1
|
Mazza O, Nielsen J, Mathiesen J, Højme D, Lundby C, Hostrup M, Thomassen M, Plomgaard P, Gejl KD, Ørtenblad N. Effects of 8 Weeks of Moderate- or High-Volume Strength Training on Sarcoplasmic Reticulum Ca 2+ Handling in Elite Female and Male Rowers. Scand J Med Sci Sports 2025; 35:e70017. [PMID: 39831408 PMCID: PMC11744491 DOI: 10.1111/sms.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca2+ handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period. Skeletal muscle biopsies were collected before and after the intervention period and analyzed for SR vesicle Ca2+ handling, SR related proteins, and myosin heavy chain (MHC) composition. Muscle strength was determined by isometric midthigh pull (IMTP). Training increased both the overall SR Ca2+ release (19%) and uptake rates (34%), with no differences between groups. SR protein analysis revealed a high variability but suggests an increase of RYR1 and SERCA1, while SERCA2 decreased, corroborating changes in SR function, with no differences between groups. Regardless of training volume, a 9% higher relative MHCIIa proportion and a 7% decrease in the MHCI isoform was observed. There was an overall 8% increase of IMTP. Males exhibited higher SR Ca2+ uptake and release rates compared to females, likely explained by a higher proportion of MHCII. These findings suggest that 8 weeks of moderate- or high-volume strength training enhances SR vesicle Ca2+ uptake and release rates in elite male and female rowers, accompanied by a shift toward a larger proportion of MHCIIa fiber type.
Collapse
Affiliation(s)
- Oscar Mazza
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Jonas Mathiesen
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Daniel Højme
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Carsten Lundby
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
- Inland Norway University of Applied SciencesLillehammerNorway
| | - Morten Hostrup
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Peter Plomgaard
- Centre for Physical Activity ResearchCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Kasper Degn Gejl
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
2
|
Ortiz de Zevallos J, Hogwood AC, Kruse K, De Guzman J, Buckley M, DeJong Lempke AF, Weltman A, Allen JD. The influence of sex on the effects of inorganic nitrate supplementation on muscular power and endurance. J Appl Physiol (1985) 2024; 137:1649-1658. [PMID: 39417813 PMCID: PMC11687840 DOI: 10.1152/japplphysiol.00321.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024] Open
Abstract
Inorganic nitrate ([Formula: see text]) supplementation increases nitric oxide (NO) bioavailability and may improve muscular power and endurance, although most studies are in males. Therefore, the present double-blind, randomized, placebo-controlled study examined the effects of [Formula: see text] supplementation on isokinetic peak power, maximal voluntary isometric contraction (MVIC) force, muscular endurance (time-to-task failure; TTF), and recovery from fatigue in young females (n = 12) and males (n = 14). Participants consumed ∼13 mmol [Formula: see text] [beetroot juice (BRJ)], or an identical [Formula: see text]-depleted beverage placebo (PL), for ∼3 days and 2 h before testing visits. Plasma nitrate and nitrite were elevated in the BRJ condition (P ≤ 0.05). Peak power (W·kg-1) showed a sex effect (P ≤ 0.05) at all angular velocities and a sex-by-treatment effect at 270 and 360°/s (P ≤ 0.05). Post hoc analysis revealed no significant differences between treatments (P > 0.05). Estimated maximal knee extension power (Pmax) and maximal knee extension velocity (Vmax) demonstrated no sex, treatment, or sex-by-treatment effect (P > 0.05). There were no significant effects for TTF (F: PL; 269 ± 161 vs. BRJ; 277 ± 158 s and M: PL; 228 ± 171 vs. BRJ; 194 ± 100 s; P > 0.05). Cohen's d effect sizes for peak power showed moderate to large effect sizes at 270 (d = 0.92) and 360°/s (d = 0.81), showing a possible differentiated effect of dietary nitrate in females and males. The present data indicate that [Formula: see text] supplementation does not significantly affect knee extensor maximal power, maximal contraction velocity, and muscular endurance in either sex. The sex-dependent response to dietary nitrate supplementation requires further investigation as data on females is scarce.NEW & NOTEWORTHY Recent data have suggested that inorganic nitrate ([Formula: see text]) supplementation may benefit males; however, females may experience worsened endurance capacity. This study revealed a potential differentiated effect of [Formula: see text] supplementation on outcomes of muscle contractile function between healthy, young males and females. The specific responses of [Formula: see text] supplementation in females and across sexes remain understudied and require further investigation.
Collapse
Affiliation(s)
- Joaquin Ortiz de Zevallos
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Ka'eo Kruse
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Jeison De Guzman
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Meredith Buckley
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Alexandra F DeJong Lempke
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, United States
| | - Arthur Weltman
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jason D Allen
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
3
|
Lopergolo D, Gallus GN, Pieraccini G, Boscaro F, Berti G, Serni G, Volpi N, Formichi P, Bianchi S, Cassandrini D, Sorrentino V, Rossi D, Santorelli FM, De Stefano N, Malandrini A. CCDC78: Unveiling the Function of a Novel Gene Associated with Hereditary Myopathy. Cells 2024; 13:1504. [PMID: 39273074 PMCID: PMC11394131 DOI: 10.3390/cells13171504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a CCDC78 nonsense mutation to better understand the role of CCDC78 in muscle. METHODS We conducted a comprehensive histopathological analysis on muscle biopsies, including immunofluorescent assays to detect multiple sarcoplasmic proteins. We examined CCDC78 transcripts and protein using WB in CCDC78-mutated muscle tissue; these analyses were also performed on muscle, lymphocytes, and fibroblasts from healthy subjects. Subsequently, we conducted RT-qPCR and transcriptome profiling through RNA-seq to evaluate changes in gene expression associated with CCDC78 dysfunction in muscle. Lastly, coimmunoprecipitation (Co-Ip) assays and mass spectrometry (LC-MS/MS) studies were carried out on extracted muscle proteins from both healthy and mutated subjects. RESULTS The histopathological features in muscle showed novel histological hallmarks, which included areas of dilated and swollen sarcoplasmic reticulum (SR). We provided evidence of nonsense-mediated mRNA decay (NMD), identified the presence of novel CCDC78 transcripts in muscle and lymphocytes, and identified 1035 muscular differentially expressed genes, including several involved in the SR. Through the Co-Ip assays and LC-MS/MS studies, we demonstrated that CCDC78 interacts with two key SR proteins: SERCA1 and CASQ1. We also observed interactions with MYH1, ACTN2, and ACTA1. CONCLUSIONS Our findings provide insight, for the first time, into the interactors and possible role of CCDC78 in skeletal muscle, locating the protein in the SR. Furthermore, our data expand on the phenotype previously associated with CCDC78 mutations, indicating potential histopathological hallmarks of the disease in human muscle. Based on our data, we can consider CCDC78 as the causative gene for CNM4.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giuseppe Pieraccini
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Francesca Boscaro
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Gianna Berti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giovanni Serni
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Nila Volpi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Denise Cassandrini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
4
|
Watanabe D, Nishi M, Liu F, Bian Y, Takeshima H. Ca 2+ storage function is altered in the sarcoplasmic reticulum of skeletal muscle lacking mitsugumin 23. Am J Physiol Cell Physiol 2024; 326:C795-C809. [PMID: 38223925 DOI: 10.1152/ajpcell.00440.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Mitsugumin 23 (MG23) has been identified as a ball-shaped cation channel in the sarcoplasmic reticulum (SR) but its physiological role remains unclear. This study aimed to examine the contribution of MG23 to Ca2+ storage function in skeletal muscle by using Mg23-knockout (Mg23-/-) mice. There was no difference in the isometric specific force of the extensor digitorum longus (EDL) and soleus (SOL) muscles between Mg23-/- and wild-type (Wt) mice. In Mg23-/- mice, the calsequestrin 2 content in the EDL muscle and SR Ca2+-ATPase 2 content in the SOL were increased. We have examined SR and myofibril functions using mechanically skinned fibers and determined their fiber types based on the response to Sr2+, which showed that Mg23-/- mice, compared with Wt, had: 1) elevated total Ca2+ content in the membranous components including SR, mitochondria, and transverse tubular system referred to as endogenous Ca2+ content, in both type I and II fibers of the EDL and SOL; 2) increased maximal Ca2+ content in both type I and II fibers of the EDL and SOL; 3) decreased SR Ca2+ leakage in type I fibers of the SOL; and 4) enhanced SR Ca2+ uptake in type I fibers of the SOL, although myofibril function was not different in both type I and II fibers of the SOL and EDL muscles. These results suggest that MG23 decreases SR Ca2+ storage in both type I and type II fibers, likely due to increased SR Ca2+ leakage.NEW & NOTEWORTHY The function of calcium storage within sarcoplasmic reticulum (SR) plays a pivotal role in influencing the health and disease states of skeletal muscle. In the present study, we demonstrated that mitsgumin 23, a novel non-selective cation channel, modifies SR Ca2+ storage in skeletal muscle fibers. These findings provide valuable insights into the physiological regulation of Ca2+ in skeletal muscle, offering significant potential for uncovering the mechanisms underlying muscle fatigue, muscle adaptation, and muscle diseases.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Feng Liu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuhan Bian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Pearce L, Meizoso-Huesca A, Seng C, Lamboley CR, Singh DP, Launikonis BS. Ryanodine receptor activity and store-operated Ca 2+ entry: Critical regulators of Ca 2+ content and function in skeletal muscle. J Physiol 2023; 601:4183-4202. [PMID: 35218018 DOI: 10.1113/jp279512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation-contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+ ] of the junctional SR terminal cisternae ([Ca2+ ]jSR ) depletes. [Ca2+ ]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+ ]jSR with RyR1 activity probably depends on the SR Ca2+ -buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in-phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in-phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.
Collapse
Affiliation(s)
- Luke Pearce
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Crystal Seng
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Cedric R Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel P Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
A bivalent remipede toxin promotes calcium release via ryanodine receptor activation. Nat Commun 2023; 14:1036. [PMID: 36823422 PMCID: PMC9950431 DOI: 10.1038/s41467-023-36579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.
Collapse
|
8
|
Zhang K, Zhang G, Duan H, Li Q, Huang K, Xu L, Yang H, Luo Y. CASQ1-related myopathy: The first report from China and the literature review. Clin Case Rep 2022; 10:e6689. [PMID: 36514469 PMCID: PMC9731158 DOI: 10.1002/ccr3.6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Calsequestrin 1 (CASQ1) is the most crucial Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal muscle. With high capacity and low affinity for Ca2+, CASQ1 plays a significant role in maintaining a large amount of Ca2+ necessary for muscle contraction. However, only five mutations in CASQ1 have been identified to date. Here, we report a 42-year-old Chinese female patient who presented with a 12 years history of slowly progressive upper limb weakness, predominantly affecting distal muscles, which was uncommon comparing to other CASQ1-related patients. Next-generation sequencing (NGS) analysis revealed a novel heterozygous mutation (c.766G > A, p.Val256Met) in CASQ1. Functional studies confirmed the likely pathogenicity of this variant. Muscle histopathology revealed rare optically empty vacuoles in myofibers and atypical eosinophilic granules in the cytoplasm, which has not been observed before. We also performed a literature review on all the pathogenic mutations in CASQ1 and summarized their genetic and clinical characteristics. This is the first report on CASQ1-related myopathy from China, further expanding the mutation spectrum of CASQ1 gene and provides new insights into the function of CASQ1.
Collapse
Affiliation(s)
- Kai‐Yue Zhang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Geng‐Jian Zhang
- Department of DermatologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hui‐Qian Duan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiu‐Xiang Li
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kun Huang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Li‐Qun Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Huan Yang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yue‐Bei Luo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
9
|
Tripp TR, Frankish BP, Lun V, Wiley JP, Shearer J, Murphy RM, MacInnis MJ. Time course and fibre type-dependent nature of calcium-handling protein responses to sprint interval exercise in human skeletal muscle. J Physiol 2022; 600:2897-2917. [PMID: 35556249 DOI: 10.1113/jp282739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sprint interval training (SIT) has been shown to cause fragmentation of the sarcoplasmic reticulum calcium-release channel, ryanodine receptor 1 (RyR1) 24 hours post-exercise, which may act as a signal for mitochondrial biogenesis. In this study, we examined the time course of RyR1 fragmentation in human whole muscle and pooled type I and type II skeletal muscle fibres following a single session of SIT. Full-length RyR1 protein content was significantly lower than pre-exercise by 6 h post-SIT in whole muscle, and fragmentation was detectable in type II but not type I fibres, though to a lesser extent than in whole muscle. The peak in PGC1A mRNA expression occurred earlier than RyR1 fragmentation. The increased temporal resolution and fibre type-specific responses for RyR1 fragmentation provide insights into its importance to mitochondrial biogenesis in humans. ABSTRACT Sprint interval training (SIT) causes fragmentation of the skeletal muscle sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 1 (RyR1), 24h post-exercise, potentially signaling mitochondrial biogenesis by increasing cytosolic [Ca2+ ]. Yet, the time course and skeletal muscle fibre type-specific patterns of RyR1 fragmentation following a session of SIT remain unknown. Ten participants (n = 4 females; n = 6 males) performed a session of SIT (6 × 30 s "all-out" with 4.5 min rest after each sprint) with vastus lateralis muscle biopsy samples collected before and 3, 6, and 24h after exercise. In whole muscle, full-length RyR1 protein content was significantly reduced 6 h (mean [SD]; -38 [38]%; p<0.05) and 24 h post-SIT (-30 [48]%; p<0.05) compared to pre-exercise. Examining each participant's largest response in pooled samples, full-length RyR1 protein content was reduced in type II (-26 [30]%; p<0.05) but not type I fibres (-11 [40]%; p>0.05). 3h post-SIT, there was also a decrease in SERCA1 in type II fibres (-23 [17]%; p<0.05) and SERCA2a in type I fibres (-19 [21]%; p<0.05), despite no time effect for either protein in whole muscle samples (p>0.05). PGC1A mRNA content was elevated 3h and 6h post-SIT (5.3- and 3.7-fold change from pre, respectively; p<0.05 for both), but peak PGC1A mRNA expression was not significantly correlated with peak RyR1 fragmentation (r2 = 0.10; p>0.05). In summary, altered Ca2+ -handling protein expression, which occurs primarily in type II muscle fibres, may influence signals for mitochondrial biogenesis as early as 3-6 h post-SIT in humans. Abstract figure legend Western blotting was performed on whole muscle and pooled type I and II muscle fibre preparations derived from human vastus lateralis muscle biopsy samples collected before and after a single session of sprint interval training (SIT). Full-length ryanodine receptor 1 (RyR1) protein content was reduced 6 and 24 h post-exercise in whole muscle samples compared to baseline, despite a heterogeneous time course among individuals. This RyR1 fragmentation proceeded and outlasted the increase in peroxisome proliferator-activated γ receptor coactivator 1α (PGC1A) mRNA expression. When examining the time point of each individual's peak response, RyR1 fragmentation was evident in type II, but not type I, muscle fibres. These findings suggest that, in humans, mitochondrial biogenesis could be influenced by RyR1 fragmentation 3-6 h post-SIT in a fibre type-dependent manner. Created with BioRender.com. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Barnaby P Frankish
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, Australia
| | - Victor Lun
- University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robyn M Murphy
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Rudayni HA, Stephenson G, Posterino GS. Measurements of basal d-glucose transport through GLUT1 across the intact plasma membrane of isolated segments from single fast- and slow-twitch skeletal muscle fibres of rat. Acta Physiol (Oxf) 2022; 234:e13789. [PMID: 35038771 PMCID: PMC9541404 DOI: 10.1111/apha.13789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Aim To develop a method for direct measurement of the fluorescent d‐glucose analogue 2‐NBDG transport across the plasma membrane of single skeletal muscle fibres and derive the theoretical framework for determining the kinetic parameters for d‐glucose transport under basal conditions. Methods A novel method is described for measuring free 2‐NBDG transport across plasma membrane of single rat muscle fibres at rest. The 2‐NBDG uptake was >90% suppressed by 100 µM cytochalasin B in both fast‐twitch and slow‐twitch fibres, indicating that the 2‐NBDG transport is GLUT‐mediated. Fibres were identified as fast‐twitch or slow‐twitch based on the differential sensitivity of their contractile apparatus to Sr2+. Results The time course of 2‐NBDG uptake in the presence of 50 µM 2‐NBDG follows a one‐phase exponential plateau curve and is faster in fast‐twitch (rate constant 0.053 ± 0.0024 s‐1) than in slow‐twitch fibres (rate constant 0.031 ± 0.0021 s‐1). The rate constants were markedly reduced in the presence of 20 mM d‐glucose to 0.0082 ± 0.0004 s‐1 and 0.0056 ± 0.0002 s‐1 in fast‐twitch and slow‐twitch fibres respectively. 2‐NBDG transport was asymmetric, consistent with GLUT1 being the major functional GLUT isoform transporting 2‐NBDG in muscle fibres at rest. The parameters describing the transport kinetics for both 2‐NBDG and d‐glucose (dissociation constants, Michaelis–Menten constants, maximal rates of uptake and outflow) were calculated from the measurements made with 2‐NBDG. Conclusion Free 2‐NBDG and d‐glucose transport across the plasma membrane of single rat muscle fibres at rest is fast, conclusively showing that the rate‐limiting step in d‐glucose uptake in skeletal muscle is not necessarily the GLUT‐mediated transport of d‐glucose.
Collapse
Affiliation(s)
- Hassan A. Rudayni
- Department of Biology College of Science Imam Mohammad Ibn Saud Islamic University Riyadh Saudi Arabia
| | - George Stephenson
- Department of Physiology, Anatomy and Microbiology La Trobe University Melbourne Victoria Australia
| | - Giuseppe S. Posterino
- Department of Physiology, Anatomy and Microbiology La Trobe University Melbourne Victoria Australia
| |
Collapse
|
11
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
12
|
Ronaldson SM, Stephenson DG, Head SI. Calcium and strontium contractile activation properties of single skinned skeletal muscle fibres from elderly women 66-90 years of age. J Muscle Res Cell Motil 2022; 43:173-183. [PMID: 35987933 PMCID: PMC9708809 DOI: 10.1007/s10974-022-09628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/31/2022]
Abstract
The single freshly skinned muscle fibre technique was used to investigate Ca2+- and Sr2+-activation properties of skeletal muscle fibres from elderly women (66-90 years). Muscle biopsies were obtained from the vastus lateralis muscle. Three populations of muscle fibres were identified according to their specific Sr2+-activation properties: slow-twitch (type I), fast-twitch (type II) and hybrid (type I/II) fibres. All three fibre types were sampled from the biopsies of 66 to 72 years old women, but the muscle biopsies of women older than 80 years yielded only slow-twitch (type I) fibres. The proportion of hybrid fibres in the vastus lateralis muscle of women of circa 70 years of age (24%) was several-fold greater than in the same muscle of adults (< 10%), suggesting that muscle remodelling occurs around this age. There were no differences between the Ca2+- and Sr2+-activation properties of slow-twitch fibres from the two groups of elderly women, but there were differences compared with muscle fibres from young adults with respect to sensitivity to Ca2+, steepness of the activation curves, and characteristics of the fibre-type dependent phenomenon of spontaneous oscillatory contractions (SPOC) (or force oscillations) occurring at submaximal levels of activation. The maximal Ca2+ activated specific force from all the fibres collected from the seven old women use in the present study was significantly lower by 20% than in the same muscle of adults. Taken together these results show there are qualitative and quantitative changes in the activation properties of the contractile apparatus of muscle fibres from the vastus lateralis muscle of women with advancing age, and that these changes need to be considered when explaining observed changes in women's mobility with aging.
Collapse
Affiliation(s)
| | - D. George Stephenson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086 Australia
| | - Stewart I. Head
- School of Medicine, Western Sydney University, Sydney, 2751 Australia ,Chair of Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751 Australia
| |
Collapse
|
13
|
Lamboley CR, Pearce L, Seng C, Meizoso-Huesca A, Singh DP, Frankish BP, Kaura V, Lo HP, Ferguson C, Allen PD, Hopkins PM, Parton RG, Murphy RM, van der Poel C, Barclay CJ, Launikonis BS. Ryanodine receptor leak triggers fiber Ca 2+ redistribution to preserve force and elevate basal metabolism in skeletal muscle. SCIENCE ADVANCES 2021; 7:eabi7166. [PMID: 34705503 PMCID: PMC8550231 DOI: 10.1126/sciadv.abi7166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.
Collapse
Affiliation(s)
- Cedric R. Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luke Pearce
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Crystal Seng
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel P. Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Barnaby P. Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Vikas Kaura
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Harriet P. Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Paul D. Allen
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Robyn M. Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Chris van der Poel
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christopher J. Barclay
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bradley S. Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Corresponding author.
| |
Collapse
|
14
|
Qaisar R, Ustrana S, Muhammad T, Shah I. Sarcopenia in pulmonary diseases is associated with elevated sarcoplasmic reticulum stress and myonuclear disorganization. Histochem Cell Biol 2021; 157:93-105. [PMID: 34665327 DOI: 10.1007/s00418-021-02043-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with age-related muscle loss or sarcopenia. However, the exact molecular mechanism of muscle loss in COPD remains elusive. We investigated the association of chronic dysregulation of sarcoplasmic reticulum (SR) protein homeostasis (a condition called SR stress) and myonuclear disorganization with sarcopenia in patients with COPD. Markers of SR stress and their downstream consequences, including apoptosis and inflammation, were upregulated in patients with COPD. The maximal SR Ca2+ ATPase (SERCA) activity was significantly reduced in advanced COPD as compared to healthy controls. Single muscle fiber diameter and cytoplasmic domain per myonucleus were significantly smaller in patients with advanced COPD than in healthy controls. Increased disruption of myonuclear organization was found in the COPD patients as compared to healthy controls. These changes in SR dysfunction were accompanied by elevated global levels of oxidative stress, including lipid peroxidation and mitochondrial reactive oxygen species (ROS) production. Altogether, our data suggest that muscle weakness in advanced COPD is in part associated with the disruption of SR protein and calcium homeostasis and their pathological consequences.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - Shahjahan Ustrana
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, 29050, Pakistan
| | - Tahir Muhammad
- Department of Biochemistry, Gomal Medical College, Dera Ismail Khan, 29050, Pakistan
| | - Islam Shah
- Al-Qassimi Hospital, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Hanna AD, Lee CS, Babcock L, Wang H, Recio J, Hamilton SL. Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation. FASEB J 2021; 35:e21349. [PMID: 33786938 DOI: 10.1096/fj.202001653rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
Mice with a mutation (D244G, DG) in calsequestrin 1 (CASQ1), analogous to a human mutation in CASQ1 associated with a delayed onset human myopathy (vacuolar aggregate myopathy), display a progressive myopathy characterized by decreased activity, decreased ability of fast twitch muscles to generate force and low body weight after one year of age. The DG mutation causes CASQ1 to partially dissociate from the junctional sarcoplasmic reticulum (SR) and accumulate in the endoplasmic reticulum (ER). Decreased junctional CASQ1 reduces SR Ca2+ release. Muscles from older DG mice display ER stress, ER expansion, increased mTOR signaling, inadequate clearance of aggregated proteins by the proteasomes, and elevation of protein aggregates and lysosomes. This study suggests that the myopathy associated with the D244G mutation in CASQ1 is driven by CASQ1 mislocalization, reduced SR Ca2+ release, CASQ1 misfolding/aggregation and ER stress. The subsequent maladaptive increase in protein synthesis and decreased protein aggregate clearance are likely to contribute to disease progression.
Collapse
Affiliation(s)
- Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Pathophysiological Effects of Overactive STIM1 on Murine Muscle Function and Structure. Cells 2021; 10:cells10071730. [PMID: 34359900 PMCID: PMC8304505 DOI: 10.3390/cells10071730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism regulating extracellular Ca2+ entry to control a multitude of Ca2+-dependent signaling pathways and cellular processes. SOCE relies on the concerted activity of the reticular Ca2+ sensor STIM1 and the plasma membrane Ca2+ channel ORAI1, and dysfunctions of these key factors result in human pathologies. STIM1 and ORAI1 gain-of-function (GoF) mutations induce excessive Ca2+ influx through SOCE over-activation, and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK), two overlapping disorders characterized by muscle weakness and additional multi-systemic signs affecting growth, platelets, spleen, skin, and intellectual abilities. In order to investigate the pathophysiological effect of overactive SOCE on muscle function and structure, we combined transcriptomics with morphological and functional studies on a TAM/STRMK mouse model. Muscles from Stim1R304W/+ mice displayed aberrant expression profiles of genes implicated in Ca2+ handling and excitation-contraction coupling (ECC), and in vivo investigations evidenced delayed muscle contraction and relaxation kinetics. We also identified signs of reticular stress and abnormal mitochondrial activity, and histological and respirometric analyses on muscle samples revealed enhanced myofiber degeneration associated with reduced mitochondrial respiration. Taken together, we uncovered a molecular disease signature and deciphered the pathomechanism underlying the functional and structural muscle anomalies characterizing TAM/STRMK.
Collapse
|
17
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Watanabe D, Wada M. Orthograde signal of dihydropyridine receptor increases Ca 2+ leakage after repeated contractions in rat fast-twitch muscles in vivo. Am J Physiol Cell Physiol 2021; 320:C806-C821. [PMID: 33596151 DOI: 10.1152/ajpcell.00364.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers and SR microsomes were prepared from the muscles excised 30 min after repeated high-intensity contractions. The mechanically skinned fibers maintained the interaction between dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs), whereas the SR microsomes did not. Interestingly, skinned fibers from the stimulated muscles showed increased SR Ca2+ leakage, whereas Ca2+ leakage decreased in SR microsomes from the stimulated muscles. To enhance the orthograde signal of DHPRs, SR Ca2+ leakage in the skinned fiber was measured 1) under a continuously depolarized condition and 2) in the presence of nifedipine. As a result, in either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, the increased SR Ca2+ leakage from the stimulated fibers was alleviated by treatment with 1 mM tetracaine (Tet) but not by treatment with 3 mM free Mg2+ (3 Mg). Tet exerted a greater inhibitory effect on the DHPR signal to RyR than 3 Mg, although their inhibitory effects on RyR were almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RyRs.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
19
|
Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet 2021; 108:446-457. [PMID: 33600773 PMCID: PMC8008486 DOI: 10.1016/j.ajhg.2021.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The protein α-actinin-3 expressed in fast-twitch skeletal muscle fiber is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in ACTN3 (R577X). The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance. Here, we show that humans lacking α-actinin-3 (XX) are superior in maintaining core body temperature during cold-water immersion due to changes in skeletal muscle thermogenesis. Muscles of XX individuals displayed a shift toward more slow-twitch isoforms of myosin heavy chain (MyHC) and sarcoplasmic reticulum (SR) proteins, accompanied by altered neuronal muscle activation resulting in increased tone rather than overt shivering. Experiments on Actn3 knockout mice showed no alterations in brown adipose tissue (BAT) properties that could explain the improved cold tolerance in XX individuals. Thus, this study provides a mechanism for the positive selection of the ACTN3 X-allele in cold climates and supports a key thermogenic role of skeletal muscle during cold exposure in humans.
Collapse
|
20
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Monti E, Toniolo L, Marcucci L, Bondì M, Martellato I, Šimunič B, Toninello P, Franchi MV, Narici MV, Reggiani C. Are muscle fibres of body builders intrinsically weaker? A comparison with single fibres of aged-matched controls. Acta Physiol (Oxf) 2021; 231:e13557. [PMID: 32921001 DOI: 10.1111/apha.13557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
AIM Skeletal muscles of Body Builders (BB) represent an interesting model to study muscle mass gains in response to high volume resistance training. It is debated whether muscle contractile performance improves in proportion to mass. Here, we aim to assess whether muscle hypertrophy does not occur at the expense of performance. METHODS Six BB and Six untrained controls (CTRL) were recruited. Cross-sectional area (CSA) and maximum voluntary contraction (MVC) of quadriceps femoris muscle (QF) and CSA and architecture of vastus lateralis (VL) were determined. Moreover, a biopsy was taken from VL mid-portion and single fibres were analysed. RESULTS QF CSA and MVC were 32% (n.s., P = .052) and 58% (P = .009) higher in BB than in CTRL, respectively. VL CSA was 37% higher in BB (P = .030). Fast 2A fibres CSA was 24% (P = .048) greater in BB than in CTRL, when determined in immunostained sections of biopsy samples. Single permeabilized fast fibres CSA was 37% (n.s., P = .052) higher in BB than in CTRL, and their force was slightly higher in BB (n.s.), while specific tension (P0 ) was 19% (P = .024) lower. The lower P0 was not explained either by lower myosin content or by impaired calcium diffusion. Conversely, the swelling caused by skinning-induced permeabilization was different and, when used to correct P0 , differences between populations disappeared. CONCLUSIONS The results show that high degree of muscle hypertrophy is not detrimental for force generation capacity, as increases in fibre size and force are strictly proportional once the differential swelling response is accounted for.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Luana Toniolo
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Michela Bondì
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Ivan Martellato
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Bostjan Šimunič
- Science and Research Centre Koper Institute for Kinesiology Research Koper Slovenia
| | - Paolo Toninello
- Clinic of Plastic Surgery Padova University Hospital Padova Italy
| | | | - Marco V. Narici
- Department of Biomedical Sciences University of Padova Padova Italy
- Science and Research Centre Koper Institute for Kinesiology Research Koper Slovenia
- CIR‐MYO Myology Centre Department of Biomedical Sciences University of Padua Padova Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences University of Padova Padova Italy
- Science and Research Centre Koper Institute for Kinesiology Research Koper Slovenia
| |
Collapse
|
22
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
23
|
Lamboley CR, Rouffet DM, Dutka TL, McKenna MJ, Lamb GD. Effects of high-intensity intermittent exercise on the contractile properties of human type I and type II skeletal muscle fibers. J Appl Physiol (1985) 2020; 128:1207-1216. [PMID: 32213115 DOI: 10.1152/japplphysiol.00014.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro studies have shown that alterations in redox state can cause a range of opposing effects on the properties of the contractile apparatus in skeletal muscle fibers. To test whether and how redox changes occurring in vivo affect the contractile properties, vastus lateralis muscle fibers from seven healthy young adults were examined at rest (PRE) and following (POST) high-intensity intermittent cycling exercise. Individual mechanically skinned muscle fibers were exposed to heavily buffered solutions at progressively higher free [Ca2+] to determine their force-Ca2+ relationship. Following acute exercise, Ca2+ sensitivity was significantly decreased in type I fibers (by 0.06 pCa unit) but not in type II fibers (0.01 pCa unit). Specific force decreased after the exercise in type II fibers (-18%) but was unchanged in type I fibers. Treatment with the reducing agent dithiothreitol (DTT) caused a small decrease in Ca2+-sensitivity in type II fibers at PRE (by ∼0.014 pCa units) and a significantly larger decrease at POST (∼0.035 pCa units), indicating that the exercise had increased S-glutathionylation of fast troponin I. DTT treatment also increased specific force (by ∼4%), but only at POST. In contrast, DTT treatment had no effect on either parameter in type I fibers at either PRE or POST. In type I fibers, the decreased Ca2+ sensitivity was not due to reversible oxidative changes and may have contributed to a decrease in power production during vigorous exercises. In type II fibers, exercise-induced redox changes help counter the decline in Ca2+-sensitivity while causing a small decline in maximum force.NEW & NOTEWORTHY This study identified important cellular changes occurring in human skeletal muscle fibers following high-intensity intermittent exercise: 1) a decrease in contractile apparatus Ca2+ sensitivity in type I but not type II fibers, 2) a decrease in specific force only in type II muscle fibers, and 3) a redox-dependent increase in Ca2+ sensitivity occurring only in type II fibers, which would help maintain muscle performance by countering the normal metabolite-induced decline in Ca2+ sensitivity.
Collapse
Affiliation(s)
- Cedric R Lamboley
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - David M Rouffet
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Health and Sport Sciences, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Travis L Dutka
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Reggiani C. Caffeine as a tool to investigate sarcoplasmic reticulum and intracellular calcium dynamics in human skeletal muscles. J Muscle Res Cell Motil 2020; 42:281-289. [PMID: 32034582 DOI: 10.1007/s10974-020-09574-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Caffeine is worldwide used for its power to increase cognitive and physical performance. The ergogenic effects of caffeine, however, do not depend on a direct action on muscles. Actually, the actions of caffeine on skeletal muscles, take place at millimolar concentrations which are far above the micromolar level reached after a regular consumption of coffee or similar drinks, and close to a lethal concentration. At millimolar concentrations caffeine exerts a powerful effect on sarcoplasmic reticulum (SR) activating the release of calcium via ryanodine receptors and, possibly, inhibiting calcium reuptake. For this reason caffeine has become a valuable tool for studying SR function and for diagnostics of SR related muscle disorders. This review aims to briefly describe the effects and the mechanism of action of caffeine on sarcoplasmic reticulum and to focus on its use to study intracellular calcium dynamics in human muscle fibers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35131, Padua, Italy. .,ZRS-Science and Research Center, Koper, Slovenia.
| |
Collapse
|
25
|
Watanabe D, Lamboley CR, Lamb GD. Effects of S-glutathionylation on the passive force-length relationship in skeletal muscle fibres of rats and humans. J Muscle Res Cell Motil 2019; 41:239-250. [PMID: 31679105 DOI: 10.1007/s10974-019-09563-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/26/2019] [Indexed: 12/14/2022]
Abstract
This study investigated the effect of S-glutathionylation on passive force in skeletal muscle fibres, to determine whether activity-related redox reactions could modulate the passive force properties of muscle. Mechanically-skinned fibres were freshly obtained from human and rat muscle, setting sarcomere length (SL) by laser diffraction. Larger stretches were required to produce passive force in human fibres compared to rat fibres, but there were no fibre-type differences in either species. When fibres were exposed to glutathione disulfide (GSSG; 20 mM, 15 min) whilst stretched (at a SL where passive force reached ~ 20% of maximal Ca2+-activated force, denoted as SL20 % max), passive force was subsequently decreased at all SLs in both type I and type II fibres of rat and human (e.g., passive force at SL20 % max decreased by 12 to 25%). This decrease was fully reversed by subsequent reducing treatment with dithiothreitol (DTT; 10 mM for 10 min). If freshly skinned fibres were initially treated with DTT, there was an increase in passive force in type II fibres (by 10 ± 3% and 9 ± 2% in rat and human fibres, respectively), but not in type I fibres. These results indicate that (i) S-glutathionylation, presumably in titin, causes a decrease in passive force in skeletal muscle fibres, but the reduction is relatively smaller than that reported in cardiac muscle, (ii) in rested muscle in vivo, there appears to be some level of reversible oxidative modification, probably involving S-glutathionylation of titin, in type II fibres, but not in type I fibres.
Collapse
Affiliation(s)
- Daiki Watanabe
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia. .,Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| | - Cedric R Lamboley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Graham D Lamb
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| |
Collapse
|
26
|
Christiansen D, MacInnis MJ, Zacharewicz E, Xu H, Frankish BP, Murphy RM. A fast, reliable and sample-sparing method to identify fibre types of single muscle fibres. Sci Rep 2019; 9:6473. [PMID: 31019216 PMCID: PMC6482153 DOI: 10.1038/s41598-019-42168-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
Many skeletal muscle proteins are present in a cell-specific or fibre-type dependent manner. Stimuli such as exercise, aging, and disease have been reported to result in fibre-specific responses in protein abundances. Thus, fibre-type-specific determination of the content of specific proteins provides enhanced mechanistic understanding of muscle physiology and biochemistry compared with typically performed whole-muscle homogenate analyses. This analysis, however, is laborious and typically not performed. We present a novel dot blotting method for easy and rapid determination of skeletal muscle fibre type based on myosin heavy chain (MHC) isoform presence. Requiring only small amounts of starting muscle tissue (i.e., 2–10 mg wet weight), muscle fibre type is determined in one-tenth of a 1–3-mm fibre segment, with the remainder of each segment pooled with fibre segments of the same type (I or II) for subsequent protein quantification by western blotting. This method, which we validated using standard western blotting, is much simpler and cheaper than previous methods and is adaptable for laboratories routinely performing biochemical analyses. Use of dot blotting for fibre typing will facilitate investigations of fibre-specific responses to diverse stimuli, which will advance our understanding of skeletal muscle physiology and biochemistry.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Martin J MacInnis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Evelyn Zacharewicz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Hongyang Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Barnaby P Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
27
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
28
|
Lamb GD, Stephenson DG. Measurement of force and calcium release using mechanically skinned fibers from mammalian skeletal muscle. J Appl Physiol (1985) 2018; 125:1105-1127. [DOI: 10.1152/japplphysiol.00445.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanically skinned (or “peeled”) skeletal muscle fiber technique is a highly versatile procedure that allows controlled examination of each of the steps in the excitation-contraction (EC)-coupling sequence in skeletal muscle fibers, starting with excitation/depolarization of the transverse tubular (T)-system through to Ca2+ release from sarcoplasmic reticulum (SR) and finally force development by the contractile apparatus. It can also show the overall response of the whole EC-coupling sequence together, such as in twitch and tetanic force responses. A major advantage over intact muscle fiber preparations is that it is possible to set and rapidly manipulate the “intracellular” conditions, allowing examination of the effects of key variables (e.g., intracellular pH, ATP levels, redox state, etc.) on each individual step in EC coupling. This Cores of Reproducibility in Physiology (CORP) article describes the rationale, procedures, and experimental details of the various ways in which the mechanically skinned fiber technique is used in our laboratory to examine the physiological mechanisms controlling Ca2+ release and contraction in skeletal muscle fibers and the aberrations and dysfunction occurring with exercise and disease.
Collapse
Affiliation(s)
- Graham D. Lamb
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - D. George Stephenson
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Semplicini C, Bertolin C, Bello L, Pantic B, Guidolin F, Vianello S, Catapano F, Colombo I, Moggio M, Gavassini BF, Cenacchi G, Papa V, Previtero M, Calore C, Sorarù G, Minervini G, Tosatto SCE, Stramare R, Pegoraro E. The clinical spectrum of CASQ1-related myopathy. Neurology 2018; 91:e1629-e1641. [PMID: 30258016 DOI: 10.1212/wnl.0000000000006387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To identify and characterize patients with calsequestrin 1 (CASQ1)-related myopathy. METHODS Patients selected according to histopathologic features underwent CASQ1 genetic screening. CASQ1-mutated patients were clinically evaluated and underwent muscle MRI. Vacuole morphology and vacuolated fiber type were characterized. RESULTS Twenty-two CASQ1-mutated patients (12 families) were identified, 21 sharing the previously described founder mutation (p.Asp244Gly) and 1 with the p.Gly103Asp mutation. Patients usually presented in the sixth decade with exercise intolerance and myalgias and later developed mild to moderate, slowly progressive proximal weakness with quadriceps atrophy and scapular winging. Muscle MRI (n = 11) showed a recurrent fibrofatty substitution pattern. Three patients presented subclinical cardiac abnormalities. Muscle histopathology in patients with p.Asp244Gly showed vacuoles in type II fibers appearing empty in hematoxylin-eosin, Gomori, and nicotinamide adenine dinucleotide (NADH) tetrazolium reductase stains but strongly positive for sarcoplasmic reticulum proteins. The muscle histopathology of p.Gly103Asp mutation was different, showing also NADH-positive accumulation consistent with tubular aggregates. CONCLUSIONS We report the clinical and molecular details of the largest cohort of CASQ1-mutated patients. A possible heart involvement is presented, further expanding the phenotype of the disease. One mutation is common due to a founder effect, but other mutations are possible. Because of a paucity of symptoms, it is likely that CASQ1 mutations may remain undiagnosed if a muscle biopsy is not performed.
Collapse
Affiliation(s)
- Claudio Semplicini
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Cinzia Bertolin
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Luca Bello
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Boris Pantic
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Francesca Guidolin
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Sara Vianello
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Francesco Catapano
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Irene Colombo
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Maurizio Moggio
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Bruno F Gavassini
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Giovanna Cenacchi
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Valentina Papa
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Marco Previtero
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Chiara Calore
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Gianni Sorarù
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Giovanni Minervini
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Silvio C E Tosatto
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Roberto Stramare
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Elena Pegoraro
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy.
| |
Collapse
|
30
|
Mosole S, Zampieri S, Furlan S, Carraro U, Löefler S, Kern H, Volpe P, Nori A. Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People. Gerontol Geriatr Med 2018; 4:2333721418768998. [PMID: 29662923 PMCID: PMC5896842 DOI: 10.1177/2333721418768998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 01/10/2023] Open
Abstract
Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins.
Collapse
Affiliation(s)
- Simone Mosole
- University of Padova, Italy.,Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Zampieri
- University of Padova, Italy.,Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Furlan
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Padova, Italy
| | - Ugo Carraro
- IRRCS Fondazione Ospedale San Camillo, Venice, Italy
| | - Stefan Löefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria.,Institute of Physical Medicine and Rehabilitation, St. Pölten, Austria
| | | | | |
Collapse
|
31
|
Tobias IS, Lazauskas KK, Arevalo JA, Bagley JR, Brown LE, Galpin AJ. Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: advancement in methods via capillary nanoimmunoassay. J Appl Physiol (1985) 2018; 124:840-849. [DOI: 10.1152/japplphysiol.00894.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5′-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α1, α2, β1, β2, γ2, and γ3 with a tubulin loading control. Significant FT-specific differences were found for α2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ2 (2.5-fold higher in MHC IIa vs. others), and γ3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5′-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Kara K. Lazauskas
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Jose A. Arevalo
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | - Lee E. Brown
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
32
|
Lamboley CR, Xu H, Dutka TL, Hanson ED, Hayes A, Violet JA, Murphy RM, Lamb GD. Effect of androgen deprivation therapy on the contractile properties of type I and type II skeletal muscle fibres in men with non-metastatic prostate cancer. Clin Exp Pharmacol Physiol 2017; 45:146-154. [DOI: 10.1111/1440-1681.12873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/30/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Cedric R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL); College of Sport and Exercise Science; Victoria University; Melbourne Vic. Australia
- School of Life Sciences; La Trobe University; Melbourne Vic. Australia
| | - Hongyang Xu
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Vic. Australia
| | - Travis L Dutka
- School of Life Sciences; La Trobe University; Melbourne Vic. Australia
| | - Erik D Hanson
- Institute of Sport, Exercise and Active Living (ISEAL); College of Sport and Exercise Science; Victoria University; Melbourne Vic. Australia
- Australian Institute for Musculoskeletal Science (AIMSS); Sunshine Hospital; Western Health; Melbourne Vic. Australia
- College of Health and Biomedicine; Victoria University; Melbourne Vic. Australia
| | - Alan Hayes
- Institute of Sport, Exercise and Active Living (ISEAL); College of Sport and Exercise Science; Victoria University; Melbourne Vic. Australia
- Australian Institute for Musculoskeletal Science (AIMSS); Sunshine Hospital; Western Health; Melbourne Vic. Australia
- College of Health and Biomedicine; Victoria University; Melbourne Vic. Australia
| | - John A Violet
- Division of Radiation Oncology and Cancer Imaging; Peter MacCallum Cancer Centre; East Melbourne Vic. Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Vic. Australia
| | - Graham D Lamb
- School of Life Sciences; La Trobe University; Melbourne Vic. Australia
| |
Collapse
|
33
|
Dulhunty AF, Wei-LaPierre L, Casarotto MG, Beard NA. Core skeletal muscle ryanodine receptor calcium release complex. Clin Exp Pharmacol Physiol 2017; 44:3-12. [PMID: 27696487 DOI: 10.1111/1440-1681.12676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
The core skeletal muscle ryanodine receptor (RyR1) calcium release complex extends through three compartments of the muscle fibre, linking the extracellular environment through the cytoplasmic junctional gap to the lumen of the internal sarcoplasmic reticulum (SR) calcium store. The protein complex is essential for skeletal excitation-contraction (EC)-coupling and skeletal muscle function. Its importance is highlighted by perinatal death if any one of the EC-coupling components are missing and by myopathies associated with mutation of any of the proteins. The proteins essential for EC-coupling include the DHPR α1S subunit in the transverse tubule membrane, the DHPR β1a subunit in the cytosol and the RyR1 ion channel in the SR membrane. The other core proteins are triadin and junctin and calsequestrin, associated mainly with SR. These SR proteins are not essential for survival but exert structural and functional influences that modify the gain of EC-coupling and maintain normal muscle function. This review summarises our current knowledge of the individual protein/protein interactions within the core complex and their overall contribution to EC-coupling. We highlight significant areas that provide a continuing challenge for the field. Additional important components of the Ca2+ release complex, such as FKBP12, calmodulin, S100A1 and Stac3 are identified and reviewed elsewhere.
Collapse
Affiliation(s)
- Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Lan Wei-LaPierre
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY, USA
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nicole A Beard
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
34
|
Zhang J, Liu H, Li S, Wu J, Sun J. SERCA1 attenuates diaphragm relaxation and uptake rate of SERCA in rats with acute sepsis. Mol Med Rep 2017; 16:5015-5022. [PMID: 28765908 DOI: 10.3892/mmr.2017.7134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/15/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of acute sepsis on diaphragm contractility and relaxation, via examining the Ca2+‑uptake function of sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA), and the protein levels of SERCA1, SERCA2 and the ryanodine receptor (RyR) of the sarcoplasmic reticulum (SR). A sepsis rat model was established through cecal ligation and puncture (CLP). A total of 6 and 12 h following CLP, the isometric contractile and relaxation parameters of the diaphragm were measured. In addition, Ca2+ uptake and release from the SR, and the protein expression levels of SERCA1, SERCA2 and RyR in diaphragm muscle tissue were investigated. At 6 and 12 h post‑CLP, the diaphragm half‑relaxation time was prolonged and the maximum rate of tension decline was decreased and the Ca2+‑uptake function of SERCA was markedly reduced. The maximum rate of twitch force development, the maximal twitch and tetanic tension, and the release function of SR were decreased at 12 h post‑CLP. A total of 12 h following CLP, the protein expression levels of SERCA1 were significantly downregulated, and its activity was significantly reduced; conversely, the protein levels of SERCA2 remained unaltered. The present findings indicated that at the acute stage of sepsis induced by CLP the contractile and relaxation functions of the diaphragm were significantly compromised. The impairments in relaxation may be a result of the impaired uptake function of the SR and the downregulation in SERCA1 protein expression. Conversely, the compromised contractility may be a result of the impaired release function of the SR and the downregulation in RyR protein levels. This could provide some new insights into the treatment of sepsis. In acute stages of sepsis, the improvement of SERCA function could reduce the disequilibrium of calcium homeostasis to improve the critical illness myopathy and respiratory failure.
Collapse
Affiliation(s)
- Jianyou Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Hui Liu
- Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Jin Wu
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Jianhong Sun
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
35
|
Bjorksten AR, Gillies RL, Hockey BM, Du Sart D. Sequencing of genes involved in the movement of calcium across human skeletal muscle sarcoplasmic reticulum: continuing the search for genes associated with malignant hyperthermia. Anaesth Intensive Care 2017; 44:762-768. [PMID: 27832566 DOI: 10.1177/0310057x1604400625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic basis of malignant hyperthermia (MH) is not fully characterised and likely involves more than just the currently classified mutations in the gene encoding the skeletal muscle ryanodine receptor (RYR1) and the gene encoding the α1 subunit of the dihydropyridine receptor (CACNA1S). In this paper we sequence other genes involved in calcium trafficking within skeletal muscle in patients with positive in vitro contracture tests, searching for alternative genes associated with MH. We identified four rare variants in four different genes (CACNB1, CASQ1, SERCA1 and CASQ2) encoding proteins involved in calcium handling in skeletal muscle in a cohort of 30 Australian MH susceptible probands in whom prior complete sequencing of RYR1 and CACNA1S had yielded no rare variants. These four variants have very low minor allele frequencies and while it is tempting to speculate that they have a role in MH, they remain at present variants of unknown significance. Nevertheless they provide the basis for a new set of functional studies, which may indeed identify novel players in MH.
Collapse
Affiliation(s)
- A R Bjorksten
- Senior Scientist, Malignant Hyperthermia Diagnostic Unit, Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Anaesthesia, Perioperative and Pain Medicine Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victorian Clinical Genetics Service Molecular Genetics Laboratory, Murdoch Children's Research Institut
| | - R L Gillies
- Head, Malignant Hyperthermia Diagnostic Unit, Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Anaesthesia, Perioperative and Pain Medicine Unit, University of Melbourne, Victoria
| | - B M Hockey
- Malignant Hyperthermia Diagnostic Unit, Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Consultant Anaesthetist, Anaesthesia, Perioperative and Pain Medicine Unit, University of Melbourne, Victoria
| | - D Du Sart
- Research Affiliate/Head, Victorian Clinical Genetics Service Molecular Genetics Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria
| |
Collapse
|
36
|
Dutka TL, Mollica JP, Lamboley CR, Weerakkody VC, Greening DW, Posterino GS, Murphy RM, Lamb GD. S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers. Am J Physiol Cell Physiol 2017; 312:C316-C327. [DOI: 10.1152/ajpcell.00334.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022]
Abstract
Nitric oxide is generated in skeletal muscle with activity and decreases Ca2+ sensitivity of the contractile apparatus, putatively by S-nitrosylation of an unidentified protein. We investigated the mechanistic basis of this effect and its relationship to the oxidation-induced increase in Ca2+ sensitivity in mammalian fast-twitch (FT) fibers mediated by S-glutathionylation of Cys134 on fast troponin I (TnIf). Force-[Ca2+] characteristics of the contractile apparatus in mechanically skinned fibers were assessed by direct activation with heavily Ca2+-buffered solutions. Treatment with S-nitrosylating agents, S-nitrosoglutathione (GSNO) or S-nitroso- N-acetyl-penicillamine (SNAP), decreased pCa50 ( = −log10 [Ca2+] at half-maximal activation) by ~−0.07 pCa units in rat and human FT fibers without affecting maximum force, but had no effect on rat and human slow-twitch fibers or toad or chicken FT fibers, which all lack Cys134. The Ca2+ sensitivity decrease was 1) fully reversed with dithiothreitol or reduced glutathione, 2) at least partially reversed with ascorbate, indicative of involvement of S-nitrosylation, and 3) irreversibly blocked by low concentration of the alkylating agent, N-ethylmaleimide (NEM). The biotin-switch assay showed that both GSNO and SNAP treatments caused S-nitrosylation of TnIf. S-glutathionylation pretreatment blocked the effects of S-nitrosylation on Ca2+ sensitivity, and vice-versa. S-nitrosylation pretreatment prevented NEM from irreversibly blocking S-glutathionylation of TnIf and its effects on Ca2+ sensitivity, and likewise S-glutathionylation pretreatment prevented NEM block of S-nitrosylation. Following substitution of TnIf into rat slow-twitch fibers, S-nitrosylation treatment caused decreased Ca2+ sensitivity. These findings demonstrate that S-nitrosylation and S-glutathionylation exert opposing effects on Ca2+ sensitivity in mammalian FT muscle fibers, mediated by competitive actions on Cys134 of TnIf.
Collapse
Affiliation(s)
- T. L. Dutka
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - J. P. Mollica
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - C. R. Lamboley
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - V. C. Weerakkody
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - D. W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - G. S. Posterino
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - R. M. Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - G. D. Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Cully TR, Murphy RM, Roberts L, Raastad T, Fassett RG, Coombes JS, Jayasinghe I, Launikonis BS. Human skeletal muscle plasmalemma alters its structure to change its Ca 2+-handling following heavy-load resistance exercise. Nat Commun 2017; 8:14266. [PMID: 28193999 PMCID: PMC5316829 DOI: 10.1038/ncomms14266] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/08/2016] [Indexed: 01/30/2023] Open
Abstract
High-force eccentric exercise results in sustained increases in cytoplasmic Ca2+ levels ([Ca2+]cyto), which can cause damage to the muscle. Here we report that a heavy-load strength training bout greatly alters the structure of the membrane network inside the fibres, the tubular (t-) system, causing the loss of its predominantly transverse organization and an increase in vacuolation of its longitudinal tubules across adjacent sarcomeres. The transverse tubules and vacuoles displayed distinct Ca2+-handling properties. Both t-system components could take up Ca2+ from the cytoplasm but only transverse tubules supported store-operated Ca2+ entry. The retention of significant amounts of Ca2+ within vacuoles provides an effective mechanism to reduce the total content of Ca2+ within the fibre cytoplasm. We propose this ability can reduce or limit resistance exercise-induced, Ca2+-dependent damage to the fibre by the reduction of [Ca2+]cyto to help maintain fibre viability during the period associated with delayed onset muscle soreness.
Collapse
Affiliation(s)
- Tanya R. Cully
- School of Biomedical Sciences, The University of Queensland,
Brisbane, Queensland
4072, Australia
| | - Robyn M. Murphy
- Department of Biochemistry & Genetics, La Trobe Institute for
Molecular Science, La Trobe University, Melbourne, Victoria
3086, Australia
| | - Llion Roberts
- School of Human Movement and Nutritional Sciences, The University of
Queensland, Brisbane, Queensland
4072, Australia
- Centre of Excellence for Applied Sport Science Research, Queensland
Academy of Sport, Brisbane, Queensland
4111, Australia
| | - Truls Raastad
- Norwegian School of Sport Sciences, Oslo
N-0806, Norway
| | - Robert G. Fassett
- School of Human Movement and Nutritional Sciences, The University of
Queensland, Brisbane, Queensland
4072, Australia
| | - Jeff S. Coombes
- School of Human Movement and Nutritional Sciences, The University of
Queensland, Brisbane, Queensland
4072, Australia
| | - Izzy Jayasinghe
- School of Biomedical Sciences, The University of Queensland,
Brisbane, Queensland
4072, Australia
- School of Biomedical Sciences, University of Leeds,
Leeds
LS2 9JT, UK
| | - Bradley S. Launikonis
- School of Biomedical Sciences, The University of Queensland,
Brisbane, Queensland
4072, Australia
| |
Collapse
|
38
|
Valle G, Vergani B, Sacchetto R, Reggiani C, De Rosa E, Maccatrozzo L, Nori A, Villa A, Volpe P. Characterization of fast-twitch and slow-twitch skeletal muscles of calsequestrin 2 (CASQ2)-knock out mice: unexpected adaptive changes of fast-twitch muscles only. J Muscle Res Cell Motil 2017; 37:225-233. [PMID: 28130614 DOI: 10.1007/s10974-016-9463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023]
Abstract
This study investigates the functional role of calsequestrin 2 (CASQ2) in both fast-twitch and slow-twitch skeletal muscles by using CASQ2-/- mice; CASQ2 is expressed throughout life in slow-twitch muscles, but only in the developmental and neonatal stages in fast-twitch muscles. CASQ2-/- causes increase in calsequestrin 1 (CASQ1) expression, but without functional changes in both muscle types. CASQ2-/- mice have ultrastructural changes in fast-twitch muscles only, i.e., formation of pentads and stacks in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Giorgia Valle
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Barbara Vergani
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Roberta Sacchetto
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Carlo Reggiani
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Edith De Rosa
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Lisa Maccatrozzo
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Alessandra Nori
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Antonello Villa
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy.
| |
Collapse
|
39
|
Lamboley CR, Wyckelsma VL, Perry BD, McKenna MJ, Lamb GD. Effect of 23-day muscle disuse on sarcoplasmic reticulum Ca2+ properties and contractility in human type I and type II skeletal muscle fibers. J Appl Physiol (1985) 2016; 121:483-92. [DOI: 10.1152/japplphysiol.00337.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022] Open
Abstract
Inactivity negatively impacts on skeletal muscle function mainly through muscle atrophy. However, recent evidence suggests that the quality of individual muscle fibers is also altered. This study examined the effects of 23 days of unilateral lower limb suspension (ULLS) on specific force and sarcoplasmic reticulum (SR) Ca2+ content in individual skinned muscle fibers. Muscle biopsies of the vastus lateralis were taken from six young healthy adults prior to and following ULLS. After disuse, the endogenous SR Ca2+ content was ∼8% lower in type I fibers and maximal SR Ca2+ capacity was lower in both type I and type II fibers (−11 and −5%, respectively). The specific force, measured in single skinned fibers from three subjects, decreased significantly after ULLS in type II fibers (−23%) but not in type I fibers (−9%). Western blot analyses showed no significant change in the amounts of myosin heavy chain (MHC) I and MHC IIa following the disuse, whereas the amounts of sarco(endo)plasmic reticulum Ca2+-ATPase 1 (SERCA1) and calsequestrin increased by ∼120 and ∼20%, respectively, and the amount of troponin I decreased by ∼21%. These findings suggest that the decline in force and power occurring with muscle disuse is likely to be exacerbated in part by reductions in maximum specific force in type II fibers, and in the amount of releasable SR Ca2+ in both fiber types, the latter not being attributable to a reduced calsequestrin level. Furthermore, the ∼3-wk disuse in human elicits change in SR properties, in particular a more than twofold upregulation in SERCA1 density, before any fiber-type shift.
Collapse
Affiliation(s)
- C. R. Lamboley
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - V. L. Wyckelsma
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; and
| | - B. D. Perry
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - M. J. McKenna
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - G. D. Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Neyroud D, Cheng AJ, Bourdillon N, Kayser B, Place N, Westerblad H. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles. Front Physiol 2016; 7:252. [PMID: 27445844 PMCID: PMC4924481 DOI: 10.3389/fphys.2016.00252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.
Collapse
Affiliation(s)
- Daria Neyroud
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
41
|
张 建, 吴 进, 李 士, 龚 园. [Lowered sarcoendoplasmic reticulum calcium uptake and diaphragmatic SERCA1 expression contribute to diaphragmatic contractile and relaxation dysfunction in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:438-443. [PMID: 28446393 PMCID: PMC6744105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The explore the mechanism responsible for diaphragmatic contractile and relaxation dysfunction in a rat model of sepsis. METHODS Thirty-six adult male Sprague-Dawley rats were randomized equally into a sham-operated group and two model groups of sepsis induced by cecal ligation and puncture (CLP) for examination at 6 and 12 h following CLP (CLP-6 h and CLP-12 h groups). The parameters of diaphragm contractile and relaxation were measured, and the calcium uptake and release rates of the diaphragmatic sarcoendoplasmic reticulum (SR) and the protein expressions of SERCA1, SERCA2 and RyR in the diaphragmatic muscles were determined. RESULTS The half-relaxation time of the diaphragm was extended in both the CLP-6 h and CLP-12 h groups with significantly reduced maximum tension declinerate and the peek uptake rate of SERCA (P<0.01). Diaphragmatic maximum twitch force development rate, the maximal twitch, tetanus tensions and the peek release rate of SR decreased only at 12h after CLP (P<0.01). The expression levels of SERCA1 protein decreased significantly in the diaphragmatic muscles at 12h following CLP (P<0.01) while SERCA2 expression level and SERCA activity showed no significant changes. CONCLUSION In the acute stage of sepsis, both the contractile and relaxation functions of the diaphragm are impaired. Diaphragmatic relaxation dysfunction may result from reduced calcium uptake in the SR and a decreased level of SERCA1 in the diaphragmatic muscles.
Collapse
Affiliation(s)
- 建友 张
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 进 吴
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - 士通 李
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 园 龚
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
42
|
张 建, 吴 进, 李 士, 龚 园. [Lowered sarcoendoplasmic reticulum calcium uptake and diaphragmatic SERCA1 expression contribute to diaphragmatic contractile and relaxation dysfunction in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:438-443. [PMID: 28446393 PMCID: PMC6744105 DOI: 10.3969/j.issn.1673-4254.2017.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The explore the mechanism responsible for diaphragmatic contractile and relaxation dysfunction in a rat model of sepsis. METHODS Thirty-six adult male Sprague-Dawley rats were randomized equally into a sham-operated group and two model groups of sepsis induced by cecal ligation and puncture (CLP) for examination at 6 and 12 h following CLP (CLP-6 h and CLP-12 h groups). The parameters of diaphragm contractile and relaxation were measured, and the calcium uptake and release rates of the diaphragmatic sarcoendoplasmic reticulum (SR) and the protein expressions of SERCA1, SERCA2 and RyR in the diaphragmatic muscles were determined. RESULTS The half-relaxation time of the diaphragm was extended in both the CLP-6 h and CLP-12 h groups with significantly reduced maximum tension declinerate and the peek uptake rate of SERCA (P<0.01). Diaphragmatic maximum twitch force development rate, the maximal twitch, tetanus tensions and the peek release rate of SR decreased only at 12h after CLP (P<0.01). The expression levels of SERCA1 protein decreased significantly in the diaphragmatic muscles at 12h following CLP (P<0.01) while SERCA2 expression level and SERCA activity showed no significant changes. CONCLUSION In the acute stage of sepsis, both the contractile and relaxation functions of the diaphragm are impaired. Diaphragmatic relaxation dysfunction may result from reduced calcium uptake in the SR and a decreased level of SERCA1 in the diaphragmatic muscles.
Collapse
Affiliation(s)
- 建友 张
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 进 吴
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - 士通 李
- 南京医科大学,江苏 南京 210029Nanjing Medical University, Nanjing 210029, China
| | - 园 龚
- 上海交通大学附属第一人民医院麻醉科,上海 200080Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
43
|
Lamboley CR, Wyckelsma VL, McKenna MJ, Murphy RM, Lamb GD. Ca(2+) leakage out of the sarcoplasmic reticulum is increased in type I skeletal muscle fibres in aged humans. J Physiol 2015; 594:469-81. [PMID: 26574292 DOI: 10.1113/jp271382] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The amount of Ca(2+) stored in the sarcoplasmic reticulum (SR) of muscle fibres is decreased in aged individuals, and an important question is whether this results from increased Ca(2+) leakage out through the Ca(2+) release channels (ryanodine receptors; RyRs). The present study examined the effects of blocking the RyRs with Mg(2+), or applying a strong reducing treatment, on net Ca(2+) accumulation by the SR in skinned muscle fibres from Old (∼70 years) and Young (∼24 years) adults. Raising cytoplasmic [Mg(2+)] and reducing treatment increased net SR Ca(2+) accumulation in type I fibres of Old subjects relative to that in Young. The densities of RyRs and dihydropyridine receptors were not significantly changed in the muscle of Old subjects. These findings indicate that oxidative modification of the RyRs causes increased Ca(2+) leakage from the SR in muscle fibres in Old subjects, which probably deleteriously affects normal muscle function both directly and indirectly. ABSTRACT The present study examined whether the lower Ca(2+) storage levels in the sarcoplasmic reticulum (SR) in vastus lateralis muscle fibres in Old (70 ± 4 years) relative to Young (24 ± 4 years) human subjects is the result of increased leakage of Ca(2+) out of the SR through the Ca(2+) release channels/ryanodine receptors (RyRs) and due to oxidative modification of the RyRs. SR Ca(2+) accumulation in mechanically skinned muscle fibres was examined in the presence of 1, 3 or 10 mm cytoplasmic Mg(2+) because raising [Mg(2+)] strongly inhibits Ca(2+) efflux through the RyRs. In type I fibres of Old subjects, SR Ca(2+) accumulation in the presence of 1 mm Mg(2+) approached saturation at shorter loading times than in Young subjects, consistent with Ca(2+) leakage limiting net uptake, and raising [Mg(2+)] to 10 mm in such fibres increased maximal SR Ca(2+) accumulation. No significant differences were seen in type II fibres. Treatment with dithiothreitol (10 mm for 5 min), a strong reducing agent, also increased maximal SR Ca(2+) accumulation at 1 mm Mg(2+) in type I fibres of Old subjects but not in other fibres. The densities of dihydropyridine receptors and RyRs were not significantly different in muscles of Old relative to Young subjects. These findings indicate that Ca(2+) leakage from the SR is increased in type I fibres in Old subjects by reversible oxidative modification of the RyRs; this increased SR Ca(2+) leak is expected to have both direct and indirect deleterious effects on Ca(2+) movements and muscle function.
Collapse
Affiliation(s)
- C R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - V L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - M J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia
| | - R M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - G D Lamb
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
44
|
Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, Nori A. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil 2015; 37:27-39. [PMID: 26585961 DOI: 10.1007/s10974-015-9432-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022]
Abstract
Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located.
Collapse
Affiliation(s)
- Sandra Furlan
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
| | - Simone Mosole
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121, Padua, Italy
| | - Pompeo Volpe
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy.
| |
Collapse
|
45
|
Lamboley CRH, Kake Guena SA, Touré F, Hébert C, Yaddaden L, Nadeau S, Bouchard P, Wei-LaPierre L, Lainé J, Rousseau EC, Frenette J, Protasi F, Dirksen RT, Pape PC. New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin. ACTA ACUST UNITED AC 2015; 145:127-53. [PMID: 25624449 PMCID: PMC4306712 DOI: 10.1085/jgp.201411250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The concentration of total calcium in a skeletal muscle appears to be correlated with the muscle’s likely force requirements given by the ratio of body weight to muscle weight. We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.5% sodium dodecyl sulfate (to permeabilize membranes and denature proteins) and then centrifuged. The solution volume was adjusted so that BAPTA captured essentially all of the Ca. [CaT]WM was obtained with Beer’s law from the absorbance change produced by adding 1 mM EGTA to capture Ca from BAPTA. Results from mouse, rat, and frog muscles were reasonably consistent with results obtained using other methods for estimating total [Ca] in whole muscles and in single muscle fibers. Results with external Ca removed before determining [CaT]WM indicate that most of the Ca was intracellular, indicative of a lack of bound Ca in the extracellular space. In both fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from mice, [CaT]WM increased approximately linearly with decreasing muscle weight, increasing approximately twofold with a twofold decrease in muscle weight. This suggests that the Ca concentration of smaller muscles might be increased relative to that in larger muscles, thereby increasing the specific force to compensate for the smaller mass. Knocking out the high capacity Ca-binding protein calsequestrin (CSQ) did not significantly reduce [CaT]WM in mouse EDL or soleus muscle. However, in EDL muscles lacking CSQ, muscle weights were significantly lower than in wild-type (WT) muscles and the values of [CaT]WM were, on average, about half the expected WT values, taking into account the above [CaT]WM versus muscle weight relationship. Because greater reductions in [CaT]WM would be predicted in both muscle types, we hypothesize that there is a substantial increase in Ca bound to other sites in the CSQ knockout muscles.
Collapse
Affiliation(s)
- Cédric R H Lamboley
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria 8001, Australia
| | - Sandrine A Kake Guena
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Fatou Touré
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Camille Hébert
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Louiza Yaddaden
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Stephanie Nadeau
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Patrice Bouchard
- Département de Réadaptation, Université Laval, Québec G1K 7P4, Canada
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jean Lainé
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Eric C Rousseau
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| | - Jérôme Frenette
- Département de Réadaptation, Université Laval, Québec G1K 7P4, Canada
| | - Feliciano Protasi
- Center for Research on Aging and Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Paul C Pape
- Département de physiologie et biophysique, Université de Sherbrooke Faculté de Médicine et des Sciences de la Santé, Sherbrooke, Québec J1H5N4, Canada
| |
Collapse
|
46
|
Willemse H, Theodoratos A, Smith PN, Dulhunty AF. Unexpected dependence of RyR1 splice variant expression in human lower limb muscles on fiber-type composition. Pflugers Arch 2015; 468:269-78. [PMID: 26438192 DOI: 10.1007/s00424-015-1738-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 10/23/2022]
Abstract
The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.
Collapse
Affiliation(s)
- Hermia Willemse
- John Curtin School of Medical Research, Australian National University, Acton, ACT, 2600, Australia.
| | - Angelo Theodoratos
- John Curtin School of Medical Research, Australian National University, Acton, ACT, 2600, Australia.
| | - Paul N Smith
- Trauma and Orthopaedic Research Unit, Canberra Hospital, Building 6, Level 1, P.O. Box 11, Woden, ACT, 2606, Australia.
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Acton, ACT, 2600, Australia.
| |
Collapse
|
47
|
Lamboley CR, Wyckelsma VL, Dutka TL, McKenna MJ, Murphy RM, Lamb GD. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans. J Physiol 2015; 593:2499-514. [PMID: 25809942 DOI: 10.1113/jp270179] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/23/2015] [Indexed: 01/25/2023] Open
Abstract
KEY POINTS Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. ABSTRACT This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western blotting showed an increased proportion of type I fibres in Old subjects, and increased amounts of calsequestrin-2 and calsequestrin-like protein. The findings suggest that muscle weakness in old age is probably attributable in part to (i) an increased proportion of type I fibres, (ii) a reduction in both maximum specific force and Ca(2+) sensitivity in type II fibres, and also a decreased ability of S-glutathionylation of TnIf to counter the fatiguing effects of metabolites on Ca(2+) sensitivity, and (iii) a reduction in the amount of releasable SR Ca(2+) in both fibre types.
Collapse
Affiliation(s)
- C R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - V L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia.,La Trobe Rural Health School, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - T L Dutka
- School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - M J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - R M Murphy
- School of Molecular Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - G D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
48
|
Reggiani C. Calcium handling in muscle fibres of mice and men: evolutionary adaptation in different species to optimize performance and save energy. J Physiol 2015; 592:1173-4. [PMID: 24634016 DOI: 10.1113/jphysiol.2014.272344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
49
|
Wyckelsma VL, McKenna MJ, Serpiello FR, Lamboley CR, Aughey RJ, Stepto NK, Bishop DJ, Murphy RM. Single-fiber expression and fiber-specific adaptability to short-term intense exercise training of Na+-K+-ATPase α- and β-isoforms in human skeletal muscle. J Appl Physiol (1985) 2015; 118:699-706. [PMID: 25614596 DOI: 10.1152/japplphysiol.00419.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na(+)-K(+)-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1-3 and β1-3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers (P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.
Collapse
Affiliation(s)
- V L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - M J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - F R Serpiello
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - C R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - R J Aughey
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - N K Stepto
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - D J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - R M Murphy
- Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev Camb Philos Soc 2014; 90:1279-97. [PMID: 25424279 DOI: 10.1111/brv.12157] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT-centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle-based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.
Collapse
Affiliation(s)
- Leslie A Rowland
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Naresh C Bal
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|