1
|
Guo Z, Gao J, Liu L, Liu X. Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model. Drug Metab Dispos 2024; 52:1271-1287. [PMID: 39251368 DOI: 10.1124/dmd.124.001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Abstract
Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = ΣaiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th-95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5-2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. SIGNIFICANCE STATEMENT: This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.
Collapse
Affiliation(s)
- Zeyu Guo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jingjing Gao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Caldwell HG, Hoiland RL, Bain AR, Howe CA, Carr JMJR, Gibbons TD, Durrer CG, Tymko MM, Stacey BS, Bailey DM, Sekhon MS, MacLeod DB, Ainslie PN. Evidence for direct CO 2 -mediated alterations in cerebral oxidative metabolism in humans. Acta Physiol (Oxf) 2024; 240:e14197. [PMID: 38958262 DOI: 10.1111/apha.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Michael M Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Human Cerebrovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Mulser L, Moreau D. Effect of Acute Cardiovascular Exercise on Cerebral Blood Flow: A Systematic Review. Brain Res 2023; 1809:148355. [PMID: 37003561 DOI: 10.1016/j.brainres.2023.148355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A single bout of cardiovascular exercise can have a cascade of physiological effects, including increased blood flow to the brain. This effect has been documented across multiple modalities, yet studies have reported mixed findings. Here, we systematically review evidence for the acute effect of cardiovascular exercise on cerebral blood flow across a range of neuroimaging techniques and exercise characteristics. Based on 52 studies and a combined sample size of 1,174 individuals, our results indicate that the acute effect of cardiovascular exercise on cerebral blood flow generally follows an inverted U-shaped relationship, whereby blood flow increases early on but eventually decreases as exercise continues. However, we also find that this effect is not uniform across studies, instead varying across a number of key variables including exercise characteristics, brain regions, and neuroimaging modalities. As the most comprehensive synthesis on the topic to date, this systematic review sheds light on the determinants of exercise-induced change in cerebral blood flow, a necessary step toward personalized interventions targeting brain health across a range of populations.
Collapse
Affiliation(s)
- Lisa Mulser
- School of Psychology The University of Auckland
| | - David Moreau
- School of Psychology and Centre for Brain Research The University of Auckland.
| |
Collapse
|
4
|
Wood E, Hein S, Mesnage R, Fernandes F, Abhayaratne N, Xu Y, Zhang Z, Bell L, Williams C, Rodriguez-Mateos A. Wild Blueberry (Poly)phenols can Improve Vascular Function And Cognitive Performance In Healthy Older Males And Females: A Double-Blind Randomized Controlled Trial. Am J Clin Nutr 2023:S0002-9165(23)46300-9. [PMID: 36972800 DOI: 10.1016/j.ajcnut.2023.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Evidence suggests that intake of blueberry (poly)phenols is associated with improvements in vascular function and cognitive performance. Whether these cognitive effects are linked to increases in cerebral and vascular blood flow or changes in the gut microbiota is currently unknown. METHODS A double-blind, parallel randomized controlled trial was conducted in 61 healthy older individuals aged 65-80 y. Participants received either 26g of freeze-dried wild blueberry (WBB) powder (302 mg anthocyanins) or a matched placebo (0 mg anthocyanins). Endothelial function measured by flow-mediated dilation (FMD), cognitive function, arterial stiffness, blood pressure (BP), cerebral blood flow (CBF), gut microbiome and blood parameters were measured at baseline and 12 weeks following daily consumption. Plasma and urinary (poly)phenol metabolites were analyzed using micro-elution solid phase-extraction coupled with LC-MS. RESULTS A significant increase in FMD and reduction in 24 h ambulatory systolic BP were found in the WBB group compared to placebo (0.86%; 95% CI 0.56, 1.17, p<0.001; -3.59 mmHg; 95% CI -6.95, -0.23, p=0.037; respectively). Enhanced immediate recall on the auditory verbal learning task, alongside better accuracy on a task-switch task were also found following WBB treatment compared to placebo (p<0.05). Total 24 h urinary (poly)phenol excretion increased significantly in the WBB group compared to placebo. No changes in CBF or gut microbiota composition were found. CONCLUSIONS Daily intake of WBB powder, equivalent to 178 g fresh weight, improves vascular and cognitive function, and decreases 24h ambulatory systolic BP in healthy older individuals. This suggests that WBB (poly)phenols may reduce future cardiovascular disease (CVD) disease risk in an older population, and may improve episodic memory processes and executive functioning in older adults at risk of cognitive decline. CLINICAL TRIAL REGISTRATION NUMBER IN CLINICALTRIALS.GOV: NCT04084457.
Collapse
|
5
|
Ko YW, Kim SM, Kang KD, Han DH. Changes in Functional Connectivity Between Default Mode Network and Attention Network in Response to Changes in Aerobic Exercise Intensity. Psychiatry Investig 2023; 20:27-34. [PMID: 36721883 PMCID: PMC9890042 DOI: 10.30773/pi.2022.0245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Aerobic exercise may be associated with changes in brain activity within the default mode network (DMN) and dorsal attention network (DAN). We hypothesized that changes in functional connectivity (FC) within the DMN and DAN might be most effectively activated by moderate-intensity exercise. METHODS Resting-state functional magnetic resonance imaging scans and visuospatial attention tests after resting were performed before and after each of moderate- and high-intensity aerobic exercises (10 min each) in 15 healthy male volunteers. RESULTS The reaction time during the attention test increased significantly, and the rate of correct responses decreased from moderate-intensity exercise condition to high-intensity exercise condition. FC within the DMN under high-intensity exercise condition was higher than that under pre-exercise and moderate-intensity exercise conditions. FC within the DAN under moderate-intensity exercise condition was the highest, whereas FC between the DMN and DAN under moderate-intensity exercise condition was the lowest. Changes in cognitive domain functions were associated with changes in FC between the DMN and DAN. CONCLUSION Our results support the inverted-U hypothesis of maximum arousal efficacy during moderate exercise. Both cognitive domains, namely, the attention system and brain activity domains, may be better under moderate-intensity exercise than under high-intensity exercise.
Collapse
Affiliation(s)
- Young-Woo Ko
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sun Mi Kim
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyoung Doo Kang
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kojima S, Morishita S, Hotta K, Qin W, Usui N, Tsubaki A. Temporal changes in cortical oxygenation in the motor-related areas and bilateral prefrontal cortex based on exercise intensity and respiratory metabolism during incremental exercise in male subjects: A near-Infrared spectroscopy study. Front Physiol 2022; 13:794473. [PMID: 36017334 PMCID: PMC9396126 DOI: 10.3389/fphys.2022.794473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
A recent study has reported that prefrontal cortex (PFC) activity during incremental exercise may be related to exercise termination on exhaustion. However, few studies have focused on motor-related areas during incremental exercise. This study investigated changes in the oxygenation of the PFC and motor-related areas using near-infrared spectroscopy during incremental exercise. Moreover, we analyzed the effect of exercise termination on changes in cortical oxygenation based on exercise intensity and respiratory metabolism. Sixteen healthy young male patients participated in this study. After a 4-min rest and 4-min warm-up period, incremental exercise was started at an incremental load corresponding to 20 W/min. Oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), and total hemoglobin (THb) in the bilateral PFC, supplementary motor area, and primary motor cortex were measured. We evaluated changes in oxygenation in each cortex before and after the anaerobic threshold (AT) and respiratory compensation point to identify changes due to respiratory metabolism. O2Hb and THb increased from moderate intensity or after AT to maximal exercise, and HHb increased slowly compared to O2Hb and THb; these changes in hemoglobin levels were consistent in all cortical areas we measured. However, the increase in each hemoglobin level in the bilateral PFC during incremental exercise was faster than that in motor-related areas. Moreover, changes in cortical oxygenation in the right PFC were faster than those in the left PFC. These results suggest changes based on differences in neural activity due to the cortical area.
Collapse
Affiliation(s)
- Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Kisen Hospital, Tokyo, Japan
| | | | - Kazuki Hotta
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Weixiang Qin
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoto Usui
- Department of Physical Therapy, Kisen Hospital, Tokyo, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Atsuhiro Tsubaki,
| |
Collapse
|
7
|
Zeydan B, Schwarz CG, Przybelski SA, Lesnick TG, Kremers WK, Senjem ML, Kantarci OH, Min PH, Kemp BJ, Jack CR, Kantarci K, Lowe VJ. Comparison of 11C-Pittsburgh Compound B and 18F-Flutemetamol White Matter Binding in PET. J Nucl Med 2022; 63:1239-1244. [PMID: 34916245 PMCID: PMC9364341 DOI: 10.2967/jnumed.121.263281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
PET imaging with β-amyloid ligands is emerging as a molecular imaging technique targeting white matter integrity and demyelination. β-amyloid PET ligands such as 11C-Pittsburgh compound B (11C-PiB) have been considered for quantitative measurement of myelin content changes in multiple sclerosis, but 11C-PiB is not commercially available given its short half-life. A 18F PET ligand such as flutemetamol with a longer half-life may be an alternative, but its ability to differentiate white matter hyperintensities (WMH) from normal-appearing white matter (NAWM) and its relationship with age remains to be investigated. Methods: Cognitively unimpaired (CU) older and younger adults (n = 61) were recruited from the community responding to a study advertisement for β-amyloid PET. Participants prospectively underwent MRI, 11C-PiB, and 18F-flutemetamol PET scans. MRI fluid-attenuated inversion recovery images were segmented into WMH and NAWM and registered to the T1-weighted MRI. 11C-PiB and 18F-flutemetamol PET images were also registered to the T1-weighted MRI. 11C-PiB and 18F-flutemetamol SUV ratios (SUVrs) from the WMH and NAWM were calculated using cerebellar crus uptake as a reference for both 11C-PiB and 18F-flutemetamol. Results: The median age was 38 y (range, 30-48 y) in younger adults and 67 y (range, 61-83 y) in older adults. WMH and NAWM SUVrs were higher with 18F-flutemetamol than with 11C-PiB in both older (P < 0.001) and younger (P < 0.001) CU adults. 11C-PiB and 18F-flutemetamol SUVrs were higher in older than in younger CU adults in both WMH (P < 0.001) and NAWM (P < 0.001). 11C-PiB and 18F-flutemetamol SUVrs were higher in NAWM than WMH in both older (P < 0.001) and younger (P < 0.001) CU adults. There was no apparent difference between 11C-PiB and 18F-flutemetamol SUVrs in differentiating WMH from NAWM in older and in younger adults. Conclusion:11C-PiB and 18F-flutemetamol show a similar topographic pattern of uptake in white matter with a similar association with age in WMH and NAWM. 11C-PiB and 18F-flutemetamol can also effectively distinguish between WMH and NAWM. However, given its longer half-life, commercial availability, and higher binding potential, 18F-flutemetamol can be an alternative to 11C-PiB in molecular imaging studies specifically targeting multiple sclerosis to evaluate white matter integrity.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; and
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; and
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; and
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota
| | | | - Paul H Min
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Bradley J Kemp
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
8
|
Caldwell HG, Hoiland RL, Smith KJ, Brassard P, Bain AR, Tymko MM, Howe CA, Carr JMJR, Stacey BS, Bailey DM, Drapeau A, Sekhon MS, MacLeod DB, Ainslie PN. Trans-cerebral HCO 3- and PCO 2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans. J Cereb Blood Flow Metab 2022; 42:559-571. [PMID: 34904461 PMCID: PMC8943603 DOI: 10.1177/0271678x211065924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023]
Abstract
This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kurt J Smith
- Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
9
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
10
|
Bérubé B, Boidin M, Gayda M, Vincent T, Tremblay J, Juneau M, Nigam A, Bherer L. Acute effects of exercise on cerebrovascular response and cognitive performance in individuals with stable coronary heart disease. Brain Res 2021; 1772:147671. [PMID: 34606749 DOI: 10.1016/j.brainres.2021.147671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Individuals with coronary heart disease (CHD) exhibit cognitive deficits and cerebrovascular dysfunctions, and are at higher risk of developing dementia. Cognitive function in individuals with CHD has never been studied during acute aerobic exercise. Given the increasing popularity of training at high peak power output (PPO), its impact on cerebrovascular and cognitive functions in individuals with CHD should be further studied. METHOD Thirty-eight individuals with CHD and 16 healthy controls completed two exercise bouts at 30% and 70% of their individualized PPO on an ergocycle while performing a cognitive task including non-executive and executive conditions. Variations of oxy- deoxy-hemoglobin, and total hemoglobin concentrations were measured on left prefrontal cortex at both PPO using near-infrared spectroscopy. RESULTS Cognitive task performances were equivalent between groups at all intensity levels. Individuals with CHD exhibited larger variation of deoxyhemoglobin in the executive condition and larger variation in total hemoglobin concentration in all task conditions compared to healthy controls at 70% of PPO. CONCLUSION Exercising at high intensity seems to have a larger impact on cerebral blood volume in CHD patients compared to healthy age-matched controls. Higher exercise intensity has negative impacts on cerebral blood volume variations during a cognitive task in CHD patients and could potentially lead to other neurocognitive dysfunctions. Other studies are needed to determine if a cognitive task administered during an exercise test could help identify individuals with CHD at higher risk of developing cognitive decline.
Collapse
Affiliation(s)
- B Bérubé
- Research Center and Preventive Medicine and Physical Activity Center (EPIC), Montreal Heart Institute, Montréal, Québec, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Department of Psychology, Université de Montréal, Montréal, Québec, Canada.
| | - M Boidin
- Research Center and Preventive Medicine and Physical Activity Center (EPIC), Montreal Heart Institute, Montréal, Québec, Canada; School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - M Gayda
- Research Center and Preventive Medicine and Physical Activity Center (EPIC), Montreal Heart Institute, Montréal, Québec, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - T Vincent
- Research Center and Preventive Medicine and Physical Activity Center (EPIC), Montreal Heart Institute, Montréal, Québec, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - J Tremblay
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - M Juneau
- Research Center and Preventive Medicine and Physical Activity Center (EPIC), Montreal Heart Institute, Montréal, Québec, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - A Nigam
- Research Center and Preventive Medicine and Physical Activity Center (EPIC), Montreal Heart Institute, Montréal, Québec, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - L Bherer
- Research Center and Preventive Medicine and Physical Activity Center (EPIC), Montreal Heart Institute, Montréal, Québec, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Zhao N, Xu B. The beneficial effect of exercise against Alzheimer's disease may result from improved brain glucose metabolism. Neurosci Lett 2021; 763:136182. [PMID: 34418507 DOI: 10.1016/j.neulet.2021.136182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
The potential of physical exercise as an intervention for Alzheimer's disease (AD) has been extensively reported. In fact, a number of studies have highlighted improvements in β-amyloid (Aβ) peptide and hyperphosphorylated tau (p-tau) as critical mechanisms in exercise-induced beneficial neurological outcomes. However, no therapeutic management have been proven to be effective in humans. Recent evidence has shown that AD may be a metabolic disease related to glucose metabolic dysfunction in the brain. In this regard, some of the mechanisms responsible for the beneficial effects of physical exercise in the pathology of AD appear to be related to alterations in glucose metabolism. Therefore, we propose that the neuroprotective effect of physical exercise against AD through synergetic improvement in brain glucose metabolism and its pathophysiology. The novel perspective presented here partly explains the failure of Aβ/tau-based therapeutic approaches and provides evidence for brain glucose metabolism as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Bo Xu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| |
Collapse
|
12
|
Weston ME, Barker AR, Tomlinson OW, Coombes JS, Bailey TG, Bond B. Differences in cerebrovascular regulation and ventilatory responses during ramp incremental cycling in children, adolescents, and adults. J Appl Physiol (1985) 2021; 131:1200-1210. [PMID: 34435503 DOI: 10.1152/japplphysiol.00182.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulation of cerebral blood flow during exercise in youth is poorly understood. This study investigated the cerebrovascular and ventilatory responses to a ramp incremental cycle test to exhaustion in 14 children (means ± SD age: 9.4 ± 0.9 yr), 14 adolescents (12.4 ± 0.4 yr), and 19 adults (23.4 ± 2.5 yr). Middle cerebral artery blood velocity (MCAv), partial pressure of end-tidal CO2 ([Formula: see text]), and ventilatory parameters were analyzed at baseline, gas exchange threshold (GET), respiratory compensation point (RCP), and exhaustion. The increase in minute ventilation relative to CO2 production during exercise was also calculated (V̇e/V̇co2 slope). Relative change from baseline (Δ%) in MCAv was lower in children, compared with adolescents and adults at GET [15 ± 10% vs. 26 ± 14%, and 24 ± 10%, respectively, P ≤ 0.03, effect size (d) = 0.9] and RCP (13 ± 11% vs. 24 ± 16% and 27 ± 15%, respectively, P ≤ 0.05, d ≥ 0.8). Δ%MCAv was similar in adults and adolescents at all intensities and similar in all groups at exhaustion. The magnitude of the V̇E/V̇co2 slope was negatively associated with Δ%MCAv at GET and RCP across all participants (P ≤ 0.01, r = -0.37 to -0.48). Δ%[Formula: see text] was smaller in children and adolescents compared with adults at GET and RCP (P ≤ 0.05, d ≥ 0.6). In children, Δ%[Formula: see text] and Δ%MCAv were not associated from baseline-GET (r¯ = 0.14) and were moderately associated from RCP-exhaustion (r¯ = 0.49). These relationships strengthened with increasing age and were stronger in adolescents (baseline-GET: r¯ = 0.47, RCP-exhaustion: r¯ = 0.62) and adults (baseline-GET: r¯ = 0.66, RCP-exhaustion: r¯ = 0.78). These findings provide the first evidence on the development of the regulatory role of [Formula: see text] on MCAv during exercise in children, adolescents, and adults.NEW & NOTEWORTHY This is the first study to observe similar increases in cerebral blood flow during incremental exercise in adolescents and adults. Increases in cerebral blood flow during exercise were smaller in children compared with adolescents and adults and were associated with a greater V̇E/V̇co2 slope. This study also provides the first evidence on the progressive development of the regulatory role of end-tidal CO2 on cerebral blood flow during exercise during the transition from childhood to adulthood.
Collapse
Affiliation(s)
- Max E Weston
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Owen W Tomlinson
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 339] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
14
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Alwatban MR, Aaron SE, Kaufman CS, Barnes JN, Brassard P, Ward JL, Miller KB, Howery AJ, Labrecque L, Billinger SA. Effects of age and sex on middle cerebral artery blood velocity and flow pulsatility index across the adult lifespan. J Appl Physiol (1985) 2021; 130:1675-1683. [PMID: 33703940 DOI: 10.1152/japplphysiol.00926.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reduced middle cerebral artery blood velocity (MCAv) and flow pulsatility are contributors to age-related cerebrovascular disease pathogenesis. It is unknown whether the rate of changes in MCAv and flow pulsatility support the hypothesis of sex-specific trajectories with aging. Therefore, we sought to characterize the rate of changes in MCAv and flow pulsatility across the adult lifespan in females and males as well as within specified age ranges. Participant characteristics, mean arterial pressure, end-tidal carbon dioxide, unilateral MCAv, and flow pulsatility index (PI) were determined from study records compiled from three institutional sites. A total of 524 participants [18-90 yr; females 57 (17) yr, n = 319; males 50 (21) yr, n = 205] were included in the analysis. MCAv was significantly higher in females within the second (P < 0.001), fifth (P = 0.01), and sixth (P < 0.01) decades of life. Flow PI was significantly lower in females within the second decade of life (P < 0.01). Rate of MCAv decline was significantly greater in females than males (-0.39 vs. -0.26 cm s-1·yr, P = 0.04). Rate of flow PI rise was significantly greater in females than males (0.006 vs. 0.003 flow PI, P = 0.01). Rate of MCAv change was significantly greater in females than males in the sixth decade of life (-1.44 vs. 0.13 cm s-1·yr, P = 0.04). These findings indicate that sex significantly contributes to age-related differences in both MCAv and flow PI. Therefore, further investigation into cerebrovascular function within and between sexes is warranted to improve our understanding of the reported sex differences in cerebrovascular disease prevalence.NEW & NOTEWORTHY We present the largest dataset (n = 524) pooled from three institutions to study how age and sex affect middle cerebral artery blood velocity (MCAv) and flow pulsatility index (PI) across the adult lifespan. We report the rate of MCAv decline and flow PI rise is significantly greater in females compared with in males. These data suggest that sex-specific trajectories with aging and therapeutic interventions to promote healthy brain aging should consider these findings.
Collapse
Affiliation(s)
- Mohammed R Alwatban
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas.,Abiomed, Inc., Danvers, Massachusetts
| | - Stacey E Aaron
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Carolyn S Kaufman
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec, Canada
| | - Jaimie L Ward
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Kathleen B Miller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anna J Howery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec, Canada
| | - Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas.,Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
16
|
Kim YS, van der Ster BJP, Brassard P, Secher NH, van Lieshout JJ. Cerebral vs. Cardiovascular Responses to Exercise in Type 2 Diabetic Patients. Front Physiol 2021; 11:583155. [PMID: 33519500 PMCID: PMC7844205 DOI: 10.3389/fphys.2020.583155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The human brain is constantly active and even small limitations to cerebral blood flow (CBF) may be critical for preserving oxygen and substrate supply, e.g., during exercise and hypoxia. Exhaustive exercise evokes a competition for the supply of oxygenated blood between the brain and the working muscles, and inability to increase cardiac output sufficiently during exercise may jeopardize cerebral perfusion of relevance for diabetic patients. The challenge in diabetes care is to optimize metabolic control to slow progression of vascular disease, but likely because of a limited ability to increase cardiac output, these patients perceive aerobic exercise to be more strenuous than healthy subjects and that limits the possibility to apply physical activity as a preventive lifestyle intervention. In this review, we consider the effects of functional activation by exercise on the brain and how it contributes to understanding the control of CBF with the limited exercise tolerance experienced by type 2 diabetic patients. Whether a decline in cerebral oxygenation and thereby reduced neural drive to working muscles plays a role for "central" fatigue during exhaustive exercise is addressed in relation to brain's attenuated vascular response to exercise in type 2 diabetic subjects.
Collapse
Affiliation(s)
- Yu-Sok Kim
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Medisch Centrum Leeuwarden, Leeuwarden, Netherlands
| | - Björn J. P. van der Ster
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Niels H. Secher
- Department of Anesthesia, The Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Johannes J. van Lieshout
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham, United Kingdom
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Miller KB, Gallo SJ, Rivera-Rivera LA, Corkery AT, Howery AJ, Johnson SC, Rowley HA, Wieben O, Barnes JN. Vertebral artery hypoplasia influences age-related differences in blood flow of the large intracranial arteries. AGING BRAIN 2021; 1:100019. [PMID: 36911510 PMCID: PMC9997135 DOI: 10.1016/j.nbas.2021.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Our purpose was to compare cerebral blood flow in the large intracranial vessels between healthy adults with (VAH+) and without (No VAH) vertebral artery hypoplasia. We also evaluated age-related differences in regional blood flow through the large cerebral arteries. Healthy young (n = 20; age = 25 ± 3 years) and older adults (n = 19; age = 61 ± 5 years) underwent 4D flow MRI scans to evaluate blood flow in the internal carotid arteries (ICA) and basilar artery (BA). VAH was determined retrospectively from 4D flow MRI using both structural (vessel diameter ≤ 2 mm) and flow criteria (flow ≤ 50 mL/min). We identified 5 young and 5 older adults with unilateral VAH (prevalence = 26%). ICA flow was lower in the VAH+ group compared with the No VAH group (367 ± 75 mL/min vs. 432 ± 92 mL/min, respectively; p < 0.05). There was no difference in BA flow between VAH+ and No VAH (110 ± 20 mL/min vs. 126 ± 40 mL/min, respectively; p = 0.24). When comparing age-related differences in blood flow in the No VAH group, older adults demonstrated lower BA flow compared with young adults (111 ± 38 mL/min vs. 140 ± 38 mL/min, respectively; p < 0.05) but not ICA flow (428 ± 89 mL/min vs. 436 ± 98 mL/min, respectively; p = 0.82). In contrast, in the VAH+ group, older adults had lower ICA flow compared with young adults (312 ± 65 mL/min vs. 421 ± 35 mL/min, respectively; p < 0.01), but not BA flow (104 ± 16 mL/min vs. 117 ± 23 mL/min, respectively; p = 0.32). Our results suggest that the presence of VAH is associated with lower ICA blood flow. Furthermore, VAH may contribute to the variability in the age-related differences in cerebral blood flow in healthy adults.
Collapse
Affiliation(s)
- Kathleen B Miller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel J Gallo
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Adam T Corkery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna J Howery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Whitaker AA, Alwatban M, Freemyer A, Perales-Puchalt J, Billinger SA. Effects of high intensity interval exercise on cerebrovascular function: A systematic review. PLoS One 2020; 15:e0241248. [PMID: 33119691 PMCID: PMC7595421 DOI: 10.1371/journal.pone.0241248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022] Open
Abstract
High intensity interval exercise (HIIE) improves aerobic fitness with decreased exercise time compared to moderate continuous exercise. A gap in knowledge exists regarding the effects of HIIE on cerebrovascular function such as cerebral blood velocity and autoregulation. The objective of this systematic review was to ascertain the effect of HIIE on cerebrovascular function in healthy individuals. We searched PubMed and the Cumulative Index to Nursing and Allied Health Literature databases with apriori key words. We followed the Preferred Reporting Items for Systematic Reviews. Twenty articles were screened and thirteen articles were excluded due to not meeting the apriori inclusion criteria. Seven articles were reviewed via the modified Sackett’s quality evaluation. Outcomes included middle cerebral artery blood velocity (MCAv) (n = 4), dynamic cerebral autoregulation (dCA) (n = 2), cerebral de/oxygenated hemoglobin (n = 2), cerebrovascular reactivity to carbon dioxide (CO2) (n = 2) and cerebrovascular conductance/resistance index (n = 1). Quality review was moderate with 3/7 to 5/7 quality criteria met. HIIE acutely lowered exercise MCAv compared to moderate intensity. HIIE decreased dCA phase following acute and chronic exercise compared to rest. HIIE acutely increased de/oxygenated hemoglobin compared to rest. HIIE acutely decreased cerebrovascular reactivity to higher CO2 compared to rest and moderate intensity. The acute and chronic effects of HIIE on cerebrovascular function vary depending on the outcomes measured. Therefore, future research is needed to confirm the effects of HIIE on cerebrovascular function in healthy individuals and better understand the effects in individuals with chronic conditions. In order to conduct rigorous systematic reviews in the future, we recommend assessing MCAv, dCA and CO2 reactivity during and post HIIE.
Collapse
Affiliation(s)
- Alicen A. Whitaker
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Mohammed Alwatban
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Andrea Freemyer
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Jaime Perales-Puchalt
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Sandra A. Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail:
| |
Collapse
|
19
|
Straehla JP, Warren KE. Pharmacokinetic Principles and Their Application to Central Nervous System Tumors. Pharmaceutics 2020; 12:pharmaceutics12100948. [PMID: 33036139 PMCID: PMC7601100 DOI: 10.3390/pharmaceutics12100948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/13/2023] Open
Abstract
Despite increasing knowledge of the biologic drivers of central nervous system tumors, most targeted agents trialed to date have not shown activity against these tumors in clinical trials. To effectively treat central nervous system tumors, an active drug must achieve and maintain an effective exposure at the tumor site for a long enough period of time to exert its intended effect. However, this is difficult to assess and achieve due to the constraints of drug delivery to the central nervous system. To address this complex problem, an understanding of pharmacokinetic principles is necessary. Pharmacokinetics is classically described as the quantitative study of drug absorption, distribution, metabolism, and elimination. The innate chemical properties of a drug, its administration (dose, route and schedule), and host factors all influence these four key pharmacokinetic phases. The central nervous system adds a level of complexity to standard plasma pharmacokinetics as it is a coupled drug compartment. This review will discuss special considerations of pharmacokinetics in the context of therapeutic development for central nervous system tumors.
Collapse
Affiliation(s)
- Joelle P. Straehla
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA;
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Katherine E. Warren
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-617-632-2680
| |
Collapse
|
20
|
Skattebo Ø, Calbet JAL, Rud B, Capelli C, Hallén J. Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol (Oxf) 2020; 230:e13486. [PMID: 32365270 PMCID: PMC7540168 DOI: 10.1111/apha.13486] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
We analysed the importance of systemic and peripheral arteriovenous O2 difference (
a-v¯O2 difference and a‐vfO2 difference, respectively) and O2 extraction fraction for maximal oxygen uptake (
V˙O2max). Fick law of diffusion and the Piiper and Scheid model were applied to investigate whether diffusion versus perfusion limitations vary with
V˙O2max. Articles (n = 17) publishing individual data (n = 154) on
V˙O2max, maximal cardiac output (
Q˙max; indicator‐dilution or the Fick method),
a-v¯O2 difference (catheters or the Fick equation) and systemic O2 extraction fraction were identified. For the peripheral responses, group‐mean data (articles: n = 27; subjects: n = 234) on leg blood flow (LBF; thermodilution), a‐vfO2 difference and O2 extraction fraction (arterial and femoral venous catheters) were obtained.
Q˙max and two‐LBF increased linearly by 4.9‐6.0 L · min–1 per 1 L · min–1 increase in
V˙O2max (R2 = .73 and R2 = .67, respectively; both P < .001). The
a-v¯O2 difference increased from 118‐168 mL · L–1 from a
V˙O2max of 2‐4.5 L · min–1 followed by a reduction (second‐order polynomial: R2 = .27). After accounting for a hypoxemia‐induced decrease in arterial O2 content with increasing
V˙O2max (R2 = .17; P < .001), systemic O2 extraction fraction increased up to ~90% (
V˙O2max: 4.5 L · min–1) with no further change (exponential decay model: R2 = .42). Likewise, leg O2 extraction fraction increased with
V˙O2max to approach a maximal value of ~90‐95% (R2 = .83). Muscle O2 diffusing capacity and the equilibration index Y increased linearly with
V˙O2max (R2 = .77 and R2 = .31, respectively; both P < .01), reflecting decreasing O2 diffusional limitations and accentuating O2 delivery limitations. In conclusion, although O2 delivery is the main limiting factor to
V˙O2max, enhanced O2 extraction fraction (≥90%) contributes to the remarkably high
V˙O2max in endurance‐trained individuals.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Jose A. L. Calbet
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
| | - Bjarne Rud
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Carlo Capelli
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Jostein Hallén
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
21
|
Triantafyllou GA, Dipla K, Triantafyllou A, Gkaliagkousi E, Douma S. Measurement and Changes in Cerebral Oxygenation and Blood Flow at Rest and During Exercise in Normotensive and Hypertensive Individuals. Curr Hypertens Rep 2020; 22:71. [PMID: 32852614 DOI: 10.1007/s11906-020-01075-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Summarize the methods used for measurement of cerebral blood flow and oxygenation; describe the effects of hypertension on cerebral blood flow and oxygenation. RECENT FINDINGS Information regarding the effects of hypertension on cerebrovascular circulation during exercise is very limited, despite a plethora of methods to help with its assessment. In normotensive individuals performing incremental exercise testing, total blood flow to the brain increases. In contrast, the few studies performed in hypertensive patients suggest a smaller increase in cerebral blood flow, despite higher blood pressure levels. Endothelial dysfunction and increased vasoconstrictor concentration, as well as large vessel atherosclerosis and decreased small vessel number, have been proposed as the underlying mechanisms. Hypertension may adversely impact oxygen and blood delivery to the brain, both at rest and during exercise. Future studies should utilize the newer, noninvasive techniques to better characterize the interplay between the brain and exercise in hypertension.
Collapse
Affiliation(s)
- Georgios A Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62122, Serres, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece.
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece
| |
Collapse
|
22
|
Moeini M, Cloutier-Tremblay C, Lu X, Kakkar A, Lesage F. Cerebral tissue pO 2 response to treadmill exercise in awake mice. Sci Rep 2020; 10:13358. [PMID: 32770089 PMCID: PMC7414913 DOI: 10.1038/s41598-020-70413-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
We exploited two-photon microscopy and Doppler optical coherence tomography to examine the cerebral blood flow and tissue pO2 response to forced treadmill exercise in awake mice. To our knowledge, this is the first study performing both direct measure of brain tissue pO2 during acute forced exercise and underlying microvascular response at capillary and non-capillary levels. We observed that cerebral perfusion and oxygenation are enhanced during running at 5 m/min compared to rest. At faster running speeds (10 and 15 m/min), decreasing trends in arteriolar and capillary flow speed were observed, which could be due to cerebral autoregulation and constriction of arterioles in response to blood pressure increase. However, tissue pO2 was maintained, likely due to an increase in RBC linear density. Higher cerebral oxygenation at exercise levels 5–15 m/min suggests beneficial effects of exercise in situations where oxygen delivery to the brain is compromised, such as in aging, atherosclerosis and Alzheimer Disease.
Collapse
Affiliation(s)
- Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Christophe Cloutier-Tremblay
- Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
| | - Xuecong Lu
- Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Frédéric Lesage
- Research Center of Montreal Heart Institute, Montréal, QC, Canada. .,Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada.
| |
Collapse
|
23
|
Klein T, Bailey TG, Wollseiffen P, Schneider S, Askew CD. The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions. Physiol Rep 2020; 8:e14421. [PMID: 32378357 PMCID: PMC7202987 DOI: 10.14814/phy2.14421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Aging is associated with impaired cerebrovascular blood flow and function, attributed to reduced vasodilatory capacity of the cerebrovascular network. Older adults may also have an impaired relationship between changes in blood pressure and cerebral blood flow; however, previous reports conflict. This study aimed to compare the blood pressure and cerebral blood flow responses to both repeated and sustained stand-to-sit transitions in young and older adults, and to assess the relationship with cerebrovascular reactivity. METHODS In 20 young (age: 24 ± 4 years) and 20 older (age: 71 ± 7 years) adults we compared middle cerebral artery flow velocity (MCAv), end-tidal partial pressure of carbon dioxide (PET CO2 ), and blood pressure (mean arterial blood pressure [MAP]) during repeated stand-to-sit (10 s standing and 10 s sitting) and sustained stand-to-sit (3 min standing followed by 2 min sitting) transitions. Cerebrovascular reactivity to changes in carbon dioxide levels was assessed using a repeated breath-hold test. RESULTS The % change in MCAv per % change in MAP (%∆MCAv/%∆MAP) was higher in the older adults than in the young adults during repeated stand-to-sit transitions. During the sustained protocol the %∆MCAv/%∆MAP response was similar in both age groups. A high %∆MCAv/%∆MAP response during the repeated stand-to-sit protocol was associated with low cerebrovascular reactivity to CO2 (r = -.39; p < .01), which was significantly lower in the older adults. CONCLUSION These findings suggest that the higher %∆MCAv/%∆MAP during repeated stand-sit transitions was associated with impaired cerebrovascular reactivity. Impairments in endothelial function and vascular stiffness with age may contribute to the altered transient cerebral pressure-flow responses in older adults.
Collapse
Affiliation(s)
- Timo Klein
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Institute of Movement and NeuroscienceGerman Sport University CologneCologneGermany
| | - Tom G. Bailey
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Centre for Research on ExercisePhysical Activity and HealthSchool of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Petra Wollseiffen
- Institute of Movement and NeuroscienceGerman Sport University CologneCologneGermany
| | - Stefan Schneider
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Institute of Movement and NeuroscienceGerman Sport University CologneCologneGermany
| | - Christopher D. Askew
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Sunshine Coast Health InstituteSunshine Coast Hospital and Health ServiceBirtinyaQLDAustralia
| |
Collapse
|
24
|
Abstract
People undertaking prolonged vigorous exercise experience substantial bodily fluid losses due to thermoregulatory sweating. If these fluid losses are not replaced, endurance capacity may be impaired in association with a myriad of alterations in physiological function, including hyperthermia, hyperventilation, cardiovascular strain with reductions in brain, skeletal muscle and skin blood perfusion, greater reliance on muscle glycogen and cellular metabolism, alterations in neural activity and, in some conditions, compromised muscle metabolism and aerobic capacity. The physiological strain accompanying progressive exercise-induced dehydration to a level of ~ 4% of body mass loss can be attenuated or even prevented by: (1) ingesting fluids during exercise, (2) exercising in cold environments, and/or (3) working at intensities that require a small fraction of the overall body functional capacity. The impact of dehydration upon physiological function therefore depends on the functional demand evoked by exercise and environmental stress, as cardiac output, limb blood perfusion and muscle metabolism are stable or increase during small muscle mass exercise or resting conditions, but are impaired during whole-body moderate to intense exercise. Progressive dehydration is also associated with an accelerated drop in perfusion and oxygen supply to the human brain during submaximal and maximal endurance exercise. Yet their consequences on aerobic metabolism are greater in the exercising muscles because of the much smaller functional oxygen extraction reserve. This review describes how dehydration differentially impacts physiological function during exercise requiring low compared to high functional demand, with an emphasis on the responses of the human brain, heart and skeletal muscles.
Collapse
|
25
|
Hussein A, Matthews JL, Syme C, Macgowan C, MacIntosh BJ, Shirzadi Z, Pausova Z, Paus T, Chen JJ. The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults. Hum Brain Mapp 2020; 41:2121-2135. [PMID: 32034832 PMCID: PMC7268071 DOI: 10.1002/hbm.24934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (rs‐fMRI) is frequently used to study brain function; but, it is unclear whether BOLD‐signal fluctuation amplitude and functional connectivity are associated with vascular factors, and how vascular‐health factors are reflected in rs‐fMRI metrics in the healthy population. As arterial stiffening is a known age‐related cardiovascular risk factor, we investigated the associations between aortic stiffening (as measured using pulse‐wave velocity [PWV]) and rs‐fMRI metrics. We used cardiac MRI to measure aortic PWV (an established indicator of whole‐body vascular stiffness), as well as dual‐echo pseudo‐continuous arterial‐spin labeling to measure BOLD and CBF dynamics simultaneously in a group of generally healthy adults. We found that: (1) higher aortic PWV is associated with lower variance in the resting‐state BOLD signal; (2) higher PWV is also associated with lower BOLD‐based resting‐state functional connectivity; (3) regions showing lower connectivity do not fully overlap with those showing lower BOLD variance with higher PWV; (4) CBF signal variance is a significant mediator of the above findings, only when averaged across regions‐of‐interest. Furthermore, we found no significant association between BOLD signal variance and systolic blood pressure, which is also a known predictor of vascular stiffness. Age‐related vascular stiffness, as measured by PWV, provides a unique scenario to demonstrate the extent of vascular bias in rs‐fMRI signal fluctuations and functional connectivity. These findings suggest that a substantial portion of age‐related rs‐fMRI differences may be driven by vascular effects rather than directly by brain function.
Collapse
Affiliation(s)
- Ahmad Hussein
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Jacob L Matthews
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Catriona Syme
- SickKids Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Christopher Macgowan
- SickKids Hospital, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Zahra Shirzadi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Zdenka Pausova
- SickKids Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Tomáš Paus
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Caldwell HG, Coombs GB, Howe CA, Hoiland RL, Patrician A, Lucas SJ, Ainslie PN. Evidence for temperature‐mediated regional increases in cerebral blood flow during exercise. J Physiol 2020; 598:1459-1473. [DOI: 10.1113/jp278827] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hannah G. Caldwell
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Geoff B. Coombs
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Connor A. Howe
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Ryan L. Hoiland
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Alexander Patrician
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Samuel J.E. Lucas
- School of Sport Exercise and Rehabilitation Sciences & Centre for Human Brain Health University of Birmingham Birmingham UK
| | - Philip N. Ainslie
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| |
Collapse
|
27
|
Pilot study utilizing MRI 3D TGSE PASL (arterial spin labeling) differentiating clearance rates of labeled protons in the CNS of patients with early Alzheimer disease from normal subjects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:559-568. [DOI: 10.1007/s10334-019-00818-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023]
|
28
|
Lassila T, Sarrami-Foroushani A, Hejazi S, Frangi AF. Population-specific modelling of between/within-subject flow variability in the carotid arteries of the elderly. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3271. [PMID: 31691518 DOI: 10.1002/cnm.3271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/12/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Computational fluid dynamics models are increasingly proposed for assisting the diagnosis and management of vascular diseases. Ideally, patient-specific flow measurements are used to impose flow boundary conditions. When patient-specific flow measurements are unavailable, mean values of flow measurements across small cohorts are used as normative values. In reality, both the between-subjects and within-subject flow variabilities are large. Consequently, neither one-shot flow measurements nor mean values across a cohort are truly indicative of the flow regime in a given person. We develop models for both the between-subjects and within-subject variability of internal carotid flow. A log-linear mixed effects model is combined with a Gaussian process to model the between-subjects flow variability, while a lumped parameter model of cerebral autoregulation is used to model the within-subject flow variability in response to heart rate and blood pressure changes. The model parameters are identified from carotid ultrasound measurements in a cohort of 103 elderly volunteers. We use the models to study intracranial aneurysm flow in 54 subjects under rest and exercise and conclude that OSI, a common wall shear-stress derived quantity in vascular CFD studies, may be too sensitive to flow fluctuations to be a reliable biomarker.
Collapse
Affiliation(s)
- Toni Lassila
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| | - Ali Sarrami-Foroushani
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| | - SeyedMostafa Hejazi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds
| |
Collapse
|
29
|
Alwatban MR, Liu Y, Perdomo SJ, Ward JL, Vidoni ED, Burns JM, Billinger SA. TCD Cerebral Hemodynamic Changes during Moderate-Intensity Exercise in Older Adults. J Neuroimaging 2020; 30:76-81. [PMID: 31750593 PMCID: PMC6954976 DOI: 10.1111/jon.12675] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Exercise plays an important role in supporting overall brain health. However, the mechanisms by which exercise supports brain health are imprecisely defined. Further, brain hemodynamic changes during exercise are not clearly understood, especially in older adults. The primary aim of this study was to compare cerebral blood flow velocity and pulsatility index (PI) during moderate-intensity exercise between older adults with normal pulsatile flow (normal PI) and older adults with elevated pulsatile flow (elevated PI). Secondary aims were to compare cardiovascular disease risk and cognitive function between individuals with elevated and nonelevated PI. METHODS Using transcranial Doppler ultrasound (TCD), middle cerebral artery blood velocity (MCAv) and PI were recorded during the rest and moderate-intensity exercise. End tidal carbon dioxide (PET CO2 ) and beat-to-beat mean arterial blood pressure were also recorded. RESULTS We enrolled 104 older adults into the study. The change in PI was greater in normal PI group (35.5% vs. 21.3%, P = .005). The change in MCAv was similar in both groups (11.6% for normal PI vs. 10.6% for elevated PI; P = .22). There was no significant difference in cardiovascular disease risk between the two groups (P = .77). Individuals with elevated PI performed significantly worse in WAIS-R Digit Symbol and Trail Making Test A (P = .04 and = .01, respectively). CONCLUSIONS The percent increase in PI from rest to moderate-intensity exercise was attenuated in the older adults with elevated resting PI. Higher resting PI may negatively affect brain health as evidenced by the slower processing speed scores.
Collapse
Affiliation(s)
- Mohammed R. Alwatban
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS USA
| | - Yumei Liu
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS USA
- Department of Vascular Ultrasonography, Xuanwu Hospital the Capital Medical University, Beijing China
| | - Sophy J. Perdomo
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS USA
| | - Jaimie L. Ward
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS USA
| | - Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Center, Fairway, KS USA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Center, Fairway, KS USA
| | - Sandra A. Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS USA
| |
Collapse
|
30
|
Atwi S, Robertson AD, Theyers AE, Ramirez J, Swartz RH, Marzolini S, MacIntosh BJ. Cardiac-Related Pulsatility in the Insula Is Directly Associated With Middle Cerebral Artery Pulsatility Index. J Magn Reson Imaging 2019; 51:1454-1462. [PMID: 31667941 DOI: 10.1002/jmri.26950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arterial stiffness in large arteries is a risk factor for cerebral small vessel disease and neurodegeneration. The challenge of accessing intracranial pulsatility noninvasively is one reason few studies provide empirical insight on the relationship between large artery and tissue pulsatility in the human brain. PURPOSE To investigate the association between the functional magnetic resonance imaging (fMRI)-derived cardiac-related pulsatility in the insular cortex and the ultrasound-derived pulsatility index in the middle cerebral artery (MCA-PI). STUDY TYPE Cross-sectional. POPULATION Younger adults (11; 25 ± 4 years) and older adults with and without cardiovascular risk factors (44; 70 ± 6 years). FIELD STRENGTH/SEQUENCE T1 -weighted, fluid attenuated inversion recovery, and T2 *-weighted blood oxygenation level-dependent (BOLD) sequences at 3T. ASSESSMENT MCA-PI and cardiac-related pulsatility were assessed at rest by transcranial Doppler ultrasound and BOLD fMRI, respectively. STATISTICAL TESTS Multivariate analyses of covariance between MCA-PI and cardiac-related pulsatility. Analysis of variance was used to assess regional differences. RESULTS MCA-PI was associated with cardiac-related insular pulsatility (P = 0.037), but not whole-brain pulsatility (P = 0.81). Left insular pulsatility was higher than right insular pulsatility (P < 0.01) and was associated with diastolic blood pressure (P = 0.028). DATA CONCLUSION We show a correlation between ultrasound and fMRI measures of cerebrovascular pulsatility. This association provides insight into the transmission of pulsatile energy from large basal arteries at the Circle of Willis to downstream cerebrovascular beds and has implications for the utility of cardiac-related pulsatility as a potential marker for cerebral small vessel disease. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:1454-1462.
Collapse
Affiliation(s)
- Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Andrew D Robertson
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Athena E Theyers
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Richard H Swartz
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Susan Marzolini
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Toronto Rehab, University Health Network, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
31
|
Examination of a New Delivery Approach for Oral Cannabidiol in Healthy Subjects: A Randomized, Double-Blinded, Placebo-Controlled Pharmacokinetics Study. Adv Ther 2019; 36:3196-3210. [PMID: 31512143 DOI: 10.1007/s12325-019-01074-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Therapeutic effects of cannabidiol (CBD) in specialized populations continue to emerge. Despite supra-physiological dosing being shown to be tolerable in various pathologies, optimization of CBD absorption has obvious benefits for general health and recreational usage. Our objectives were to: (1) to investigate a joint pharmacokinetic-physiological time course of multiple recreational-equivalent (< 100 mg) dosages of oral CBD in young healthy adults and (2) evaluate a newly developed technology (TurboCBD™) for the enhanced delivery of CBD. METHODS In a double-blinded, placebo-controlled, cross-over design, 12 participants received placebo, generic 45 or 90 mg of CBD, or TurboCBD™ delivery technology capsules on five separate occasions. RESULTS Although there were no differences in the 45 mg conditions, circulating CBD levels were higher with the TurboCBD™ 90 mg group at both 90 (+ 86%) and 120 (+ 65%) min compared with the 90 mg control (p < 0.05). Total area under the curve tended to be higher with TurboCBD™ 90 mg compared with 90 mg (10,865 ± 6322 ng ml-1 vs. 7114 ± 2978 ng ml-1; p = 0.088). Only the TurboCBD™ 90 mg dose was elevated greater than placebo at 30 min (p = 0.017) and remained elevated at 4 h (p = 0.002). CONCLUSION Consistent with higher bioavailability, TurboCBD™ 90 mg at the peak CBD concentration was associated with an increase in cerebral perfusion and slight reduction in blood pressure compared with baseline and the 90 mg control. Further studies are needed to establish the mechanisms of action of this technology and to explore the therapeutic potential of acute and chronic dosing on more at-risk populations. FUNDING Lexaria Bioscience Corp. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT03295903.
Collapse
|
32
|
Blazey T, Snyder AZ, Su Y, Goyal MS, Lee JJ, Vlassenko AG, Arbeláez AM, Raichle ME. Quantitative positron emission tomography reveals regional differences in aerobic glycolysis within the human brain. J Cereb Blood Flow Metab 2019; 39:2096-2102. [PMID: 29569986 PMCID: PMC6775584 DOI: 10.1177/0271678x18767005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucose and oxygen metabolism are tightly coupled in the human brain, with the preponderance of the brain's glucose supply used to generate ATP via oxidative phosphorylation. A fraction of glucose is consumed outside of oxidative phosphorylation despite the presence of sufficient oxygen to do so. We refer to this process as aerobic glycolysis. A recent positron emission tomography study reported that aerobic glycolysis is uniform within gray matter. Here, we analyze the same data and demonstrate robust regional differences in aerobic glycolysis within gray matter, a finding consistent with previously published data.
Collapse
Affiliation(s)
- Tyler Blazey
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO, USA.,Department of Neurology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Yi Su
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Manu S Goyal
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO, USA.,Department of Neurology, School of Medicine, Washington University, St. Louis, MO, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Andrei G Vlassenko
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Ana Maria Arbeláez
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Marcus E Raichle
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO, USA.,Department of Neurology, School of Medicine, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
33
|
Zlatar ZZ, Hays CC, Mestre Z, Campbell LM, Meloy MJ, Bangen KJ, Liu TT, Kerr J, Wierenga CE. Dose-dependent association of accelerometer-measured physical activity and sedentary time with brain perfusion in aging. Exp Gerontol 2019; 125:110679. [PMID: 31382010 PMCID: PMC6719795 DOI: 10.1016/j.exger.2019.110679] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Age-related decreases in cerebral blood flow (CBF) may lead to cognitive decline, while physical activity (PA) can maintain CBF and cognition in aging. The intensity of PA needed to affect CBF in aging, and the independent effects of sedentary time on CBF are currently unknown. Moreover, research conducted in free-living environments with objective measures of PA (e.g., accelerometry) is lacking. METHODS This cross-sectional study used accelerometry to objectively measure sedentary time, all light PA [AllLightPA], moderate-to-vigorous PA [MVPA], and total activity counts [TAC] in 52 cognitively healthy older adults. Robust linear regressions investigated the association of CBF (using arterial spin labeling magnetic resonance imaging) in frontal and medial temporal regions, with each PA intensity and sedentary time. RESULTS Greater sedentary time was significantly associated with lower CBF in lateral and medial frontal regions after adjusting for MVPA, while higher AllLightPA (adjusted for MVPA), MVPA (adjusted for AllLightPA), and TAC were associated with greater CBF in lateral and medial frontal regions. DISCUSSION Lighter activities, as well as MVPA, are beneficial to CBF in brain regions typically affected by the aging process and malleable to exercise interventions (i.e., the frontal lobes), whereas sedentary time is an independent risk factor for neurovascular dysregulation in normal aging.
Collapse
Affiliation(s)
- Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA.
| | - Chelsea C Hays
- San Diego State University, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92093, USA
| | - Zoe Mestre
- San Diego State University, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92093, USA
| | - Laura M Campbell
- San Diego State University, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92093, USA
| | - M J Meloy
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA
| | - Katherine J Bangen
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego 92161, USA
| | - Thomas T Liu
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093. USA; Deaprtment of Bioengineering, University of California, San Diego, La Jolla, CA 92093. USA
| | - Jacqueline Kerr
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093. USA
| | - Christina E Wierenga
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093. USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego 92161, USA
| |
Collapse
|
34
|
Intracranial Vascular Responses to High-Intensity Interval Exercise and Moderate-Intensity Steady-State Exercise in Children. Pediatr Exerc Sci 2019; 31:290-295. [PMID: 30832540 DOI: 10.1123/pes.2018-0234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/14/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To understand the extent different types of acute exercise influence cerebral blood flow during and following exercise in children. METHODS Eight children (7-11 y; 4 girls) completed 2 conditions: high-intensity interval exercise (HIIE; 6 × 1-min sprints at 90% watt maximum) and moderate-intensity steady-state exercise (MISS; 15 min at 44% watt maximum). Blood velocity in the middle cerebral artery (MCAV) and heart rate were assessed continuously. The partial pressure of end-tidal carbon dioxide and mean arterial pressure were assessed at baseline and following exercise. RESULTS Percentage of maximum heart rate during HIIE was 82% (4%), compared with 69% (4%) during MISS. MCAV was increased above baseline in MISS after 75 seconds (5.8% [3.9%], P × .004) but was unchanged during HIIE. MCAV was reduced below baseline (-10.7% [4.1%], P × .004) during the sixth sprint of HIIE. In both conditions, MCAV remained below baseline postexercise, but returned to baseline values 30-minute postexercise (P < .001). A postexercise increase in mean arterial pressure was apparent following HIIE and MISS, and persisted 30-minute postexercise. Partial pressure of end-tidal carbon dioxide declined post HIIE (-3.4 mm Hg, P < .05), but not following MISS. CONCLUSION These preliminary findings show HIIE and MISS elicit differing intracranial vascular responses; however, research is needed to elucidate the implications and underlying regulatory mechanisms of these responses.
Collapse
|
35
|
Cabral DF, Rice J, Morris TP, Rundek T, Pascual-Leone A, Gomes-Osman J. Exercise for Brain Health: An Investigation into the Underlying Mechanisms Guided by Dose. Neurotherapeutics 2019; 16:580-599. [PMID: 31197642 PMCID: PMC6694330 DOI: 10.1007/s13311-019-00749-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a strong link between the practice of regular physical exercise and maintenance of cognitive brain health. Animal and human studies have shown that exercise exerts positive effects on cognition through a variety of mechanisms, such as changes in brain volume and connectivity, cerebral perfusion, synaptic plasticity, neurogenesis, and regulation of trophic factors. However, much of this data has been conducted in young humans and animals, raising questions regarding the generalizability of these findings to aging adults. Furthermore, it is not clear at which doses these effects might take place, and if effects would differ with varying exercise modes (such as aerobic, resistance training, combinations, or other). The purpose of this review is to summarize the evidence on the effects of exercise interventions on various mechanisms believed to support cognitive improvements: cerebral perfusion, synaptic neuroplasticity, brain volume and connectivity, neurogenesis, and regulation of trophic factors. We synthesized the findings according to exposure to exercise (short- [1 day-16 weeks], medium- [24-40 weeks], and long-term exercise [52 weeks and beyond]) and have limited our discussion of dose effects to studies in aging adults and aged animals (when human data was not available).
Collapse
Affiliation(s)
- Danylo F Cabral
- Department of Physical Therapy, University of Miami Miller School of Medicine, 5915 Ponce de Leon Boulevard, 5th Floor, Coral Gables, Florida, 33146, USA
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, 1150 Northwest 14th Street, Suite 309, Miami, Florida, 33136, USA
| | - Jordyn Rice
- Department of Physical Therapy, University of Miami Miller School of Medicine, 5915 Ponce de Leon Boulevard, 5th Floor, Coral Gables, Florida, 33146, USA
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, 1150 Northwest 14th Street, Suite 309, Miami, Florida, 33136, USA
| | - Timothy P Morris
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, USA
| | - Tatjana Rundek
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, 1150 Northwest 14th Street, Suite 309, Miami, Florida, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1150 Northwest 14th Street, Suite 309, Miami, Florida, 33136, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, USA
| | - Joyce Gomes-Osman
- Department of Physical Therapy, University of Miami Miller School of Medicine, 5915 Ponce de Leon Boulevard, 5th Floor, Coral Gables, Florida, 33146, USA.
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, 1150 Northwest 14th Street, Suite 309, Miami, Florida, 33136, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, USA.
- Department of Neurology, University of Miami Miller School of Medicine, 1150 Northwest 14th Street, Suite 309, Miami, Florida, 33136, USA.
| |
Collapse
|
36
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Zeydan B, Schwarz CG, Lowe VJ, Reid RI, Przybelski SA, Lesnick TG, Kremers WK, Senjem ML, Gunter JL, Min H, Vemuri P, Knopman DS, Petersen RC, Jack CR, Kantarci OH, Kantarci K. Investigation of white matter PiB uptake as a marker of white matter integrity. Ann Clin Transl Neurol 2019; 6:678-688. [PMID: 31019992 PMCID: PMC6469255 DOI: 10.1002/acn3.741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/14/2019] [Accepted: 02/03/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To investigate the associations of Pittsburgh compound-B (PiB) uptake in white matter hyperintensities (WMH) and normal appearing white matter (NAWM) with white matter (WM) integrity measured with DTI and cognitive function in cognitively unimpaired older adults. METHODS Cognitively unimpaired older adults from the population-based Mayo Clinic Study of Aging (n = 537, age 65-95) who underwent both PiB PET and DTI were included. The associations of WM PiB standard uptake value ratio (SUVr) with fractional anisotropy (FA) and mean diffusivity (MD) in the WMH and NAWM were tested after adjusting for age. The associations of PiB SUVr with cognitive function z-scores were tested after adjusting for age and global cortical PiB SUVr. RESULTS The WMH PiB SUVr was lower than NAWM PiB SUVr (P < 0.001). In the WMH, lower PiB SUVr correlated with lower FA (r = 0.21, P < 0.001), and higher MD (r = -0.31, P < 0.001). In the NAWM, lower PiB SUVr only correlated with higher MD (r = -0.10, P = 0.02). Both in the WMH and NAWM, lower PiB SUVr was associated with lower memory, language, and global cognitive function z-scores after adjusting for age and global cortical PiB SUVr. INTERPRETATION Reduced PiB uptake in the WMH is associated with a loss of WM integrity and cognitive function after accounting for the global cortical PiB uptake, suggesting that WM PiB uptake may be an early biomarker of WM integrity that precedes cognitive impairment in older adults. When using WM as a reference region in cross-sectional analysis of PiB SUVr, individual variability in WMH volume as well as age should be considered.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of RadiologyMayo ClinicRochesterMinnesota
- Department of NeurologyMayo ClinicRochesterMinnesota
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesota
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesota
| | - Robert I. Reid
- Department of Information TechnologyMayo ClinicRochesterMinnesota
| | | | | | | | - Matthew L. Senjem
- Department of RadiologyMayo ClinicRochesterMinnesota
- Department of Information TechnologyMayo ClinicRochesterMinnesota
| | - Jeffrey L. Gunter
- Department of RadiologyMayo ClinicRochesterMinnesota
- Department of Information TechnologyMayo ClinicRochesterMinnesota
| | - Hoon‐Ki Min
- Department of RadiologyMayo ClinicRochesterMinnesota
| | | | | | | | | | - Orhun H. Kantarci
- Department of NeurologyMayo ClinicRochesterMinnesota
- Center for Multiple Sclerosis and Autoimmune NeurologyMayo ClinicRochesterMinnesota
| | | |
Collapse
|
38
|
Scianni AA, Faria GSE, Silva JSD, Benfica PDA, Faria CDCDM. Efeitos do exercício físico no sistema nervoso do indivíduo idoso e suas consequências funcionais. REVISTA BRASILEIRA DE CIÊNCIAS DO ESPORTE 2019. [DOI: 10.1016/j.rbce.2018.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
39
|
Nowak-Flück D, Ainslie PN, Bain AR, Ahmed A, Wildfong KW, Morris LE, Phillips AA, Fisher JP. Effect of healthy aging on cerebral blood flow, CO2 reactivity, and neurovascular coupling during exercise. J Appl Physiol (1985) 2018; 125:1917-1930. [DOI: 10.1152/japplphysiol.00050.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We sought to make the first comparisons of duplex Doppler ultrasonography-derived measures of cerebral blood flow during exercise in young and older individuals and to assess whether healthy aging influences the effect of exercise on neurovascular coupling (NVC) and cerebral vascular reactivity to changes in carbon dioxide (CVRco2). In 10 healthy young (23 ± 2 yr; mean ± SD) and 9 healthy older (66 ± 3 yr) individuals, internal carotid artery (ICA) and vertebral artery (VA) blood flows were concurrently measured, along with middle and posterior cerebral artery mean blood velocity (MCAvmean and PCAvmean). Measures were made at rest and during leg cycling (75 W and 35% maximum aerobic workload). ICA and VA blood flow during dynamic exercise, undertaken at matched absolute (ICA: young 336 ± 95, older 352 ± 155; VA: young 95 ± 43, older 100 ± 30 ml/min) and relative (ICA: young 355 ± 125, older 323 ± 153; VA: young 115 ± 48, older 110 ± 32 ml/min) intensities, were not different between groups ( P > 0.670). The PCAvmean responses to visual stimulation (NVC) were blunted in older versus younger group at rest (16 ± 6% vs. 23 ± 7%, P < 0.026) and exercise; however, these responses were not changed from rest to exercise in either group. The ICA and VA CVRco2 were comparable in both groups and unaltered during exercise. Collectively, our findings suggest that 1) ICA and VA blood flow responses to dynamic exercise are similar in healthy young and older individuals, 2) NVC is blunted in healthy older individuals at rest and exercise but is not different between rest to exercise in either group, and 3) CVRco2 is similar during exercise in healthy young and older groups. NEW & NOTEWORTHY Internal carotid artery and vertebral artery blood flow responses to dynamic exercise are similar in healthy young and older individuals. Neurovascular coupling and cerebrovascular carbon dioxide reactivity, two key mechanisms mediating the cerebral blood flow responses to exercise, are generally unaffected by exercise in both healthy young and older individuals.
Collapse
Affiliation(s)
- Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Anthony R. Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Amar Ahmed
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kevin W. Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Laura E. Morris
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Aaron A. Phillips
- Departments of Physiology and Pharmacology and Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James P. Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
40
|
Steventon JJ, Hansen AB, Whittaker JR, Wildfong KW, Nowak-Flück D, Tymko MM, Murphy K, Ainslie PN. Cerebrovascular Function in the Large Arteries Is Maintained Following Moderate Intensity Exercise. Front Physiol 2018; 9:1657. [PMID: 30519192 PMCID: PMC6258791 DOI: 10.3389/fphys.2018.01657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023] Open
Abstract
Exercise has been shown to induce cerebrovascular adaptations. However, the underlying temporal dynamics are poorly understood, and regional variation in the vascular response to exercise has been observed in the large cerebral arteries. Here, we sought to measure the cerebrovascular effects of a single 20-min session of moderate-intensity exercise in the one hour period immediately following exercise cessation. We employed transcranial Doppler (TCD) ultrasonography to measure cerebral blood flow velocity (CBFV) in the middle cerebral artery (MCAv) and posterior cerebral artery (PCAv) before, during, and following exercise. Additionally, we simultaneously measured cerebral blood flow (CBF) in the internal carotid artery (ICA) and vertebral artery (VA) before and up to one hour following exercise cessation using Duplex ultrasound. A hypercapnia challenge was used before and after exercise to examine exercise-induced changes in cerebrovascular reactivity (CVR). We found that MCAv and PCAv were significantly elevated during exercise (p = 4.81 × 10-5 and 2.40 × 10-4, respectively). A general linear model revealed that these changes were largely explained by the partial pressure of end-tidal CO2 and not a direct vascular effect of exercise. After exercise cessation, there was no effect of exercise on CBFV or CVR in the intracranial or extracranial arteries (all p > 0.05). Taken together, these data confirm that CBF is rapidly and uniformly regulated following exercise cessation in healthy young males.
Collapse
Affiliation(s)
- Jessica J Steventon
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Alex B Hansen
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Kevin W Wildfong
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Daniela Nowak-Flück
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Phil N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
41
|
McKetton L, Sobczyk O, Duffin J, Poublanc J, Sam K, Crawley AP, Venkatraghavan L, Fisher JA, Mikulis DJ. The aging brain and cerebrovascular reactivity. Neuroimage 2018; 181:132-141. [DOI: 10.1016/j.neuroimage.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/24/2022] Open
|
42
|
Lowe VJ, Lundt ES, Senjem ML, Schwarz CG, Min HK, Przybelski SA, Kantarci K, Knopman D, Petersen RC, Jack CR. White Matter Reference Region in PET Studies of 11C-Pittsburgh Compound B Uptake: Effects of Age and Amyloid-β Deposition. J Nucl Med 2018; 59:1583-1589. [PMID: 29674420 PMCID: PMC6167534 DOI: 10.2967/jnumed.117.204271] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Amyloid-β (Aβ) deposition as seen on PET using an Aβ-binding agent is a critical diagnostic biomarker for Alzheimer disease (AD). Some reports suggest using white matter (WM) as a reference region for quantification of serial Aβ PET studies; however, nonspecific WM retention in Aβ PET in people with dementia or cognitively unimpaired (CU) has been widely reported and is poorly understood. Methods: To investigate the suitability of WM as a reference region and the factors affecting WM 11C-Pittsburgh compound B (11C-PiB) uptake variability, we conducted a retrospective study on 2 large datasets: a longitudinal study of participants (n = 577) who were CU, had mild cognitive impairment, or had dementia likely due to AD; and a cross-sectional study of single-scan PET imaging in CU subjects (n = 1,349). In the longitudinal study, annual changes in WM 11C-PiB uptake were assessed, and in the cross-sectional study, WM 11C-PiB uptake was assessed relative to subject age. Results: Overall, we found that WM 11C-PiB uptake showed age-related increases, which varied with the WM regions selected. Further, variable annual WM 11C-PiB uptake changes were seen with different gray matter (GM) 11C-PiB baseline uptake levels. Conclusion: WM binding increases with age and varies with GM 11C-PiB. These correlations should be considered when using WM for normalization in 11C-PiB PET studies. The cerebellar crus1+crus2 showed no increase with age and cerebellar GM+WM showed minimal increase, supporting their use as reference regions for cross-sectional studies comparing wide age spans. In longitudinal studies, the increase in WM uptake may be minimal in the short-term and thus using WM as a reference region in these studies seems reasonable. However, as participants age, the findings may be affected by changes in WM uptake. Changes in WM 11C-PiB uptake may relate to disease progression, warranting examination of the causes of WM 11C-PiB uptake.
Collapse
Affiliation(s)
- Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Emily S Lundt
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota; and
| | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Scott A Przybelski
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
43
|
Lourenço CF, Ledo A, Caetano M, Barbosa RM, Laranjinha J. Age-Dependent Impairment of Neurovascular and Neurometabolic Coupling in the Hippocampus. Front Physiol 2018; 9:913. [PMID: 30065657 PMCID: PMC6056650 DOI: 10.3389/fphys.2018.00913] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022] Open
Abstract
Neurovascular and neurometabolic coupling are critical and complex processes underlying brain function. Perturbations in the regulation of these processes are, likely, early dysfunctional alterations in pathological brain aging and age-related neurodegeneration. Evidences support the role of nitric oxide (•NO) as a key messenger both in neurovascular coupling, by signaling from neurons to blood vessels, and in neurometabolic coupling, by modulating O2 utilization by mitochondria. In the present study, we investigated the functionality of neurovascular and neurometabolic coupling in connection to •NO signaling and in association to cognitive performance during aging. For this, we performed in vivo simultaneous measurements of •NO, O2 and cerebral blood flow (CBF) in the hippocampus of F344 rats along chronological age in response to glutamatergic activation and in correlation with cognitive performance. Firstly, it is evidenced the temporal sequence of events upon glutamate stimulation of hippocampal dentate gyrus, encompassing the local and transitory increase of •NO followed by transitory local changes of CBF and pO2. Specifically, the transient increase of •NO is followed by an increase of CBF and biphasic changes of the local pO2. We observed that, although the glutamate-induced •NO dynamics were not significantly affected by aging, the correspondent hemodynamic was progressively diminished accompanying a decline in learning and memory. Noteworthy, in spite of a compromised blood supply, in aged rats we observed an increased ΔpO2 associated to the hemodynamic response, suggestive of a decrease in the global metabolic rate of O2. Furthermore, the impairment in the neurovascular coupling observed along aging in F344 rats was mimicked in young rats by promoting an unbalance in redox status toward oxidation via intracellular generation of superoxide radical. This observation strengthens the idea that oxidative stress may have a critical role in the neurovascular uncoupling underlying brain aging and dysfunction. Overall, data supports an impairment of neurovascular response in connection with cognition decline due to oxidative environment-dependent compromised •NO signaling from neurons to vessels during aging.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Miguel Caetano
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Impact of Aging on Endurance and Neuromuscular Physical Performance: The Role of Vascular Senescence. Sports Med 2018; 47:583-598. [PMID: 27459861 DOI: 10.1007/s40279-016-0596-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The portion of society aged ≥60 years is the fastest growing population in the Western hemisphere. Aging is associated with numerous changes to systemic physiology that affect physical function and performance. We present a narrative review of the literature aimed at discussing the age-related changes in various metrics of physical performance (exercise economy, anaerobic threshold, peak oxygen uptake, muscle strength, and power). It also explores aging exercise physiology as it relates to global physical performance. Finally, this review examines the vascular contributions to aging exercise physiology. Numerous studies have shown that older adults exhibit substantial reductions in physical performance. The process of decline in endurance capacity is particularly insidious over the age of 60 years and varies considerably as a function of sex, task specificity, and individual training status. Starting at the age of 50 years, aging also implicates an impressive deterioration of neuromuscular function, affecting muscle strength and power. Muscle atrophy, together with minor deficits in the structure and function of the nervous system and/or impairments in intrinsic muscle quality, plays an important role in the development of neuromotor senescence. Large artery stiffness increases as a function of age, thus triggering subsequent changes in pulsatile hemodynamics and systemic endothelial dysfunction. For this reason, we propose that vascular senescence has a negative impact on cerebral, cardiac, and neuromuscular structure and function, detrimentally affecting physical performance.
Collapse
|
45
|
Stembridge M, Hoiland RL, Bain AR, Barak OF, Drvis I, MacLeod DB, MacLeod DM, Madden D, Batinic T, O'Donoghue P, Shave R, Dujic Z, Ainslie PN. Influence of lung volume on the interaction between cardiac output and cerebrovascular regulation during extreme apnoea. Exp Physiol 2018; 102:1288-1299. [PMID: 28762565 DOI: 10.1113/ep086429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the reduction in cardiac output observed during extreme voluntary apnoea, secondary to high lung volume, result in a reduction in cerebral blood flow, perfusion pressure and oxygen delivery in a group of elite free divers? What is the main finding and its importance? High lung volumes reduce cardiac output and ventricular filling during extreme apnoea, but changes in cerebral blood flow are observed only transiently during the early stages of apnoea. This reveals that whilst cardiac output is important in regulating cerebral haemodynamics, the role of mean arterial pressure in restoring cerebral perfusion pressure is of greater significance to the regulation of cerebral blood flow. We investigated the role of lung volume-induced changes in cardiac output (Q̇) on cerebrovascular regulation during prolonged apnoea. Fifteen elite apnoea divers (one female; 185 ± 7 cm, 82 ± 12 kg, 29 ± 7 years old) attended the laboratory on two separate occasions and completed maximal breath-holds at total lung capacity (TLC) and functional residual capacity (FRC) to elicit disparate cardiovascular responses. Mean arterial pressure (MAP), internal jugular venous pressure and arterial blood gases were measured via cannulation. Global cerebral blood flow was quantified by ultrasound and cardiac output was quantified by via photoplethysmography. At FRC, stroke volume and Q̇ did not change from baseline (P > 0.05). In contrast, during the TLC trial stroke volume and Q̇ were decreased until 80 and 40% of apnoea, respectively (P < 0.05). During the TLC trial, global cerebral blood flow was significantly lower at 20%, but subsequently increased so that cerebral oxygen delivery was comparable to that during the FRC trial. Internal jugular venous pressure was significantly higher throughout the TLC trial in comparison to FRC. The MAP increased progressively in both trials but to a greater extent at TLC, resulting in a comparable cerebral perfusion pressure between trials by the end of apnoea. In summary, although lung volume has a profound effect on Q̇ during prolonged breath-holding, these changes do not translate to the cerebrovasculature owing to the greater sensitivity of cerebral blood flow to arterial blood gases and MAP; regulatory mechanisms that facilitate the maintenance of cerebral oxygen delivery.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Ryan L Hoiland
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Anthony R Bain
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Otto F Barak
- School of Medicine, University of Split, Split, Croatia.,Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | - Dennis Madden
- School of Medicine, University of Split, Split, Croatia
| | - Tonci Batinic
- School of Medicine, University of Split, Split, Croatia
| | - Peter O'Donoghue
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Rob Shave
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Zeljko Dujic
- School of Medicine, University of Split, Split, Croatia
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
46
|
Ward JL, Craig JC, Liu Y, Vidoni ED, Maletsky R, Poole DC, Billinger SA. Effect of healthy aging and sex on middle cerebral artery blood velocity dynamics during moderate-intensity exercise. Am J Physiol Heart Circ Physiol 2018; 315:H492-H501. [PMID: 29775407 PMCID: PMC6172645 DOI: 10.1152/ajpheart.00129.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blood velocity measured in the middle cerebral artery (MCAV) increases with finite kinetics during moderate-intensity exercise, and the amplitude and dynamics of the response provide invaluable insights into the controlling mechanisms. The MCAV response after exercise onset is well fit to an exponential model in young individuals but remains to be characterized in their older counterparts. The responsiveness of vasomotor control degrades with advancing age, especially in skeletal muscle. We tested the hypothesis that older subjects would evince a slower and reduced MCAV response to exercise. Twenty-nine healthy young (25 ± 1 yr old) and older (69 ± 1 yr old) adults each performed a rapid transition from rest to moderate-intensity exercise on a recumbent stepper. Resting MCAV was lower in older than young subjects (47 ± 2 vs. 64 ± 3 cm/s, P < 0.001), and amplitude from rest to steady-state exercise was lower in older than young subjects (12 ± 2 vs. 18 ± 3 cm/s, P = 0.04), even after subjects were matched for work rate. As hypothesized, the time constant was significantly longer (slower) in the older than young subjects (51 ± 10 vs. 31 ± 4 s, P = 0.03), driven primarily by older women. Neither age-related differences in fitness, end-tidal CO2, nor blood pressure could account for this effect. Thus, MCAV kinetic analyses revealed a marked impairment in the cerebrovascular response to exercise in older individuals. Kinetic analysis offers a novel approach to evaluate the efficacy of therapeutic interventions for improving cerebrovascular function in elderly and patient populations. NEW & NOTEWORTHY Understanding the dynamic cerebrovascular response to exercise has provided insights into sex-related cerebrovascular control mechanisms throughout the aging process. We report novel differences in the kinetics response of cerebrovascular blood velocity after the onset of moderate-intensity exercise. The exponential increase in brain blood flow from rest to exercise revealed that 1) the kinetics profile of the older group was blunted compared with their young counterparts and 2) the older women demonstrated a slowed response.
Collapse
Affiliation(s)
- Jaimie L Ward
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| | - Jesse C Craig
- Department of Kinesiology and Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Yumei Liu
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Center, Fairway, Kansas
| | | | - David C Poole
- Department of Kinesiology and Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
47
|
Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans. Eur J Appl Physiol 2018; 118:1527-1538. [DOI: 10.1007/s00421-018-3887-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
48
|
Bronzwaer ASGT, Verbree J, Stok WJ, Daemen MJAP, van Buchem MA, van Osch MJP, van Lieshout JJ. Aging modifies the effect of cardiac output on middle cerebral artery blood flow velocity. Physiol Rep 2018; 5:5/17/e13361. [PMID: 28912128 PMCID: PMC5599856 DOI: 10.14814/phy2.13361] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022] Open
Abstract
An association between cerebral blood flow (CBF) and cardiac output (CO) has been established in young healthy subjects. As of yet it is unclear how this association evolves over the life span. To that purpose, we continuously recorded mean arterial pressure (MAP; finger plethysmography), CO (pulse contour; CO‐trek), mean blood flow velocity in the middle cerebral artery (MCAV; transcranial Doppler ultrasonography), and end‐tidal CO2 partial pressure (PetCO2) in healthy young (19–27 years), middle‐aged (51–61 years), and elderly subjects (70–79 years). Decreases and increases in CO were accomplished using lower body negative pressure and dynamic handgrip exercise, respectively. Aging in itself did not alter dynamic cerebral autoregulation or cerebrovascular CO2 reactivity. A linear relation between changes in CO and MCAVmean was observed in middle‐aged (P < 0.01) and elderly (P = 0.04) subjects but not in young (P = 0.45) subjects, taking concurrent changes in MAP and PetCO2 into account. These data imply that with aging, brain perfusion becomes increasingly dependent on CO.
Collapse
Affiliation(s)
- Anne-Sophie G T Bronzwaer
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper Verbree
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim J Stok
- Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Johannes J van Lieshout
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands .,Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
49
|
Moderate-intensity exercise boosts the N2 neural inhibition marker: A randomized and counterbalanced ERP study with precisely controlled exercise intensity. Biol Psychol 2018; 135:170-179. [DOI: 10.1016/j.biopsycho.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
|
50
|
Goldstone A, Mayhew SD, Hale JR, Wilson RS, Bagshaw AP. Thalamic functional connectivity and its association with behavioral performance in older age. Brain Behav 2018; 8:e00943. [PMID: 29670825 PMCID: PMC5893345 DOI: 10.1002/brb3.943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction Despite the thalamus' dense connectivity with both cortical and subcortical structures, few studies have specifically investigated how thalamic connectivity changes with age and how such changes are associated with behavior. This study investigated the effect of age on thalamo-cortical and thalamo-hippocampal functional connectivity (FC) and the association between thalamic FC and visual-spatial memory and reaction time (RT) performance in older adults. Methods Resting-state functional magnetic resonance images were obtained from younger (n = 20) and older (n = 20) adults. A seed-based approach was used to assess the FC between the thalamus and (1) sensory resting-state networks; (2) the hippocampus. Participants also completed visual-spatial memory and RT tasks, from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Results Older adults exhibited a loss of specificity in the FC between sensory thalamic subregions and corresponding sensory cortex. Greater thalamo-motor FC in older adults was associated with faster RTs. Furthermore, older adults exhibited greater thalamo-hippocampal FC compared to younger adults, which was greatest for those with the poorest visual-spatial memory performance. Conclusion Although older adults exhibited poorer visual-spatial memory and slower reaction times compared to younger adults, "good" and "poorer" older performers exhibited different patterns of thalamo-cortical and thalamo-hippocampal FC. These results highlight the potential role of thalamic connectivity in supporting reaction times and memory in aging. Furthermore, these results highlight the importance of including the thalamus in studies of aging to fully understand how brain changes with age may be associated with behavior.
Collapse
Affiliation(s)
- Aimée Goldstone
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Stephen D. Mayhew
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Joanne R. Hale
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Rebecca S. Wilson
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Andrew P. Bagshaw
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|