-flick test. Excitatory postsynaptic currents were recorded in vitro from hypoglossal motor neurons after the application of the μ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin and leptin. Morphine dramatically increased the frequency of apneas and greatly increased the severity of hypoventilation and obstructive sleep apnea. Leptin decreased the frequency of apneas, improved obstructive sleep apnea, and completely reversed hypoventilation, whereas morphine analgesia was enhanced. Our in vitro studies demonstrated that [D-Ala2, N-MePhe4, Gly-ol]-enkephalin reduced the frequency of excitatory postsynaptic currents in hypoglossal motoneurons and that application of leptin restored excitatory synaptic neurotransmission. Our findings suggest that intranasal leptin may prevent opioid respiratory depression during sleep in patients with obesity receiving opioids without reducing analgesia.
Collapse
Affiliation(s)
- Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil; and
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xin Wang
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil; and
| | - Luiz U Sennes
- Department of Otolaryngology, University of São Paulo, São Paulo, Brazil; and
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Perioperative Care and Medication-related Hypoventilation. Sleep Med Clin 2020; 15:471-483. [PMID: 33131658 DOI: 10.1016/j.jsmc.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cumulative evidence supports the association of adverse postoperative outcomes with obstructive sleep apnea (OSA) and obesity hypoventilation syndrome (OHS). Although current guidelines recommend preoperative screening for OSA and OHS, the best perioperative management pathways remain unknown. Interventions attempting to prevent complications in the postoperative period largely are consensus based and focused on enhanced monitoring, conservative measures, and specific OSA therapies, such as positive airway pressure. Until further research is available to improve the quality and strength of these recommendations, patients with known or suspected OSA and OHS should be considered at higher risk for perioperative cardiopulmonary complications.
Collapse
|
30
|
Orr JE, Wallace MS, Malhotra A. Might chronic opioid use impact sleep-disordered breathing and vice versa? J Clin Sleep Med 2020; 16:843-845. [PMID: 32317097 PMCID: PMC7849661 DOI: 10.5664/jcsm.8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022]
Abstract
Orr JE, Wallace MS, Malhotra A. Might chronic opioid use impact sleep-disordered breathing and vice versa? J Clin Sleep Med . 2020;16(6):843–845.
Collapse
Affiliation(s)
- Jeremy E. Orr
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Mark S. Wallace
- Division of Pain Medicine, University of California, San Diego, La Jolla, California
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Martins RT, Carberry JC, Wang D, Rowsell L, Grunstein RR, Eckert DJ. Morphine alters respiratory control but not other key obstructive sleep apnoea phenotypes: a randomised trial. Eur Respir J 2020; 55:13993003.01344-2019. [DOI: 10.1183/13993003.01344-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/25/2020] [Indexed: 11/05/2022]
Abstract
Accidental opioid-related deaths are increasing. These often occur during sleep. Opioids such as morphine may worsen obstructive sleep apnoea (OSA). Thus, people with OSA may be at greater risk of harm from morphine. Possible mechanisms include respiratory depression and reductions in drive to the pharyngeal muscles to increase upper airway collapsibility. However, the effects of morphine on the four key phenotypic causes of OSA (upper airway collapsibility (pharyngeal critical closure pressure; Pcrit), pharyngeal muscle responsiveness, respiratory arousal threshold and ventilatory control (loop gain) during sleep) are unknown.21 males with OSA (apnoea–hypopnoea index range 7–67 events·h−1) were studied on two nights (1-week washout) according to a double-blind, randomised, cross-over design (ACTRN12613000858796). Participants received 40 mg of MS-Contin on one visit and placebo on the other. Brief reductions in continuous positive airway pressure (CPAP) from the therapeutic level were delivered to induce airflow limitation during non-rapid eye movement (REM) sleep to quantify the four phenotypic traits. Carbon dioxide was delivered via nasal mask on therapeutic CPAP to quantify hypercapnic ventilatory responses during non-REM sleep.Compared to placebo, 40 mg of morphine did not change Pcrit (−0.1±2.4 versus −0.4±2.2 cmH2O, p=0.58), genioglossus muscle responsiveness (−2.2 (−0.87 to −5.4) versus −1.2 (−0.3 to −3.5) μV·cmH2O−1, p=0.22) or arousal threshold (−16.7±6.8 versus −15.4±6.0 cmH2O, p=0.41), but did reduce loop gain (−10.1±2.6 versus −4.4±2.1, p=0.04) and hypercapnic ventilatory responses (7.3±1.2 versus 6.1±1.5 L·min−1, p=0.006).Concordant with recent clinical findings, 40 mg of MS-Contin does not systematically impair airway collapsibility, pharyngeal muscle responsiveness or the arousal threshold in moderately severe OSA patients. However, consistent with blunted chemosensitivity, ventilatory control is altered.
Collapse
|
32
|
Kölliker-Fuse/Parabrachial complex mu opioid receptors contribute to fentanyl-induced apnea and respiratory rate depression. Respir Physiol Neurobiol 2020; 275:103388. [PMID: 31953234 DOI: 10.1016/j.resp.2020.103388] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Overdoses caused by the opioid agonist fentanyl have increased exponentially in recent years. Identifying mechanisms to counter progression to fatal respiratory apnea during opioid overdose is desirable, but difficult to study in vivo. The pontine Kölliker-Fuse/Parabrachial complex (KF/PB) provides respiratory drive and contains opioid-sensitive neurons. The contribution of the KF/PB complex to fentanyl-induced apnea was investigated using the in situ arterially perfused preparation of rat. Systemic application of fentanyl resulted in concentration-dependent respiratory disturbances. At low concentrations, respiratory rate slowed and subsequently transitioned to an apneustic-like, 2-phase pattern. Higher concentrations caused prolonged apnea, interrupted by occasional apneustic-like bursts. Application of CTAP, a selective mu opioid receptor antagonist, directly into the KF/PB complex reversed and prevented fentanyl-induced apnea by increasing the frequency of apneustic-like bursting. These results demonstrate that countering opioid effects in the KF/PB complex is sufficient to restore phasic respiratory output at a rate similar to pre-fentanyl conditions, which could be beneficial in opioid overdose.
Collapse
|
33
|
Chung F, Wong J, Bellingham G, Lebovic G, Singh M, Waseem R, Peng P, George CFP, Furlan A, Bhatia A, Clarke H, Juurlink DN, Mamdani MM, Horner R, Orser BA, Ryan CM. Predictive factors for sleep apnoea in patients on opioids for chronic pain. BMJ Open Respir Res 2019; 6:e000523. [PMID: 31908788 PMCID: PMC6936992 DOI: 10.1136/bmjresp-2019-000523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background The risk of death is elevated in patients taking opioids for chronic non-cancer pain. Respiratory depression is the main cause of death due to opioids and sleep apnoea is an important associated risk factor. Methods In chronic pain clinics, we assessed the STOP-Bang questionnaire (a screening tool for sleep apnoea; Snoring, Tiredness, Observed apnoea, high blood Pressure, Body mass index, age, neck circumference and male gender), Epworth Sleepiness Scale, thyromental distance, Mallampati classification, daytime oxyhaemoglobin saturation (SpO2) and calculated daily morphine milligram equivalent (MME) approximations for each participant, and performed an inlaboratory polysomnogram. The primary objective was to determine the predictive factors for sleep apnoea in patients on chronic opioid therapy using multivariable logistic regression models. Results Of 332 consented participants, 204 underwent polysomnography, and 120 (58.8%) had sleep apnoea (AHI ≥5) (72% obstructive, 20% central and 8% indeterminate sleep apnoea), with a high prevalence of moderate (23.3%) and severe (30.8%) sleep apnoea. The STOP-Bang questionnaire and SpO2 are predictive factors for sleep apnoea (AHI ≥15) in patients on opioids for chronic pain. For each one-unit increase in the STOP-Bang score, the odds of moderate-to-severe sleep apnoea (AHI ≥15) increased by 70%, and for each 1% SpO2 decrease the odds increased by 33%. For each 10 mg MME increase, the odds of Central Apnoea Index ≥5 increased by 3%, and for each 1% SpO2 decrease the odds increased by 45%. Conclusion In patients on opioids for chronic pain, the STOP-Bang questionnaire and daytime SpO2 are predictive factors for sleep apnoea, and MME and daytime SpO2 are predictive factors for Central Apnoea Index ≥5. Trial registration number NCT02513836
Collapse
Affiliation(s)
- Frances Chung
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jean Wong
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, Women's College Hospital, University of Toronto, Toronto, On, Canada
| | - Geoff Bellingham
- Department of Anesthesia and Perioperative Medicine, St. Joseph's Health Care, Western University, London, Ontario, Canada
| | - Gerald Lebovic
- Applied Health Research Centre, St Michael's Hospital, Institute for Health Policy Management and Evaluation, University of Toronto, Toronto, On, Canada
| | - Mandeep Singh
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rida Waseem
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Philip Peng
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Charles F P George
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Andrea Furlan
- Toronto Rehabilitation Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hance Clarke
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, On, Canada
| | - David N Juurlink
- Department of Medicine, Sunnybrook Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Muhammad M Mamdani
- Applied Health Research Centre, St Michael's Hospital, Toronto, Ontario, Canada.,Applied Health Research Center, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Richard Horner
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Sunnybrook Research Institute, University of Toronto, Toronto, On, Canada
| | - Clodagh M Ryan
- Sleep Research Laboratory, University Health Network, Toronto Rehabilitation Institute, Toronto, On, Canada.,Department of Medicine, University of Toronto, Toronto, On, Canada
| | | |
Collapse
|
34
|
Ishibashi K, Kitamura Y, Kato S, Sugano M, Sakaguchi Y, Sato Y, Isono S. Changes in laryngeal airway patency in response to complete reversal of rocuronium-induced paralysis with sugammadex in small children with a supraglottic airway: protective effect of fentanyl? Br J Anaesth 2019; 125:e158-e160. [PMID: 31623839 DOI: 10.1016/j.bja.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
|
35
|
Ayad S, Khanna AK, Iqbal SU, Singla N. Characterisation and monitoring of postoperative respiratory depression: current approaches and future considerations. Br J Anaesth 2019; 123:378-391. [DOI: 10.1016/j.bja.2019.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 01/19/2023] Open
|
36
|
Abstract
Central sleep apnea is prevalent in patients with heart failure, healthy individuals at high altitudes, and chronic opiate users and in the initiation of "mixed" (that is, central plus obstructive apneas). This brief review focuses on (a) the causes of repetitive, cyclical central apneas as mediated primarily through enhanced sensitivities in the respiratory control system and (b) treatment of central sleep apnea through modification of key components of neurochemical control as opposed to the current universal use of positive airway pressure.
Collapse
Affiliation(s)
- Jerome A. Dempsey
- Department of Population Health Sciences, University of Wisconsin - Madison, WARF Building, 7th Floor, 614 Walnut Street, Madison, WI 53726, USA
| |
Collapse
|
37
|
Abstract
Lack of physician familiarity with alternative pain control strategies is a major reason why opioids remain the most commonly used first-line treatment for pain after surgery. This is perhaps most problematic in abdominal wall reconstruction, where opioids may delay ambulation and return of bowel function, while negatively affecting mental status. In this article, we discuss multimodal strategies for optimal pain control in abdominal wall reconstruction. These strategies are straightforward and are proven to improve pain control while minimizing opioid-associated side effects.
Collapse
|
38
|
Slawek DE, Lu TY, Hayes B, Fox AD. Caring for Patients With Opioid Use Disorder: What Clinicians Should Know About Comorbid Medical Conditions. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2018. [PMCID: PMC9175890 DOI: 10.1176/appi.prcp.20180005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Opioid use disorder (OUD) is a growing problem, with opioid‐involved overdose deaths quadrupling since 1999 in the United States. This article reviews comorbid medical conditions related to OUD, starting with complications of behaviors associated with opioid use (e.g., injection drug use), followed by conditions stemming from the direct effects of opioids (e.g., hypogonadism). HIV and hepatitis C virus (HCV) are common infections in people with OUD, and treatment for these conditions can be safely provided regardless of ongoing substance use. Complications of drug injection, such as HIV, HCV, skin and soft tissue infections, and infective endocarditis, may be prevented through provision of sterile syringes and supervised injection facilities. Rare, life‐threatening bacterial infections may present with signs and symptoms that mimic intoxication, such as malaise or stupor, and should be assessed in patients with fever or positive blood cultures. In addition, chronic opioid exposure can lead to hypogonadism, opioid‐induced hyperalgesia, sleep‐disordered breathing, and potentially increased risk of cardiovascular disease and neurocognitive impairment. Pharmacotherapies for OUD (buprenorphine, methadone, and naltrexone) are safe and effective and their adverse opioid effects can be managed in clinical practice. Awareness of OUD‐associated medical conditions and their treatments is an important step in improving the health and wellness of people with OUD.
Collapse
Affiliation(s)
| | - Tiffany Y. Lu
- Department of MedicineAlbert Einstein College of MedicineBronxNY
| | - Benjamin Hayes
- Department of MedicineAlbert Einstein College of MedicineBronxNY
| | - Aaron D. Fox
- Department of MedicineAlbert Einstein College of MedicineBronxNY
| |
Collapse
|
39
|
Forster HV. Julius H. Comroe Distinguished Lecture: Interdependence of neuromodulators in the control of breathing. J Appl Physiol (1985) 2018; 125:1511-1525. [PMID: 30138081 DOI: 10.1152/japplphysiol.00477.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro and in vivo anesthetized studies led to the conclusion that "deficiencies in one neuromodulator are immediately compensated by the action of other neuromodulators," which suggests an interdependence among neuromodulators. This concept was the focus of the 2018 Julius H. Comroe Lecture to the American Physiological Society in which I summarized our published studies testing the hypothesis that if modulatory interdependence was robust, breathing would not decrease during dialysis of antagonists to G protein-coupled excitatory receptors or agonists to inhibitory receptors into the ventral respiratory column (VRC) or the hypoglossal motor nuclei (HMN). We found breathing was not decreased during unilateral VRC dialyses of antagonists to excitatory muscarinic, serotonergic, and neurokinin-1 receptors alone or in combinations nor was breathing decreased with unilateral VRC dialysis of a µ-opioid receptor agonist. Analyses of the effluent dialysate revealed locally increased serotonin (excitatory) during muscarinic receptor blockade and decreased γ-aminobutyric acid (inhibitory) during dialysis of opioid agonists, suggesting an interdependence of neuromodulators through release of compensatory neuromodulators. Bilateral dialysis of receptor antagonists or agonist in the VRC increased breathing, which does not support the concept that unchanged breathing with unilateral dialyses was due to contralateral compensation. In contrast, in the HMN neither unilateral nor bilateral dialysis of the excitatory receptor antagonists altered breathing, but unilateral dialysis of the opioid receptor agonist decreased breathing. We conclude: 1) there is site-dependent interdependence of neuromodulators during physiologic conditions, and 2) attributing physiologic effects to a specific receptor perturbation is complicated by local compensatory mechanisms.
Collapse
Affiliation(s)
- Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Neuroscience Research Center, Medical College of Wisconsin, Zablocki Veterans Affairs Medical Center , Milwaukee, Wisconsin
| |
Collapse
|
40
|
Tomazini Martins R, Carberry JC, Gandevia SC, Butler JE, Eckert DJ. Effects of morphine on respiratory load detection, load magnitude perception, and tactile sensation in obstructive sleep apnea. J Appl Physiol (1985) 2018; 125:393-400. [DOI: 10.1152/japplphysiol.00065.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pharyngeal and respiratory sensation is impaired in obstructive sleep apnea (OSA). Opioids may further diminish respiratory sensation. Thus protective pharyngeal neuromuscular and arousal responses to airway occlusion that rely on respiratory sensation could be impaired with opioids to worsen OSA severity. However, little is known about the effects of opioids on upper airway and respiratory sensation in people with OSA. This study was designed to determine the effects of 40 mg of MS-Contin on tactile sensation, respiratory load detection, and respiratory magnitude perception in people with OSA during wakefulness. A double-blind, randomized, crossover design (1 wk washout) was used. Twenty-one men with untreated OSA (apnea/hypopnea index = 26 ± 17 events/h) recruited from a larger clinical study completed the protocol. Tactile sensation using von Frey filaments on the back of the hand, internal mucosa of the cheek, uvula, and posterior pharyngeal wall were not different between placebo and morphine [e.g., median (interquartile range) posterior wall = 0.16 (0.16, 0.4) vs. 0.4 (0.14, 1.8) g, P = 0.261]. Similarly, compared with placebo, morphine did not alter respiratory load detection thresholds for nadir mask pressure detected = −2.05 (−3.37, −1.55) vs. −2.19 (−3.36, −1.41) cmH2O, P = 0.767], or respiratory load magnitude perception [mean ± SD Borg scores during a 5 resistive load (range: 5–126 cmH2O·l−1·s−1) protocol = 4.5 ± 1.6 vs. 4.2 ± 1.2, P = 0.347] but did reduce minute ventilation during quiet breathing (11.4 ± 3.3 vs. 10.7 ± 2.6 l/min, P < 0.01). These findings indicate that 40 mg of MS-Contin does not systematically impair tactile or respiratory sensation in men with mild to moderate, untreated OSA. This suggests that altered respiratory sensation to acute mechanical stimuli is not likely to be a mechanism that contributes to worsening of OSA with a moderate dose of morphine.NEW & NOTEWORTHY Forty milligrams of MS-Contin does not alter upper airway tactile sensation, respiratory load detection thresholds, or respiratory load magnitude perception in people with obstructive sleep apnea but does decrease breathing compared with placebo during wakefulness. Despite increasing concerns of harm with opioids, the current findings suggest that impaired respiratory sensation to acute mechanical stimuli with this dose of MS-Contin is unlikely to be a direct mechanism contributing to worsening sleep apnea severity in people with mild-to-moderate disease.
Collapse
Affiliation(s)
- Rodrigo Tomazini Martins
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Faculty of Medicine, Sydney, New South Wales, Australia
| | - Jayne C. Carberry
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Faculty of Medicine, Sydney, New South Wales, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Faculty of Medicine, Sydney, New South Wales, Australia
| | - Danny J. Eckert
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Faculty of Medicine, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Chakravorty S, Vandrey RG, He S, Stein MD. Sleep Management Among Patients with Substance Use Disorders. Med Clin North Am 2018; 102:733-743. [PMID: 29933826 PMCID: PMC6289280 DOI: 10.1016/j.mcna.2018.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sleep and substance use disorders commonly co-occur. Insomnia is commonly associated with use and withdrawal from substances. Circadian rhythm abnormalities are being increasingly linked with psychoactive substance use. Other sleep disorders, such as sleep-related breathing disorder, should be considered in the differential diagnosis of insomnia, especially in those with opioid use or alcohol use disorder. Insomnia that is brief or occurs in the context of active substance use is best treated by promoting abstinence. A referral to a sleep medicine clinic should be considered for those with chronic insomnia or when another intrinsic sleep disorder is suspected.
Collapse
Affiliation(s)
- Subhajit Chakravorty
- Department of Psychiatry, Perelman School of Medicine, Corporal Michael J. Crescenz VA Medical Center, MIRECC, 2nd Floor, Postal Code 116, 3900 Woodland Avenue, Philadelphia, PA 19104, USA.
| | - Ryan G Vandrey
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Sean He
- Post-baccalaureate studies program, College of Liberal Arts and Professional Studies, University of Pennsylvania, 3440 Market Street Suite 100, Philadelphia, PA 19104, USA; Department of R & D, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA
| | - Michael D Stein
- Department of Health Law, Policy and Management, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
42
|
Airway management and neuromuscular block: What are we waiting for? TRENDS IN ANAESTHESIA AND CRITICAL CARE 2018. [DOI: 10.1016/j.tacc.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Imam MZ, Kuo A, Ghassabian S, Smith MT. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology 2017; 131:238-255. [PMID: 29273520 DOI: 10.1016/j.neuropharm.2017.12.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Opioids evoke analgesia through activation of opioid receptors (predominantly the μ opioid receptor) in the central nervous system. Opioid receptors are abundant in multiple regions of the central nervous system and the peripheral nervous system including enteric neurons. Opioid-related adverse effects such as constipation, nausea, and vomiting pose challenges for compliance and continuation of the therapy for chronic pain management. In the post-operative setting opioid-induced depression of respiration can be fatal. These critical limitations warrant a better understanding of their underpinning cellular and molecular mechanisms to inform the design of novel opioid analgesic molecules that are devoid of these unwanted side-effects. Research efforts on opioid receptor signalling in the past decade suggest that differential signalling pathways and downstream molecules preferentially mediate distinct pharmacological effects. Additionally, interaction among opioid receptors and, between opioid receptor and non-opioid receptors to form signalling complexes shows that opioid-induced receptor signalling is potentially more complicated than previously thought. This complexity provides an opportunity to identify and probe relationships between selective signalling pathway specificity and in vivo production of opioid-related adverse effects. In this review, we focus on current knowledge of the mechanisms thought to transduce opioid-induced gastrointestinal adverse effects (constipation, nausea, vomiting) and respiratory depression.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sussan Ghassabian
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
44
|
Nagappa M, Weingarten TN, Montandon G, Sprung J, Chung F. Opioids, respiratory depression, and sleep-disordered breathing. Best Pract Res Clin Anaesthesiol 2017; 31:469-485. [DOI: 10.1016/j.bpa.2017.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
|
45
|
Langer TM, Neumueller SE, Crumley E, Burgraff NJ, Talwar S, Hodges MR, Pan L, Forster HV. Ventilation and neurochemical changes during µ-opioid receptor activation or blockade of excitatory receptors in the hypoglossal motor nucleus of goats. J Appl Physiol (1985) 2017; 123:1532-1544. [PMID: 28839004 DOI: 10.1152/japplphysiol.00592.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuromodulator interdependence posits that changes in one or more neuromodulators are compensated by changes in other modulators to maintain stability in the respiratory control network. Herein, we studied compensatory neuromodulation in the hypoglossal motor nucleus (HMN) after chronic implantation of microtubules unilaterally ( n = 5) or bilaterally ( n = 5) into the HMN. After recovery, receptor agonists or antagonists in mock cerebrospinal fluid (mCSF) were dialyzed during the awake and non-rapid eye movement (NREM) sleep states. During day studies, dialysis of the µ-opioid inhibitory receptor agonist [d-Ala2, N-MePhe4, Gly-ol]enkephalin (DAMGO; 100 µM) decreased pulmonary ventilation (V̇i), breathing frequency ( f), and genioglossus (GG) muscle activity but did not alter neuromodulators measured in the effluent mCSF. However, neither unilateral dialysis of a broad spectrum muscarinic receptor antagonist (atropine; 50 mM) nor unilateral or bilateral dialysis of a mixture of excitatory receptor antagonists altered V̇i or GG activity, but all of these did increase HMN serotonin (5-HT) levels. Finally, during night studies, DAMGO and excitatory receptor antagonist decreased ventilatory variables during NREM sleep but not during wakefulness. These findings contrast with previous dialysis studies in the ventral respiratory column (VRC) where unilateral DAMGO or atropine dialysis had no effects on breathing and bilateral DAMGO or unilateral atropine increased V̇i and f and decreased GABA or increased 5-HT, respectively. Thus we conclude that the mechanisms of compensatory neuromodulation are less robust in the HMN than in the VRC under physiological conditions in adult goats, possibly because of site differences in the underlying mechanisms governing neuromodulator release and consequently neuronal activity, and/or responsiveness of receptors to compensatory neuromodulators. NEW & NOTEWORTHY Activation of inhibitory µ-opioid receptors in the hypoglossal motor nucleus decreased ventilation under physiological conditions and did not affect neurochemicals in effluent dialyzed mock cerebral spinal fluid. These findings contrast with studies in the ventral respiratory column where unilateral [d-Ala2, N-MePhe4, Gly-ol]enkephalin (DAMGO) had no effects on ventilation and bilateral DAMGO or unilateral atropine increased ventilation and decreased GABA or increased serotonin, respectively. Our data support the hypothesis that mechanisms that govern local compensatory neuromodulation within the brain stem are site specific under physiological conditions.
Collapse
Affiliation(s)
- Thomas M Langer
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | - Emma Crumley
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Nicholas J Burgraff
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Sawan Talwar
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Zablocki Veterans Affairs Medical Center , Milwaukee, Wisconsin
| |
Collapse
|
46
|
Chowdhuri S, Javaheri S. Sleep Disordered Breathing Caused by Chronic Opioid Use. Sleep Med Clin 2017; 12:573-586. [DOI: 10.1016/j.jsmc.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Affiliation(s)
- David R Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Centre for Sleep Science, University of Western Australia, Perth, Australia.
| |
Collapse
|
48
|
Javaheri S, Patel S. Opioids Cause Central and Complex Sleep Apnea in Humans and Reversal With Discontinuation: A Plea for Detoxification. J Clin Sleep Med 2017; 13:829-833. [PMID: 28454596 DOI: 10.5664/jcsm.6628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 11/13/2022]
Abstract
ABSTRACT Central sleep apnea (CSA) and continuous positive airway pressure (CPAP) emergent CSA are common in patients for whom opioids have been prescribed for chronic pain management. It is not known if opioids are the potential cause of CSA. We report the case of a patient who underwent multiple full nights of polysomnography testing while on opioids, off opioids, and with various positive airway pressure devices. While on opioids, the patient had severe CSA that persisted during both CPAP and bilevel titration but was eliminated with adaptive servoventilation therapy. Some time later, opioid use was discontinued by the patient. Repeat polysomnography showed resolution of the sleep-disordered breathing. Later-while the patient was still off opioids-she had gained weight and become symptomatic; polysomnography showed obstructive sleep apnea without CSA. This time, therapy with CPAP showed elimination of sleep apnea without emergent CSA. These data collectively indicate that opioids were the cause of CSA as well as emergent CSA.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Bethesda North Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio.,The Ohio State Medical School, Columbus, Ohio
| | - Sanjiv Patel
- Mercy Health-Fairfield, Mercy Hospital, Cincinnati, Ohio
| |
Collapse
|
49
|
Langer TM, Neumueller SE, Crumley E, Burgraff NJ, Talwar S, Hodges MR, Pan L, Forster HV. Effects on breathing of agonists to μ-opioid or GABA A receptors dialyzed into the ventral respiratory column of awake and sleeping goats. Respir Physiol Neurobiol 2017; 239:10-25. [PMID: 28137700 PMCID: PMC5996971 DOI: 10.1016/j.resp.2017.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Pulmonary ventilation (V̇I) in awake and sleeping goats does not change when antagonists to several excitatory G protein-coupled receptors are dialyzed unilaterally into the ventral respiratory column (VRC). Concomitant changes in excitatory neuromodulators in the effluent mock cerebral spinal fluid (mCSF) suggest neuromodulatory compensation. Herein, we studied neuromodulatory compensation during dialysis of agonists to inhibitory G protein-coupled or ionotropic receptors into the VRC. Microtubules were implanted into the VRC of goats for dialysis of mCSF mixed with agonists to either μ-opioid (DAMGO) or GABAA (muscimol) receptors. We found: (1) V̇I decreased during unilateral but increased during bilateral dialysis of DAMGO, (2) dialyses of DAMGO destabilized breathing, (3) unilateral dialysis of muscimol increased V̇I, and (4) dialysis of DAMGO decreased GABA in the effluent mCSF. We conclude: (1) neuromodulatory compensation can occur during altered inhibitory neuromodulator receptor activity, and (2) the mechanism of compensation differs between G protein-coupled excitatory and inhibitory receptors and between G protein-coupled and inotropic inhibitory receptors.
Collapse
Affiliation(s)
- Thomas M Langer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Emma Crumley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Nicholas J Burgraff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Sawan Talwar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Lawrence Pan
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Department of Physical Therapy, Marquette University, Milwaukee, WI 53226, United States
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, United States.
| |
Collapse
|
50
|
Hillman DR, Chung F. Anaesthetic management of sleep-disordered breathing in adults. Respirology 2016; 22:230-239. [DOI: 10.1111/resp.12967] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/26/2016] [Indexed: 12/23/2022]
Affiliation(s)
- David R. Hillman
- Centre for Sleep Science; University of Western Australia; Perth Western Australia Australia
- Department of Pulmonary Physiology and Sleep Medicine; Sir Charles Gairdner Hospital; Perth Western Australia Australia
| | - Frances Chung
- Department of Anesthesiology and Pain Management, Toronto Western Hospital, University Health Network; University of Toronto; Toronto Ontario Canada
| |
Collapse
|