1
|
Villacampa A, Shamoon L, Valencia I, Morales C, Figueiras S, de la Cuesta F, Sánchez-Niño D, Díaz-Araya G, Sánchez-Pérez I, Lorenzo Ó, Sánchez-Ferrer CF, Peiró C. SARS-CoV-2 S Protein Reduces Cytoprotective Defenses and Promotes Human Endothelial Cell Senescence. Aging Dis 2024:AD.2024.0405. [PMID: 39012668 DOI: 10.14336/ad.2024.0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Premature vascular aging and endothelial cell senescence are major risk factors for cardiovascular diseases and atherothrombotic disturbances, which are main complications of both acute and long COVID-19. The S protein of SARS-CoV2, which acts as the receptor binding protein for the viral infection, is able to induce endothelial cells inflammation and it has been found as an isolated element in the circulation and in human tissues reservoirs months after infection. Here, we investigated whether the S protein is able to directly induce endothelial cell senescence and deciphered some of the mechanisms involved. In primary cultures of human umbilical vein endothelial cells (HUVEC), SARS-CoV-2 S protein enhanced in a concentration-dependent manner the cellular content of senescence and DNA damage response markers (senescence-associated-β galactosidase, γH2AX), as well as growth-arrest effectors (p53, p21, p16). In parallel, the S protein reduced the availability of cytoprotective proteins, such as the anti-aging protein klotho, Nrf2 or heme oxygenase-1, and caused functional harm by impairing ex vivo endothelial-dependent vasorelaxation in murine microvessels. These effects were prevented by the pharmacological inhibition of the NLRP3 inflammasome with MCC950. Furthermore, the supplementation with either recombinant klotho or angiotensin-(1-7), equally protected against the pro-senescence, pro-inflammatory and pro-oxidant action of the S protein. Globally, this study proposes novel mechanisms of disease in the context of COVID-19 and its vascular sequelae and provides pharmacological clues in order to prevent such complications.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Licia Shamoon
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, Madrid, Spain
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - Sofía Figueiras
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - Fernando de la Cuesta
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Dolores Sánchez-Niño
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Nephrology and Hypertension Lab, IIS-Fundación Jimenez Diaz, Madrid, Spain
| | - Guillermo Díaz-Araya
- Department of Pharmacological &;amp Toxicological Chemistry, Faculty of Chemical &;amp Pharmaceutical Sciences &;amp Faculty of Medicine, University of Chile, Santiago, Chile
| | - Isabel Sánchez-Pérez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases, CIBERER, ISCIII, Madrid, Spain
| | - Óscar Lorenzo
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carlos Félix Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| |
Collapse
|
2
|
Lin X, Wang X, Feng W, Wan Y, Chai J, Li F, Xu M. The Counteracting Effects of Ang II and Ang-(1-7) on the Function andGrowth of Insulin-secreting NIT-1 Cells. Curr Diabetes Rev 2024; 20:e010124225112. [PMID: 38173074 DOI: 10.2174/0115733998276291231204115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION China now has the highest number of diabetes in the world. Angiotensin II (Ang II) causes insulin resistance by acting on the insulin signaling pathway of peripheral target tissues. However, its effect on islet β-cells remains unclear. The possible role of Angiotensin-( 1-7) [Ang-(1-7)] as an antagonist to the effects of Ang II and in treating diabetes needs to be elucidated. OBJECTIVES To assess the effects of Ang II and Ang-(1-7) on the function and growth of islet β cell line NIT-1, which is derived from the islets of non-obese diabetic/large T-antigen (NOD/LT) mice with insulinoma. METHODS NIT-1 cells were treated with Ang II, Ang-(1-7) and their respective receptor antagonists. The impact on cell function and growth was then evaluated. RESULTS Ang II significantly reduced insulin-stimulated IR-β-Tyr and Akt-Ser; while Ang-(1-7), saralasin (an Ang II receptor antagonist), and diphenyleneiodonium [DPI, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) antagonist] reversed the inhibiting effect. Conversely, Ang II significantly increased insulin-stimulated intracellular H2O2 and P47 phox, while saralasin and DPI reverted the effect. Furthermore, Ang-(1-7) reduced the elevated concentrations of ROS and MDA while increasing the proliferation rate that was reduced by high glucose, all of which were reversed by A-779, an antagonist of the Mas receptor (MasR). CONCLUSION Angiotensin II poses a negative regulatory effect on insulin signal transduction, increases oxidative stress, and may inhibit the transcription of insulin genes stimulated by insulin in NIT-1 cells. Meanwhile, angiotensin-(1-7) blocked these effects via MasR. These results corroborate the rising potential of the renin-angiotensin system (RAS) in treating diabetes.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyun Wang
- Department of Endocrinology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, People's Republic of China
| | - Weilian Feng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiani Chai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
4
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Romero A, Dongil P, Valencia I, Vallejo S, Hipólito-Luengo ÁS, Díaz-Araya G, Bartha JL, González-Arlanzón MM, Rivilla F, de la Cuesta F, Sánchez-Ferrer CF, Peiró C. Pharmacological Blockade of NLRP3 Inflammasome/IL-1β-Positive Loop Mitigates Endothelial Cell Senescence and Dysfunction. Aging Dis 2022; 13:284-297. [PMID: 35111374 PMCID: PMC8782550 DOI: 10.14336/ad.2021.0617] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The clinical relevance of IL-1β in chronic inflammation underlying atherosclerosis has been reinforced by recent evidence associating pharmacological inhibition of the cytokine with lower cardiovascular risk. Previously, we have demonstrated a direct involvement of IL-1β in endothelial senescence. Therefore, this can be a key mechanism contributing to the sterile inflammatory milieu associated with aging, termed inflammaging. In the present study, we have evaluated whether a positive feedback of IL-1β in the NLRP3 inflammasome via NF-κB could promote human endothelial senescence in vitro and murine endothelial dysfunction in vivo. Our results indicate that the NLRP3 inflammasome is pivotal in mediating the detrimental effects of IL-1β, showing that auto-activation is a crucial feature boosting endothelial cell senescence in vitro, which is paralleled by vascular dysfunction in vivo. Hence, the inhibitor of NLRP3 inflammasome assembly, MCC 950, was able to disrupt the aforementioned positive loop, thus alleviating inflammation, cell senescence and vascular dysfunction. Besides, we explored alternative NLRP3 inflammasome inhibitory agents such as the RAS heptapeptide Ang-(1-7) and the anti-aging protein klotho, both of which demonstrated protective effects in vitro and in vivo. Altogether, our results highlight a fundamental role for the hereby described NLRP3 inflammasome/IL-1β positive feedback loop in stress-induced inflammaging and the associated vascular dysfunction, additionally providing evidence of a potential therapeutic use of MCC 950, Ang-(1-7) and recombinant klotho to block this loop and its deleterious effects.
Collapse
Affiliation(s)
- Alejandra Romero
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Pilar Dongil
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Inés Valencia
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.,3PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Susana Vallejo
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Álvaro San Hipólito-Luengo
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Guillermo Díaz-Araya
- 4Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.,5Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Bartha
- 2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.,6Department of Obstetrics and Gynecology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María M González-Arlanzón
- 6Department of Obstetrics and Gynecology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Rivilla
- 7Division of Pediatric Surgery, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Fernando de la Cuesta
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Concepción Peiró
- 1Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,2Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
6
|
Barzegar M, Stokes KY, Chernyshev O, Kelley RE, Alexander JS. The Role of the ACE2/MasR Axis in Ischemic Stroke: New Insights for Therapy. Biomedicines 2021; 9:1667. [PMID: 34829896 PMCID: PMC8615891 DOI: 10.3390/biomedicines9111667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke remains the leading cause of neurologically based morbidity and mortality. Current stroke treatment is limited to two classes of FDA-approved drugs: thrombolytic agents (tissue plasminogen activator (tPA)) and antithrombotic agents (aspirin and heparin), which have a narrow time-window (<4.5 h) for administration after onset of stroke symptoms. While thrombolytic agents restore perfusion, they carry serious risks for hemorrhage, and do not influence damage responses during reperfusion. Consequently, stroke therapies that can suppress deleterious effects of ischemic injury are desperately needed. Angiotensin converting enzyme-2 (ACE2) has been recently suggested to beneficially influence experimental stroke outcomes by converting the vasoconstrictor Ang II into the vasodilator Ang 1-7. In this review, we extensively discuss the protective functions of ACE2-Ang (1-7)-MasR axis of renin angiotensin system (RAS) in ischemic stroke.
Collapse
Affiliation(s)
- Mansoureh Barzegar
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (M.B.); (K.Y.S.)
| | - Karen Y. Stokes
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (M.B.); (K.Y.S.)
| | - Oleg Chernyshev
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (O.C.); (R.E.K.)
| | - Roger E. Kelley
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (O.C.); (R.E.K.)
| | - Jonathan S. Alexander
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (M.B.); (K.Y.S.)
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (O.C.); (R.E.K.)
- Medicine, LSU Health Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Oral and Maxillofacial Surgery, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
7
|
Dos Reis Costa DEF, Silveira ALM, Campos GP, Nóbrega NRC, de Araújo NF, de Figueiredo Borges L, Dos Santos Aggum Capettini L, Ferreira AVM, Bonaventura D. High-Carbohydrate Diet Enhanced the Anticontractile Effect of Perivascular Adipose Tissue Through Activation of Renin-Angiotensin System. Front Physiol 2021; 11:628101. [PMID: 33519529 PMCID: PMC7845559 DOI: 10.3389/fphys.2020.628101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The perivascular adipose tissue (PVAT) is an active endocrine organ responsible for release several substances that influence on vascular tone. Increasing evidence suggest that hyperactivation of the local renin-angiotensin system (RAS) in the PVAT plays a pivotal role in the pathogenesis of cardiometabolic diseases. However, the local RAS contribution to the PVAT control of vascular tone during obesity is still not clear. Since the consumption of a high-carbohydrate diet (HC diet) contributes to obesity inducing a rapid and sustained increase in adiposity, so that the functional activity of PVAT could be modulated, we aimed to evaluate the effect of HC diet on the PVAT control of vascular tone and verify the involvement of RAS in this effect. For that, male Balb/c mice were fed standard or HC diet for 4 weeks. Vascular reactivity, histology, fluorescence, and immunofluorescence analysis were performed in intact thoracic aorta in the presence or absence of PVAT. The results showed that HC diet caused an increase in visceral adiposity and also in the PVAT area. Phenylephrine-induced vasoconstriction was significantly reduced in the HC group only in the presence of PVAT. The anticontractile effect of PVAT induced by HC diet was lost when aortic rings were previously incubated with angiotensin-converting enzyme inhibitor, Mas, and AT2 receptors antagonists, PI3K, nNOS, and iNOS inhibitors, hydrogen peroxide (H2O2) decomposing enzyme or non-selective potassium channels blocker. Immunofluorescence assays showed that both Mas and AT2 receptors as well as nNOS and iNOS isoforms were markedly expressed in the PVAT of the HC group. Furthermore, the PVAT from HC group also exhibited higher nitric oxide (NO) and hydrogen peroxide bioavailability. Taken together, these findings suggest that the anticontractile effect of PVAT induced by HC diet involves the signaling cascade triggered by the renin-angiotensin system through the activation of Mas and AT2 receptors, PI3K, nNOS, and iNOS, leading to increased production of nitric oxide and hydrogen peroxide, and subsequently opening of potassium channels. The contribution of PVAT during HC diet-induced obesity could be a compensatory adaptive characteristic in order to preserve the vascular function.
Collapse
Affiliation(s)
| | - Ana Letícia Malheiros Silveira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gianne Paul Campos
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Natália Ferreira de Araújo
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciano de Figueiredo Borges
- Department of Biological Sciences, Morphophysiology & Pathology Sector, Federal University of São Paulo, São Paulo, Brazil
| | | | - Adaliene Versiani Matos Ferreira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Nutrition, Nursing School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Shobako N, Ohinata K. Anti-Hypertensive Effects of Peptides Derived from Rice Bran Protein. Nutrients 2020; 12:nu12103060. [PMID: 33036355 PMCID: PMC7600238 DOI: 10.3390/nu12103060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is one of the major risk factors for arteriosclerosis. Anti-hypertensive peptides derived from animal proteins, such as milk, eggs and fish, are well studied. Anti-hypertensive peptides have also been identified from plant proteins such as soybeans. Rice bran, a byproduct of white rice polishing, is rich in protein and its high protein efficiency ratio is well known. This review discusses the anti-hypertensive peptides identified from rice bran protein and their mechanisms. In addition, we describe protease-digested rice bran from which functional peptides have not been isolated.
Collapse
|
9
|
Järve A, Qadri F, Todiras M, Schmolke S, Alenina N, Bader M. Angiotensin-(1-7) Receptor Mas Deficiency Does Not Exacerbate Cardiac Atrophy Following High-Level Spinal Cord Injury in Mice. Front Physiol 2020; 11:203. [PMID: 32226394 PMCID: PMC7080696 DOI: 10.3389/fphys.2020.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Experimental spinal cord injury (SCI) causes a morphological and functional deterioration of the heart, in which the renin–angiotensin system (RAS) might play a role. The recently discovered non-canonical axis of RAS with angiotensin-(1–7) and its receptor Mas, which is associated with cardioprotection could be essential to prevent damage to the heart following SCI. We investigated the cardiac consequences of SCI and the role of Mas in female wild-type (WT, n = 22) and mice deficient of Mas (Mas–/–, n = 25) which underwent spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation by echocardiography (0, 7, 21, and 28 days post-SCI), histology and gene expression analysis at 1 or 2 months post-SCI. We found left ventricular mass reduction with preserved ejection fraction (EF) and fractional shortening in WT as well as Mas–/– mice. Cardiac output was reduced in Mas–/– mice, whereas stroke volume (SV) was reduced in WT T4-Tx mice. Echocardiographic indices did not differ between the genotypes. Smaller heart weight (HW) and smaller cardiomyocyte diameter at 1 month post-SCI compared to sham mice was independent of genotype. The muscle-specific E3 ubiquitin ligases Atrogin-1/MAFbx and MuRF1 were upregulated or showed a trend for upregulation in WT mice at 2 months post-SCI, respectively. Angiotensinogen gene expression was upregulated at 1 month post-SCI and angiotensin II receptor type 2 downregulated at 2 month post-SCI in Mas–/– mice. Mas was downregulated post-SCI. Cardiac atrophy following SCI, not exacerbated by lack of Mas, is a physiological reaction as there were no signs of cardiac pathology and dysfunction.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chişinãu, Moldova
| | - Shirley Schmolke
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Romero A, San Hipólito‐Luengo Á, Villalobos LA, Vallejo S, Valencia I, Michalska P, Pajuelo‐Lozano N, Sánchez‐Pérez I, León R, Bartha JL, Sanz MJ, Erusalimsky JD, Sánchez‐Ferrer CF, Romacho T, Peiró C. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 2019; 18:e12913. [PMID: 30773786 PMCID: PMC6516147 DOI: 10.1111/acel.12913] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.
Collapse
Affiliation(s)
- Alejandra Romero
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | | | - Laura A. Villalobos
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Susana Vallejo
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| | - Inés Valencia
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Patrycja Michalska
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
| | - Natalia Pajuelo‐Lozano
- Department of BiochemistryFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones BiomédicasUAM-CSIC Madrid Spain
| | - Isabel Sánchez‐Pérez
- Department of BiochemistryFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones BiomédicasUAM-CSIC Madrid Spain
- CIBER for Rare Diseases Valencia Spain
| | - Rafael León
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Servicio de Farmacología ClínicaInstituto de Investigación SanitariaHospital Universitario de la Princesa Madrid Spain
| | - José Luis Bartha
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
- Department of Obstetrics and GynecologyFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
| | - María Jesús Sanz
- Department of PharmacologyUniversidad de Valencia Valencia Spain
- Institute of Health Research INCLIVAUniversity Clinic Hospital of Valencia Valencia Spain
| | | | - Carlos F. Sánchez‐Ferrer
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| | - Tania Romacho
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Concepción Peiró
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| |
Collapse
|
11
|
Shobako N, Ishikado A, Ogawa Y, Sono Y, Kusakari T, Suwa M, Matsumoto M, Ohinata K. Vasorelaxant and Antihypertensive Effects That Are Dependent on the Endothelial NO System Exhibited by Rice Bran-Derived Tripeptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1437-1442. [PMID: 30609899 DOI: 10.1021/acs.jafc.8b06341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We recently identified a novel, potent antihypertensive peptide, Leu-Arg-Ala (LRA; minimum effective dose = 0.25 mg/kg), from rice bran protein. In this study, we found that LRA potently relaxed mesenteric arteries isolated from spontaneously hypertensive rats (SHRs) (EC50 = 0.1 μM). In contrast, the vasorelaxant activity of each amino acid that constitutes the LRA tripeptide was remarkably attenuated. The LRA-induced vasorelaxant activity was inhibited by N(G)-nitro-l-arginine methyl ester (L-NAME; NO synthase [NOS] inhibitor) but not by an antagonist of bradykinin B2 and Mas receptors or by a phosphoinositide 3-kinase inhibitor. The antihypertensive effect induced after the oral administration of LRA was inhibited by L-NAME. LRA also induced the phosphorylation of endothelial NOS in human umbilical vein endothelial cells. Taken together, LRA may exhibit antihypertensive effects via NO-mediated vasorelaxation. LRA is the first example of a NO-dependent vasorelaxant peptide identified from rice bran protein.
Collapse
Affiliation(s)
- Naohisa Shobako
- Health Care R&D , SUNSTAR , Takatsuki , Osaka 569-1195 , Japan
- Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | | | - Yutaro Ogawa
- Health Care R&D , SUNSTAR , Takatsuki , Osaka 569-1195 , Japan
| | - Yoko Sono
- Health Care R&D , SUNSTAR , Takatsuki , Osaka 569-1195 , Japan
| | | | - Makoto Suwa
- Health Care R&D , SUNSTAR , Takatsuki , Osaka 569-1195 , Japan
| | | | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
12
|
Casey S, Herath C, Rajapaksha I, Jones R, Angus P. Effects of angiotensin-(1-7) and angiotensin II on vascular tone in human cirrhotic splanchnic vessels. Peptides 2018; 108:25-33. [PMID: 30179652 DOI: 10.1016/j.peptides.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
Evidence suggests that the renin angiotensin system (RAS) may play a role in the pathological splanchnic vasodilatation that leads to a hyperdynamic circulation in cirrhosis. An impaired contractile response to the angiotensin II peptide of the classical RAS system has been described in animal models of cirrhosis and in vivo in cirrhotic subjects. Furthermore, in experimental cirrhosis, the so-called alternate arm of the RAS was found to be upregulated and its effector peptide, angiotensin-(1-7) was shown to attenuate splanchnic vascular tone. The aim of this study was to explore the relevance of these findings to human disease. Omental arteries from cirrhotic and controls subjects were studied in isolation using a wire myograph. Varied protocols to evaluate the vasoactivity of RAS mediators were enacted. The contractile response to angiotensin II was comparable in cirrhotic vs control splanchnic arteries (61 ± 9 vs 68 ± 11% KPSS, respectively). Despite this, however, arterial contractility of the cirrhotic vessels correlated negatively with Child Pugh score (p = 0.0003, r=-0.83) and there was evidence that angiotensin II-induced contractility was increased in early cirrhosis. Angiotensin II-induced contractility was attenuated by angiotensin-(1-7) in cirrhotic and control arteries, however, adrenergic responses were not affected by angiotensin-(1-7). Contractile responses to angiotensin II are preserved in narrow lumen human cirrhotic splanchnic arteries and are comparatively augmented in early disease. Angiotensin-(1-7) had no vasodilatory effect on adrenergic tone, however, attenuated angiotensin II-induced contractility, possibly through an Ang-(1-7)-AT1R interaction, and thus may contribute to pathological vasodilatation in human cirrhosis.
Collapse
Affiliation(s)
- Stephen Casey
- Liver Unit, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, University of Melbourne, Australia.
| | - Chandana Herath
- Department of Medicine, Austin Health, University of Melbourne, Australia
| | - Indu Rajapaksha
- Department of Medicine, Austin Health, University of Melbourne, Australia
| | | | - Peter Angus
- Liver Unit, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, University of Melbourne, Australia
| |
Collapse
|
13
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|
14
|
Sobrino A, Vallejo S, Novella S, Lázaro-Franco M, Mompeón A, Bueno-Betí C, Walther T, Sánchez-Ferrer C, Peiró C, Hermenegildo C. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation. Biochem Pharmacol 2017; 129:67-72. [PMID: 28131844 DOI: 10.1016/j.bcp.2017.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 11/29/2022]
Abstract
The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser473) and eNOS activity (by the enhanced phosphorylation of Ser1177, the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation.
Collapse
Affiliation(s)
- Agua Sobrino
- INCLIVA Biomedical Research Institute, Hospital Clínico de Valencia, and Department of Physiology, University of Valencia, Spain
| | - Susana Vallejo
- Department of Pharmacology, University Autonoma of Madrid, Spain
| | - Susana Novella
- INCLIVA Biomedical Research Institute, Hospital Clínico de Valencia, and Department of Physiology, University of Valencia, Spain
| | - Macarena Lázaro-Franco
- INCLIVA Biomedical Research Institute, Hospital Clínico de Valencia, and Department of Physiology, University of Valencia, Spain
| | - Ana Mompeón
- INCLIVA Biomedical Research Institute, Hospital Clínico de Valencia, and Department of Physiology, University of Valencia, Spain
| | - Carlos Bueno-Betí
- INCLIVA Biomedical Research Institute, Hospital Clínico de Valencia, and Department of Physiology, University of Valencia, Spain
| | - Thomas Walther
- Department of Pharmacology and Therapeutics, School of Medicine & School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Concepción Peiró
- Department of Pharmacology, University Autonoma of Madrid, Spain
| | - Carlos Hermenegildo
- INCLIVA Biomedical Research Institute, Hospital Clínico de Valencia, and Department of Physiology, University of Valencia, Spain.
| |
Collapse
|
15
|
Villalobos LA, San Hipólito-Luengo Á, Ramos-González M, Cercas E, Vallejo S, Romero A, Romacho T, Carraro R, Sánchez-Ferrer CF, Peiró C. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells. Front Pharmacol 2016; 7:482. [PMID: 28018220 PMCID: PMC5156706 DOI: 10.3389/fphar.2016.00482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023] Open
Abstract
Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.
Collapse
Affiliation(s)
- Laura A Villalobos
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| | | | - Mariella Ramos-González
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| | - Elena Cercas
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| | - Susana Vallejo
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| | - Alejandra Romero
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| | - Tania Romacho
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| | - Raffaele Carraro
- Service of Endocrinology, Hospital de La PrincesaMadrid, Spain; Department of Medicine, School of Medicine, Universidad Autónoma de MadridMadrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
16
|
Cerrato BD, Carretero OA, Janic B, Grecco HE, Gironacci MM. Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1-7) Mas Receptor: Functional Consequences. Hypertension 2016; 68:1039-48. [PMID: 27550920 DOI: 10.1161/hypertensionaha.116.07874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties.
Collapse
Affiliation(s)
- Bruno D Cerrato
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Oscar A Carretero
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Brana Janic
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Hernán E Grecco
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Mariela M Gironacci
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G).
| |
Collapse
|
17
|
Supé S, Kohse F, Gembardt F, Kuebler WM, Walther T. Therapeutic time window for angiotensin-(1-7) in acute lung injury. Br J Pharmacol 2016; 173:1618-28. [PMID: 26895462 DOI: 10.1111/bph.13462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE There is presently no proven pharmacological therapy for the acute respiratory distress syndrome. Recently, we and others discovered that the heptapeptide angiotensin-(1-7) [Ang-(1-7)] shows significant beneficial effects in preclinical models of acute lung injury (ALI). Here, we aimed to identify the best time window for Ang-(1-7) administration to protect rats from oleic acid (OA) induced ALI. EXPERIMENTAL APPROACH The effects of i.v. infused Ang-(1-7) were examined over four different time windows before or after induction of ALI in male Sprague-Dawley rats. Haemodynamic effects were continuously monitored, and loss of barrier function, inflammation and lung peptidase activities were measured as experimental endpoints. KEY RESULTS Ang-(1-7) infusion provided the best protection against experimental ALI when administered by continuous infusion starting immediately after 30 min OA infusion till the end of the experiment (30-240 min). Both pretreatment (-60 to 0 min before OA) and short-term therapy (30-90 min) also had beneficial effects although less pronounced than the effects achieved with the optimal therapy window. Starting infusion of Ang-(1-7) 60 min after the end of OA treatment (90-240 min) did not protect barrier function or haemodynamics but still reduced myeloperoxidase activity and increased ACE2/ACE activity ratio respectively. CONCLUSIONS AND IMPLICATIONS Our findings indicate that early initiation of therapy after ALI and continuous drug delivery are most beneficial for optimal therapeutic efficiency of Ang-(1-7) treatment in experimental ALI and, presumably accordingly, in clinical acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Stefanie Supé
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Kohse
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Perinatal Medicine, Clinic of Paediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Florian Gembardt
- Department of Cardiac Pathobiology, Excellence Cluster Cardiopulmonary System, Gießen, Germany.,Department of Nephrology-MK3, University Hospital Dresden, Dresden, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada.,Departments of Physiology and Surgery, University of Toronto, Ontario, Canada.,German Heart Institute, Berlin, Germany
| | - Thomas Walther
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,Center for Perinatal Medicine, Department of Obstetrics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr Hypertens Rep 2016; 17:3. [PMID: 25620630 DOI: 10.1007/s11906-014-0512-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II (AngII) via its type 1 receptor, including anti-inflammatory, anti-oxidant, vasodilatory, and angiogenic effects, and the role of altered kinase-phosphatase signaling. Interactions of Mas with other receptors, including bradykinin receptors and AngII type 2 receptors are also considered. A more complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting.
Collapse
|
19
|
Wong MK. Other Angiotensins. HANDBOOK OF HORMONES 2016. [PMCID: PMC7149573 DOI: 10.1016/b978-0-12-801028-0.00178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Besides the major role of angiotensin II (Ang II) in the renin-angiotensin system (RAS), other angiotensin peptides with different lengths were recently discovered to be biologically active and they possess individual receptors and signaling pathways. Ang III stimulates AT1 and AT2 receptors and its signaling pathway is similar to that of Ang II but has a specific role on aldosterone stimulation in adrenal cortex. The Ang(1–7)/Mas receptor axis is known to antagonize the effects of the AT1 axis. These include anti-hypertrophic action, anti-thrombotic and anti-fibrotic effect, and vasodilation via stimulation of NO synthesis in endothelium and potentiation of the bradykinin effect. Ang IV stimulates insulin-regulated aminopeptidase (IRAP) or AT4 receptor and is involved in facilitation of memory such as reversing memory deficits caused by alcohol abuse and ischemia. AT4 antagonist decreases renal blood flow and increases urinary sodium excretion, and these effects are independent of the AT1 pathway.
Collapse
|
20
|
Carver KA, Smith TL, Gallagher PE, Tallant EA. Angiotensin-(1-7) prevents angiotensin II-induced fibrosis in cremaster microvessels. Microcirculation 2015; 22:19-27. [PMID: 25079175 DOI: 10.1111/micc.12159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The effect of the heptapeptide hormone Ang-(1-7) on microvascular fibrosis in rats with Ang II-induced hypertension was investigated, since vascular fibrosis/remodeling plays a prominent role in hypertension-induced end-organ damage and Ang-(1-7) inhibits vascular growth and fibrosis. METHODS Fibrosis of cremaster microvessels was studied in male Lewis rats infused with Ang II and/or Ang-(1-7). RESULTS Ang II elevated systolic blood pressure by approximately 40 mmHg, while blood pressure was not changed by Ang-(1-7). Ang II increased perivascular fibrosis surrounding 20-50 μm arterioles as well as interstitial fibrosis; coadministration of Ang-(1-7) prevented the increases in fibrosis. The fibrotic factor CTGF and phospho-Smad 2/3, which upregulates CTGF, were increased by Ang II; this effect was prevented by coadministration of Ang-(1-7). Although TGF-β phosphorylates Smad 2/3, TGF-β was no different among treatment groups. In contrast, Ang II increased the MAP kinase phospho-ERK1/2, which also phosphorylates Smad; p-ERK was reduced by Ang-(1-7). Ang-(1-7), in the presence or absence of Ang II, upregulated the MAP kinase phosphatase DUSP1. CONCLUSIONS These results suggest that Ang-(1-7) increases DUSP1 to reduce MAP kinase/Smad/CTGF signaling and decrease fibrosis in resistance arterioles, to attenuate end-organ damage associated with chronic hypertension.
Collapse
Affiliation(s)
- Kyle A Carver
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
21
|
Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats. Adv Pharmacol Sci 2015; 2015:801053. [PMID: 26421009 PMCID: PMC4573425 DOI: 10.1155/2015/801053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Background. The accompanied role of Mas receptor (MasR), bradykinin (BK), and female sex hormone on renal blood flow (RBF) response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779) and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats. Methods. Ovariectomized Wistar rats received estradiol (OVE) or vehicle (OV) for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP), RBF, and renal vascular resistance (RVR) responses to Ang 1-7 (0, 100, and 300 ng kg−1 min−1) were determined. Results. Percentage change of RBF (%RBF) in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P < 0.05). Infusion of 300 ng kg−1 min−1 Ang 1-7 increased RBF by 6.9 ± 1.9% in OVE group versus 0.9 ± 1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly. Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats.
Collapse
|
22
|
Alenina N, Böhme I, Bader M, Walther T. Multiple non-coding exons and alternative splicing in the mouse Mas protooncogene. Gene 2015; 568:155-64. [PMID: 26003294 DOI: 10.1016/j.gene.2015.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/23/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
The Mas protooncogene encodes a G protein-coupled receptor with the common seven transmembrane domains, expressed mainly in the testis and brain. We provided evidence that Mas is a functional angiotensin-(1-7) receptor and can interact with the angiotensin II type 1 (AT1) receptor. The gene is transcriptionally regulated during development in the brain and testis, but its structure was unresolved. In this study we used 5'- and 3'-RACE, RT-PCR, and RNase-protection assays to elucidate the complete Mas gene structure and organization. We identified 12 exons in the mouse Mas gene with 11 in the 5' untranslated mRNA, which can be alternatively spliced. We also showed that Mas transcription can start from 4 tissue-specific promoters, whereby testis-specific Mas mRNA is transcribed from two upstream promoters, and the expression of Mas in the brain starts from two downstream promoters. Alternative splicing and multiple promoter usage result in at least 12 Mas transcripts in which different 5' untranslated regions are fused to a common coding sequence. Moreover, termination of Mas mRNA is regulated by two different polyadenylation signals. The gene spans approximately 27 kb, and the longest detected mRNA contains 2,451 bp. Thus, our results characterize the Mas protooncogene as the gene with the most complex gene structure of all described members of the gene family coding for G protein-coupled receptors.
Collapse
Affiliation(s)
- Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13092 Berlin-Buch, Germany; Federal University of Minas Gerais (UFMG), ICB, 6627 Belo Horizonte, MG, Brasil
| | - Ilka Böhme
- Centre for Perinatal Medicine, University Medical Centre Leipzig, Liebigstraße 20a, 04103 Leipzig, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13092 Berlin-Buch, Germany; Federal University of Minas Gerais (UFMG), ICB, 6627 Belo Horizonte, MG, Brasil; Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Walther
- Centre for Perinatal Medicine, University Medical Centre Leipzig, Liebigstraße 20a, 04103 Leipzig, Germany; Department of Pharmacology and Therapeutics, 2nd Floor, Western Road, University College Cork, Cork, Ireland.
| |
Collapse
|
23
|
Escudero P, Martinez de Marañón A, Collado A, Gonzalez-Navarro H, Hermenegildo C, Peiró C, Piqueras L, Sanz MJ. Combined sub-optimal doses of rosuvastatin and bexarotene impair angiotensin II-induced arterial mononuclear cell adhesion through inhibition of Nox5 signaling pathways and increased RXR/PPARα and RXR/PPARγ interactions. Antioxid Redox Signal 2015; 22:901-20. [PMID: 25602514 PMCID: PMC4376291 DOI: 10.1089/ars.2014.5969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM Mononuclear cell (MC) infiltration into the arterial subendothelium is a key event in atherogenesis. Rosuvastatin (Rosu) and bexarotene (Bex) exert anti-inflammatory activity, but serious dose-related adverse effects have emerged. The need for safer and effective strategies to prevent and treat atherosclerosis led us to test the effect of combined use of both drugs on angiotensin II (Ang-II)-induced arterial MC recruitment. RESULTS Vehicle, Rosu (10-30 nM), Bex (0.3-1 μM), or a combination of both were administered to human umbilical arterial endothelial cells (HUAECs) 20 h before stimulation with 1 μM Ang-II (4 h). Surprisingly, a combination of Rosu (10 nM)+Bex (0.3 μM), which did not influence Ang-II-induced MC recruitment when either stimulus was studied alone, significantly reduced this response. This effect was accompanied by diminished Ang-II-induced ICAM-1, VCAM-1, and CX3CL1 endothelial expression and CXCL1, CXCL8, CCL2, and CCL5 production. Preincubation of HUAECs with Rosu+Bex inhibited Nox5 expression and Nox5-induced RhoA activation stimulated by Ang-II through increased RXRα, PPARα, and PPARγ expression in addition to RXRα/PPARα and RXRα/PPARγ interactions. In vivo, combined but not single administration of Rosu (1.25 mg/kg/day) and Bex (10 mg/kg/day) significantly diminished Ang-II-induced arteriolar leukocyte adhesion in the cremasteric microcirculation of C57BL/6 mice and atherosclerotic lesion formation in apoE(-/-) mice subjected to an atherogenic diet. INNOVATION AND CONCLUSION Combined administration of Bex+Rosu at suboptimal doses may constitute a new alternative and effective therapy in the control of the vascular inflammation associated to cardiometabolic disorders, since they synergize in their anti-inflammatory actions and may counteract their associated adverse effects.
Collapse
Affiliation(s)
- Paula Escudero
- 1 Department of Pharmacology, Faculty of Medicine, University of Valencia , Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Prasad T, Verma A, Li Q. Expression and cellular localization of the Mas receptor in the adult and developing mouse retina. Mol Vis 2014; 20:1443-55. [PMID: 25352750 PMCID: PMC4203581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 10/15/2014] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Recent studies have provided evidence that a local renin-angiotensin system (RAS) exists in the retina and plays an important role in retinal neurovascular function. We have recently shown that increased expression of ACE2 and angiotensin (1-7) [Ang (1-7)], two components of the protective axis of the RAS, in the retina via adeno-associated virus (AAV)-mediated gene delivery, conferred protection against diabetes-induced retinopathy. We hypothesized that the protective molecular and cellular mechanisms of Ang (1-7) are mediated by its receptor, Mas, and the expression level and cellular localization dictate the response to Ang (1-7) and activation of subsequent protective signaling pathways. We tested this hypothesis by examining the expression and cellular localization of the Mas receptor in adult and developing mouse retinas. METHODS The cellular localization of the Mas receptor protein was determined with immunofluorescence of the eyes of adult and postnatal day 1 (P1), P5, P7, P15, and P21 mice using the Mas receptor-specific antibody, and mRNA was detected with in situ hybridization of paraffin-embedded sections. Western blotting and real-time reverse-transcription (RT)-PCR analysis were performed to determine the relative levels of the Mas protein and mRNA in adult and developing retinas, as well as in cultured retinal Müller glial and RPE cells. RESULTS In the adult eye, the Mas receptor protein was abundantly present in retinal ganglion cells (RGCs) and photoreceptor cells; a lower level of expression was observed in endothelial cells, Müller glial cells, and other neurons in the inner nuclear layer of the retina. In the developing retina, Mas receptor mRNA and protein expression was detected in the inner retina at P1, and the expression levels increased with age to reach the adult level and pattern by P15. In the adult mouse retina, Mas receptor mRNA was expressed at a much higher level when compared to angiotensin II (Ang II) type I (AT1R) and type II (AT2R) receptor mRNA. CONCLUSIONS The Mas receptor is expressed in developing and adult mouse retinas, and is more abundant in retinal neurons than in endothelial and Müller glial cells. These observations suggest that Mas receptor-mediated signaling may play important roles that extend beyond mediating the vascular effects of Ang (1-7) in developing and adult retinas. In addition, the relatively high expression of the Mas receptor when compared to AT1R suggests that they may play a more important role in maintaining normal retinal physiology than previously considered.
Collapse
|
25
|
Fu Z, Zhao L, Aylor KW, Carey RM, Barrett EJ, Liu Z. Angiotensin-(1-7) recruits muscle microvasculature and enhances insulin's metabolic action via mas receptor. Hypertension 2014; 63:1219-27. [PMID: 24711523 DOI: 10.1161/hypertensionaha.113.03025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Angiotensin-(1-7) [Ang-(1-7)], an endogenous ligand for the G protein-coupled receptor Mas, exerts both vasodilatory and insulin-sensitizing effects. In skeletal muscle, relaxation of precapillary arterioles recruits microvasculature and increases the endothelial surface area available for nutrient and hormone exchanges. To assess whether Ang-(1-7) recruits microvasculature and enhances insulin action in muscle, overnight-fasted adult rats received an intravenous infusion of Ang-(1-7) (0, 10, or 100 ng/kg per minute) for 150 minutes with or without a simultaneous infusion of the Mas inhibitor A-779 and a superimposition of a euglycemic insulin clamp (3 mU/kg per minute) from 30 to 150 minutes. Hind limb muscle microvascular blood volume, microvascular flow velocity, and microvascular blood flow were determined. Myographic changes in tension were measured on preconstricted distal saphenous artery. Ang-(1-7) dose-dependently relaxed the saphenous artery (P<0.05) ex vivo. This effect was potentiated by insulin (P<0.01) and abolished by either endothelium denudement or Mas inhibition. Systemic infusion of Ang-(1-7) rapidly increased muscle microvascular blood volume and microvascular blood flow (P<0.05, each) without altering microvascular flow velocity. Insulin infusion alone increased muscle microvascular blood volume by 60% to 70% (P<0.05). Adding insulin to the Ang-(1-7) infusion further increased muscle microvascular blood volume and microvascular blood flow (≈2.5 fold; P<0.01). These were associated with a significant increase in insulin-mediated glucose disposal and muscle protein kinase B and extracellular signal-regulated kinase 1/2 phosphorylation. A-779 pretreatment blunted the microvascular and insulin-sensitizing effects of Ang-(1-7). We conclude that Ang-(1-7) by activating Mas recruits muscle microvasculature and enhances the metabolic action of insulin. These effects may contribute to the cardiovascular protective responses associated with Mas activation and explain the insulin-sensitizing action of Ang-(1-7).
Collapse
Affiliation(s)
- Zhuo Fu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, PO Box 801410, Charlottesville, VA 22908.
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Robson Augusto Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31270-910, Brazil.
| |
Collapse
|
27
|
Echeverría-Rodríguez O, Del Valle-Mondragón L, Hong E. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo. Peptides 2014; 51:26-30. [PMID: 24184594 DOI: 10.1016/j.peptides.2013.10.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. In this work, we investigated whether rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis and determined the effect of Ang 1-7 on rat skeletal muscle glucose uptake in vivo. Western blot analysis revealed the expression of ACE2 and MasR, while Ang 1-7 levels were detected in rat soleus muscle by capillary zone electrophoresis. The euglycemic clamp exhibited that Ang 1-7 by itself did not promote glucose transport, but it increased insulin-stimulated glucose disposal in the rat. In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.
Collapse
Affiliation(s)
- Omar Echeverría-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Sede Sur, Mexico City, Mexico
| | | | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Sede Sur, Mexico City, Mexico.
| |
Collapse
|