1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Alvarez-Araos P, Jiménez S, Salazar-Ardiles C, Núñez-Espinosa C, Paez V, Rodriguez-Fernandez M, Raberin A, Millet GP, Iturriaga R, Andrade DC. Baroreflex and chemoreflex interaction in high-altitude exposure: possible role on exercise performance. Front Physiol 2024; 15:1422927. [PMID: 38895516 PMCID: PMC11184637 DOI: 10.3389/fphys.2024.1422927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The hypoxic chemoreflex and the arterial baroreflex are implicated in the ventilatory response to exercise. It is well known that long-term exercise training increases parasympathetic and decreases sympathetic tone, both processes influenced by the arterial baroreflex and hypoxic chemoreflex function. Hypobaric hypoxia (i.e., high altitude [HA]) markedly reduces exercise capacity associated with autonomic reflexes. Indeed, a reduced exercise capacity has been found, paralleled by a baroreflex-related parasympathetic withdrawal and a pronounced chemoreflex potentiation. Additionally, it is well known that the baroreflex and chemoreflex interact, and during activation by hypoxia, the chemoreflex is predominant over the baroreflex. Thus, the baroreflex function impairment may likely facilitate the exercise deterioration through the reduction of parasympathetic tone following acute HA exposure, secondary to the chemoreflex activation. Therefore, the main goal of this review is to describe the main physiological mechanisms controlling baro- and chemoreflex function and their role in exercise capacity during HA exposure.
Collapse
Affiliation(s)
- Pablo Alvarez-Araos
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Sergio Jiménez
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- Escuela de Medicina de la Universidad de Magallanes, Punta Arenas, Chile
- Centro Asistencial de Docencia e Investigación (CADI-UMAG), Santiago, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rodrigo Iturriaga
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
3
|
El-Medany A, Adams ZH, Blythe HC, Hope KA, Kendrick AH, Abdala Sheikh AP, Paton JFR, Nightingale AK, Hart EC. Carotid body dysregulation contributes to Long COVID symptoms. COMMUNICATIONS MEDICINE 2024; 4:20. [PMID: 38374172 PMCID: PMC10876702 DOI: 10.1038/s43856-024-00447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The symptoms of long COVID, which include fatigue, breathlessness, dysregulated breathing, and exercise intolerance, have unknown mechanisms. These symptoms are also observed in heart failure and are partially driven by increased sensitivity of the carotid chemoreflex. As the carotid body has an abundance of ACE2 (the cell entry mechanism for SARS-CoV-2), we investigated whether carotid chemoreflex sensitivity was elevated in participants with long COVID. METHODS Non-hositalised participants with long-COVID (n = 14) and controls (n = 14) completed hypoxic ventilatory response (HVR; the measure of carotid chemoreflex sensitivity) and cardiopulmonary exercise tests. Parametric and normally distributed data were compared using Student's unpaired t-tests or ANOVA. Nonparametric equivalents were used where relevant. Peason's correlation coefficient was used to examine relationships between variables. RESULTS During cardiopulmonary exercise testing the VE/VCO2 slope (a measure of breathing efficiency) was higher in the long COVID group (37.8 ± 4.4) compared to controls (27.7 ± 4.8, P = 0.0003), indicating excessive hyperventilation. The HVR was increased in long COVID participants (-0.44 ± 0.23 l/min/ SpO2%, R2 = 0.77 ± 0.20) compared to controls (-0.17 ± 0.13 l/min/SpO2%, R2 = 0.54 ± 0.38, P = 0.0007). The HVR correlated with the VE/VCO2 slope (r = -0.53, P = 0.0036), suggesting that excessive hyperventilation may be related to carotid body hypersensitivity. CONCLUSIONS The carotid chemoreflex is sensitised in long COVID and may explain dysregulated breathing and exercise intolerance in these participants. Tempering carotid body excitability may be a viable treatment option for long COVID patients.
Collapse
Affiliation(s)
- Ahmed El-Medany
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Cardiology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Zoe H Adams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hazel C Blythe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Katrina A Hope
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Anaesthetics, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Adrian H Kendrick
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Respiratory Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Julian F R Paton
- Manaaki Manawa, The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Angus K Nightingale
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
5
|
Wan HY, Bunsawat K, Amann M. Autonomic cardiovascular control during exercise. Am J Physiol Heart Circ Physiol 2023; 325:H675-H686. [PMID: 37505474 PMCID: PMC10659323 DOI: 10.1152/ajpheart.00303.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The cardiovascular response to exercise is largely determined by neurocirculatory control mechanisms that help to raise blood pressure and modulate vascular resistance which, in concert with regional vasodilatory mechanisms, promote blood flow to active muscle and organs. These neurocirculatory control mechanisms include a feedforward mechanism, known as central command, and three feedback mechanisms, namely, 1) the baroreflex, 2) the exercise pressor reflex, and 3) the arterial chemoreflex. The hemodynamic consequences of these control mechanisms result from their influence on the autonomic nervous system and subsequent alterations in cardiac output and vascular resistance. Although stimulation of the baroreflex inhibits sympathetic outflow and facilitates parasympathetic activity, central command, the exercise pressor reflex, and the arterial chemoreflex facilitate sympathetic activation and inhibit parasympathetic drive. Despite considerable understanding of the cardiovascular consequences of each of these mechanisms in isolation, the circulatory impact of their interaction, which occurs when various control systems are simultaneously activated (e.g., during exercise at altitude), has only recently been recognized. Although aging and cardiovascular disease (e.g., heart failure, hypertension) have both been recognized to alter the hemodynamic consequences of these regulatory systems, this review is limited to provide a brief overview on the action and interaction of neurocirculatory control mechanisms in health.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
6
|
Dempsey JA, Welch JF. Control of Breathing. Semin Respir Crit Care Med 2023; 44:627-649. [PMID: 37494141 DOI: 10.1055/s-0043-1770342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Substantial advances have been made recently into the discovery of fundamental mechanisms underlying the neural control of breathing and even some inroads into translating these findings to treating breathing disorders. Here, we review several of these advances, starting with an appreciation of the importance of V̇A:V̇CO2:PaCO2 relationships, then summarizing our current understanding of the mechanisms and neural pathways for central rhythm generation, chemoreception, exercise hyperpnea, plasticity, and sleep-state effects on ventilatory control. We apply these fundamental principles to consider the pathophysiology of ventilatory control attending hypersensitized chemoreception in select cardiorespiratory diseases, the pathogenesis of sleep-disordered breathing, and the exertional hyperventilation and dyspnea associated with aging and chronic diseases. These examples underscore the critical importance that many ventilatory control issues play in disease pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
7
|
Tubek S, Niewinski P, Langner-Hetmanczuk A, Jura M, Kuliczkowski W, Reczuch K, Ponikowski P. The effects of P2Y 12 adenosine receptors' inhibitors on central and peripheral chemoreflexes. Front Physiol 2023; 14:1214893. [PMID: 37538377 PMCID: PMC10394699 DOI: 10.3389/fphys.2023.1214893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: The most common side effect of ticagrelor is dyspnea, which leads to premature withdrawal of this life-saving medication in 6.5% of patients. Increased chemoreceptors' sensitivity was suggested as a possible pathophysiological explanation of this phenomenon; however, the link between oversensitization of peripheral and/or central chemosensory areas and ticagrelor intake has not been conclusively proved. Methods: We measured peripheral chemoreceptors' sensitivity using hypoxic ventilatory response (HVR), central chemoreceptors' sensitivity using hypercapnic hyperoxic ventilatory response (HCVR), and dyspnea severity before and 4 ± 1 weeks following ticagrelor initiation in 11 subjects with chronic coronary syndrome undergoing percutaneous coronary intervention (PCI). The same tests were performed in 11 age-, sex-, and BMI-matched patients treated with clopidogrel. The study is registered at ClinicalTrials.com at NCT05080478. Results: Ticagrelor significantly increased both HVR (0.52 ± 0.46 vs. 0.84 ± 0.69 L min-1 %-1; p < 0.01) and HCVR (1.05 ± 0.64 vs. 1.75 ± 1.04 L min-1 mmHg-1; p < 0.01). The absolute change in HVR correlated with the change in HCVR. Clopidogrel administration did not significantly influence HVR (0.63 ± 0.32 vs. 0.58 ± 0.33 L min-1%-1; p = 0.53) and HCVR (1.22 ± 0.67 vs. 1.2 ± 0.64 L min-1 mmHg-1; p = 0.79). Drug-related dyspnea was reported by three subjects in the ticagrelor group and by none in the clopidogrel group. These patients were characterized by either high baseline HVR and HCVR or excessive increase in HVR following ticagrelor initiation. Discussion: Ticagrelor, contrary to clopidogrel, sensitizes both peripheral and central facets of chemodetection. Two potential mechanisms of ticagrelor-induced dyspnea have been identified: 1) high baseline HVR and HCVR or 2) excessive increase in HVR or HVR and HCVR. Whether other patterns of changes in chemosensitivities play a role in the pathogenesis of this phenomenon needs to be further investigated.
Collapse
Affiliation(s)
- Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Anna Langner-Hetmanczuk
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Maksym Jura
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - Wiktor Kuliczkowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Krzysztof Reczuch
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
8
|
Stewart JM, Medow MS. Anticipatory central command on standing decreases cerebral blood velocity causing hypocapnia in hyperpneic postural tachycardia syndrome. J Appl Physiol (1985) 2023; 135:26-34. [PMID: 37227184 PMCID: PMC10281786 DOI: 10.1152/japplphysiol.00016.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Fifty percent of patients with postural tachycardia syndrome (POTS) are hypocapnic during orthostasis related to initial orthostatic hypotension (iOH). We determined whether iOH drives hypocapnia in POTS by low BP or decreased cerebral blood velocity (CBv). We studied three groups; healthy volunteers (n = 32, 18 ± 3 yr) were compared with POTS, grouped by presence [POTS-low end-tidal CO2 (↓ETCO2), n = 26, 19 ± 2 yr] or absence [POTS-normal upright end-tidal carbon dioxide (nlCO2), n = 28, 19 ± 3 yr] of standing hypocapnia defined by end-tidal CO2 (ETCO2) ≤ 30 mmHg at steady-state, measuring middle cerebral artery CBv, heart rate (HR), and beat-to-beat blood pressure (BP). After 30 min supine, subjects stood for 5 min. Quantities were measured prestanding, at minimum CBv, minimum BP, peak HR, CBv recovery, BP recovery, minimum HR, steady-state, and 5 min. Baroreflex gain was estimated by α index. iOH occurred with similar frequency and minimum BP in POTS-↓ETCO2 and POTS-nlCO2. Minimum CBv was reduced significantly (P < 0.05) in POTS-↓ETCO2 (48 ± 3 cm/s) preceding hypocapnia compared with POTS-nlCO2 (61 ± 3 cm/s) or Control (60 ± 2 cm/s). The anticipatory increased BP was significantly larger (P < 0.05) in POTS (8 ± 1 mmHg vs. 2 ± 1) and began ∼8 s prestanding. HR increased in all subjects, CBv increased significantly (P < 0.05) in both POTS-nlCO2 (76 ± 2 to 85 ± 2 cm/s) and Control (75 ± 2 to 80 ± 2 cm/s) consistent with central command. CBv decreased in POTS-↓ETCO2 (76 ± 3 to 64 ± 3 cm/s) correlating with decreased baroreflex gain. Cerebral conductance [meanCBv/mean arterial blood pressure (MAP)] was reduced in POTS-↓ETCO2 throughout. Data support the hypothesis that excessively reduced CBv during iOH may intermittently reduce carotid body blood flow, sensitizing that organ and producing postural hyperventilation in POTS-↓ETCO2. Excessive fall in CBv occurs in part during prestanding central command and is a facet of defective parasympathetic regulation in POTS.NEW & NOTEWORTHY Dyspnea is frequent in postural tachycardia syndrome (POTS) and is associated with upright hyperpnea and hypocapnia that drives sinus tachycardia. It is initiated by an exaggerated reduction in cerebral conductance and decreased cerebral blood flow (CBF) that precedes the act of standing. This is a form of autonomically mediated "central command." Cerebral blood flow is further reduced by initial orthostatic hypotension common in POTS. Hypocapnia is maintained during the standing response and might account for persistent postural tachycardia.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
9
|
Lataro RM, Moraes DJA, Gava FN, Omoto ACM, Silva CAA, Brognara F, Alflen L, Brazão V, Colato RP, do Prado JC, Ford AP, Salgado HC, Paton JFR. P2X3 receptor antagonism attenuates the progression of heart failure. Nat Commun 2023; 14:1725. [PMID: 36977675 PMCID: PMC10050083 DOI: 10.1038/s41467-023-37077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabio N Gava
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical Veterinary, Agrarian Sciences Center, Londrina State University, Londrina, Brazil
| | - Ana C M Omoto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lais Alflen
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Felippe ISA, Zera T, da Silva MP, Moraes DJA, McBryde F, Paton JFR. The sympathetic nervous system exacerbates carotid body sensitivity in hypertension. Cardiovasc Res 2023; 119:316-331. [PMID: 35048948 PMCID: PMC10022867 DOI: 10.1093/cvr/cvac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS The carotid bodies (CBs) of spontaneously hypertensive (SH) rats exhibit hypertonicity and hyperreflexia contributing to heightened peripheral sympathetic outflow. We hypothesized that CB hyperexcitability is driven by its own sympathetic innervation. METHODS AND RESULTS To test this, the chemoreflex was activated (NaCN 50-100 µL, 0.4 µg/µL) in SH and Wistar rats in situ before and after: (i) electrical stimulation (ES; 30 Hz, 2 ms, 10 V) of the superior cervical ganglion (SCG), which innervates the CB; (ii) unilateral resection of the SCG (SCGx); (iii) CB injections of an α1-adrenergic receptor agonist (phenylephrine, 50 µL, 1 mmol/L), and (iv) α1-adrenergic receptor antagonist prazosin (40 µL, 1 mmol/L) or tamsulosin (50 µL, 1 mmol/L). ES of the SCG enhanced CB-evoked sympathoexcitation by 40-50% (P < 0.05) with no difference between rat strains. Unilateral SCGx attenuated the CB-evoked sympathoexcitation in SH (62%; P < 0.01) but was without effect in Wistar rats; it also abolished the ongoing firing of chemoreceptive petrosal neurones of SH rats, which became hyperpolarized. In Wistar rats, CB injections of phenylephrine enhanced CB-evoked sympathoexcitation (33%; P < 0.05), which was prevented by prazosin (26%; P < 0.05) in SH rats. Tamsulosin alone reproduced the effects of prazosin in SH rats and prevented the sensitizing effect of the SCG following ES. Within the CB, α1A- and α1B-adrenoreceptors were co-localized on both glomus cells and blood vessels. In conscious SH rats instrumented for recording blood pressure (BP), the CB-evoked pressor response was attenuated after SCGx, and systolic BP fell by 16 ± 4.85 mmHg. CONCLUSIONS The sympathetic innervation of the CB is tonically activated and sensitizes the CB of SH but not Wistar rats. Furthermore, sensitization of CB-evoked reflex sympathoexcitation appears to be mediated by α1-adrenoceptors located either on the vasculature and/or glomus cells. The SCG is novel target for controlling CB pathophysiology in hypertension.
Collapse
Affiliation(s)
- Igor S A Felippe
- Department of Physiology, Faculty of Health & Medical Sciences, Manaaki Mānawa—The Centre for Heart Research, University of Auckland, 85 Park Road, Grafton Campus, Auckland 1023, New Zealand
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Fiona McBryde
- Department of Physiology, Faculty of Health & Medical Sciences, Manaaki Mānawa—The Centre for Heart Research, University of Auckland, 85 Park Road, Grafton Campus, Auckland 1023, New Zealand
| | | |
Collapse
|
11
|
Javaheri S, Badr MS. Central sleep apnea: pathophysiologic classification. Sleep 2023; 46:zsac113. [PMID: 35551411 PMCID: PMC9995798 DOI: 10.1093/sleep/zsac113] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Central sleep apnea is not a single disorder; it can present as an isolated disorder or as a part of other clinical syndromes. In some conditions, such as heart failure, central apneic events are due to transient inhibition of ventilatory motor output during sleep, owing to the overlapping influences of sleep and hypocapnia. Specifically, the sleep state is associated with removal of wakefulness drive to breathe; thus, rendering ventilatory motor output dependent on the metabolic ventilatory control system, principally PaCO2. Accordingly, central apnea occurs when PaCO2 is reduced below the "apneic threshold". Our understanding of the pathophysiology of central sleep apnea has evolved appreciably over the past decade; accordingly, in disorders such as heart failure, central apnea is viewed as a form of breathing instability, manifesting as recurrent cycles of apnea/hypopnea, alternating with hyperpnea. In other words, ventilatory control operates as a negative-feedback closed-loop system to maintain homeostasis of blood gas tensions within a relatively narrow physiologic range, principally PaCO2. Therefore, many authors have adopted the engineering concept of "loop gain" (LG) as a measure of ventilatory instability and susceptibility to central apnea. Increased LG promotes breathing instabilities in a number of medical disorders. In some other conditions, such as with use of opioids, central apnea occurs due to inhibition of rhythm generation within the brainstem. This review will address the pathogenesis, pathophysiologic classification, and the multitude of clinical conditions that are associated with central apnea, and highlight areas of uncertainty.
Collapse
Affiliation(s)
- Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, OH, USA
- Division of Pulmonary Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
- Division of Cardiology, Department of Medicine, Ohio State University, Columbus, OH, USA
| | - M Safwan Badr
- Department of Internal Medicine, Liborio Tranchida, MD, Endowed Professor of Medicine, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA
| |
Collapse
|
12
|
Respiratory patterns and baroreflex function in heart failure. Sci Rep 2023; 13:2220. [PMID: 36755066 PMCID: PMC9908869 DOI: 10.1038/s41598-023-29271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Little is known on the effects of respiratory patterns on baroreflex function in heart failure (HF). Patients with HF (n = 30, age 61.6 ± 10 years, mean ± SD) and healthy controls (CNT, n = 10, age 58.9 ± 5.6 years) having their R-R interval (RRI, EKG), systolic arterial blood pressure (SBP, Finapres) and respiratory signal (RSP, Respitrace) monitored, were subjected to three recording sessions: free-breathing, fast- (≥ 12 bpm) and slow- (6 bpm) paced breathing. Baroreflex sensitivity (BRS) and power spectra of RRI, SBP, and RSP signals were calculated. During free-breathing, compared to CNT, HF patients showed a significantly greater modulation of respiratory volumes in the very-low-frequency (< 0.04 Hz) range and their BRS was not significantly different from that of CNT. During fast-paced breathing, when very-low-frequency modulations of respiration were reduced, BRS of HF patients was significantly lower than that of CNT and lower than during free breathing. During slow-paced breathing, BRS became again significantly higher than during fast breathing. In conclusion: (1) in free-breathing HF patients is present a greater modulation of respiratory volumes in the very-low-frequency range; (2) in HF patients modulation of respiration in the very-low and low frequency (around 0.1 Hz) ranges contributes to preserve baroreflex-mediated control of heart rate.
Collapse
|
13
|
Lazarov NE, Atanasova DY. General Morphology of the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:13-35. [PMID: 37946075 DOI: 10.1007/978-3-031-44757-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The carotid body (CB) is the main peripheral arterial chemoreceptor that registers the levels of pO2, pCO2 and pH in the blood and responds to their changes by regulating breathing. It is strategically located in the bifurcation of each common carotid artery. The organ consists of "glomera" composed of two cell types, glomus and sustentacular cells, interspersed by blood vessels and nerve bundles and separated by connective tissue. The neuron-like glomus or type I cells are considered as the chemosensory cells of the CB. They contain numerous cytoplasmic organelles and dense-cored vesicles that store and release neurotransmitters. They also form both conventional chemical and electrical synapses between each other and are contacted by peripheral nerve endings of petrosal ganglion neurons. The glomus cells are dually innervated by both sensory nerve fibers through the carotid sinus nerve and autonomic fibers of sympathetic origin via the ganglioglomerular nerve. The parasympathetic efferent innervation is relayed by vasomotor fibers of ganglion cells located around or inside the CB. The glial-like sustentacular or type II cells are regarded to be supporting cells although they sustain physiologic neurogenesis in the adult CB and are thus supposed to be progenitor cells as well. The CB is a highly vascularized organ and its intraorgan hemodynamics possibly plays a role in the process of chemoreception.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
14
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
15
|
Kulej-Lyko K, Niewinski P, Tubek S, Krawczyk M, Kosmala W, Ponikowski P. Inhibition of peripheral chemoreceptors improves ventilatory efficiency during exercise in heart failure with preserved ejection fraction − a role of tonic activity and acute reflex response. Front Physiol 2022; 13:911636. [PMID: 36111161 PMCID: PMC9470150 DOI: 10.3389/fphys.2022.911636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral chemoreceptors (PChRs) play a significant role in maintaining adequate oxygenation in the bloodstream. PChRs functionality comprises two components: tonic activity (PChT) which regulates ventilation during normoxia and acute reflex response (peripheral chemosensitivity, PChS), which increases ventilation following a specific stimulus. There is a clear link between augmented PChS and exercise intolerance in patients with heart failure with reduced ejection fraction. It has been also shown that inhibition of PChRs leads to the improvement in exercise capacity. However, it has not been established yet: 1) whether similar mechanisms take part in heart failure with preserved ejection fraction (HFpEF) and 2) which component of PChRs functionality (PChT vs. PChS) is responsible for the benefit seen after the acute experimental blockade. To answer those questions we enrolled 12 stable patients with HFpEF. All participants underwent an assessment of PChT (attenuation of minute ventilation in response to low-dose dopamine infusion), PChS (enhancement of minute ventilation in response to hypoxia) and a symptom-limited cardiopulmonary exercise test on cycle ergometer. All tests were placebo-controlled, double-blinded and performed in a randomized order. Under resting conditions and at normoxia dopamine attenuated minute ventilation and systemic vascular resistance (p = 0.03 for both). These changes were not seen with placebo. Dopamine also decreased ventilatory and mean arterial pressure responses to hypoxia (p < 0.05 for both). Inhibition of PChRs led to a decrease in V˙E/V˙CO2 comparing to placebo (36 ± 3.6 vs. 34.3 ± 3.7, p = 0.04), with no effect on peak oxygen consumption. We found a significant relationship between PChT and the relative decrement of V˙E/V˙CO2 on dopamine comparing to placebo (R = 0.76, p = 0.005). There was a trend for correlation between PChS (on placebo) and V˙E/V˙CO2 during placebo infusion (R = 0.56, p = 0.059), but the relative improvement in V˙E/V˙CO2 was not related to the change in PChS (dopamine vs. placebo). We did not find a significant relationship between PChT and PChS. In conclusion, inhibition of PChRs in HFpEF population improves ventilatory efficiency during exercise. Increased PChS is associated with worse (higher) V˙E/V˙CO2, whereas PChT predicts an improvement in V˙E/V˙CO2 after PChRs inhibition. This results may be meaningful for patient selection in further clinical trials involving PChRs modulation.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | | | - Wojciech Kosmala
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
16
|
Langner-Hetmańczuk A, Tubek S, Niewiński P, Ponikowski P. The Role of Pharmacological Treatment in the Chemoreflex Modulation. Front Physiol 2022; 13:912616. [PMID: 35774285 PMCID: PMC9237514 DOI: 10.3389/fphys.2022.912616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
From a physiological point of view, peripheral chemoreceptors (PCh) are the main sensors of hypoxia in mammals and are responsible for adaptation to hypoxic conditions. Their stimulation causes hyperventilation—to increase oxygen uptake and increases sympathetic output in order to counteract hypoxia-induced vasodilatation and redistribute the oxygenated blood to critical organs. While this reaction promotes survival in acute settings it may be devastating when long-lasting. The permanent overfunctionality of PCh is one of the etiologic factors and is responsible for the progression of sympathetically-mediated diseases. Thus, the deactivation of PCh has been proposed as a treatment method for these disorders. We review here physiological background and current knowledge regarding the influence of widely prescribed medications on PCh acute and tonic activities.
Collapse
Affiliation(s)
- Anna Langner-Hetmańczuk
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Stanisław Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
- *Correspondence: Stanisław Tubek,
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
17
|
Kulej-Lyko K, Niewinski P, Tubek S, Ponikowski P. Contribution of Peripheral Chemoreceptors to Exercise Intolerance in Heart Failure. Front Physiol 2022; 13:878363. [PMID: 35492596 PMCID: PMC9046845 DOI: 10.3389/fphys.2022.878363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Peripheral chemoreceptors (PChRs), because of their strategic localization at the bifurcation of the common carotid artery and along the aortic arch, play an important protective role against hypoxia. Stimulation of PChRs evokes hyperventilation and hypertension to maintain adequate oxygenation of critical organs. A relationship between increased sensitivity of PChRs (hyperreflexia) and exercise intolerance (ExIn) in patients with heart failure (HF) has been previously reported. Moreover, some studies employing an acute blockade of PChRs (e.g., using oxygen or opioids) demonstrated improvement in exercise capacity, suggesting that hypertonicity is also involved in the development of ExIn in HF. Nonetheless, the precise mechanisms linking dysfunctional PChRs to ExIn remain unclear. From the clinical perspective, there are two main factors limiting exercise capacity in HF patients: subjective perception of dyspnoea and muscle fatigue. Both have many determinants that might be influenced by abnormal signalling from PChRs, including: exertional hyperventilation, oscillatory ventilation, ergoreceptor oversensitivity, and augmented sympathetic tone. The latter results in reduced muscle perfusion and altered muscle structure. In this review, we intend to present the milieu of abnormalities tied to malfunctioning PChRs and discuss their role in the complex relationships leading, ultimately, to ExIn.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
18
|
Pauza AG, Thakkar P, Tasic T, Felippe I, Bishop P, Greenwood MP, Rysevaite-Kyguoliene K, Ast J, Broichhagen J, Hodson DJ, Salgado HC, Pauza DH, Japundzic-Zigon N, Paton JFR, Murphy D. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ Res 2022; 130:694-707. [PMID: 35100822 PMCID: PMC8893134 DOI: 10.1161/circresaha.121.319874] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Aberrant sympathetic nerve activity exacerbates cardiovascular risk in hypertension and diabetes, which are common comorbidities, yet clinically sympathetic nerve activity remains poorly controlled. The hypertensive diabetic state is associated with increased reflex sensitivity and tonic drive from the peripheral chemoreceptors, the cause of which is unknown. We have previously shown hypertension to be critically dependent on the carotid body (CB) input in spontaneously hypertensive rat, a model that also exhibits a number of diabetic traits. CB overstimulation by insulin and leptin has been similarly implicated in the development of increased sympathetic nerve activity in metabolic syndrome and obesity. Thus, we hypothesized that in hypertensive diabetic state (spontaneously hypertensive rat), the CB is sensitized by altered metabolic signaling causing excessive sympathetic activity levels and dysfunctional reflex regulation.
Collapse
Affiliation(s)
- Audrys G Pauza
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Pratik Thakkar
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Tatjana Tasic
- School of Dental Medicine, University of Belgrade, Serbia (T.T.)
| | - Igor Felippe
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Paul Bishop
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Michael P Greenwood
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | | | - Julia Ast
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, United Kingdom (D.A., D.J.H.).,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Brazil (H.C.S.)
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas (K.R.-K., D.H.P.)
| | - Nina Japundzic-Zigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia (N.J.-Z.)
| | - Julian F R Paton
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - David Murphy
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| |
Collapse
|
19
|
Stewart JM, Pianosi PT. Postural orthostatic tachycardia syndrome: A respiratory disorder? Curr Res Physiol 2021; 4:1-6. [PMID: 34746821 PMCID: PMC8562237 DOI: 10.1016/j.crphys.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/28/2022] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a disorder epitomized by the story of the blind men and the elephant. Patients may see primary care internists or pediatricians due to fatigue, be referred to neurologists for “spells”, to cardiologists for evaluation of pre-syncope or chest pain, to gastroenterologists for nausea or dyspepsia, and even pulmonologists for dyspnea. Adoption of a more systematic approach to their evaluation and better characterization of patients has led to greater understanding of comorbidities, hypotheses prompting mechanistic investigations, and pharmacologic trials. Recent work has implicated disordered sympathetic nervous system activation in response to central (thoracic) hypovolemia. It is this pathway that leads one zero in on a putative focal point from which many of the clinical manifestations can be explained – specifically the carotid body. Despite heterogeneity in etiopathogenesis of a POTS phenotype, we propose that aberrant activation and response of the carotid body represents one potential common pathway in evolution. To understand this postulate, one must jettison isolationist or reductionist ideas of chemoreceptor and baroreceptor functions of the carotid body or sinus, respectively, and consider their interaction and interdependence both locally and centrally where some of its efferents merge. Doing so enables one to connect the dots and appreciate origins of diverse manifestations of POTS, including dyspnea for which the concept of neuro-mechanical uncoupling is wanting, thereby expanding our construct of this symptom. This perspective expounds our premise that POTS has a prominent respiratory component. Dyspnea affects ~⅓ patients with postural orthostatic tachycardia syndrome (POTS). POTS is characterized by thoracic hypovolemia and compromised cephalad perfusion when upright. Carotid body and adjacent carotid sinus mediate chemo- and baro- reflexes, respectively. These are not independent and stimulation of either activates sympathetic discharge. We speculate that carotid body mediates hyperventilation and dyspnea in POTS.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Paolo T Pianosi
- Department of Pediatrics, Division of Pulmonary & Sleep Medicine, University of Minnesota, VCRC, 401 E River Parkway Rm 413, Minneapolis, UK
| |
Collapse
|
20
|
Arias-Reyes C, Laouafa S, Zubieta-DeUrioste N, Joseph V, Bairam A, Schneider Gasser EM, Soliz J. Erythropoietin Produces a Dual Effect on Carotid Body Chemoreception in Male Rats. Front Pharmacol 2021; 12:727326. [PMID: 34594222 PMCID: PMC8476757 DOI: 10.3389/fphar.2021.727326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin (EPO) regulates respiration under conditions of normoxia and hypoxia through interaction with the respiratory centers of the brainstem. Here we investigate the dose-dependent impact of EPO in the CB response to hypoxia and hypercapnia. We show, in isolated "en bloc" carotid body (CB) preparations containing the carotid sinus nerve (CSN) from adult male Sprague Dawley rats, that EPO acts as a stimulator of CSN activity in response to hypoxia at concentrations below 0.5 IU/ml. Under hypercapnic conditions, EPO did not influence the CSN response. EPO concentrations above 0.5 IU/ml decreased the response of the CSN to both hypoxia and hypercapnia, reaching complete inhibition at 2 IU/ml. The inhibitory action of high-dose EPO on the CSN activity might result from an increase in nitric oxide (NO) production. Accordingly, CB preparations were incubated with 2 IU/ml EPO and the unspecific NO synthase inhibitor (L-NAME), or the neuronal-specific NO synthase inhibitor (7NI). Both NO inhibitors fully restored the CSN activity in response to hypoxia and hypercapnia in presence of EPO. Our results show that EPO activates the CB response to hypoxia when its concentration does not exceed the threshold at which NO inhibitors masks EPO's action.
Collapse
Affiliation(s)
- Christian Arias-Reyes
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Sofien Laouafa
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | | | - Vincent Joseph
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Aida Bairam
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland.,Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Jorge Soliz
- Université Laval, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada.,High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), La Paz, Bolivia
| |
Collapse
|
21
|
Murray KR, Wasef S, Edgell H. Ventilatory response to hypercapnia is increased after 4 h of head down bed rest. Sci Rep 2021; 11:2162. [PMID: 33495489 PMCID: PMC7835380 DOI: 10.1038/s41598-021-81837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022] Open
Abstract
Head-down bed rest (HDBR) has previously been shown to alter cerebrovascular and autonomic control. Previous work found that sustained HDBR (≥ 20 days) attenuates the hypercapnic ventilatory response (HCVR); however, little is known about shorter-term effects of HDBR nor the influence of HDBR on the hypoxic ventilatory response (HVR). We investigated the effect of 4-h HDBR on HCVR and HVR and hypothesized attenuated ventilatory responses due to greater carotid and brain blood flow. Cardiorespiratory responses of young men (n = 11) and women (n = 3) to 5% CO2 or 10% O2 before and after 4-h HDBR were examined. HDBR resulted in lower HR, lower cardiac output index, lower common carotid artery flow, higher SpO2, and higher pulse wave velocity. After HDBR, tidal volume and ventilation responses to 5% CO2 were enhanced (all P < 0.05), yet no other changes in cardiorespiratory variables were evident. There was no influence of HDBR on the cardiorespiratory responses to hypoxia (all P > 0.05). Short-duration HDBR does not alter the HVR, yet enhances the HCVR, which we hypothesize is a consequence of cephalic CO2 accumulation from cerebral congestion.
Collapse
Affiliation(s)
- K R Murray
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - S Wasef
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Heather Edgell
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada. .,Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
22
|
Chang JWH, Tromp TR, Joles JA, McBryde FD, Paton JFR, Ramchandra R. Role of the Carotid Body in an Ovine Model of Renovascular Hypertension. Hypertension 2020; 76:1451-1460. [PMID: 32981362 DOI: 10.1161/hypertensionaha.120.15676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carotid body is implicated as an important mediator and potential treatment target for hypertension. The mechanisms driving increased carotid body tonicity in hypertension are incompletely understood. Using a large preclinical animal model, which is crucial for translation, we hypothesized that carotid sinus nerve denervation would chronically decrease blood pressure in a renovascular ovine model of hypertension in which hypertonicity of the carotid body is associated with reduced common carotid artery blood flow. Adult ewes underwent either unilateral renal artery clipping or sham surgery. Two weeks later, flow probes were placed around the contralateral renal and common carotid arteries. Hypertension was accompanied by a significant reduction in common carotid blood flow but no change in renal blood flow. Carotid sinus nerve denervation significantly reduced blood pressure compared with sham. In both hypertensive and normotensive animals, carotid body stimulation using potassium cyanide caused dose-dependent increases in mean arterial pressure and common carotid conductance but a reduction in renal vascular conductance. These responses were not different between the animal groups. Taken together, our findings indicate that (1) the carotid body is activated in renovascular hypertension, and this is associated with reduced blood flow (decreased vascular conductance) in the common carotid artery and (2) the carotid body can differentially regulate blood flow to the common carotid and renal arteries. We suggest that in the ovine renovascular model, carotid body hypertonicity may be a product of reduced common carotid artery blood flow and plays an amplifying role with the kidney in the development of hypertension.
Collapse
Affiliation(s)
- Joshua Wen-Han Chang
- From the Department of Physiology, University of Auckland, New Zealand (J.W.-H.C., T.R.T., F.D.M., J.F.R.P., R.R.)
| | - Tycho R Tromp
- From the Department of Physiology, University of Auckland, New Zealand (J.W.-H.C., T.R.T., F.D.M., J.F.R.P., R.R.).,Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (T.R.T., J.A.J.)
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands (T.R.T., J.A.J.)
| | - Fiona D McBryde
- From the Department of Physiology, University of Auckland, New Zealand (J.W.-H.C., T.R.T., F.D.M., J.F.R.P., R.R.)
| | - Julian F R Paton
- From the Department of Physiology, University of Auckland, New Zealand (J.W.-H.C., T.R.T., F.D.M., J.F.R.P., R.R.)
| | - Rohit Ramchandra
- From the Department of Physiology, University of Auckland, New Zealand (J.W.-H.C., T.R.T., F.D.M., J.F.R.P., R.R.)
| |
Collapse
|
23
|
Brognara F, Felippe ISA, Salgado HC, Paton JFR. Autonomic innervation of the carotid body as a determinant of its sensitivity: implications for cardiovascular physiology and pathology. Cardiovasc Res 2020; 117:1015-1032. [PMID: 32832979 DOI: 10.1093/cvr/cvaa250] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The motivation for this review comes from the emerging complexity of the autonomic innervation of the carotid body (CB) and its putative role in regulating chemoreceptor sensitivity. With the carotid bodies as a potential therapeutic target for numerous cardiorespiratory and metabolic diseases, an understanding of the neural control of its circulation is most relevant. Since nerve fibres track blood vessels and receive autonomic innervation, we initiate our review by describing the origins of arterial feed to the CB and its unique vascular architecture and blood flow. Arterial feed(s) vary amongst species and, unequivocally, the arterial blood supply is relatively high to this organ. The vasculature appears to form separate circuits inside the CB with one having arterial venous anastomoses. Both sympathetic and parasympathetic nerves are present with postganglionic neurons located within the CB or close to it in the form of paraganglia. Their role in arterial vascular resistance control is described as is how CB blood flow relates to carotid sinus afferent activity. We discuss non-vascular targets of autonomic nerves, their possible role in controlling glomus cell activity, and how certain transmitters may relate to function. We propose that the autonomic nerves sub-serving the CB provide a rapid mechanism to tune the gain of peripheral chemoreflex sensitivity based on alterations in blood flow and oxygen delivery, and might provide future therapeutic targets. However, there remain a number of unknowns regarding these mechanisms that require further research that is discussed.
Collapse
Affiliation(s)
- Fernanda Brognara
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand.,Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Igor S A Felippe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand
| |
Collapse
|
24
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
25
|
Javaheri S, Brown LK, Khayat RN. Update on Apneas of Heart Failure With Reduced Ejection Fraction: Emphasis on the Physiology of Treatment. Chest 2020; 157:1637-1646. [DOI: 10.1016/j.chest.2019.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
|
26
|
Brown CV, Boulet LM, Vermeulen TD, Sands SA, Wilson RJA, Ayas NT, Floras JS, Foster GE. Angiotensin II-Type I Receptor Antagonism Does Not Influence the Chemoreceptor Reflex or Hypoxia-Induced Central Sleep Apnea in Men. Front Neurosci 2020; 14:382. [PMID: 32410951 PMCID: PMC7198907 DOI: 10.3389/fnins.2020.00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Components of the renin-angiotensin system (RAS) situated within the carotid body or central nervous system may promote hypoxia-induced chemoreceptor reflex sensitization or central sleep apnea (CSA). We determined if losartan, an angiotensin-II type-I receptor (AT1R) antagonist, would attenuate chemoreceptor reflex sensitivity before or after 8 h of nocturnal hypoxia, and consequently CSA severity. In a double-blind, randomized, placebo-controlled, crossover protocol, 14 men (age: 25 ± 2 years; BMI: 24.6 ± 1.1 kg/m2; means ± SEM) ingested 3 doses of either losartan (50 mg) or placebo every 8 h. Chemoreceptor reflex sensitivity was assessed during hypoxic and hyperoxic hypercapnic ventilatory response (HCVR) tests and during six-20s hypoxic apneas before and after 8 h of sleep in normobaric hypoxia (FIO2 = 0.135). Loop gain was assessed from a ventilatory control model fitted to the ventilatory pattern of CSA recorded during polysomnography. Prior to nocturnal hypoxia, losartan had no effect on either the hyperoxic (losartan: 3.6 ± 1.1, placebo: 4.0 ± 0.6 l/min/mmHg; P = 0.9) or hypoxic HCVR (losartan: 5.3 ± 1.4, placebo: 5.7 ± 0.68 l/min/mmHg; P = 1.0). Likewise, losartan did not influence either the hyperoxic (losartan: 4.2 ± 1.3, placebo: 3.8 ± 1.1 l/min/mmHg; P = 0.5) or hypoxic HCVR (losartan: 6.6 ± 1.8, placebo: 6.3 ± 1.5 l/min/mmHg; P = 0.9) after nocturnal hypoxia. Cardiorespiratory responses to apnea and participants’ apnea hypopnea indexes during placebo and losartan were similar (73 ± 15 vs. 75 ± 14 events/h; P = 0.9). Loop gain, which correlated with CSA severity (r = 0.94, P < 0.001), was similar between treatments. In summary, in young healthy men, hypoxia-induced CSA severity is strongly associated with loop gain, but the AT1R does not modulate chemoreceptor reflex sensitivity before or after 8 h of nocturnal hypoxia.
Collapse
Affiliation(s)
- Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Najib T Ayas
- Sleep Disorders Program, University of British Columbia, Vancouver, BC, Canada.,Respiratory and Critical Care Divisions, University of British Columbia, Vancouver, BC, Canada
| | - John S Floras
- University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia - Okanagan, Kelowna, BC, Canada
| |
Collapse
|
27
|
Collins SÉ, Phillips DB, McMurtry MS, Bryan TL, Paterson DI, Wong E, Ezekowitz JA, Forhan MA, Stickland MK. The Effect of Carotid Chemoreceptor Inhibition on Exercise Tolerance in Chronic Heart Failure. Front Physiol 2020; 11:195. [PMID: 32226392 PMCID: PMC7080702 DOI: 10.3389/fphys.2020.00195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Chronic heart failure (CHF) is characterized by heightened sympathetic nervous activity, carotid chemoreceptor (CC) sensitivity, marked exercise intolerance and an exaggerated ventilatory response to exercise. The purpose of this study was to determine the effect of CC inhibition on exercise cardiovascular and ventilatory function, and exercise tolerance in health and CHF. Methods Twelve clinically stable, optimally treated patients with CHF (mean ejection fraction: 43 ± 2.5%) and 12 age- and sex-matched healthy controls were recruited. Participants completed two time-to-symptom-limitation (TLIM) constant load cycling exercise tests at 75% peak power output with either intravenous saline or low-dose dopamine (2 μg⋅kg–1⋅min–1; order randomized). Ventilation was measured using expired gas data and operating lung volume data were determined during exercise by inspiratory capacity maneuvers. Cardiac output was estimated using impedance cardiography, and vascular conductance was calculated as cardiac output/mean arterial pressure. Results There was no change in TLIM in either group with dopamine (CHF: saline 13.1 ± 2.4 vs. dopamine 13.5 ± 1.6 min, p = 0.78; Control: saline 10.3 ± 1.2 vs. dopamine 11.5 ± 1.3 min, p = 0.16). In CHF patients, dopamine increased cardiac output (p = 0.03), vascular conductance (p = 0.01) and oxygen delivery (p = 0.04) at TLIM, while ventilatory parameters were unaffected (p = 0.76). In controls, dopamine improved vascular conductance at TLIM (p = 0.03), but no other effects were observed. Conclusion Our findings suggest that the CC contributes to cardiovascular regulation during full-body exercise in patients with CHF, however, CC inhibition does not improve exercise tolerance.
Collapse
Affiliation(s)
- Sophie É Collins
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Devin B Phillips
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - M Sean McMurtry
- Division of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tracey L Bryan
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - D Ian Paterson
- Division of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Eric Wong
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Justin A Ezekowitz
- Division of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary A Forhan
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,G.F. MacDonald Centre for Lung Health, Covenant Health, Edmonton, AB, Canada
| |
Collapse
|
28
|
Machado AC, Vianna LC, Gomes EAC, Teixeira JAC, Ribeiro ML, Villacorta H, Nobrega ACL, Silva BM. Carotid chemoreflex and muscle metaboreflex interact to the regulation of ventilation in patients with heart failure with reduced ejection fraction. Physiol Rep 2020; 8:e14361. [PMID: 32026605 PMCID: PMC7002537 DOI: 10.14814/phy2.14361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
Synergism among reflexes probably contributes to exercise hyperventilation in patients with heart failure with reduced ejection fraction (HFrEF). Thus, we investigated whether the carotid chemoreflex and the muscle metaboreflex interact to the regulation of ventilation ( V ˙ E ) in HFrEF. Ten patients accomplished 4-min cycling at 60% peak workload and then recovered for 2 min under either: (a) 21% O2 inhalation (tonic carotid chemoreflex activity) with legs' circulation free (inactive muscle metaboreflex); (b) 100% O2 inhalation (suppressed carotid chemoreflex activity) with legs' circulation occluded (muscle metaboreflex activation); (c) 21% O2 inhalation (tonic carotid chemoreflex activity) with legs' circulation occluded (muscle metaboreflex activation); or (d) 100% O2 inhalation (suppressed carotid chemoreflex activity) with legs' circulation free (inactive muscle metaboreflex) as control. V ˙ E , tidal volume (VT ) and respiratory frequency (fR ) were similar between each separated reflex (protocols a and b) and control (protocol d). Calculated sum of separated reflexes effects was similar to control. Oppositely, V ˙ E (mean ± SEM: Δ vs. control = 2.46 ± 1.07 L/min, p = .05) and fR (Δ = 2.47 ± 0.77 cycles/min, p = .02) increased versus control when both reflexes were simultaneously active (protocol c). Therefore, the carotid chemoreflex and the muscle metaboreflex interacted to V ˙ E regulation in a fR -dependent manner in patients with HFrEF. If this interaction operates during exercise, it can have some contribution to the HFrEF exercise hyperventilation.
Collapse
Affiliation(s)
- Alessandro C. Machado
- Laboratory of Exercise SciencesDepartment of Physiology and PharmacologyFluminense Federal UniversityNiteróiRJBrazil
- Latin American Institute of Life and Nature SciencesFederal University of Latin American IntegrationFoz do IguaçuPRBrazil
| | - Lauro C. Vianna
- Faculty of Physical EducationUniversity of BrasíliaBrasiliaDFBrazil
| | - Erika A. C. Gomes
- Laboratory of Exercise SciencesDepartment of Physiology and PharmacologyFluminense Federal UniversityNiteróiRJBrazil
| | - Jose A. C. Teixeira
- Antonio Pedro University HospitalFaculty of MedicineFluminense Federal UniversityNiteróiRJBrazil
| | - Mario L. Ribeiro
- Antonio Pedro University HospitalFaculty of MedicineFluminense Federal UniversityNiteróiRJBrazil
| | - Humberto Villacorta
- Antonio Pedro University HospitalFaculty of MedicineFluminense Federal UniversityNiteróiRJBrazil
| | - Antonio C. L. Nobrega
- Laboratory of Exercise SciencesDepartment of Physiology and PharmacologyFluminense Federal UniversityNiteróiRJBrazil
| | - Bruno M. Silva
- Department of PhysiologyFederal University of São PauloSão PauloSPBrazil
| |
Collapse
|
29
|
Marmarelis VZ, Shin DC, Zhang R. Dysregulation of CO2-Driven Heart-Rate Chemoreflex Is Related Closely to Impaired CO2 Dynamic Vasomotor Reactivity in Mild Cognitive Impairment Patients. J Alzheimers Dis 2020; 75:855-870. [PMID: 32333588 PMCID: PMC7369119 DOI: 10.3233/jad-191238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Significant reduction of dynamic vasomotor reactivity (DVR) was recently reported in patients with amnestic mild cognitive impairment (MCI) relative to age-matched controls. These results were obtained via a novel approach that utilizes data-based predictive dynamic models to quantify DVR. OBJECTIVE Using the same methodological approach, we seek to quantify the dynamic effects of the CO2-driven chemoreflex and baroreflex upon heart-rate in order to examine their possible correlation with the observed DVR impairment in each MCI patient. METHODS The employed approach utilizes time-series data to obtain subject-specific predictive input-output models of the dynamic effects of changes in arterial blood pressure and end-tidal CO2 (putative "inputs") upon cerebral blood flow velocity in large cerebral arteries, cortical tissue oxygenation, and heart-rate (putative "outputs"). RESULTS There was significant dysregulation of CO2-driven heart-rate chemoreflex (p = 0.0031), but not of baroreflex (p = 0.5061), in MCI patients relative to age-matched controls. The model-based index of CO2-driven heart-rate chemoreflex gain (CRG) correlated significantly with the DVR index in large cerebral arteries (p = 0.0146), but not with the DVR index in small/micro-cortical vessels (p = 0.1066). This suggests that DVR impairment in small/micro-cortical vessels is not mainly due to CO2-driven heart-rate chemoreflex dysregulation, but to other factors (possibly dysfunction of neurovascular coupling). CONCLUSION Improved delineation between MCI patients and controls is achieved by combining the DVR index for small/micro-cortical vessels with the CRG index (p = 2×10-5). There is significant correlation (p < 0.01) between neuropsychological test scores and model-based DVR indices. Combining neuropsychological scores with DVR indices reduces the composite diagnostic index p-value (p∼10-10).
Collapse
Affiliation(s)
| | - Dae C. Shin
- Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Rong Zhang
- Internal Medicine, Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Díaz HS, Andrade DC, Toledo C, Pereyra KV, Schwarz KG, Díaz-Jara E, Lucero C, Arce-Álvarez A, Schultz HD, Silva JN, Takakura AC, Moreira TS, Marcus NJ, Del Rio R. Episodic stimulation of central chemoreceptor neurons elicits disordered breathing and autonomic dysfunction in volume overload heart failure. Am J Physiol Lung Cell Mol Physiol 2019; 318:L27-L40. [PMID: 31617729 PMCID: PMC6985876 DOI: 10.1152/ajplung.00007.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enhanced central chemoreflex (CC) gain is observed in volume overload heart failure (HF) and is correlated with autonomic dysfunction and breathing disorders. The aim of this study was to determine the role of the CC in the development of respiratory and autonomic dysfunction in HF. Volume overload was surgically created to induce HF in male Sprague-Dawley rats. Radiotelemetry transmitters were implanted for continuous monitoring of blood pressure and heart rate. After recovering from surgery, conscious unrestrained rats were exposed to episodic hypercapnic stimulation [EHS; 10 cycles/5 min, inspiratory fraction of carbon dioxide (FICO2) 7%] in a whole body plethysmograph for recording of cardiorespiratory function. To determine the contribution of CC to cardiorespiratory variables, selective ablation of chemoreceptor neurons within the retrotrapezoid nucleus (RTN) was performed via injection of saporin toxin conjugated to substance P (SSP-SAP). Vehicle-treated rats (HF+Veh and Sham+Veh) were used as controls for SSP-SAP experiments. Sixty minutes post-EHS, minute ventilation was depressed in sham animals relative to HF animals (ΔV̇e: -5.55 ± 2.10 vs. 1.24 ± 1.35 mL/min 100 g, P < 0.05; Sham+Veh vs. HF+Veh). Furthermore, EHS resulted in autonomic imbalance, cardiorespiratory entrainment, and ventilatory disturbances in HF+Veh but not Sham+Veh rats, and these effects were significantly attenuated by SSP-SAP treatment. Also, the apnea-hypopnea index (AHI) was significantly lower in HF+SSP-SAP rats compared with HF+Veh rats (AHI: 5.5 ± 0.8 vs. 14.4 ± 1.3 events/h, HF+SSP-SAP vs. HF+Veh, respectively, P < 0.05). Finally, EHS-induced respiratory-cardiovascular coupling in HF rats depends on RTN chemoreceptor neurons because it was reduced by SSP-SAP treatment. Overall, EHS triggers ventilatory plasticity and elicits cardiorespiratory abnormalities in HF that are largely dependent on RTN chemoreceptor neurons.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, Nebraska
| | - Josiane N Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
31
|
Association Between Systemic Inflammation, Carotid Arteriosclerosis, and Autonomic Dysfunction. Transl Stroke Res 2019; 11:50-59. [PMID: 31093927 DOI: 10.1007/s12975-019-00706-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Systemic inflammation is associated with arteriosclerotic disease progression and worse stroke outcome in patients with carotid arteriosclerotic disease. We hypothesize that systemic inflammation is mediated by impaired carotid baroreceptor and chemoreceptor function induced by carotid arteriosclerosis rather than by the generalized inflammatory arteriosclerotic process.Heart rate variability (HRV), serum levels of inflammatory markers, demographic and life style factors, and concomitant diseases with potential impact on systemic inflammation were determined in 105 patients with asymptomatic carotid stenosis of varying degree. Multivariate linear regression analyses were performed to ascertain independent determinants of carotid stenosis severity, autonomic function, and inflammation.Systemic inflammation (C-reactive protein, beta = .255; P = .014), age (beta = .232; P < .008), and arterial hypertension (beta = .206; P = .032) were associated with carotid stenosis severity. Only carotid stenosis severity and not generalized arteriosclerotic disease, concomitant diseases (arterial hypertension, diabetes mellitus, dyslipidemia, hypothyroidism), life style factors (smoking, obesity), or age was associated with a reduction in vagal tone (HRV HF band power beta = - .193; P < 0.049). Systemic inflammation was related to a reduction in vagal tone (HRV HF band power, beta = - .214; P = .031), and not to generalized arteriosclerotic disease, concomitant diseases (arterial hypertension, diabetes mellitus, dyslipidemia), life style factors (smoking, obesity), and age.In conclusion, systemic inflammation is associated with carotid rather than with generalized arteriosclerotic disease. The association between systemic inflammation and carotid arteriosclerosis is mediated by a reduction in vagal tone which indicates a major role of carotid arteriosclerosis-mediated autonomic dysfunction in the pathogenesis of systemic inflammation in arteriosclerotic disease.
Collapse
|
32
|
Paula‐Ribeiro M, Ribeiro IC, Aranda LC, Silva TM, Costa CM, Ramos RP, Ota‐Arakaki JS, Cravo SL, Nery LE, Stickland MK, Silva BM. Carotid chemoreflex activity restrains post-exercise cardiac autonomic control in healthy humans and in patients with pulmonary arterial hypertension. J Physiol 2019; 597:1347-1360. [PMID: 30628073 PMCID: PMC6395424 DOI: 10.1113/jp277190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Dysfunction of post-exercise cardiac autonomic control is associated with increased mortality risk in healthy adults and in patients with cardiorespiratory diseases. The afferent mechanisms that regulate the post-exercise cardiac autonomic control remain unclear. We found that afferent signals from carotid chemoreceptors restrain the post-exercise cardiac autonomic control in healthy adults and patients with pulmonary arterial hypertension (PAH). Patients with PAH had higher carotid chemoreflex sensitivity, and the magnitude of carotid chemoreceptor restraint of autonomic control was greater in patients with PAH as compared to healthy adults. The results demonstrate that the carotid chemoreceptors contribute to the regulation of post-exercise cardiac autonomic control, and suggest that the carotid chemoreceptors may be a potential target to treat post-exercise cardiac autonomic dysfunction in patients with PAH. ABSTRACT Dysfunction of post-exercise cardiac autonomic control predicts mortality, but its underlying mechanisms remain unclear. We tested whether carotid chemoreflex activity restrains post-exercise cardiac autonomic control in healthy adults (HA), and whether such restraint is greater in patients with pulmonary arterial hypertension (PAH) who may have both altered carotid chemoreflex and altered post-exercise cardiac autonomic control. Twenty non-hypoxaemic patients with PAH and 13 age- and sex-matched HA pedalled until 90% of peak work rate observed in a symptom-limited ramp-incremental exercise test. Recovery consisted of unloaded pedalling for 5 min followed by seated rest for 6 min. During recovery, subjects randomly inhaled either 100% O2 (hyperoxia) to inhibit the carotid chemoreceptor activity, or 21% O2 (normoxia) as control. Post-exercise cardiac autonomic control was examined via heart rate (HR) recovery (HRR; HR change after 30, 60, 120 and 300 s of recovery, using linear and non-linear regressions of HR decay) and HR variability (HRV; time and spectral domain analyses). As expected, the PAH group had higher carotid chemosensitivity and worse post-exercise HRR and HRV than HA. Hyperoxia increased HRR at 30, 60 and 120 s and absolute spectral power HRV in both groups. Additionally, hyperoxia resulted in an accelerated linear HR decay and increased time domain HRV during active recovery only in the PAH group. In conclusion, the carotid chemoreceptors restrained recovery of cardiac autonomic control from exercise in HA and in patients with PAH, with the restraint greater for some autonomic indexes in patients with PAH.
Collapse
Affiliation(s)
- Marcelle Paula‐Ribeiro
- Post‐graduate Program in Translational MedicineDepartment of MedicineFederal University of São Paulo (UNIFESP)São PauloSPBrazil
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Indyanara C. Ribeiro
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Liliane C. Aranda
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Talita M. Silva
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Camila M. Costa
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | - Roberta P. Ramos
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | - Jaquelina S. Ota‐Arakaki
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | | | - Luiz E. Nery
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | | | - Bruno M. Silva
- Post‐graduate Program in Translational MedicineDepartment of MedicineFederal University of São Paulo (UNIFESP)São PauloSPBrazil
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| |
Collapse
|
33
|
Stewart JM, Pianosi P, Shaban MA, Terilli C, Svistunova M, Visintainer P, Medow MS. Hemodynamic characteristics of postural hyperventilation: POTS with hyperventilation versus panic versus voluntary hyperventilation. J Appl Physiol (1985) 2018; 125:1396-1403. [PMID: 30138078 DOI: 10.1152/japplphysiol.00377.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upright hyperventilation occurs in ~25% of our patients with postural tachycardia syndrome (POTS). Poikilocapnic hyperventilation alone causes tachycardia. Here, we examined changes in respiration and hemodynamics comprising cardiac output (CO), systemic vascular resistance (SVR), and blood pressure (BP) measured during head-up tilt (HUT) in three groups: patients with POTS and hyperventilation (POTS-HV), patients with panic disorder who hyperventilate (Panic), and healthy controls performing voluntary upright hyperpnea (Voluntary-HV). Though all were comparably tachycardic during hyperventilation, POTS-HV manifested hyperpnea, decreased CO, increased SVR, and increased BP during HUT; Panic patients showed both hyperpnea and tachypnea, increased CO, and increased SVR as BP increased during HUT; and Voluntary-HV were hyperpneic by design and had increased CO, decreased SVR, and decreased BP during upright hyperventilation. Mechanisms of hyperventilation and hemodynamic changes differed among POTS-HV, Panic, and Voluntary-HV subjects. We hypothesize that the hyperventilation in POTS is caused by a mechanism involving peripheral chemoreflex sensitization by intermittent ischemic hypoxia. NEW & NOTEWORTHY Hyperventilation is common in postural tachycardia syndrome (POTS) and has distinctive cardiovascular characteristics when compared with hyperventilation in panic disorder or with voluntary hyperventilation. Hyperventilation in POTS is hyperpnea only, distinct from panic in which tachypnea also occurs. Cardiac output is decreased in POTS, whereas peripheral resistance and blood pressure (BP) are increased. This is distinct from voluntary hyperventilation where cardiac output is increased and resistance and BP are decreased and from panic where they are all increased.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Physiology, New York Medical College, Valhalla, New York
| | - Paul Pianosi
- Paediatric Respiratory Medicine, King's College Hospital National Health Surface Foundation Trust , London , United Kingdom
| | - Mohamed A Shaban
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Courtney Terilli
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Maria Svistunova
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Paul Visintainer
- Epidemiology and Biostatistics, Baystate Medical Center, University of Massachusetts School of Medicine , Worcester, Massachusetts
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
34
|
Mansur AP, Alvarenga GS, Kopel L, Gutierrez MA, Consolim-Colombo FM, Abrahão LH, Lage SG. Cerebral blood flow changes during intermittent acute hypoxia in patients with heart failure. J Int Med Res 2018; 46:4214-4225. [PMID: 30130981 PMCID: PMC6166355 DOI: 10.1177/0300060518791691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Heart failure (HF) is associated with intermittent hypoxia, and the effects of this hypoxia on the cardiovascular system are not well understood. This study was performed to compare the effects of acute hypoxia (10% oxygen) between patients with and without HF. Methods Fourteen patients with chronic HF and 17 matched control subjects were enrolled. Carotid artery changes were examined during the first period of hypoxia, and brachial artery changes were examined during the second period of hypoxia. Data were collected at baseline and after 2 and 4 minutes of hypoxia. Norepinephrine, epinephrine, dopamine, and renin were measured at baseline and after 4 minutes hypoxia. Results The carotid blood flow, carotid systolic diameter, and carotid diastolic diameter increased and the carotid resistance decreased in patients with HF. Hypoxia did not change the carotid compliance, distensibility, brachial artery blood flow and diameter, or concentrations of sympathomimetic amines in patients with HF, but hypoxia increased the norepinephrine level in the control group. Hypoxia increased minute ventilation and decreased the oxygen saturation and end-tidal carbon dioxide concentration in both groups. Conclusion Hypoxia-induced changes in the carotid artery suggest an intensification of compensatory mechanisms for preservation of cerebral blood flow in patients with HF.
Collapse
Affiliation(s)
- Antonio P Mansur
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Glaura Souza Alvarenga
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Liliane Kopel
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Marco Antonio Gutierrez
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | - Ludhmila Hajjar Abrahão
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Silvia Gelas Lage
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| |
Collapse
|
35
|
Stewart JM, Pianosi P, Shaban MA, Terilli C, Svistunova M, Visintainer P, Medow MS. Postural Hyperventilation as a Cause of Postural Tachycardia Syndrome: Increased Systemic Vascular Resistance and Decreased Cardiac Output When Upright in All Postural Tachycardia Syndrome Variants. J Am Heart Assoc 2018; 7:e008854. [PMID: 29960989 PMCID: PMC6064900 DOI: 10.1161/jaha.118.008854] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Postural tachycardia syndrome (POTS) is a heterogeneous condition. We stratified patients previously evaluated for POTS on the basis of supine resting cardiac output (CO) or with the complaint of platypnea or "shortness of breath" during orthostasis. We hypothesize that postural hyperventilation is one cause of POTS and that hyperventilation-associated POTS occurs when initial reduction in CO is sufficiently large. We also propose that circulatory abnormalities normalize with restoration of CO2. METHODS AND RESULTS Fifty-eight enrollees with POTS were compared with 16 healthy volunteer controls. Low CO in POTS was defined by a resting supine CO <4 L/min. Patients with shortness of breath had hyperventilation with end tidal CO2 <30 Torr during head-up tilt table testing. There were no differences in height or weight between control patients and patients with POTS or differences between the POTS groups. Beat-to-beat blood pressure was measured by photoplethysmography, and CO was measured by ModelFlow. Systemic vascular resistance was defined as mean arterial blood pressure/CO. End tidal CO2 and cerebral blood flow velocity of the middle cerebral artery were only reduced during head-up tilt in the hyperventilation group, whereas blood pressure was increased compared with control. We corrected the reduced end tidal CO2 in hyperventilation by addition of exogenous CO2 into a rebreathing apparatus. With added CO2, heart rate, blood pressure, CO, and systemic vascular resistance in hyperventilation became similar to control. CONCLUSIONS We conclude that all POTS is related to decreased CO, decreased central blood volume, and increased systemic vascular resistance and that a variant of POTS is consequent to postural hyperventilation.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, NY
- Department of Physiology, New York Medical College, Valhalla, NY
| | - Paul Pianosi
- Paediatric Respiratory Medicine, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Mohamed A Shaban
- Department of Pediatrics, New York Medical College, Valhalla, NY
| | - Courtney Terilli
- Department of Pediatrics, New York Medical College, Valhalla, NY
| | - Maria Svistunova
- Department of Pediatrics, New York Medical College, Valhalla, NY
| | - Paul Visintainer
- Epidemiology and Biostatistics, Baystate Medical Center, University of Massachusetts School of Medicine, Worcester, MA
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, NY
- Department of Physiology, New York Medical College, Valhalla, NY
| |
Collapse
|
36
|
Phillips DB, Steinback CD, Collins SÉ, Fuhr DP, Bryan TL, Wong EYL, Tedjasaputra V, Bhutani M, Stickland MK. The carotid chemoreceptor contributes to the elevated arterial stiffness and vasoconstrictor outflow in chronic obstructive pulmonary disease. J Physiol 2018. [PMID: 29528117 DOI: 10.1113/jp275762] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The reason(s) for the increased central arterial stiffness in chronic obstructive pulmonary disease (COPD) are not well understood. In this study, we inhibited the carotid chemoreceptor with both low-dose dopamine and hyperoxia, and observed a decrease in central arterial stiffness and muscle sympathetic nervous activity in COPD patients, while no change was observed in age- and risk-matched controls. Carotid chemoreceptor inhibition increased vascular conductance, secondary to reduced arterial blood pressure in COPD patients. Findings from the current study suggest that elevated carotid chemoreceptor activity may contribute to the increased arterial stiffness typically observed in COPD patients. ABSTRACT Chronic obstructive pulmonary disease (COPD) patients have increased central arterial stiffness and muscle sympathetic nervous activity (MSNA), both of which contribute to cardiovascular (CV) dysfunction and increased CV risk. Previous work suggests that COPD patients have elevated carotid chemoreceptor (CC) activity/sensitivity, which may contribute to the elevated MSNA and arterial stiffness. Accordingly, the effect of CC inhibition on central arterial stiffness, MSNA and CV function at rest in COPD patients was examined in a randomized placebo-controlled study. Thirteen mild-moderate COPD patients (forced expired volume in 1 s (FEV1 ) predicted ± SD: 83 ± 18%) and 13 age- and risk-matched controls completed resting CV function measurements with either i.v. saline or i.v. dopamine (2 μg kg-1 min-1 ) while breathing normoxic or hyperoxic air (100% O2 ). On a separate day, a subset of COPD patients and controls completed MSNA measurements while breathing normoxic or hyperoxic air. Arterial stiffness was determined by pulse-wave velocity (PWV) and MSNA was measured by microneurography. Brachial blood flow was determined using Doppler ultrasound, cardiac output was estimated by impedance cardiography, and vascular conductance was calculated as flow/mean arterial pressure (MAP). CC inhibition with dopamine decreased central and peripheral PWV, and MAP (P < 0.05) while increasing vascular conductance in COPD. No change in CV function was observed with dopamine in controls. CC inhibition with hyperoxia decreased peripheral PWV and MSNA (P < 0.05) in COPD, while no change was observed in controls. CC inhibition decreased PWV and MSNA, and improved vascular conductance in COPD, suggesting that tonic CC activity is elevated at rest and contributes to the elevated arterial stiffness in COPD.
Collapse
Affiliation(s)
- Devin B Phillips
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Craig D Steinback
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie É Collins
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Desi P Fuhr
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tracey L Bryan
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Y L Wong
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vincent Tedjasaputra
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Mohit Bhutani
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,G.F. MacDonald Centre for Lung Health, Covenant Health, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Central Sleep Apnea with Cheyne-Stokes Breathing in Heart Failure – From Research to Clinical Practice and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:327-351. [DOI: 10.1007/5584_2018_146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Trembach N, Zabolotskikh I. Evaluation of Breath-Holding Test in Assessment of Peripheral Chemoreflex Sensitivity in Patients with Chronic Heart Failure. Open Respir Med J 2017; 11:67-74. [PMID: 29387285 PMCID: PMC5750724 DOI: 10.2174/1874306401711010067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023] Open
Abstract
Background The sensitivity of peripheral chemoreflex is a marker of the severity of heart failure and the prognosis of the outcome in these patients. The assessment of chemosensitivity in these patients remains an actual problem. Objective The aim of the study was to explore the relationship between a Breath-Holding Test (BHT) and single-breath carbon dioxide test and to evaluate the reliability of both tests in patients with Heart Failure (HF). Method The study was performed in 43 patients with chronic heart failure. All subjects underwent BHT and single-breath carbon dioxide (CB-CO2), the evaluation of both tests was repeated a month later. Relationship of two test was evaluated by correlation analysis. Reliability was assessed with calculation of Standard Error of Measurement (SEM), Coefficient of Variation (CV) and Intraclass Correlation Coefficient (ICC). Results The duration of the breath-holding was inversely correlated to the result of CB-CO2 test (r = -0.86 at first measurement and r = -0.79 after a month) The ICC was 0.87 (95%CI: 0.78-0.93) for SB-CO2 test and 0,93 (95%CI: 0.88-0.96) for BHT, the CV was 24% for SB-CO2 and 13% for BHT. SEM for SB-CO2 test was 0.04 L / min / mmHg and limits of variation was 0.11 L / min / mmHg; SEM for BHT was 3.6 sec and limits of variation was10 sec. Conclusion Breath-holding test is a reliable and safe method for assessing the sensitivity of peripheral chemoreflex to carbon dioxide in patients with heart failure.
Collapse
Affiliation(s)
- Nikita Trembach
- Kuban State Medical University, Department of Anesthesiology, Reanimatology and Transfusiology. Krasnodar, Russian Federation
| | - Igor Zabolotskikh
- Kuban State Medical University, Department of Anesthesiology, Reanimatology and Transfusiology. Krasnodar, Russian Federation
| |
Collapse
|
39
|
Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Quintanilla RA, Schultz HD, Marcus NJ, Amann M, Del Rio R. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter? Am J Physiol Heart Circ Physiol 2017; 314:H464-H474. [PMID: 29167119 DOI: 10.1152/ajpheart.00407.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Investigación Biomédica, Universidad Autónoma de Chile , Santiago , Chile
| | | | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University , Des Moines, Iowa
| | - Markus Amann
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile , Santiago , Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes , Punta Arenas , Chile.,Centro de Envejecimiento y Regeneracion, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
40
|
Marcus NJ, Del Rio R, Ding Y, Schultz HD. KLF2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure. J Physiol 2017; 596:3171-3185. [PMID: 29023738 DOI: 10.1113/jp273805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Enhanced carotid body chemoreflex activity contributes to development of disordered breathing patterns, autonomic dysregulation and increases in incidence of arrhythmia in animal models of reduced ejection fraction heart failure. Chronic reductions in carotid artery blood flow are associated with increased carotid body chemoreceptor activity. Krüppel-like Factor 2 (KLF2) is a shear stress-sensitive transcription factor that regulates the expression of enzymes which have previously been shown to play a role in increased chemoreflex sensitivity. We investigated the impact of restoring carotid body KLF2 expression on chemoreflex control of ventilation, sympathetic nerve activity, cardiac sympatho-vagal balance and arrhythmia incidence in an animal model of heart failure. The results indicate that restoring carotid body KLF2 in chronic heart failure reduces sympathetic nerve activity and arrhythmia incidence, and improves cardiac sympatho-vagal balance and breathing stability. Therapeutic approaches that increase KLF2 in the carotid bodies may be efficacious in the treatment of respiratory and autonomic dysfunction in heart failure. ABSTRACT Oscillatory breathing and increased sympathetic nerve activity (SNA) are associated with increased arrhythmia incidence and contribute to mortality in chronic heart failure (CHF). Increased carotid body chemoreflex (CBC) sensitivity plays a role in this process and can be precipitated by chronic blood flow reduction. We hypothesized that downregulation of a shear stress-sensitive transcription factor, Krüppel-like Factor 2 (KLF2), mediates increased CBC sensitivity in CHF and contributes to associated autonomic, respiratory and cardiac sequelae. Ventilation (Ve), renal SNA (RSNA) and ECG were measured at rest and during CBC activation in sham and CHF rabbits. Oscillatory breathing was quantified as the apnoea-hypopnoea index (AHI) and respiratory rate variability index (RRVI). AHI (control 6 ± 1/h, CHF 25 ± 1/h), RRVI (control 9 ± 3/h, CHF 29 ± 3/h), RSNA (control 22 ± 2% max, CHF 43 ± 5% max) and arrhythmia incidence (control 50 ± 10/h, CHF 300 ± 100/h) were increased in CHF at rest ( FIO2 21%), as were CBC responses (Ve, RSNA) to 10% FIO2 (all P < 0.05 vs. control). In vivo adenoviral transfection of KLF2 to the carotid bodies in CHF rabbits restored KLF2 expression, and reduced AHI (7 ± 2/h), RSNA (18 ± 2% max) and arrhythmia incidence (46 ± 13/h) as well as CBC responses to hypoxia (all P < 0.05 vs. CHF empty virus). Conversely, lentiviral KLF2 siRNA in the carotid body decreased KLF2 expression, increased chemoreflex sensitivity, and increased AHI (6 ± 2/h vs. 14 ± 3/h), RRVI (5 ± 3/h vs. 20 ± 3/h) and RSNA (24 ± 4% max vs. 34 ± 5% max) relative to scrambled-siRNA rabbits. In conclusion, down-regulation of KLF2 in the carotid body increases CBC sensitivity, oscillatory breathing, RSNA and arrhythmia incidence during CHF.
Collapse
Affiliation(s)
- Noah J Marcus
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.,Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Yanfeng Ding
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.,University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
41
|
Patinha D, Pijacka W, Paton JFR, Koeners MP. Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Front Physiol 2017; 8:752. [PMID: 29046642 PMCID: PMC5632678 DOI: 10.3389/fphys.2017.00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oxygen sensing mechanisms are vital for homeostasis and survival. When oxygen levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or a combination of both, to counteract tissue damage. These adjustments are regulated by local, humoral, or neural reflex mechanisms. The kidney and the carotid body are both directly sensitive to falls in the partial pressure of oxygen and trigger reflex adjustments and thus act as oxygen sensors. We hypothesize a cooperative oxygen sensing function by both the kidney and carotid body to ensure maintenance of whole body blood flow and tissue oxygen homeostasis. Under pathological conditions of severe or prolonged tissue hypoxia, these sensors may become continuously excessively activated and increase perfusion pressure chronically. Consequently, persistence of their activity could become a driver for the development of hypertension and cardiovascular disease. Hypoxia-mediated renal and carotid body afferent signaling triggers unrestrained activation of the renin angiotensin-aldosterone system (RAAS). Renal and carotid body mediated responses in arterial pressure appear to be synergistic as interruption of either afferent source has a summative effect of reducing blood pressure in renovascular hypertension. We discuss that this cooperative oxygen sensing system can activate/sensitize their own afferent transduction mechanisms via interactions between the RAAS, hypoxia inducible factor and erythropoiesis pathways. This joint mechanism supports our view point that the development of cardiovascular disease involves afferent nerve activation.
Collapse
Affiliation(s)
- Daniela Patinha
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Wioletta Pijacka
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maarten P Koeners
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
42
|
van Bilsen M, Patel HC, Bauersachs J, Böhm M, Borggrefe M, Brutsaert D, Coats AJS, de Boer RA, de Keulenaer GW, Filippatos GS, Floras J, Grassi G, Jankowska EA, Kornet L, Lunde IG, Maack C, Mahfoud F, Pollesello P, Ponikowski P, Ruschitzka F, Sabbah HN, Schultz HD, Seferovic P, Slart RHJA, Taggart P, Tocchetti CG, Van Laake LW, Zannad F, Heymans S, Lyon AR. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2017; 19:1361-1378. [PMID: 28949064 DOI: 10.1002/ejhf.921] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future?
Collapse
Affiliation(s)
- Marc van Bilsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Hospital, Maastricht, the Netherlands
| | - Hitesh C Patel
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Baker Heart and Diabetes Institute, Melbourne, Vic, Australia
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | - Michael Böhm
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Martin Borggrefe
- First Department of Medicine, Cardiology Division, University Medical Centre Mannheim, Mannheim, Germany.,German Centre for Cardiovascular Research, Mannheim, Germany
| | - Dirk Brutsaert
- Department of Cardiology, Antwerp University, Antwerp, Belgium
| | - Andrew J S Coats
- Department of Medicine, Monash University, Melbourne, Vic, Australia.,Department of Medicine, University of Warwick, Coventry, UK
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Gerasimos S Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - John Floras
- University Health Network and Sinai Health System Division of Cardiology, Peter Munk Cardiac Centre, Toronto General and Lunenfeld-Tanenbaum Research Institutes, University of Toronto, Toronto, ON, Canada
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Lilian Kornet
- Medtronic, Inc., Bakken Research Centre, Maastricht, the Netherlands
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Christoph Maack
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | - Felix Mahfoud
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Internal Medicine, Homburg, Germany
| | | | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska College of Medicine, Omaha, NE, USA
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Peter Taggart
- Department of Cardiovascular Science, University College London, Barts Heart Centre, London, UK
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Linda W Van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Faiez Zannad
- INSERM, Centre for Clinical Investigation 9501, Unit 961, University Hospital Centre, Nancy, France.,Department of Cardiology, Nancy University, University of the Lorraine, Nancy, France
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, the Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| | - Alexander R Lyon
- National Institute for Health Research (NIHR) Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
43
|
Carotid Body-Mediated Chemoreflex Drive in The Setting of low and High Output Heart Failure. Sci Rep 2017; 7:8035. [PMID: 28808320 PMCID: PMC5556057 DOI: 10.1038/s41598-017-08142-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
Enhanced carotid body (CB) chemoreflex function is strongly related to cardiorespiratory disorders and disease progression in heart failure (HF). The mechanisms underlying CB sensitization during HF are not fully understood, however previous work indicates blood flow per se can affect CB function. Then, we hypothesized that the CB-mediated chemoreflex drive will be enhanced only in low output HF but not in high output HF. Myocardial infarcted rats and aorto-caval fistulated rats were used as a low output HF model (MI-CHF) and as a high output HF model (AV-CHF), respectively. Blood flow supply to the CB region was decreased only in MI-CHF rats compared to Sham and AV-CHF rats. MI-CHF rats exhibited a significantly enhanced hypoxic ventilatory response compared to AV-CHF rats. However, apnea/hypopnea incidence was similarly increased in both MI-CHF and AV-CHF rats compared to control. Kruppel-like factor 2 expression, a flow sensitive transcription factor, was reduced in the CBs of MI-CHF rats but not in AV-CHF rats. Our results indicate that in the setting of HF, potentiation of the CB chemoreflex is strongly associated with a reduction in cardiac output and may not be related to other pathophysiological consequences of HF.
Collapse
|
44
|
McBryde FD, Hart EC, Ramchandra R, Paton JF. Evaluating the carotid bodies and renal nerves as therapeutic targets for hypertension. Auton Neurosci 2017; 204:126-130. [DOI: 10.1016/j.autneu.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
|
45
|
Jaenisch RB, Quagliotto E, Chechi C, Calegari L, Dos Santos F, Borghi-Silva A, Dal Lago P. Respiratory Muscle Training Improves Chemoreflex Response, Heart Rate Variability, and Respiratory Mechanics in Rats With Heart Failure. Can J Cardiol 2016; 33:508-514. [PMID: 28132741 DOI: 10.1016/j.cjca.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The aim of the present report was to evaluate respiratory muscle training (RMT) effects on hemodynamic function, chemoreflex response, heart rate variability, and respiratory mechanics in rats with heart failure (HF rats). METHODS Wistar rats were divided into 4 groups: sedentary-sham (Sed-Sham, n = 8), respiratory muscle trained-sham (RMT-Sham, n = 8), sedentary-HF (Sed-HF, n = 8) and respiratory muscle trained-HF (RMT-HF, n = 8). Animals were submitted to an RMT protocol performed 30 minutes per day, 5 days per week for 6 weeks, whereas the sedentary animals did not exercise. RESULTS In HF rats, RMT promoted the reduction of left ventricular end-diastolic pressure, right ventricular hypertrophy, and pulmonary edema. Moreover, RMT produced a reduction in pressure response during chemoreflex activation, sympathetic modulation, and sympathetic vagal balance in addition to an increase in parasympathetic modulation. Also after RMT, HF rats demonstrated a reduction in respiratory system resistance, tissue resistance, Newtonian resistance, respiratory system compliance, and quasistatic compliance. CONCLUSIONS These findings suggested that 6 weeks of RMT in HF rats promoted beneficial adaptations in hemodynamics, autonomic function, and respiratory mechanics and attenuated pressure response evoked by chemoreflex activation in HF rats.
Collapse
Affiliation(s)
- Rodrigo B Jaenisch
- Post Graduation Program in Health Sciences, Laboratory of Experimental Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Edson Quagliotto
- Post Graduation Program in Health Sciences, Laboratory of Experimental Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Chalyne Chechi
- Post Graduation Program in Health Sciences, Laboratory of Experimental Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Calegari
- Post Graduation Program in Health Sciences, Laboratory of Experimental Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Dos Santos
- Laboratory of Experimental Hypertension, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Pedro Dal Lago
- Post Graduation Program in Health Sciences, Laboratory of Experimental Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post Graduation Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
46
|
Orr JE, Malhotra A, Sands SA. Pathogenesis of central and complex sleep apnoea. Respirology 2016; 22:43-52. [PMID: 27797160 DOI: 10.1111/resp.12927] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/01/2022]
Abstract
Central sleep apnoea (CSA) - the temporary absence or diminution of ventilatory effort during sleep - is seen in a variety of forms including periodic breathing in infancy and healthy adults at altitude and Cheyne-Stokes respiration in heart failure. In most circumstances, the cyclic absence of effort is paradoxically a consequence of hypersensitive ventilatory chemoreflex responses to oppose changes in airflow, that is elevated loop gain, leading to overshoot/undershoot ventilatory oscillations. Considerable evidence illustrates overlap between CSA and obstructive sleep apnoea (OSA), including elevated loop gain in patients with OSA and the presence of pharyngeal narrowing during central apnoeas. Indeed, treatment of OSA, whether via continuous positive airway pressure (CPAP), tracheostomy or oral appliances, can reveal CSA, an occurrence referred to as complex sleep apnoea. Factors influencing loop gain include increased chemosensitivity (increased controller gain), reduced damping of blood gas levels (increased plant gain) and increased lung to chemoreceptor circulatory delay. Sleep-wake transitions and pharyngeal dilator muscle responses effectively raise the controller gain and therefore also contribute to total loop gain and overall instability. In some circumstances, for example apnoea of infancy and central congenital hypoventilation syndrome, central apnoeas are the consequence of ventilatory depression and defective ventilatory responses, that is low loop gain. The efficacy of available treatments for CSA can be explained in terms of their effects on loop gain, for example CPAP improves lung volume (plant gain), stimulants reduce the alveolar-inspired PCO2 difference and supplemental oxygen lowers chemosensitivity. Understanding the magnitude of loop gain and the mechanisms contributing to instability may facilitate personalized interventions for CSA.
Collapse
Affiliation(s)
- Jeremy E Orr
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, California, USA
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, California, USA
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Allergy Immunology and Respiratory Medicine and Central Clinical School, The Alfred and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Autonomic outcome is better after endarterectomy than after stenting in patients with asymptomatic carotid stenosis. J Vasc Surg 2016; 64:975-84. [DOI: 10.1016/j.jvs.2016.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
|
48
|
Narkiewicz K, Ratcliffe LEK, Hart EC, Briant LJB, Chrostowska M, Wolf J, Szyndler A, Hering D, Abdala AP, Manghat N, Burchell AE, Durant C, Lobo MD, Sobotka PA, Patel NK, Leiter JC, Engelman ZJ, Nightingale AK, Paton JFR. Unilateral Carotid Body Resection in Resistant Hypertension: A Safety and Feasibility Trial. ACTA ACUST UNITED AC 2016; 1:313-324. [PMID: 27766316 PMCID: PMC5063532 DOI: 10.1016/j.jacbts.2016.06.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Animal and human data indicate pathological afferent signaling emanating from the carotid body that drives sympathetically mediated elevations in blood pressure in conditions of hypertension. This first-in-man, proof-of-principle study tested the safety and feasibility of unilateral carotid body resection in 15 patients with drug-resistant hypertension. The procedure proved to be safe and feasible. Overall, no change in blood pressure was found. However, 8 patients showed significant reductions in ambulatory blood pressure coinciding with decreases in sympathetic activity. The carotid body may be a novel target for treating an identifiable subpopulation of humans with hypertension.
Collapse
Key Words
- ABP, ambulatory blood pressure
- ASBP, ambulatory systolic blood pressure
- BRS, baroreceptor reflex sensitivity
- CB, carotid body
- HRV, heart rate variability
- HVR, hypoxic ventilatory response
- MSNA, muscle sympathetic nerve activity
- OBP, office blood pressure
- OSBP, office systolic blood pressure
- afferent drive
- baroreceptor reflex
- hypertension
- hypoxia
- peripheral chemoreceptor
- sympathetic nervous system
- uCB, unilateral carotid body
Collapse
Affiliation(s)
- Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Laura E K Ratcliffe
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Emma C Hart
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom; School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Linford J B Briant
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Marzena Chrostowska
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Szyndler
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Dagmara Hering
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Ana P Abdala
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Nathan Manghat
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Amy E Burchell
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Claire Durant
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Melvin D Lobo
- NIHR Barts Cardiovascular Biomedical Research Unit, William Harvey Research Institute, QMUL, Charterhouse Square, London, United Kingdom
| | - Paul A Sobotka
- Department of Internal Medicine, Division of Cardiovascular Diseases, The Ohio State University, Columbus, Ohio
| | - Nikunj K Patel
- Neurosurgery, North Bristol NHS Trust, Southmead Hospital, Bristol, United Kingdom
| | - James C Leiter
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | - Angus K Nightingale
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
49
|
Abstract
Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Department of Allergy, Immunology and Respiratory Medicine and Central Clinical School, Alfred Hospital and Monash University, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Robert L Owens
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Toledo C, Andrade DC, Lucero C, Schultz HD, Marcus N, Retamal M, Madrid C, Del Rio R. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J Physiol 2016; 595:43-51. [PMID: 27218485 DOI: 10.1113/jp272075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure (CHF) is a major public health problem. Tonic hyper-activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho-excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mauricio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|