1
|
Alcicek FC, Dybas J, Bulat K, Mohaissen T, Szczesny-Malysiak E, Franczyk-Zarow M, Marzec KM. Hypoxia induces robust ATP release from erythrocytes in ApoE-LDLR double-deficient mice. Front Physiol 2024; 15:1497346. [PMID: 39678689 PMCID: PMC11638198 DOI: 10.3389/fphys.2024.1497346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024] Open
Abstract
Red blood cells (RBCs) play a role in the regulation of vascular tone via release of adenosine triphosphate (ATP) into the vasculature in response to various stimuli. Interestingly, ApoE/LDLR double-deficient (ApoE/LDLR-/-) mice, a murine model of atherosclerosis, display a higher exercise capacity compared to the age-matched controls. However, it is not known whether increased exercise capacity in ApoE/LDLR-/- mice is linked to the altered ATP release from RBCs. In this work, we characterized the ATP release feature of RBCs from ApoE/LDLR-/- mice by exposing them to various stimuli in vitro. The results are linked to the previously reported mechanical and biochemical alterations in RBCs. 3V-induced ATP release from RBCs was at comparable levels for all groups, which indicated that the activity of adenylyl cyclase and the components of upstream signal-transduction pathway were intact. Moreover, hypoxia- and low pH-induced ATP release from RBCs was higher in ApoE/LDLR-/- mice compared to their age-matched controls, a potential contributing factor and a finding in line with the higher exercise capacity. Taken together, augmented hypoxia-induced ATP release from RBCs in ApoE/LDLR-/- mice indicates a possible deterioration in the ATP release pathway. This supports our previous reports on the role of the protein structure alterations of RBC cytosol in hypoxia-induced ATP release from RBCs in ApoE/LDLR-/- mice. Thus, we emphasize that the presented herein results are the first step to future pharmacological modification of pathologically impaired microcirculation.
Collapse
Affiliation(s)
- Fatih Celal Alcicek
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Katarzyna Bulat
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ewa Szczesny-Malysiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Magdalena Franczyk-Zarow
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Katarzyna M. Marzec
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
2
|
Avagimyan A, Kajaia N, Gabunia L, Trofimenko A, Sulashvili N, Sanikidze T, Gorgaslidze N, Challa A, Sheibani M. The place of beta-adrenergic receptor blockers in the treatment of arterial hypertension: From bench-to-bedside. Curr Probl Cardiol 2024; 49:102734. [PMID: 38944226 DOI: 10.1016/j.cpcardiol.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Arterial hypertension is a multifaceted condition influenced by numerous pathophysiological factors. The key contributors to its pathogenesis encompass an unhealthy lifestyle, dysregulation of the sympathetic nervous system, alterations in the activity of adrenergic receptors, disruptions in sodium metabolism, structural and functional abnormalities in the vascular bed, as well as endothelial dysfunction, low-grade inflammation, oxidative stress etc. Despite extensive research into the mechanisms of arterial hypertension development over the centuries, its pathogenesis remains incompletely understood, and the selection of an effective treatment strategy continues to pose a significant challenge. Arterial hypertension is characterized by a diminished sensitivity of the β-adrenergic system, leading to the utilization of β-adrenergic blockers and other antihypertensive drugs in its treatment. This review delves into the mechanisms of action of beta-adrenergic receptor blockers in the treatment of hypertension and their respective effects.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Kajaia
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Lav Madsen P, Sejersen C, Nyberg M, Sørensen MH, Hellsten Y, Gaede P, Bojer AS. The cardiovascular changes underlying a low cardiac output with exercise in patients with type 2 diabetes mellitus. Front Physiol 2024; 15:1294369. [PMID: 38571722 PMCID: PMC10987967 DOI: 10.3389/fphys.2024.1294369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
The significant morbidity and premature mortality of type 2 diabetes mellitus (T2DM) is largely associated with its cardiovascular consequences. Focus has long been on the arterial atheromatosis of DM giving rise to early stroke and myocardial infarctions, whereas less attention has been given to its non-ischemic cardiovascular consequences. Irrespective of ischemic changes, T2DM is associated with heart failure (HF) most commonly with preserved ejection fraction (HFpEF). Largely due to increasing population ages, hypertension, obesity and T2DM, HFpEF is becoming the most prevalent form of heart failure. Unfortunately, randomized controlled trials of HFpEF have largely been futile, and it now seems logical to address the important different phenotypes of HFpEF to understand their underlying pathophysiology. In the early phases, HFpEF is associated with a significantly impaired ability to increase cardiac output with exercise. The lowered cardiac output with exercise results from both cardiac and peripheral causes. T2DM is associated with left ventricular (LV) diastolic dysfunction based on LV hypertrophy with myocardial disperse fibrosis and significantly impaired ability for myocardial blood flow increments with exercise. T2DM is also associated with impaired ability for skeletal muscle vasodilation during exercise, and as is the case in the myocardium, such changes may be related to vascular rarefaction. The present review discusses the underlying phenotypical changes of the heart and peripheral vascular system and their importance for an adequate increase in cardiac output. Since many of the described cardiovascular changes with T2DM must be considered difficult to change if fully developed, it is suggested that patients with T2DM are early evaluated with respect to their cardiovascular compromise.
Collapse
Affiliation(s)
- Per Lav Madsen
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Casper Sejersen
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
- Department of Anaesthesia, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department Kidney and Vascular Biology, Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | | | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Peter Gaede
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| | - Annemie Stege Bojer
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| |
Collapse
|
4
|
Thoral E, García-Díaz CC, Persson E, Chamkha I, Elmér E, Ruuskanen S, Nord A. The relationship between mitochondrial respiration, resting metabolic rate and blood cell count in great tits. Biol Open 2024; 13:bio060302. [PMID: 38385271 PMCID: PMC10958200 DOI: 10.1242/bio.060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Although mitochondrial respiration is believed to explain a substantial part of the variation in resting metabolic rate (RMR), few studies have empirically studied the relationship between organismal and cellular metabolism. We therefore investigated the relationship between RMR and mitochondrial respiration of permeabilized blood cells in wild great tits (Parus major L.). We also studied the correlation between mitochondrial respiration traits and blood cell count, as normalizing mitochondrial respiration by the cell count is a method commonly used to study blood metabolism. In contrast to previous studies, our results show that there was no relationship between RMR and mitochondrial respiration in intact blood cells (i.e. with the ROUTINE respiration). However, when cells were permeabilized and interrelation re-assessed under saturating substrate availability, we found that RMR was positively related to phosphorylating respiration rates through complexes I and II (i.e. OXPHOS respiration) and to the mitochondrial efficiency to produce energy (i.e. net phosphorylation efficiency), though variation explained by the models was low (i.e. linear model: R2=0.14 to 0.21). However, unlike studies in mammals, LEAK respiration without [i.e. L(n)] and with [i.e. L(Omy)] adenylates was not significantly related to RMR. These results suggest that phosphorylating respiration in blood cells can potentially be used to predict RMR in wild birds, but that this relationship may have to be addressed in standardized conditions (permeabilized cells) and that the prediction risks being imprecise. We also showed that, in our conditions, there was no relationship between any mitochondrial respiration trait and blood cell count. Hence, we caution against normalising respiration rates using this parameter as is sometimes done. Future work should address the functional explanations for the observed relationships, and determine why these appear labile across space, time, taxon, and physiological state.
Collapse
Affiliation(s)
- Elisa Thoral
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Carmen C. García-Díaz
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Elin Persson
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Imen Chamkha
- Lund University, Department of Clinical Sciences, Mitochondrial Medicine, Sölvegatan 17, SE-221 84, Lund, Sweden
| | - Eskil Elmér
- Lund University, Department of Clinical Sciences, Mitochondrial Medicine, Sölvegatan 17, SE-221 84, Lund, Sweden
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Andreas Nord
- Lund University, Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|
5
|
Furst B, González-Alonso J. The heart, a secondary organ in the control of blood circulation. Exp Physiol 2023. [PMID: 38126953 DOI: 10.1113/ep091387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Circulation of the blood is a fundamental physiological function traditionally ascribed to the pressure-generating function of the heart. However, over the past century the 'cardiocentric' view has been challenged by August Krogh, Ernst Starling, Arthur Guyton and others, based on haemodynamic data obtained from isolated heart preparations and organ perfusion. Their research brought forth experimental evidence and phenomenological observations supporting the concept that cardiac output occurs primarily in response to the metabolic demands of the tissues. The basic tenets of Guyton's venous return model are presented and juxtaposed with their critiques. Developmental biology of the cardiovascular system shows that the blood circulates before the heart has achieved functional integrity and that its movement is intricately connected with the metabolic demands of the tissues. Long discovered, but as yet overlooked, negative interstitial pressure may play a role in assisting the flow returning to the heart. Based on these phenomena, an alternative circulation model has been proposed in which the heart functions like a hydraulic ram and maintains a dynamic equilibrium between the arterial (centrifugal) and venous (centripetal) forces which define the blood's circular movement. In this focused review we introduce some of the salient arguments in support of the proposed circulation model. Finally, we present evidence that exercising muscle blood flow is subject to local metabolic control which upholds optimal perfusion in the face of a substantive rise in muscle vascular conductance, thus lending further support to the permissive role of the heart in the overall control of blood circulation.
Collapse
Affiliation(s)
- Branko Furst
- Department of Anesthesiology, Albany Medical Center, Albany, New York, USA
| | - José González-Alonso
- Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
6
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
7
|
Coccarelli A, Nelson MD. Modeling Reactive Hyperemia to Better Understand and Assess Microvascular Function: A Review of Techniques. Ann Biomed Eng 2023; 51:479-492. [PMID: 36709231 PMCID: PMC9928923 DOI: 10.1007/s10439-022-03134-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/25/2022] [Indexed: 01/30/2023]
Abstract
Reactive hyperemia is a well-established technique for the non-invasive evaluation of the peripheral microcirculatory function, measured as the magnitude of limb re-perfusion after a brief period of ischemia. Despite widespread adoption by researchers and clinicians alike, many uncertainties remain surrounding interpretation, compounded by patient-specific confounding factors (such as blood pressure or the metabolic rate of the ischemic limb). Mathematical modeling can accelerate our understanding of the physiology underlying the reactive hyperemia response and guide in the estimation of quantities which are difficult to measure experimentally. In this work, we aim to provide a comprehensive guide for mathematical modeling techniques that can be used for describing the key phenomena involved in the reactive hyperemia response, alongside their limitations and advantages. The reported methodologies can be used for investigating specific reactive hyperemia aspects alone, or can be combined into a computational framework to be used in (pre-)clinical settings.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
8
|
Jacobs M, Geiger M, Summers S, Janes T, Boyea R, Zinn K, Aburashed R, Spence D. Interferon-β Decreases the Hypermetabolic State of Red Blood Cells from Patients with Multiple Sclerosis. ACS Chem Neurosci 2022; 13:2658-2665. [PMID: 35946788 DOI: 10.1021/acschemneuro.2c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease characterized by damage to the myelin sheath surrounding axons in the central nervous system. While the exact mechanism of this destruction is unknown, excess nitric oxide (NO) and adenosine triphosphate (ATP) have been measured in tissues and fluids obtained from people with MS. Here, incubation of interferon-beta (IFN-β), an MS drug with an unknown mechanism of action, with red blood cells (RBCs) obtained from people with MS provide evidence of a potential hypermetabolic state in the MS RBC that is decreased with IFN-β intervention. Specifically, binding of all three components of an albumin/C-peptide/Zn2+ complex to MS RBCs was significantly increased in comparison to control RBCs. For example, the binding of C-peptide to MS RBCs was significantly increased (3.4 ± 0.1 nM) compared to control RBCs (1.6 ± 0.2 nM). However, C-peptide binding to MS RBCs was reduced to a value (1.6 ± 0.3 nM) statistically equal to that of control RBCs in the presence of 2 nM IFN-β. Similar trends were measured for albumin and Zn2+ binding to RBCs when in the presence of IFN-β. RBC function was also affected by incubation of cells with IFN-β. Specifically, RBC-derived ATP and measurable membrane GLUT1 were both significantly decreased (56 and 24%, respectively) in the presence of IFN-β. Collectively, our results suggest that IFN-β inhibits albumin binding to the RBC, thereby reducing its ability to deliver ligands such as C-peptide and Zn2+ to the cell and normalizing the basal hypermetabolic state.
Collapse
Affiliation(s)
- M Jacobs
- Department of Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - M Geiger
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - S Summers
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - T Janes
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - R Boyea
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - K Zinn
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - R Aburashed
- Memorial Healthcare Institute for Neuroscience, Michigan State University, East Lansing, Michigan 48824, United States
| | - D Spence
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
González-Alonso J. Targeting red cell-derived ATP signalling to improve the aged muscle circulation. J Physiol 2022; 600:3215-3216. [PMID: 35716371 DOI: 10.1113/jp283322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- José González-Alonso
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| |
Collapse
|
10
|
Jacobs M, Geiger MK, Summers SE, DeLuca CP, Zinn KR, Spence DM. Albumin Glycation Affects the Delivery of C-Peptide to the Red Blood Cells. ACS MEASUREMENT SCIENCE AU 2022; 2:278-286. [PMID: 35726250 PMCID: PMC9204818 DOI: 10.1021/acsmeasuresciau.2c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Serum albumin is a prominent plasma protein that becomes modified in hyperglycemic conditions. In a process known as glycation, these modifications can change the structure and function of proteins, which decrease ligand binding capabilities and alter the bioavailability of ligands. C-peptide is a molecule that binds to the red blood cell (RBC) and stimulates the release of adenosine triphosphate (ATP), which is known to participate in the regulation of blood flow. C-peptide binding to the RBC only occurs in the presence of albumin, and downstream signaling cascades only occur when the albumin and C-peptide complex contains Zn2+. Here, we measure the binding of glycated bovine serum albumin (gBSA) to the RBC in conditions with or without C-peptide and Zn2+. Key to these studies is the analytical sample preparation involving separation of BSA fractions with boronate affinity chromatography and characterization of the varying glycation levels with mass spectrometry. Results from this study show an increase in binding for higher % glycation of gBSA to the RBCs, but a decrease in ability to deliver C-peptide (0.75 ± 0.11 nM for 22% gBSA) compared to samples with less glycation (1.22 ± 0.16 nM for 13% gBSA). A similar trend was measured for Zn2+ delivery to the RBC as a function of glycation percentage. When 15% gBSA or 18% gBSA was combined with C-peptide/Zn2+, the derived ATP release from the RBCs significantly increased to 113% or 36%, respectively. However, 26% gBSA with C-peptide/Zn2+ had no significant increase in ATP release from RBCs. These results indicate that glycation of BSA interferes in C-peptide and Zn2+ binding to the RBC and subsequent RBC ATP release, which may have implications in C-peptide therapy for people with type 1 diabetes.
Collapse
Affiliation(s)
- Monica
J. Jacobs
- Department
of Comparative Medicine and Integrative Biology, Michigan State University, 784 Wilson Road, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Morgan K. Geiger
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Suzanne E. Summers
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot
Drive, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Charles P. DeLuca
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Kurt R. Zinn
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot
Drive, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Dana M. Spence
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot
Drive, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| |
Collapse
|
11
|
Racine ML, Terwoord JD, Ketelhut NB, Bachman NP, Richards JC, Luckasen GJ, Dinenno FA. Rho-kinase inhibition improves haemodynamic responses and circulating ATP during hypoxia and moderate intensity handgrip exercise in healthy older adults. J Physiol 2022; 600:3265-3285. [PMID: 35575293 PMCID: PMC9288513 DOI: 10.1113/jp282730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Skeletal muscle haemodynamics and circulating adenosine triphosphate (ATP) responses during hypoxia and exercise are blunted in older (OA) vs. young (YA) adults, which may be associated with impaired red blood cell (RBC) ATP release. Rho‐kinase inhibition improves deoxygenation‐induced ATP release from OA isolated RBCs. We tested the hypothesis that Rho‐kinase inhibition (via fasudil) in vivo would improve local haemodynamic and ATP responses during hypoxia and exercise in OA. Healthy YA (25 ± 3 years; n = 12) and OA (65 ± 5 years; n = 13) participated in a randomized, double‐blind, placebo‐controlled, crossover study on two days (≥5 days between visits). A forearm deep venous catheter was used to administer saline/fasudil and sample venous plasma ATP ([ATP]V). Forearm vascular conductance (FVC) and [ATP]V were measured at rest, during isocapnic hypoxia (80% SpO2), and during graded rhythmic handgrip exercise that was similar between groups (5, 15 and 25% maximum voluntary contraction (MVC)). Isolated RBC ATP release was measured during normoxia/hypoxia. With saline, ΔFVC was lower (P < 0.05) in OA vs. YA during hypoxia (∼60%) and during 15 and 25% MVC (∼25–30%), and these impairments were abolished with fasudil. Similarly, [ATP]V and ATP effluent responses from normoxia to hypoxia and rest to 25% MVC were lower in OA vs. YA and improved with fasudil (P < 0.05). Isolated RBC ATP release during hypoxia was impaired in OA vs. YA (∼75%; P < 0.05), which tended to improve with fasudil in OA (P = 0.082). These data suggest Rho‐kinase inhibition improves haemodynamic responses to hypoxia and moderate intensity exercise in OA, which may be due in part to improved circulating ATP.
![]() Key points Skeletal muscle blood flow responses to hypoxia and exercise are impaired with age. Blunted increases in circulating ATP, a vasodilator, in older adults may contribute to age‐related impairments in haemodynamics. Red blood cells (RBCs) are a primary source of circulating ATP, and treating isolated RBCs with a Rho‐kinase inhibitor improves age‐related impairments in deoxygenation‐induced RBC ATP release. In this study, treating healthy older adults systemically with the Rho‐kinase inhibitor fasudil improved blood flow and circulating ATP responses during hypoxia and moderate intensity handgrip exercise compared to young adults, and also tended to improve isolated RBC ATP release. Improved blood flow regulation with fasudil was also associated with increased skeletal muscle oxygen delivery during hypoxia and exercise in older adults. This is the first study to demonstrate that Rho‐kinase inhibition can significantly improve age‐related impairments in haemodynamic and circulating ATP responses to physiological stimuli, which may have therapeutic implications.
Collapse
Affiliation(s)
- Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Janée D Terwoord
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nathaniel B Ketelhut
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nate P Bachman
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gary J Luckasen
- Medical Center of the Rockies, University of Colorado Health, Loveland, CO, 80538, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
12
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
13
|
Geiger M, Hayter E, Martin R, Spence D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J Transl Autoimmun 2022; 5:100161. [PMID: 36039310 PMCID: PMC9418496 DOI: 10.1016/j.jtauto.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. Geiger
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E. Hayter
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - R.S. Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - D. Spence
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. 775 Woodlot Drive, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
15
|
Cardoso AM, Silvério MNO, de Oliveira Maciel SFV. Purinergic signaling as a new mechanism underlying physical exercise benefits: a narrative review. Purinergic Signal 2021; 17:649-679. [PMID: 34590239 PMCID: PMC8677870 DOI: 10.1007/s11302-021-09816-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
In the last years, it has become evident that both acute and chronic physical exercise trigger responses/adaptations in the purinergic signaling and these adaptations can be considered one important mechanism related to the exercise benefits for health improvement. Purinergic system is composed of enzymes (ectonucleotidases), receptors (P1 and P2 families), and molecules (ATP, ADP, adenosine) that are able to activate these receptors. These components are widely distributed in almost all cell types, and they respond/act in a specific manner depending on the exercise types and/or intensities as well as the cell type (organ/tissue analyzed). For example, while acute intense exercise can be associated with tissue damage, inflammation, and platelet aggregation, chronic exercise exerts anti-inflammatory and anti-aggregant effects, promoting health and/or treating diseases. All of these effects are dependent on the purinergic signaling. Thus, this review was designed to cover the aspects related to the relationship between physical exercise and purinergic signaling, with emphasis on the modulation of ectonucleotidases and receptors. Here, we discuss the impact of different exercise protocols as well as the differences between acute and chronic effects of exercise on the extracellular signaling exerted by purinergic system components. We also reinforce the concept that purinergic signaling must be understood/considered as a mechanism by which exercise exerts its effects.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil.
- Graduate Program in Physical Education, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Mauro Nicollas Oliveira Silvério
- Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| | - Sarah Franco Vieira de Oliveira Maciel
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| |
Collapse
|
16
|
Ferguson BS, Neidert LE, Rogatzki MJ, Lohse KR, Gladden LB, Kluess HA. Red blood cell ATP release correlates with red blood cell hemolysis. Am J Physiol Cell Physiol 2021; 321:C761-C769. [PMID: 34495762 DOI: 10.1152/ajpcell.00510.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise matching of blood flow to skeletal muscle during exercise remains an important area of investigation. Release of adenosine triphosphate (ATP) from red blood cells (RBCs) is postulated as a mediator of peripheral vascular tone in response to shear stress, hypoxia, and mechanical deformation. We tested the following hypotheses: 1) RBCs of different densities contain different quantities of ATP; 2) hypoxia is a stimulus for ATP release from RBCs; and 3) hypoxic ATP release from RBCs is related to RBC lysis. Human blood was drawn from male and female volunteers (n = 11); the RBCs were isolated and washed. A Percoll gradient was used to separate RBCs based on cellular density. Density groups were then resuspended to 4% hematocrit and exposed to normoxia or hypoxia in a tonometer. Equilibrated samples were drawn and centrifuged; paired analyses of ATP (luminescence via a luciferase-catalyzed reaction) and hemolysis (Harboe spectrophotometric absorbance assay) were measured in the supernatant. ATP release was not different among low-density cells versus middle-density versus high-density cells. Similarly, hemoglobin (Hb) release was not different among the red blood cell subsets. No difference was found for either ATP release or Hb release following matched exposure to normoxic or hypoxic gas. The concentrations of ATP and Hb for all subsets combined were linearly correlated (r = 0.59, P ≤ 0.001). With simultaneous probing for Hb and ATP in the supernatant of each sample, we conclude that ATP release from RBCs can be explained by hemolysis and that hypoxia per se does not stimulate either ATP release or Hb release from RBCs.
Collapse
Affiliation(s)
- Brian S Ferguson
- College of Applied Health Sciences, University of Illinois, Chicago, Illinois
| | - Leslie E Neidert
- Naval Medical Research Unit San Antonio, Joint Base San Antonio-Ft. Sam Houston, San Antonio, Texas
| | - Matthew J Rogatzki
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Keith R Lohse
- Physical Therapy Program and Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Heidi A Kluess
- School of Kinesiology, Auburn University, Auburn, Alabama
| |
Collapse
|
17
|
Grygorczyk R, Boudreault F, Ponomarchuk O, Tan JJ, Furuya K, Goldgewicht J, Kenfack FD, Yu F. Lytic Release of Cellular ATP: Physiological Relevance and Therapeutic Applications. Life (Basel) 2021; 11:life11070700. [PMID: 34357072 PMCID: PMC8307140 DOI: 10.3390/life11070700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The lytic release of ATP due to cell and tissue injury constitutes an important source of extracellular nucleotides and may have physiological and pathophysiological roles by triggering purinergic signalling pathways. In the lungs, extracellular ATP can have protective effects by stimulating surfactant and mucus secretion. However, excessive extracellular ATP levels, such as observed in ventilator-induced lung injury, act as a danger-associated signal that activates NLRP3 inflammasome contributing to lung damage. Here, we discuss examples of lytic release that we have identified in our studies using real-time luciferin-luciferase luminescence imaging of extracellular ATP. In alveolar A549 cells, hypotonic shock-induced ATP release shows rapid lytic and slow-rising non-lytic components. Lytic release originates from the lysis of single fragile cells that could be seen as distinct spikes of ATP-dependent luminescence, but under physiological conditions, its contribution is minimal <1% of total release. By contrast, ATP release from red blood cells results primarily from hemolysis, a physiological mechanism contributing to the regulation of local blood flow in response to tissue hypoxia, mechanical stimulation and temperature changes. Lytic release of cellular ATP may have therapeutic applications, as exemplified by the use of ultrasound and microbubble-stimulated release for enhancing cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Ryszard Grygorczyk
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: (R.G.); (F.Y.)
| | - Francis Boudreault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Olga Ponomarchuk
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Ju Jing Tan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Kishio Furuya
- Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Joseph Goldgewicht
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Falonne Démèze Kenfack
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - François Yu
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: (R.G.); (F.Y.)
| |
Collapse
|
18
|
Parashar A, Jacob VD, Gideon DA, Manoj KM. Hemoglobin catalyzes ATP-synthesis in human erythrocytes: a murburn model. J Biomol Struct Dyn 2021; 40:8783-8795. [PMID: 33998971 DOI: 10.1080/07391102.2021.1925592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blood hemoglobin (Hb), known to transport oxygen, is the most abundant globular protein in humans. Erythrocytes have ∼10-3 M concentration of ATP in steady-state and we estimate that this high amounts cannot be formed from 10-4 - 10-7 M levels of precursors via substrate-level phosphorylation of glycolysis. To account for this discrepancy, we propose that Hb serves as a 'murzyme' (a redox enzyme working along the principles of murburn concept), catalyzing the synthesis of the major amounts of ATP found in erythrocytes. This proposal is along the lines of our earlier works demonstrating DROS (diffusible reactive oxygen species) mediated ATP-synthesis as a thermodynamically and kinetically viable mechanism for physiological oxidative phosphorylation. We support the new hypothesis for Hb with theoretical arguments, experimental findings of reputed peers and in silico explorations. Using in silico methods, we demonstrate that adenosine nucleotide and 2,3-bisphosphoglycerate (2,3-BPG) binding sites are located suitably on the monomer/tetramer, thereby availing facile access to the superoxide emanating from the heme center. Our proposal explains earlier reported in situ experimental findings/suggestions of 2,3-BPG and ADP binding at the same locus on Hb. The binding energy is in the order of 2,3-BPG > NADH > ATP > ADP > AMP and agrees with earlier reports, potentially explaining the bioenergetic physiology of erythrocytes. Also, the newly discovered site for 2,3-BPG shows lower affinity in fetal Hb (as compared to adults) explaining oxygen transfer from mother to embryo. The findings pose significant implications in routine physiology and pathologies like sickle cell anemia and thalassemia.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhinav Parashar
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, India
| | | | | | | |
Collapse
|
19
|
Ghonaim NW, Fraser GM, Goldman D, Milkovich S, Yang J, Ellis CG. Evidence for role of capillaries in regulation of skeletal muscle oxygen supply. Microcirculation 2021; 28:e12699. [PMID: 33853202 DOI: 10.1111/micc.12699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
How oxygen (O2 ) supply to capillaries is regulated to match the tissue's demand is unknown. Erythrocytes have been proposed as sensors in this regulatory mechanism since they release ATP, a vasodilator, in an oxygen saturation (SO2 )-dependent manner. ATP causes hyperpolarization of endothelial cells resulting in conducted vasodilation to arterioles. OBJECTIVE We propose individual capillary units can regulate their own O2 supply by direct communication to upstream arterioles via electrically coupled endothelium. METHODS To test this hypothesis, we developed a transparent micro-exchange device for localized O2 exchange with surface capillaries of intact tissue. The device was fabricated with an O2 permeable micro-outlet 0.2 × 1.0 mm. Experiments were performed on rat extensor digitorum longus (EDL) muscle using dual wavelength video microscopy to measure capillary hemodynamics and erythrocyte SO2 . Responses to local O2 perturbations were measured with only capillaries positioned over the micro-outlet. RESULTS Step changes in the gas mixture %O2 caused physiological changes in erythrocyte SO2 , and appropriate changes in flow to offset the O2 challenge if at least 3-4 capillaries were stimulated. CONCLUSION These results support our hypothesis that individual capillary units play a role in regulating their erythrocyte supply in response to a changing O2 environment.
Collapse
Affiliation(s)
- Nour W Ghonaim
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Daniel Goldman
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,Schulich School of Medicine & Dentistry, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Jun Yang
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada.,Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, Canada
| | - Christopher G Ellis
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,Schulich School of Medicine & Dentistry, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
20
|
Cortese-Krott MM. Red Blood Cells as a "Central Hub" for Sulfide Bioactivity: Scavenging, Metabolism, Transport, and Cross-Talk with Nitric Oxide. Antioxid Redox Signal 2020; 33:1332-1349. [PMID: 33205994 DOI: 10.1089/ars.2020.8171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Sulfide was revealed to be an endogenous signaling molecule regulating a plethora of cellular functions. It is involved in the regulation of fundamental processes, including blood pressure regulation, suspended animation, and metabolic activity of mitochondria, pain, and inflammation. The underlying biochemical pathways and pharmacological targets are still largely unidentified. Recent Advances: Red blood cells (RBCs) are known as oxygen transporters and were proposed to contribute to cardiovascular homeostasis by regulating nitric oxide (NO) metabolism, also via interaction of hemoglobin with nitrite and NO itself. Interestingly, recent evidence indicates that RBCs may also play a central role in systemic sulfide metabolism and homeostasis, and, potentially, in the crosstalk with NO. Heme-containing proteins such as hemoglobin were shown to be targeted by both NO and sulfide. In this article, we aim at revising and discussing the potential impact of RBCs on systemic sulfide metabolism in the cardiovascular system. Critical Issues: Although the synthetic pathways and the reactivity of hemoglobin and other heme proteins with sulfide and NO are known, the in vivo role of RBCs in sulfide metabolism, physiology, pharmacology, and its pathophysiological implications have not been characterized so far. Future Directions: To allow a better understanding of the role of RBCs in systemic sulfide metabolism and its cross-talk with NO, basic and translational science studies should be focused on dissecting the enzymatic and nonenzymatic sulfur metabolic pathways in RBCs in vivo and their impact on the cardiovascular system in animal models and clinical settings.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
A C-peptide complex with albumin and Zn 2+ increases measurable GLUT1 levels in membranes of human red blood cells. Sci Rep 2020; 10:17493. [PMID: 33060722 PMCID: PMC7566639 DOI: 10.1038/s41598-020-74527-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
People with type 1 diabetes (T1D) require exogenous administration of insulin, which stimulates the translocation of the GLUT4 glucose transporter to cell membranes. However, most bloodstream cells contain GLUT1 and are not directly affected by insulin. Here, we report that C-peptide, the 31-amino acid peptide secreted in equal amounts with insulin in vivo, is part of a 3-component complex that affects red blood cell (RBC) membranes. Multiple techniques were used to demonstrate saturable and specific C-peptide binding to RBCs when delivered as part of a complex with albumin. Importantly, when the complex also included Zn2+, a significant increase in cell membrane GLUT1 was measured, thus providing a cellular effect similar to insulin, but on a transporter on which insulin has no effect.
Collapse
|
22
|
Junejo RT, Ray CJ, Marshall JM. Prostaglandin contribution to postexercise hyperemia is dependent on tissue oxygenation during rhythmic and isometric contractions. Physiol Rep 2020; 8:e14471. [PMID: 32562377 PMCID: PMC7305242 DOI: 10.14814/phy2.14471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
The role of prostaglandins (PGs) in exercise hyperemia is controversial. We tested their contributions in moderate intensity forearm exercise, whether their release is oxygen (O2)‐dependent or affected by aging. A total of 12 young (21 ± 1 years) and 11 older (66 ± 2 years) recreationally active men performed rhythmic and isometric handgrip contractions at 60% maximum voluntary contraction for 3 min during air breathing after placebo, after cyclooxygenase (COX) inhibition with aspirin, while breathing 40% O2 and during their combination (aspirin + 40% O2). Forearm blood flow (FBF) was recorded with venous occlusion plethysmography (forearm vascular conductance (FVC): FBF/mean arterial pressure). Venous efflux of PGI2 and PGE2 were assessed by immunoassay. Postcontraction increases in FVC were similar for rhythmic and isometric contractions in young and older men, and accompanied by similar increases in efflux of PGI2 and PGE2. Aspirin attenuated the efflux of PGI2 by 75%–85%, PGE2 by 50%–70%, (p < .05 within group; p > .05 young versus. older), and postcontraction increases in FVC by 22%–27% and 17%–21% in young and older men, respectively (p < .05 within group and young versus. older). In both age groups, 40% O2 and aspirin + 40% O2 caused similar inhibition of the increases in FVC and efflux of PGs as aspirin alone (p < .05 within group). These results indicate that PGs make substantial contributions to the postcontraction hyperemia of rhythmic and isometric contractions at moderate intensities in recreationally active young and older men. Given PGI2 is mainly released by endothelium and PGE2 by muscle fibers, we propose PG generation is dependent on the contraction‐induced falls in O2 at these sites.
Collapse
Affiliation(s)
- Rehan T Junejo
- School of Sport, Exercise & Rehabilitation Sciences, College of Life & Environmental Sciences, Birmingham, UK
| | - Clare J Ray
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Janice M Marshall
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Hearon CM, Richards JC, Racine ML, Luckasen GJ, Larson DG, Dinenno FA. Augmentation of endothelium-dependent vasodilatory signalling improves functional sympatholysis in contracting muscle of older adults. J Physiol 2020; 598:2323-2336. [PMID: 32306393 DOI: 10.1113/jp279462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction (functional sympatholysis) is critical for maintaining blood flow during exercise-mediated sympathoexcitation. Functional sympatholysis and endothelial function are impaired with ageing, resulting in compromised blood flow and oxygen delivery to contracting skeletal muscle during exercise. In the present study, intra-arterial infusion of ACh or ATP to augment endothelium-dependent signalling during exercise attenuated α1 -adrenergic vasoconstriction in the contracting muscle of older adults. The vascular signalling mechanisms capable of functional sympatholysis are preserved in healthy ageing, and thus the age-related impairment in functional sympatholysis probably results from the loss of a functional signal (e.g. plasma [ATP]) as opposed to an intrinsic endothelial dysfunction. ABSTRACT The ability of contracting skeletal muscle to attenuate sympathetic α-adrenergic vasoconstriction ('functional sympatholysis') is impaired with age. In young adults, increasing endothelium-dependent vasodilatory signalling during mild exercise augments sympatholysis. In the present study, we tested the hypothesis that increasing endothelium-dependent signalling during exercise in older adults can improve sympatholysis. In 16 older individuals (Protocol 1, n = 8; Protocol 2, n = 8), we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to local intra-arterial infusion of phenylephrine (PE; α1 -agonist) during (i) infusion of an endothelium-dependent vasodilator alone (Protocol 1: ACh or Protocol 2: low dose ATP); (ii) mild handgrip exercise (5% maximum voluntary contraction; MVC); (iii) moderate handgrip exercise (15% MVC); and (iv) mild or moderate handgrip exercise + infusion of ACh or ATP to augment endothelium-dependent signalling. PE caused robust vasoconstriction in resting skeletal muscle during control vasodilator infusions (ΔFVC: ACh: -31 ± 3 and ATP: -30 ± 4%). PE-mediated vasoconstriction was not attenuated by mild or moderate intensity exercise (ΔFVC: 5% MVC: -30 ± 9; 15% MVC: -33 ± 8%; P > 0.05 vs. control ACh and ATP), indicative of impaired sympatholysis, and ACh or ATP infusion during mild exercise did not impact this response. However, augmentation of endothelium-dependent signalling via infusion of ACh or ATP during moderate intensity exercise attenuated PE-mediated vasoconstriction (ΔFVC: -13 ± 1 and -19 ± 5%, respectively; P < 0.05 vs. all conditions). Our findings demonstrate that, given a sufficient stimulus, endothelium-dependent sympatholysis remains intact in older adults. Strategies aimed at activating such pathways represent a viable approach for improving sympatholysis and thus tissue blood flow and oxygen delivery in older adults.
Collapse
Affiliation(s)
- Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Mathew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.,Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
24
|
The Effects of Storage Age of Blood in Massively Transfused Burn Patients: A Secondary Analysis of the Randomized Transfusion Requirement in Burn Care Evaluation Study. Crit Care Med 2019; 46:e1097-e1104. [PMID: 30234568 DOI: 10.1097/ccm.0000000000003383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Major trials examining storage age of blood transfused to critically ill patients administered relatively few blood transfusions. We sought to determine if the storage age of blood affects outcomes when very large amounts of blood are transfused. DESIGN A secondary analysis of the multicenter randomized Transfusion Requirement in Burn Care Evaluation study which compared restrictive and liberal transfusion strategies. SETTING Eighteen tertiary-care burn centers. PATIENTS Transfusion Requirement in Burn Care Evaluation evaluated 345 adults with burns greater than or equal to 20% of the body surface area. We included only the 303 patients that received blood transfusions. INTERVENTIONS The storage ages of all transfused red cell units were collected during Transfusion Requirement in Burn Care Evaluation. A priori measures of storage age were the the mean storage age of all transfused blood and the proportion of all transfused blood considered very old (stored ≥ 35 d). MEASUREMENTS AND MAIN RESULTS The primary outcome was the severity of multiple organ dysfunction. Secondary outcomes included time to wound healing, the duration of mechanical ventilation, and in-hospital mortality. There were 6,786 red cell transfusions with a mean (± SD) storage age of 25.6 ± 10.2 days. Participants received a mean of 23.4 ± 31.2 blood transfusions (range, 1-219) and a mean of 5.3 ± 10.7 units of very old blood. Neither mean storage age nor proportion of very old blood had any influence on multiple organ dysfunction severity, time to wound healing, or mortality. Duration of ventilation was significantly predicted by both mean blood storage age and the proportion of very old blood, but this was of questionable clinical relevance given extreme variability in duration of ventilation (adjusted r ≤ 0.01). CONCLUSIONS Despite massive blood transfusion, including very old blood, the duration of red cell storage did not influence outcome in burn patients. Provision of the oldest blood first by Blood Banks is rational, even for massive transfusion.
Collapse
|
25
|
Racine ML, Dinenno FA. Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans. J Physiol 2019; 597:4503-4519. [PMID: 31310005 DOI: 10.1113/jp278338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Red blood cells (RBCs) release ATP in response to deoxygenation, which can increase blood flow to help match oxygen supply with tissue metabolic demand. This release of ATP is impaired in RBCs from older adults, but the underlying mechanisms are unknown. In this study, improving RBC deformability in older adults restored deoxygenation-induced ATP release, whereas decreasing RBC deformability in young adults reduced ATP release to the level of that of older adults. In contrast, treating RBCs with a phosphodiesterase 3 inhibitor did not affect ATP release in either age group, possibly due to intact intracellular signalling downstream of deoxygenation as indicated by preserved cAMP and ATP release responses to pharmacological Gi protein activation in RBCs from older adults. These findings are the first to demonstrate that the age-related decrease in RBC deformability is a primary mechanism of impaired deoxygenation-induced ATP release, which may have implications for treating impaired vascular control with advancing age. ABSTRACT In response to haemoglobin deoxygenation, red blood cells (RBCs) release ATP, which binds to endothelial purinergic receptors and stimulates vasodilatation. This ATP release is impaired in RBCs from older vs. young adults, but the underlying mechanisms are unknown. Using isolated RBCs from young (24 ± 1 years) and older (65 ± 2 years) adults, we tested the hypothesis that age-related changes in RBC deformability (Study 1) and cAMP signalling (Study 2) contribute to the impairment. RBC ATP release during normoxia ( P O 2 ∼112 mmHg) and hypoxia ( P O 2 ∼20 mmHg) was quantified with the luciferin-luciferase technique following RBC incubation with Y-27632 (Rho-kinase inhibitor to increase deformability), diamide (cell-stiffening agent), cilostazol (phosphodiesterase 3 inhibitor), or vehicle control. The mean change in RBC ATP release from normoxia to hypoxia in control conditions was significantly impaired in older vs. young (∼50% vs. ∼120%; P < 0.05). RBC deformability was also lower in older vs. young as indicated by a higher RBC transit time (RCTT) measured by blood filtrometry (RCTT: 8.541 ± 0.050 vs. 8.234 ± 0.098 a.u., respectively; P < 0.05). Y-27632 improved RBC deformability (RCTT: 8.228 ± 0.083) and ATP release (111.7 ± 17.2%) in older and diamide decreased RBC deformability (RCTT: 8.955 ± 0.114) and ATP release (67.4 ± 11.8%) in young (P < 0.05), abolishing the age group differences (P > 0.05). Cilostazol did not change ATP release in either age group (P > 0.05), and RBC cAMP and ATP release to pharmacological Gi protein activation was similar in both groups (P > 0.05). We conclude that decreased RBC deformability is a primary contributor to age-related impairments in RBC ATP release, which may have implications for impaired vascular control with advancing age.
Collapse
Affiliation(s)
- Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.,Cardiovascular Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
26
|
Dietary Fatty Acids Affect Red Blood Cell Membrane Composition and Red Blood Cell ATP Release in Dairy Cows. Int J Mol Sci 2019; 20:ijms20112769. [PMID: 31195708 PMCID: PMC6600345 DOI: 10.3390/ijms20112769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Diets of dairy cows are often based on maize silage (MS), delivering lower amounts of n-3 fatty acids (FA) compared to grass silage-based diets. The fatty acid composition of the cell membrane can affect the cell function. We evaluated the effects of an MS-based diet on bovine red blood cell (RBC) membrane FA composition and dietary effects on controlled ATP release of RBC. In trial 1, German Holstein cows were fed an MS-based total mixed ration for 24 weeks. The FA composition of RBC membranes from repeatedly taken blood samples was analysed in addition to the abundance of the RBC membrane protein flotillin-1, which is involved in, for example, cell signalling. In trial 2, four rumen fistulated MS-fed cows were abomasally infused in a 4 × 4 Latin square model with three successively increasing lipid dosages (coconut oil, linseed–safflower oil mix (EFA; rich in n-3 FA), Lutalin®, providing conjugated linoleic acids (CLA) or the combination of the supplements, EFA + CLA) for six weeks, followed by a three-week washout period. In trial 2, we analysed RBC ATP release, flotillin-1, and the membrane protein abundance of pannexin-1, which is involved in ATP release as the last part of a signalling cascade. In trial 1, the total amount of n-3 FA in RBC membranes decreased and the flotillin-1 abundance increased over time. In trial 2, the RBC n-3 FA amount was higher after the six-week infusion period of EFA or EFA + CLA. Furthermore, depending on the dosage of FA, the ATP release from RBC increased. The abundance of flotillin-1 and pannexin-1 was not affected in trial 2. It is concluded that changes of the membrane FA composition influence the RBC function, leading to altered ATP release from intact bovine RBC.
Collapse
|
27
|
Castiaux AD, Pinger CW, Hayter EA, Bunn ME, Martin RS, Spence DM. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports. Anal Chem 2019; 91:6910-6917. [PMID: 31035747 DOI: 10.1021/acs.analchem.9b01302] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microfluidic devices have historically been prepared using fabrication techniques that often include photolithography and/or etching. Recently, additive manufacturing technologies, commonly known as 3D-printing, have emerged as fabrication tools for microfluidic devices. Unfortunately, PolyJet 3D-printing, which utilizes a photocurable resin that can be accurately printed, requires the use of support material for any designed void space internal to the model. Removing the support material from the printed channels is difficult in small channels with single dimensions of less than ∼200 μm and nearly impossible to remove from designs that contain turns or serpentines. Here, we describe techniques for printing channels ranging in cross sections from 0.6 cm × 1.5 cm to 125 μm × 54 μm utilizing commercially available PolyJet printers that require minimal to no postprocessing to form sealed channels. Specifically, printer software manipulation allows printing of one model with an open channel or void that is sealed with either a viscous liquid or a polycarbonate membrane (no commercially available support material). The printer stage is then adjusted and a second model is printed directly on top of the first model with the selected support system. Both the liquid-fill and the membrane method have enough structural integrity to support the printing resin while it is being cured. Importantly, such complex channel geometries as serpentine and Y-mixers can be designed, printed, and in use in under 2 h. We demonstrate device utility by measuring ATP release from flowing red blood cells using a luciferin/luciferase chemiluminescent assay that involves on-chip mixing and optical detection.
Collapse
Affiliation(s)
- Andre D Castiaux
- Department of Chemistry , Saint Louis University , 3501 Laclede Ave. , St. Louis , Missouri 63103 , United States
| | - Cody W Pinger
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Elizabeth A Hayter
- Department of Chemistry , Saint Louis University , 3501 Laclede Ave. , St. Louis , Missouri 63103 , United States
| | - Marcus E Bunn
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - R Scott Martin
- Department of Chemistry , Saint Louis University , 3501 Laclede Ave. , St. Louis , Missouri 63103 , United States
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
28
|
Leal Denis MF, Lefevre SD, Alvarez CL, Lauri N, Enrique N, Rinaldi DE, Gonzalez-Lebrero R, Vecchio LE, Espelt MV, Stringa P, Muñoz-Garay C, Milesi V, Ostuni MA, Herlax V, Schwarzbaum PJ. Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:896-915. [PMID: 30726708 DOI: 10.1016/j.bbamcr.2019.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Alpha-hemolysin (HlyA) of uropathogenic strains of Escherichia coli irreversibly binds to human erythrocytes (RBCs) and triggers activation of ATP release and metabolic changes ultimately leading to hemolysis. We studied the regulation of extracellular ATP (ATPe) of RBCs exposed to HlyA. Luminometry was used to assess ATP release and ATPe hydrolysis, whereas changes in cell volume and morphology were determined by electrical impedance, ektacytometry and aggregometry. Exposure of RBCs to HlyA induced a strong increase of [ATPe] (3-36-fold) and hemolysis (1-44-fold), partially compensated by [ATPe] hydrolysis by ectoATPases and intracellular ATPases released by dead cells. Carbenoxolone, a pannexin 1 inhibitor, partially inhibited ATP release (43-67%). The un-acylated toxin ProHlyA and the deletion analog HlyA∆914-936 were unable to induce ATP release or hemolysis. For HlyA treated RBCs, a data driven mathematical model showed that simultaneous lytic and non-lytic release mainly governed ATPe kinetics, while ATPe hydrolysis became important after prolonged toxin exposure. HlyA induced a 1.5-fold swelling, while blocking this swelling reduced ATP release by 77%. Blocking ATPe activation of purinergic P2X receptors reduced swelling by 60-80%. HlyA-RBCs showed an acute 1.3-2.2-fold increase of Ca2+i, increased crenation and externalization of phosphatidylserine. Perfusion of HlyA-RBCs through adhesion platforms showed strong adhesion to activated HMEC cells, followed by rapid detachment. HlyA exposed RBCs exhibited increased sphericity under osmotic stress, reduced elongation under shear stress, and very low aggregation in viscous media. Overall results showed that HlyA-RBCs displayed activated ATP release, high but weak adhesivity, low deformability and aggregability and high sphericity.
Collapse
Affiliation(s)
- M F Leal Denis
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica, Cátedra de Química Química Analítica y Fisicoquímica, Junín 956 Buenos Aires, Argentina
| | - S D Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - C L Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160 Buenos Aires, Argentina
| | - N Lauri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina
| | - N Enrique
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - D E Rinaldi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956 Buenos Aires, Argentina
| | - R Gonzalez-Lebrero
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956 Buenos Aires, Argentina
| | - L E Vecchio
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - M V Espelt
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina
| | - P Stringa
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Favaloro, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Av. Entre Ríos 495, Buenos Aires, Argentina.; Universidad Nacional de La Plata, Laboratorio de Trasplante de Órganos y Tejidos, Facultad de Ciencias, Calle 60 y 120, La Plata, Argentina
| | - C Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Cuernavaca, Mexico
| | - V Milesi
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - M A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - V Herlax
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina.; Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
| | - P J Schwarzbaum
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina..
| |
Collapse
|
29
|
Alves MT, Ortiz MMO, Dos Reis GVOP, Dusse LMS, Carvalho MDG, Fernandes AP, Gomes KB. The dual effect of C-peptide on cellular activation and atherosclerosis: Protective or not? Diabetes Metab Res Rev 2019; 35:e3071. [PMID: 30160822 DOI: 10.1002/dmrr.3071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
C-peptide is a cleavage product of proinsulin that acts on different type of cells, such as blood and endothelial cells. C-peptide biological effects may be different in type 1 and type 2 diabetes. Besides, there are further evidence for a functional interaction between C-peptide and insulin. In this way, C-peptide has ambiguous effects, acting as an antithrombotic or thrombotic molecule, depending on the physiological environment and disease conditions. Moreover, C-peptide regulates interaction of leucocytes, erythrocytes, and platelets with the endothelium. The beneficial effects include stimulation of nitric oxide production with its subsequent release by platelets and endothelium, the interaction with erythrocytes leading to the generation of adenosine triphosphate, and inhibition of atherogenic cytokine release. The undesirable action of C-peptide includes the chemotaxis of monocytes, lymphocytes, and smooth muscle cells. Also, C-peptide was related with increased lipid deposits and elevated smooth muscle cells proliferation in the vessel wall, contributing to atherosclerosis. Purpose of this review is to explore these dual roles of C-peptide on the blood, contributing at one side to haemostasis and the other to atherosclerotic process.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mylena Maira Oliveira Ortiz
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luci Maria Sant'Ana Dusse
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina Braga Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
Zheng S, Krump NA, McKenna MM, Li YH, Hannemann A, Garrett LJ, Gibson JS, Bodine DM, Low PS. Regulation of erythrocyte Na +/K +/2Cl - cotransport by an oxygen-switched kinase cascade. J Biol Chem 2018; 294:2519-2528. [PMID: 30563844 DOI: 10.1074/jbc.ra118.006393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Many erythrocyte processes and pathways, including glycolysis, the pentose phosphate pathway (PPP), KCl cotransport, ATP release, Na+/K+-ATPase activity, ankyrin-band 3 interactions, and nitric oxide (NO) release, are regulated by changes in O2 pressure that occur as a red blood cell (RBC) transits between the lungs and tissues. The O2 dependence of glycolysis, PPP, and ankyrin-band 3 interactions (affecting RBC rheology) are controlled by O2-dependent competition between deoxyhemoglobin (deoxyHb), but not oxyhemoglobin (oxyHb), and other proteins for band 3. We undertook the present study to determine whether the O2 dependence of Na+/K+/2Cl- cotransport (catalyzed by Na+/K+/2Cl- cotransporter 1 [NKCC1]) might similarly originate from competition between deoxyHb and a protein involved in NKCC1 regulation for a common binding site on band 3. Using three transgenic mouse strains having mutated deoxyhemoglobin-binding sites on band 3, we found that docking of deoxyhemoglobin at the N terminus of band 3 displaces the protein with no lysine kinase 1 (WNK1) from its overlapping binding site on band 3. This displacement enabled WNK1 to phosphorylate oxidative stress-responsive kinase 1 (OSR1), which, in turn, phosphorylated and activated NKCC1. Under normal solution conditions, the NKCC1 activation increased RBC volume and thereby induced changes in RBC rheology. Because the deoxyhemoglobin-mediated WNK1 displacement from band 3 in this O2 regulation pathway may also occur in the regulation of other O2-regulated ion transporters, we hypothesize that the NKCC1-mediated regulatory mechanism may represent a general pattern of O2 modulation of ion transporters in erythrocytes.
Collapse
Affiliation(s)
- Suilan Zheng
- From the Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Nathan A Krump
- the Hematopoiesis Section, National Human Genome Research Institute and
| | - Mary M McKenna
- the Hematopoiesis Section, National Human Genome Research Institute and
| | - Yen-Hsing Li
- From the Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Anke Hannemann
- the Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Lisa J Garrett
- the National Human Genome Research Institute Embryonic Stem Cell and Transgenic Mouse Core Facility, National Institutes of Health, Bethesda, Maryland 20815, and
| | - John S Gibson
- the Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - David M Bodine
- the Hematopoiesis Section, National Human Genome Research Institute and
| | - Philip S Low
- From the Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907,
| |
Collapse
|
31
|
Plasma Nucleotide Dynamics during Exercise and Recovery in Highly Trained Athletes and Recreationally Active Individuals. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4081802. [PMID: 30402475 PMCID: PMC6198572 DOI: 10.1155/2018/4081802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/14/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023]
Abstract
Circulating plasma ATP is able to regulate local skeletal muscle blood flow and 02 delivery causing considerable vasodilatation during exercise. We hypothesized that sport specialization and specific long-term training stimuli have an impact on venous plasma [ATP] and other nucleotides concentration. Four athletic groups consisting of sprinters (n=11; age range 21–30 yr), endurance-trained athletes (n=16; age range 18–31 yr), futsal players (n=14; age range 18–30 yr), and recreationally active individuals (n=12; age range 22–33 yr) were studied. Venous blood samples were collected at rest, during an incremental treadmill test, and during recovery. Baseline [ATP] was 759±80 nmol·l−1 in competitive athletes and 680±73 nmol·l−1 in controls and increased during exercise by ~61% in competitive athletes and by ~31% in recreationally active participants. We demonstrated a rapid increase in plasma [ATP] at exercise intensities of 83–87% of VO2max in competitive athletes and 94% in controls. Concentrations reported after 30 minutes of recovery were distinct from those obtained preexercise in competitive athletes (P < 0.001) but not in controls (P = 0.61). We found a correlation between total-body skeletal muscle mass and resting and maximal plasma [ATP] in competitive athletes (r=0.81 and r=0.75, respectively). In conclusion, sport specialization is significantly related to plasma [ATP] at rest, during exercise, and during maximal effort. Intensified exercise-induced plasma [ATP] increases may contribute to more effective vessel dilatation during exercise in highly trained athletes than in recreational runners. The most rapid increase in ATP concentration was associated with the respiratory compensation point. No differences between groups of competitive athletes were observed during the recovery period suggesting a similar pattern of response after exercise. Total-body skeletal muscle mass is indirectly related to plasma [ATP] in highly trained athletes.
Collapse
|
32
|
Racine ML, Crecelius AR, Luckasen GJ, Larson DG, Dinenno FA. Inhibition of Na + /K + -ATPase and K IR channels abolishes hypoxic hyperaemia in resting but not contracting skeletal muscle of humans. J Physiol 2018; 596:3371-3389. [PMID: 29603743 DOI: 10.1113/jp275913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Increasing blood flow (hyperaemia) to exercising muscle helps match oxygen delivery and metabolic demand. During exercise in hypoxia, there is a compensatory increase in muscle hyperaemia that maintains oxygen delivery and tissue oxygen consumption. Nitric oxide (NO) and prostaglandins (PGs) contribute to around half of the augmented hyperaemia during hypoxic exercise, although the contributors to the remaining response are unknown. In the present study, inhibiting NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels did not blunt augmented hyperaemia during hypoxic exercise beyond previous observations with NO/PG block alone. Furthermore, although inhibition of only Na+ /K+ -ATPase and KIR channels abolished hyperaemia during hypoxia at rest, it had no effect on augmented hyperaemia during hypoxic exercise. This is the first study in humans to demonstrate that Na+ /K+ -ATPase and KIR channel activation is required for augmented muscle hyperaemia during hypoxia at rest but not during hypoxic exercise, thus providing new insight into vascular control. ABSTRACT Exercise hyperaemia in hypoxia is augmented relative to the same exercise intensity in normoxia. During moderate-intensity handgrip exercise, endothelium-derived nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute to ∼50% of the augmented forearm blood flow (FBF) response to hypoxic exercise (HypEx), although the mechanism(s) underlying the remaining response are unclear. We hypothesized that combined inhibition of NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels would abolish the augmented hyperaemic response in HypEx. In healthy young adults, FBF responses were measured (Doppler ultrasound) and forearm vascular conductance was calculated during 5 min of rhythmic handgrip exercise at 20% maximum voluntary contraction under regional sympathoadrenal inhibition in normoxia and isocapnic HypEx (O2 saturation ∼80%). Compared to control, combined inhibition of NO, PGs, Na+ /K+ -ATPase and KIR channels (l-NMMA + ketorolac + ouabain + BaCl2; Protocol 1; n = 10) blunted the compensatory increase in FBF during HypEx by ∼50% (29 ± 6 mL min-1 vs. 62 ± 8 mL min-1 , respectively, P < 0.05). By contrast, ouabain + BaCl2 alone (Protocol 2; n = 10) did not affect this augmented hyperaemic response (50 ± 11 mL min-1 vs. 60 ± 13 mL min-1 , respectively, P > 0.05). However, the blocked condition in both protocols abolished the hyperaemic response to hypoxia at rest (P < 0.05). We conclude that activation of Na+ /K+ -ATPase and KIR channels is involved in the hyperaemic response to hypoxia at rest, although it does not contribute to the augmented exercise hyperaemia during hypoxia in humans.
Collapse
Affiliation(s)
- Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gary J Luckasen
- Cardiovascular Research Center, Colorado State University, Fort Collins, CO, USA.,Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.,Cardiovascular Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
33
|
Grygorczyk R, Orlov SN. Effects of Hypoxia on Erythrocyte Membrane Properties-Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow. Front Physiol 2017; 8:1110. [PMID: 29312010 PMCID: PMC5744585 DOI: 10.3389/fphys.2017.01110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
Intravascular hemolysis occurs in hereditary, acquired, and iatrogenic hemolytic conditions but it could be also a normal physiological process contributing to intercellular signaling. New evidence suggests that intravascular hemolysis and the associated release of adenosine triphosphate (ATP) may be an important mechanism for in vivo local purinergic signaling and blood flow regulation during exercise and hypoxia. However, the mechanisms that modulate hypoxia-induced RBC membrane fragility remain unclear. Here, we provide an overview of the role of RBC ATP release in the regulation of vascular tone and prevailing assumptions on the putative release mechanisms. We show importance of intravascular hemolysis as a source of ATP for local purinergic regulation of blood flow and discuss processes that regulate membrane propensity to rupture under stress and hypoxia.
Collapse
Affiliation(s)
| | - Sergei N. Orlov
- Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
34
|
Evidence of a metabolic reserve in the skeletal muscle of elderly people. Aging (Albany NY) 2017; 9:52-67. [PMID: 27824313 PMCID: PMC5310656 DOI: 10.18632/aging.101079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to determine whether mitochondrial function is limited by O2 availability or the intrinsic capacity of mitochondria to synthesize ATP in elderly individuals. To this aim, we examined, in comparison to free-flow conditions (FF), the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last min of exercise, on O2 availability and mitochondrial function in the calf muscle. 12 healthy, untrained, elderly subjects performed dynamic plantar flexion exercise and phosphorus magnetic resonance spectroscopy (31P-MRS), near-infrared spectroscopy (NIRS), and Doppler ultrasound were used to assess muscle metabolism and peripheral hemodynamics. Limb blood flow [area under the curve (AUC), FF: 1.5±0.5L; RH: 3.2±1.1L, P<0.01] and convective O2 delivery (AUC, FF: 0.30±0.13L; RH: 0.64±0.29L, P<0.01) were significantly increased in RH in comparison to FF. RH was also associated with significantly higher capillary blood flow (P<0.05) and this resulted in a 33% increase in estimated peak mitochondrial ATP synthesis rate (FF: 24±11 mM.min−1; RH: 31±7 mM.min−1, P<0.05). These results document a hemodynamic reserve in the contracting calf muscle of the elderly accessible by superimposing reactive hyperemia. Furthermore, this increase in O2 availability enhanced mitochondrial function thus indicating a skeletal muscle metabolic reserve despite advancing age and low level of physical activity.
Collapse
|
35
|
Liposomal-delivery of phosphodiesterase 5 inhibitors augments UT-15C-stimulated ATP release from human erythrocytes. Biochem Biophys Rep 2017; 12:114-119. [PMID: 28955799 PMCID: PMC5613235 DOI: 10.1016/j.bbrep.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/09/2017] [Accepted: 09/09/2017] [Indexed: 11/21/2022] Open
Abstract
The use of liposomes to affect targeted delivery of pharmaceutical agents to specific sites may result in the reduction of side effects and an increase in drug efficacy. Since liposomes are delivered intravascularly, erythrocytes, which constitute almost half of the volume of blood, are ideal targets for liposomal drug delivery. In vivo, erythrocytes serve not only in the role of oxygen transport but also as participants in the regulation of vascular diameter through the regulated release of the potent vasodilator, adenosine triphosphate (ATP). Unfortunately, erythrocytes of humans with pulmonary arterial hypertension (PAH) do not release ATP in response to the physiological stimulus of exposure to increases in mechanical deformation as would occur when these cells traverse the pulmonary circulation. This defect in erythrocyte physiology has been suggested to contribute to pulmonary hypertension in these individuals. In contrast to deformation, both healthy human and PAH erythrocytes do release ATP in response to incubation with prostacyclin analogs via a well-characterized signaling pathway. Importantly, inhibitors of phosphodiesterase 5 (PDE5) have been shown to significantly increase prostacyclin analog-induced ATP release from human erythrocytes. Here we investigate the hypothesis that targeted delivery of PDE5 inhibitors to human erythrocytes, using a liposomal delivery system, potentiates prostacyclin analog- induced ATP release. The findings are consistent with the hypothesis that directed delivery of this class of drugs to erythrocytes could be a new and important method to augment prostacyclin analog-induced ATP release from these cells. Such an approach could significantly limit side effects of both classes of drugs without compromising their therapeutic effectiveness in diseases such as PAH. PDE5 inhibitors can be successfully delivered to human erythrocytes via liposomes. This results in augmented PGI2 analog-mediated ATP release. Liposomal binding to erythrocytes is rapid without affecting erythrocyte rheology. This is a novel method to augment PGI2 analog-induced ATP release from erythrocytes.
Collapse
Key Words
- ATP, (adenosine triphosphate)
- DMPC, (1,2-Dimyristoyl-sn-glycero-3-phosphocholine)
- FSC, (forward scatter)
- Liposomes
- PAH, (pulmonary arterial hypertension)
- PDE, (phosphodiesterase)
- PGI2, (prostacyclin)
- PSS, (physiological salt solution)
- Red blood cell
- SSC, (side scatter)
- TAD, (tadalafil)
- Tadalafil
- Tadalafil (PubChem CID: 110635)
- Treprostinil
- UT-15C
- UT-15C (PubChem CID: 691840)
- ZAP, (zaprinast),
- Zaprinast
- Zaprinast (PubChem CID: 5722)
- cAMP, (cyclic adenosine monophosphate)
- cGMP, (cyclic guanosine monophosphate)
- sGC, (soluble guanylyl cyclase)
Collapse
|
36
|
Hearon CM, Richards JC, Racine ML, Luckasen GJ, Larson DG, Joyner MJ, Dinenno FA. Sympatholytic effect of intravascular ATP is independent of nitric oxide, prostaglandins, Na + /K + -ATPase and K IR channels in humans. J Physiol 2017; 595:5175-5190. [PMID: 28590059 PMCID: PMC5538228 DOI: 10.1113/jp274532] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Intravascular ATP attenuates sympathetic vasoconstriction (sympatholysis) similar to what is observed in contracting skeletal muscle of humans, and may be an important contributor to exercise hyperaemia. Similar to exercise, ATP-mediated vasodilatation occurs via activation of inwardly rectifying potassium channels (KIR ), and synthesis of nitric oxide (NO) and prostaglandins (PG). However, recent evidence suggests that these dilatatory pathways are not obligatory for sympatholysis during exercise; therefore, we tested the hypothesis that the ability of ATP to blunt α1 -adrenergic vasoconstriction in resting skeletal muscle would be independent of KIR , NO, PGs and Na+ /K+ -ATPase activity. Blockade of KIR channels alone or in combination with NO, PGs and Na+ /K+ -ATPase significantly reduced the vasodilatatory response to ATP, although intravascular ATP maintained the ability to attenuate α1 -adrenergic vasoconstriction. This study highlights similarities in the vascular response to ATP and exercise, and further supports a potential role of intravascular ATP in blood flow regulation during exercise in humans. ABSTRACT Exercise and intravascular ATP elicit vasodilatation that is dependent on activation of inwardly rectifying potassium (KIR ) channels, with a modest reliance on nitric oxide (NO) and prostaglandin (PG) synthesis. Both exercise and intravascular ATP attenuate sympathetic α-adrenergic vasoconstriction (sympatholysis). However, KIR channels, NO, PGs and Na+ /K+ -ATPase activity are not obligatory to observe sympatholysis during exercise. To further determine similarities between exercise and intravascular ATP, we tested the hypothesis that inhibition of KIR channels, NO and PG synthesis, and Na+ /K+ -ATPase would not alter the ability of ATP to blunt α1 -adrenergic vasoconstriction. In healthy subjects, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to intra-arterial infusion of phenylephrine (PE; α1 -agonist) during ATP or control vasodilatator infusion, before and after KIR channel inhibition alone (barium chloride; n = 7; Protocol 1); NO (l-NMMA) and PG (ketorolac) inhibition alone, or combined NO, PGs, Na+ /K+ -ATPase (ouabain) and KIR channel inhibition (n = 6; Protocol 2). ATP attenuated PE-mediated vasoconstriction relative to adenosine (ADO) and sodium nitroprusside (SNP) (PE-mediated ΔFVC: ATP: -16 ± 2; ADO: -38 ± 6; SNP: -59 ± 6%; P < 0.05 vs. ADO and SNP). Blockade of KIR channels alone or combined with NO, PGs and Na+ /K+ -ATPase, attenuated ATP-mediated vasodilatation (∼35 and ∼60% respectively; P < 0.05 vs. control). However, ATP maintained the ability to blunt PE-mediated vasoconstriction (PE-mediated ΔFVC: KIR blockade alone: -6 ± 5%; combined blockade:-4 ± 14%; P > 0.05 vs. control). These findings demonstrate that intravascular ATP modulates α1 -adrenergic vasoconstriction via pathways independent of KIR channels, NO, PGs and Na+ /K+ -ATPase in humans, consistent with a role for endothelium-derived hyperpolarization in functional sympatholysis.
Collapse
Affiliation(s)
- Christopher M. Hearon
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Jennifer C. Richards
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Mathew L. Racine
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
| | - Gary J. Luckasen
- Medical Center of the Rockies FoundationUniversity of Colorado HealthLovelandCOUSA
| | - Dennis G. Larson
- Medical Center of the Rockies FoundationUniversity of Colorado HealthLovelandCOUSA
| | | | - Frank A. Dinenno
- Human Cardiovascular Physiology LaboratoryDepartment of Health and Exercise ScienceFort CollinsCO80523USA
- Center for Cardiovascular ResearchColorado State UniversityFort CollinsCO80523USA
| |
Collapse
|
37
|
Erkens R, Suvorava T, Kramer CM, Diederich LD, Kelm M, Cortese-Krott MM. Modulation of Local and Systemic Heterocellular Communication by Mechanical Forces: A Role of Endothelial Nitric Oxide Synthase. Antioxid Redox Signal 2017; 26:917-935. [PMID: 27927026 PMCID: PMC5455615 DOI: 10.1089/ars.2016.6904] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we discuss the role of nitric oxide (NO) as a key physiological mechanotransducer modulating both local and systemic heterocellular communication and contributing to the integrated (patho)physiology of the cardiovascular system. A deeper understanding of mechanotransduction-mediated local and systemic nodes controlling heterocellular communication between the endothelium, blood cells, and other cell types (e.g., cardiomyocytes) may suggest novel therapeutic strategies for endothelial dysfunction and cardiovascular disease. Recent Advances: Mechanical forces acting on mechanoreceptors on endothelial cells activate the endothelial NO synthase (eNOS) to produce NO. NO participates in (i) abluminal heterocellular communication, inducing vasorelaxation, and thereby regulating vascular tone and blood pressure; (ii) luminal heterocellular communication, inhibiting platelet aggregation, and controlling hemostasis; and (iii) systemic heterocellular communication, contributing to adaptive physiological processes in response to exercise and remote ischemic preconditioning. Interestingly, shear-induced eNOS-dependent activation of vascular heterocellular communication constitutes the molecular basis of all methods applied in the clinical routine for evaluation of endothelial function. Critical Issues and Future Directions: The integrated physiology of heterocellular communication is still not fully understood. Dedicated experimental models are needed to analyze messengers and mechanisms underpinning heterocellular communication in response to physical forces in the cardiovascular system (and elsewhere). Antioxid. Redox Signal. 26, 917-935.
Collapse
Affiliation(s)
- Ralf Erkens
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Tatsiana Suvorava
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Christian M Kramer
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Lukas D Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
38
|
Murrant CL, Lamb IR, Novielli NM. Capillary endothelial cells as coordinators of skeletal muscle blood flow during active hyperemia. Microcirculation 2017; 24. [DOI: 10.1111/micc.12348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Coral L. Murrant
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Iain R. Lamb
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Nicole M. Novielli
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| |
Collapse
|
39
|
Reversible binding of hemoglobin to band 3 constitutes the molecular switch that mediates O2 regulation of erythrocyte properties. Blood 2016; 128:2708-2716. [PMID: 27688804 DOI: 10.1182/blood-2016-01-692079] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
Functional studies have shown that the oxygenation state of the erythrocyte regulates many important pathways, including glucose metabolism, membrane mechanical stability, and cellular adenosine triphosphate (ATP) release. Deoxyhemoglobin (deoxyHb), but not oxyhemoglobin, binds avidly and reversibly to band 3, the major erythrocyte membrane protein. Because band 3 associates with multiple metabolic, solute transport, signal transduction, and structural proteins, the hypothesis naturally arises that the O2-dependent regulation of erythrocyte properties might be mediated by the reversible association of deoxyHb with band 3. To explore whether the band 3-deoxyHb interaction constitutes a "molecular switch" for regulating erythrocyte biology, we have generated transgenic mice with mutations in the deoxyHb-binding domain of band 3. One strain of mouse contains a "humanized" band 3 in which the N-terminal 45 residues of mouse band 3 are replaced by the homologous sequence from human band 3, including the normal human band 3 deoxyHb-binding site. The second mouse contains the same substitution as the first, except the deoxyHb site on band 3 (residues 12-23) has been deleted. Comparison of these animals with wild-type mice demonstrates that the following erythrocyte properties are controlled by the O2-dependent association of hemoglobin with band 3: (1) assembly of a glycolytic enzyme complex on the erythrocyte membrane which is associated with a shift in glucose metabolism between the pentose phosphate pathway and glycolysis, (2) interaction of ankyrin with band 3 and the concomitant regulation of erythrocyte membrane stability, and (3) release of ATP from the red cell which has been linked to vasodilation.
Collapse
|
40
|
Leal Denis MF, Alvarez HA, Lauri N, Alvarez CL, Chara O, Schwarzbaum PJ. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes. PLoS One 2016; 11:e0158305. [PMID: 27355484 PMCID: PMC4927150 DOI: 10.1371/journal.pone.0158305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.
Collapse
Affiliation(s)
- M. Florencia Leal Denis
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - H. Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Natalia Lauri
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - Cora L. Alvarez
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - Osvaldo Chara
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden (TUD), Dresden, Germany
| | - Pablo J. Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
41
|
Duke JW, Davis JT, Ryan BJ, Elliott JE, Beasley KM, Hawn JA, Byrnes WC, Lovering AT. Decreased arterial PO2, not O2 content, increases blood flow through intrapulmonary arteriovenous anastomoses at rest. J Physiol 2016; 594:4981-96. [PMID: 27062157 DOI: 10.1113/jp272211] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The mechanism(s) that regulate hypoxia-induced blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) are currently unknown. Our previous work has demonstrated that the mechanism of hypoxia-induced QIPAVA is not simply increased cardiac output, pulmonary artery systolic pressure or sympathetic nervous system activity and, instead, it may be a result of hypoxaemia directly. To determine whether it is reduced arterial PO2 (PaO2) or O2 content (CaO2) that causes hypoxia-induced QIPAVA , individuals were instructed to breathe room air and three levels of hypoxic gas at rest before (control) and after CaO2 was reduced by 10% by lowering the haemoglobin concentration (isovolaemic haemodilution; Low [Hb]). QIPAVA , assessed by transthoracic saline contrast echocardiography, significantly increased as PaO2 decreased and, despite reduced CaO2 (via isovolaemic haemodilution), was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA , although where and how this is detected remains unknown. ABSTRACT Alveolar hypoxia causes increased blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) in healthy humans at rest. However, it is unknown whether the stimulus regulating hypoxia-induced QIPAVA is decreased arterial PO2 (PaO2) or O2 content (CaO2). CaO2 is known to regulate blood flow in the systemic circulation and it is suggested that IPAVA may be regulated similar to the systemic vasculature. Thus, we hypothesized that reduced CaO2 would be the stimulus for hypoxia-induced QIPAVA . Blood volume (BV) was measured using the optimized carbon monoxide rebreathing method in 10 individuals. Less than 5 days later, subjects breathed room air, as well as 18%, 14% and 12.5% O2 , for 30 min each, in a randomized order, before (CON) and after isovolaemic haemodilution (10% of BV withdrawn and replaced with an equal volume of 5% human serum albumin-saline mixture) to reduce [Hb] (Low [Hb]). PaO2 was measured at the end of each condition and QIPAVA was assessed using transthoracic saline contrast echocardiography. [Hb] was reduced from 14.2 ± 0.8 to 12.8 ± 0.7 g dl(-1) (10 ± 2% reduction) from CON to Low [Hb] conditions. PaO2 was no different between CON and Low [Hb], although CaO2 was 10.4%, 9.2% and 9.8% lower at 18%, 14% and 12.5% O2 , respectively. QIPAVA significantly increased as PaO2 decreased and, despite reduced CaO2, was similar at iso-PaO2. These data suggest that, with alveolar hypoxia, low PaO2 causes the hypoxia-induced increase in QIPAVA . Whether the low PO2 is detected at the carotid body, airway and/or the vasculature remains unknown.
Collapse
Affiliation(s)
- Joseph W Duke
- Ohio University, Division of Exercise Physiology, Athens, OH, USA
| | - James T Davis
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Benjamin J Ryan
- University of Colorado at Boulder, Department of Integrative Physiology, Boulder, CO, USA
| | | | - Kara M Beasley
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Jerold A Hawn
- Oregon Heart and Vascular Institute, Springfield, OR, USA
| | - William C Byrnes
- University of Colorado at Boulder, Department of Integrative Physiology, Boulder, CO, USA
| | - Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| |
Collapse
|
42
|
Thorn CE, Shore AC. The role of perfusion in the oxygen extraction capability of skin and skeletal muscle. Am J Physiol Heart Circ Physiol 2016; 310:H1277-84. [PMID: 27016577 DOI: 10.1152/ajpheart.00047.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/22/2016] [Indexed: 12/19/2022]
Abstract
Oxygen extraction (OE) by all cells is dependent on an adequate supply of oxygen in proximal blood vessels and the cell's need and ability to uptake that oxygen. Here the role of blood flow in regulating OE in skin and skeletal muscle was investigated in lean and obese men. OE was derived by two optical reflectance spectroscopy techniques: 1) from the rate of fall in mean blood saturation during a 4 min below knee arterial occlusion, and thus no blood flow, in calf skin and skeletal muscle and 2) in perfused, unperturbed skin, using the spontaneous falls in mean blood saturation induced by vasomotion in calf and forearm skin of 24 subjects, 12 lean and 12 obese. OE in perfused skin was significantly higher in lean compared with obese subjects in forearm (Mann-Whitney, P < 0.004) and calf (P < 0.001) and did not correlate with OE in unperfused skin (ρ = -0.01, P = 0.48). With arterial occlusion and thus no blood flow, skin OE in lean and obese subjects no longer differed (P = 0.23, not significant). In contrast in skeletal muscle with arterial occlusion and no blood flow, the difference in OE between lean and obese subjects occurred, with obese subjects exhibiting significantly higher OE (P < 0.012). The classic model of metabolic blood flow regulation to support oxygen extraction is evident in perfused skin; OE is perturbed without blood flow and reduced in obesity. In resting skeletal muscle other mechanism(s), independent of blood flow, are implicated in oxygen extraction.
Collapse
Affiliation(s)
- Clare E Thorn
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Angela C Shore
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Exeter, United Kingdom
| |
Collapse
|
43
|
Ellsworth ML, Ellis CG, Sprague RS. Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle. Acta Physiol (Oxf) 2016; 216:265-76. [PMID: 26336065 DOI: 10.1111/apha.12596] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/18/2015] [Accepted: 08/28/2015] [Indexed: 12/23/2022]
Abstract
In a 1914 book entitled The Respiratory Function of the Blood, Joseph Barcroft stated that 'the cell takes what it needs and leaves the rest'. He postulated that there must be both a 'call for oxygen' and a 'mechanism by which the call elicits a response...' In the past century, intensive investigation has provided significant insights into the haemodynamic and biophysical mechanisms involved in supplying oxygen to skeletal muscle. However, the identification of the mechanism by which tissue oxygen needs are sensed and the affector responsible for altering the upstream vasculature to enable the need to be appropriately met has been a challenge. In 1995, Ellsworth et al. proposed that the oxygen-carrying erythrocyte, by virtue of its capacity to release the vasoactive mediator ATP in response to a decrease in oxygen saturation, could serve both roles. Several in vitro and in situ studies have established that exposure of erythrocytes to reduced oxygen tension induces the release of ATP which does result in a conducted arteriolar vasodilation with a sufficiently rapid time course to make the mechanism physiologically relevant. The components of the signalling pathway for the controlled release of ATP from erythrocytes in response to exposure to low oxygen tension have been determined. In addition, the implications of defective ATP release on human pathological conditions have been explored. This review provides a perspective on oxygen supply and the role that such a mechanism plays in meeting the oxygen needs of skeletal muscle.
Collapse
Affiliation(s)
- M. L. Ellsworth
- Department of Pharmacological and Physiological Science; Saint Louis University School of Medicine; St. Louis MO USA
| | - C. G. Ellis
- Departments of Medical Biophysics and Medicine; Schulich School of Medicine & Dentistry; The University of Western Ontario; London ON Canada
| | - R. S. Sprague
- Department of Pharmacological and Physiological Science; Saint Louis University School of Medicine; St. Louis MO USA
| |
Collapse
|
44
|
Kirby PL, Buerk DG, Parikh J, Barbee KA, Jaron D. Mathematical model for shear stress dependent NO and adenine nucleotide production from endothelial cells. Nitric Oxide 2016; 52:1-15. [PMID: 26529478 PMCID: PMC4703509 DOI: 10.1016/j.niox.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022]
Abstract
We developed a mass transport model for a parallel-plate flow chamber apparatus to predict the concentrations of nitric oxide (NO) and adenine nucleotides (ATP, ADP) produced by cultured endothelial cells (ECs) and investigated how the net rates of production, degradation, and mass transport for these three chemical species vary with changes in wall shear stress (τw). These simulations provide an improved understanding of experimental results obtained with parallel-plate flow chambers and allows quantitative analysis of the relationship between τw, adenine nucleotide concentrations, and NO produced by ECs. Experimental data obtained after altering ATP and ADP concentrations with apyrase were analyzed to quantify changes in the rate of NO production (RNO). The effects of different isoforms of apyrase on ATP and ADP concentrations and nucleotide-dependent changes in RNO could be predicted with the model. A decrease in ATP was predicted with apyrase, but an increase in ADP was simulated due to degradation of ATP. We found that a simple proportional relationship relating a component of RNO to the sum of ATP and ADP provided a close match to the fitted curve for experimentally measured changes in RNO with apyrase. Estimates for the proportionality constant ranged from 0.0067 to 0.0321 μM/s increase in RNO per nM nucleotide concentration, depending on which isoform of apyrase was modeled, with the largest effect of nucleotides on RNO at low τw (<6 dyn/cm(2)).
Collapse
Affiliation(s)
- Patrick L Kirby
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Jaimit Parikh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Abstract
Aerobic exercise training leads to cardiovascular changes that markedly increase aerobic power and lead to improved endurance performance. The functionally most important adaptation is the improvement in maximal cardiac output which is the result of an enlargement in cardiac dimension, improved contractility, and an increase in blood volume, allowing for greater filling of the ventricles and a consequent larger stroke volume. In parallel with the greater maximal cardiac output, the perfusion capacity of the muscle is increased, permitting for greater oxygen delivery. To accommodate the higher aerobic demands and perfusion levels, arteries, arterioles, and capillaries adapt in structure and number. The diameters of the larger conduit and resistance arteries are increased minimizing resistance to flow as the cardiac output is distributed in the body and the wall thickness of the conduit and resistance arteries is reduced, a factor contributing to increased arterial compliance. Endurance training may also induce alterations in the vasodilator capacity, although such adaptations are more pronounced in individuals with reduced vascular function. The microvascular net increases in size within the muscle allowing for an improved capacity for oxygen extraction by the muscle through a greater area for diffusion, a shorter diffusion distance, and a longer mean transit time for the erythrocyte to pass through the smallest blood vessels. The present article addresses the effect of endurance training on systemic and peripheral cardiovascular adaptations with a focus on humans, but also covers animal data.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Nyberg M, Gliemann L, Hellsten Y. Vascular function in health, hypertension, and diabetes: effect of physical activity on skeletal muscle microcirculation. Scand J Med Sci Sports 2015; 25 Suppl 4:60-73. [DOI: 10.1111/sms.12591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Affiliation(s)
- M. Nyberg
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
47
|
Nyberg M, Piil P, Egelund J, Sprague RS, Mortensen SP, Hellsten Y. Effect of PDE5 inhibition on the modulation of sympathetic α-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans. Am J Physiol Heart Circ Physiol 2015; 309:H1867-75. [PMID: 26432842 DOI: 10.1152/ajpheart.00653.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022]
Abstract
Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not young human subjects. Here we examined whether this effect of PDE5 inhibition was related to an improved ability to blunt α-adrenergic vasoconstriction (functional sympatholysis) and/or improved efficacy of local vasodilator pathways. A group of young (23 ± 1 yr) and a group of older (72 ± 1 yr) male subjects performed knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. During both conditions, exercise was performed without and with arterial tyramine infusion to evoke endogenous norepinephrine release and consequently stimulation of α1- and α2-adrenergic receptors. The level of the sympatholytic compound ATP was measured in venous plasma by use of the microdialysis technique. Sildenafil increased (P < 0.05) vascular conductance during exercise in the older group, but tyramine infusion reduced (P < 0.05) this effect by 38 ± 9%. Similarly, tyramine reduced (P < 0.05) the vasodilation induced by arterial infusion of a nitric oxide (NO) donor by 54 ± 9% in the older group, and this effect was not altered by sildenafil. Venous plasma [ATP] did not change with PDE5 inhibition in the older subjects during exercise. Collectively, PDE5 inhibition in older humans was not associated with an improved ability for functional sympatholysis. An improved efficacy of the NO system may be one mechanism underlying the effect of PDE5 inhibition on exercise hyperemia in aging.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark;
| | - Peter Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Randy S Sprague
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; and The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Murrant CL, Sarelius IH. Local control of blood flow during active hyperaemia: what kinds of integration are important? J Physiol 2015; 593:4699-711. [PMID: 26314391 DOI: 10.1113/jp270205] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
The focus of this review is on local mechanisms modifying arteriolar resistance to match blood flow to metabolism. In skeletal muscle many local mediators are known, including K(+) , nitric oxide (NO), purines and prostaglandins. Each accounts for about 30% of the response; it is widely held that these act redundantly: this concept awaits systematic testing. Understanding signal integration also requires consideration of microvascular network morphology in relation to local communication pathways between endothelial and smooth muscle cells (which are critical for many local responses, including dilatation to skeletal muscle contraction) and in relation to the spread of vasodilator signals up- and downstream throughout the network. Mechanisms mediating the spread of dilatation from local to remote sites have been well studied using acetylcholine (ACh), but remote dilatations to contraction of skeletal muscle fibres also occur. Importantly, these mechanisms clearly differ from those initiated by ACh, but much remains undefined. Furthermore, capillaries contribute to metabolic dilatation as they dilate arterioles directly upstream in response to vasoactive agents or contraction of adjacent muscle fibres. Given the dispersed arrangement of motor units, precise matching of flow to metabolism is not attainable unless signals are initiated only by 'active' capillaries. As motor units are recruited, signals that direct blood flow towards these active fibres will eventually be supported by local and spreading responses in the arterioles associated with those fibres. Thus, mechanisms of integration of vasodilator signalling across elements of the microvasculature remain an important area of focus for new studies.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
49
|
Marshall JM. Interactions between local dilator and sympathetic vasoconstrictor influences in skeletal muscle in acute and chronic hypoxia. Exp Physiol 2015; 100:1400-11. [DOI: 10.1113/ep085139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Janice M. Marshall
- School of Clinical & Experimental Medicine; Centre for Cardiovascular Science, University of Birmingham; B15 2TT UK
| |
Collapse
|
50
|
Yosten GLC, Kolar GR. The Physiology of Proinsulin C-Peptide: Unanswered Questions and a Proposed Model. Physiology (Bethesda) 2015; 30:327-32. [DOI: 10.1152/physiol.00008.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
C-peptide is produced, processed, and secreted with insulin, and appears to exert separate but intimately related effects. In this review, we address the existence of the C-peptide receptor, the interaction between C-peptide and insulin, and the potential physiological significance of proinsulin C-peptide.
Collapse
Affiliation(s)
- Gina L. C. Yosten
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri; and
| | - Grant R. Kolar
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|