1
|
Gao M, Ooms JF, Leurs R, Vischer HF. Histamine H 3 Receptor Isoforms: Insights from Alternative Splicing to Functional Complexity. Biomolecules 2024; 14:761. [PMID: 39062475 PMCID: PMC11274711 DOI: 10.3390/biom14070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Henry F. Vischer
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.G.); (J.F.O.); (R.L.)
| |
Collapse
|
2
|
Zandt MV, Pittenger C. Sexual dimorphism in histamine regulation of striatal dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595049. [PMID: 38826392 PMCID: PMC11142073 DOI: 10.1101/2024.05.20.595049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Many neuropsychiatric disorders show sex differences in prevalence and presentation. For example, Tourette's Syndrome (TS) is diagnosed 3-5 times more often in males. Dopamine modulation of the basal ganglia is implicated in numerous neuropsychiatric conditions, including TS. Motivated by an unexpected genetic finding in a family with TS, we previously characterized the modulation of striatal dopamine by histamine. Methods We used microdialysis to analyze striatal dopamine response to the targeted infusion of histamine and histamine agonists. siRNA knockdown of histamine receptors was used to identify the cellular mediators of observed effects. Results Intracerebroventricular histamine reduced striatal dopamine in male mice, replicating previous work. Unexpectedly, histamine increased striatal dopamine in females. Targeted infusion of selected agonists revealed that the effect in males depends on H2R receptors in the substantia nigra pars compacta (SNc). Knockdown of H2R in SNc GABAergic neurons abrogated the effect, identifying these cells as a key locus of histamine's regulation of dopamine in males. In females, in contrast, H2R had no role; instead, H3R agonists in the striatum increased striatal dopamine. Strikingly, the effect of histamine on dopamine in females was modulated by the estrous cycle, appearing in estrus/proestrus but not in metestrus/diestrus. Conclusions These findings confirm the regulation of striatal dopamine by histamine but identify marked sexual dimorphism in and estrous modulation of this effect. These findings may shed light on the mechanistic underpinnings of other sex differences in the striatal circuitry, perhaps including the marked sex differences seen in TS and related neuropsychiatric conditions.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Christopher Pittenger
- Pittenger Laboratory, Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale School of Arts and Sciences, New Haven, USA
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, USA
- Wu-Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Ming X, Gao S, Sun J, Zhang N, Guo R, Feng X, Luan X, Xing H, Jiao Y, Guo F. Regulation of the MCHergic Neural Circuit to Dorsal Raphe Nucleus on Emotion-Related Behaviors and Intestinal Dysfunction in Mice Model of Irritable Bowel Syndrome with Diarrhea. Neuroendocrinology 2024; 114:605-622. [PMID: 38547853 DOI: 10.1159/000538582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.
Collapse
Affiliation(s)
- Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinqiu Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xufei Feng
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Han Xing
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yang Jiao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Khouma A, Moeini MM, Plamondon J, Richard D, Caron A, Michael NJ. Histaminergic regulation of food intake. Front Endocrinol (Lausanne) 2023; 14:1202089. [PMID: 37448468 PMCID: PMC10338010 DOI: 10.3389/fendo.2023.1202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.
Collapse
Affiliation(s)
- Axelle Khouma
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Moein Minbashi Moeini
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Medicine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Qian H, Shu C, Xiao L, Wang G. Histamine and histamine receptors: Roles in major depressive disorder. Front Psychiatry 2022; 13:825591. [PMID: 36213905 PMCID: PMC9537353 DOI: 10.3389/fpsyt.2022.825591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Although the incidence of major depressive disorder (MDD) is high and its social impact is great, we still know very little about the pathophysiology of depression. The monoamine hypothesis of depression suggests that 5-HT, NE, and DA synergistically affect mood, which is the basis of current drug therapy for depression. However, histamine as a monoamine transmitter is rarely studied. Our review is the first time to illustrate the effect of histaminergic system on depression in order to find the way for the development of new antidepressant drugs. The brain neurotransmitter histamine is involved in MDD, and the brain histaminergic system operates through four receptors. Histamine and its receptors can also regulate the immune response to improve symptoms of depression. In addition, H3R can interact with other depression-related transmitters (including 5-HT, DA, GLU, and MCH); thus, histamine may participate in the occurrence of depression through other neural circuits. Notably, in rodent studies, several H3R and H1R antagonists were found to be safe and effective in alleviating depression-like behavior. To highlight the complex functions of histamine in depression, and reveals that histamine receptors can be used as new targets for antidepressant therapy.
Collapse
Affiliation(s)
- Hong Qian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Driscoll M, Buchert SN, Coleman V, McLaughlin M, Nguyen A, Sitaraman D. Compartment specific regulation of sleep by mushroom body requires GABA and dopaminergic signaling. Sci Rep 2021; 11:20067. [PMID: 34625611 PMCID: PMC8501079 DOI: 10.1038/s41598-021-99531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Sleep is a fundamental behavioral state important for survival and is universal in animals with sufficiently complex nervous systems. As a highly conserved neurobehavioral state, sleep has been described in species ranging from jellyfish to humans. Biogenic amines like dopamine, serotonin and norepinephrine have been shown to be critical for sleep regulation across species but the precise circuit mechanisms underlying how amines control persistence of sleep, arousal and wakefulness remain unclear. The fruit fly, Drosophila melanogaster, provides a powerful model system for the study of sleep and circuit mechanisms underlying state transitions and persistence of states to meet the organisms motivational and cognitive needs. In Drosophila, two neuropils in the central brain, the mushroom body (MB) and the central complex (CX) have been shown to influence sleep homeostasis and receive aminergic neuromodulator input critical to sleep–wake switch. Dopamine neurons (DANs) are prevalent neuromodulator inputs to the MB but the mechanisms by which they interact with and regulate sleep- and wake-promoting neurons within MB are unknown. Here we investigate the role of subsets of PAM-DANs that signal wakefulness and project to wake-promoting compartments of the MB. We find that PAM-DANs are GABA responsive and require GABAA-Rdl receptor in regulating sleep. In mapping the pathways downstream of PAM neurons innervating γ5 and β′2 MB compartments we find that wakefulness is regulated by both DopR1 and DopR2 receptors in downstream Kenyon cells (KCs) and mushroom body output neurons (MBONs). Taken together, we have identified and characterized a dopamine modulated sleep microcircuit within the mushroom body that has previously been shown to convey information about positive and negative valence critical for memory formation. These studies will pave way for understanding how flies balance sleep, wakefulness and arousal.
Collapse
Affiliation(s)
- Margaret Driscoll
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Steven N Buchert
- Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA
| | - Victoria Coleman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Morgan McLaughlin
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Amanda Nguyen
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Divya Sitaraman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA. .,Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| |
Collapse
|
7
|
Iacovides S, Kamerman P, Baker FC, Mitchell D. Why It Is Important to Consider the Effects of Analgesics on Sleep: A Critical Review. Compr Physiol 2021; 11:2589-2619. [PMID: 34558668 DOI: 10.1002/cphy.c210006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the known physiological mechanisms underpinning all of pain processing, sleep regulation, and pharmacology of analgesics prescribed for chronic pain. In particular, we describe how commonly prescribed analgesics act in sleep-wake neural pathways, with potential unintended impact on sleep and/or wake function. Sleep disruption, whether pain- or drug-induced, negatively impacts quality of life, mental and physical health. In the context of chronic pain, poor sleep quality heightens pain sensitivity and may affect analgesic function, potentially resulting in further analgesic need. Clinicians already have to consider factors including efficacy, abuse potential, and likely side effects when making analgesic prescribing choices. We propose that analgesic-related sleep disruption should also be considered. The neurochemical mechanisms underlying the reciprocal relationship between pain and sleep are poorly understood, and studies investigating sleep in those with specific chronic pain conditions (including those with comorbidities) are lacking. We emphasize the importance of further work to clarify the effects (intended and unintended) of each analgesic class to inform personalized treatment decisions in patients with chronic pain. © 2021 American Physiological Society. Compr Physiol 11:1-31, 2021.
Collapse
Affiliation(s)
- Stella Iacovides
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter Kamerman
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fiona C Baker
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Human Sleep Research Program, SRI International, Menlo Park, California, USA
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Marichal-Cancino BA, González-Hernández A, Muñoz-Islas E, Villalón CM. Monoaminergic Receptors as Modulators of the Perivascular Sympathetic and Sensory CGRPergic Outflows. Curr Neuropharmacol 2021; 18:790-808. [PMID: 32364079 PMCID: PMC7569320 DOI: 10.2174/1570159x18666200503223240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Blood pressure is a highly controlled cardiovascular parameter that normally guarantees an adequate blood supply to all body tissues. This parameter is mainly regulated by peripheral vascular resistance and is maintained by local mediators (i.e., autacoids), and by the nervous and endocrine systems. Regarding the nervous system, blood pressure can be modulated at the central level by regulating the autonomic output. However, at peripheral level, there exists a modulation by activation of prejunctional monoaminergic receptors in autonomic- or sensory-perivascular fibers. These modulatory mechanisms on resistance blood vessels exert an effect on the release of neuroactive substances from the autonomic or sensory fibers that modify blood pressure. Certainly, resistance blood vessels are innervated by perivascular: (i) autonomic sympathetic fibers (producing vasoconstriction mainly by noradrenaline release); and (ii) peptidergic sensory fibers [producing vasodilatation mainly by calcitonin gene-related peptide (CGRP) release]. In the last years, by using pithed rats, several monoaminergic mechanisms for controlling both the sympathetic and sensory perivascular outflows have been elucidated. Additionally, several studies have shown the functions of many monoaminergic auto-receptors and hetero-receptors expressed on perivascular fibers that modulate neurotransmitter release. On this basis, the present review: (i) summarizes the modulation of the peripheral vascular tone by adrenergic, serotoninergic, dopaminergic, and histaminergic receptors on perivascular autonomic (sympathetic) and sensory fibers, and (ii) highlights that these monoaminergic receptors are potential therapeutic targets for the development of novel medications to treat cardiovascular diseases (with some of them explored in clinical trials or already in clinical use).
Collapse
Affiliation(s)
- Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | | | - Enriqueta Muñoz-Islas
- Unidad Academica Multidisciplinaria Reynosa-Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Mexico City, Mexico
| |
Collapse
|
9
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
10
|
Yamada Y, Yoshikawa T, Naganuma F, Kikkawa T, Osumi N, Yanai K. Chronic brain histamine depletion in adult mice induced depression-like behaviours and impaired sleep-wake cycle. Neuropharmacology 2020; 175:108179. [DOI: 10.1016/j.neuropharm.2020.108179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 01/31/2023]
|
11
|
Schaller D, Wolber G. PyRod Enables Rational Homology Model-based Virtual Screening Against MCHR1. Mol Inform 2020; 39:e2000020. [PMID: 32329245 PMCID: PMC7317519 DOI: 10.1002/minf.202000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
Several encouraging pre-clinical results highlight the melanin-concentrating hormone receptor 1 (MCHR1) as promising target for anti-obesity drug development. Currently however, experimentally resolved structures of MCHR1 are not available, which complicates rational drug design campaigns. In this study, we aimed at developing accurate, homologymodel-based 3D pharmacophores against MCHR1. We show that traditional approaches involving docking of known active small molecules are hindered by the flexibility of binding pocket residues. Instead, we derived three-dimensional pharmacophores from molecular dynamics simulations by employing our novel open-source software PyRod. In a retrospective evaluation, the generated 3D pharmacophores were highly predictive returning up to 35 % of active molecules and showing an early enrichment (EF1) of up to 27.6. Furthermore, PyRod pharmacophores demonstrate higher sensitivity than ligand-based pharmacophores and deliver structural insights, which are key to rational lead optimization.
Collapse
Affiliation(s)
- David Schaller
- Pharmaceutical and Medicinal ChemistryFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal ChemistryFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
12
|
Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019; 42:5099478. [PMID: 30239935 PMCID: PMC6335869 DOI: 10.1093/sleep/zsy183] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Histamine was first identified in the brain about 50 years ago, but only in the last few years have researchers gained an understanding of how it regulates sleep/wake behavior. We provide a translational overview of the histamine system, from basic research to new clinical trials demonstrating the usefulness of drugs that enhance histamine signaling. The tuberomammillary nucleus is the sole neuronal source of histamine in the brain, and like many of the arousal systems, histamine neurons diffusely innervate the cortex, thalamus, and other wake-promoting brain regions. Histamine has generally excitatory effects on target neurons, but paradoxically, histamine neurons may also release the inhibitory neurotransmitter GABA. New research demonstrates that activity in histamine neurons is essential for normal wakefulness, especially at specific circadian phases, and reducing activity in these neurons can produce sedation. The number of histamine neurons is increased in narcolepsy, but whether this affects brain levels of histamine is controversial. Of clinical importance, new compounds are becoming available that enhance histamine signaling, and clinical trials show that these medications reduce sleepiness and cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT
| | - Nicholas P Franks
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, UK
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac, Université Montpellier, INSERM, Montpellier, France
| |
Collapse
|
13
|
Riveros ME, Retamal MA. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS. Front Physiol 2018; 9:693. [PMID: 29946266 PMCID: PMC6005883 DOI: 10.3389/fphys.2018.00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder (BD) is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania) and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids) balance. In particular, the amount of fatty acids in the brain corresponds to a 50–70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.
Collapse
Affiliation(s)
- María E Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
14
|
Sil’kis IG. A Neurochemical Approach to the Search for Drugs for the Treatment of Symptoms of Alzheimer’s Disease. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Sanathara NM, Garau C, Alachkar A, Wang L, Wang Z, Nishimori K, Xu X, Civelli O. Melanin concentrating hormone modulates oxytocin-mediated marble burying. Neuropharmacology 2018; 128:22-32. [PMID: 28888943 PMCID: PMC5830107 DOI: 10.1016/j.neuropharm.2017.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/27/2022]
Abstract
Repetitive and perseverative behaviors are common features of a number of neuropsychiatric diseases such as Angelman's syndrome, Tourette's syndrome, obsessive-compulsive disorder, and autism spectrum disorders. The oxytocin system has been linked to the regulation of repetitive behavior in both animal models and humans, but many of its downstream targets have still to be found. We report that the melanin-concentrating hormone (MCH) system is a target of the oxytocin system in regulating one repetitive behavior, marble burying. First we report that nearly 60% of MCH neurons express oxytocin receptors, and demonstrate using rabies mediated tract tracing that MCH neurons receive direct presynaptic input from oxytocin neurons. Then we show that MCH receptor knockout (MCHR1KO) mice and MCH ablated animals display increased marble burying response while central MCH infusion decreases it. Finally, we demonstrate the downstream role of the MCH system on oxytocin mediated marble burying by showing that central infusions of MCH and oxytocin alone or together reduce it while antagonizing the MCH system blocks oxytocin-mediated reduction of this behavior. Our findings reveal a novel role for the MCH system as a mediator of the role of oxytocin in regulating marble-burying behavior in mice.
Collapse
Affiliation(s)
- Nayna M Sanathara
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Celia Garau
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Amal Alachkar
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Lien Wang
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
16
|
Schaller D, Hagenow S, Alpert G, Naß A, Schulz R, Bermudez M, Stark H, Wolber G. Systematic Data Mining Reveals Synergistic H3R/MCHR1 Ligands. ACS Med Chem Lett 2017. [PMID: 28626527 DOI: 10.1021/acsmedchemlett.7b00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we report a ligand-centric data mining approach that guided the identification of suitable target profiles for treating obesity. The newly developed method is based on identifying target pairs for synergistic positive effects and also encompasses the exclusion of compounds showing a detrimental effect on obesity treatment (off-targets). Ligands with known activity against obesity-relevant targets were compared using fingerprint representations. Similar compounds with activities to different targets were evaluated for the mechanism of action since activation or deactivation of drug targets determines the pharmacological effect. In vitro validation of the modeling results revealed that three known modulators of melanin-concentrating hormone receptor 1 (MCHR1) show a previously unknown submicromolar affinity to the histamine H3 receptor (H3R). This synergistic activity may present a novel therapeutic option against obesity.
Collapse
Affiliation(s)
- David Schaller
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Stefanie Hagenow
- Pharmaceutical
and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gina Alpert
- Pharmaceutical
and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Naß
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Robert Schulz
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Holger Stark
- Pharmaceutical
and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gerhard Wolber
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
17
|
Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res 2017; 118:74-81. [PMID: 28526553 DOI: 10.1016/j.neures.2017.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022]
Abstract
Sleep is one of the most important physiological functions in mammals. It is regulated by not only homeostatic regulation but also circadian clock. Several neuropeptide-producing neurons located in the hypothalamus are implicated in the regulation of sleep/wakefulness. Among them, orexin/hypocretin-producing neurons (orexin neurons) are a crucial component for maintenance of wakefulness, because lack of orexin function results in narcolepsy, which is a sleep disorder. Recent findings have identified substances that excite or inhibit neural activity of orexin neurons. Furthermore neural projections of the neurons which release these substances have been revealed. In addition to orexin, melanin concentrating hormone (MCH)-producing neurons in the lateral hypothalamic area (LHA) are also implicated in the regulation of sleep/wakefulness. MCH neurons are active during sleep but become silent during wakefulness. Recently developed innovative methods including optogenetics and pharmacogenetics have provided substantial insights into the regulation of sleep/wakefulness. In vivo optical recordings and retrograde and anterograde tracing methods will allow us to understand additional details regarding important interactions between these two types of neurons in the LHA and other neurons in the brain. Finally we discuss the circadian clock and sleep/wake cycle. Understanding of the neural networks and its circadian modulation of sleep/wake cycles remain to be investigated.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
18
|
Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2. J Clin Sleep Med 2017; 13:235-243. [PMID: 27855741 DOI: 10.5664/jcsm.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/03/2016] [Indexed: 01/07/2023]
Abstract
STUDY OBJECTIVES Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid (CSF) MCH levels, in contrast to previously reported normal evening/afternoon levels. METHODS Lumbar CSF and plasma were collected from 07:00 to 10:00 from 57 patients with narcolepsy (subtypes: 47 NT1; 10 NT2) diagnosed according to International Classification of Sleep Disorders, Third Edition (ICSD-3) and 20 healthy controls. HCRT-1 and MCH levels were quantified by radioimmunoassay and correlated with clinical symptoms, polysomnography (PSG), and Multiple Sleep Latency Test (MSLT) parameters. RESULTS CSF and plasma MCH levels were not significantly different between narcolepsy patients regardless of ICSD-3 subtype, HCRT-1 levels, or compared to controls. CSF MCH and HCRT-1 levels were not significantly correlated. Multivariate regression models of CSF MCH levels, age, sex, and body mass index predicting clinical, PSG, and MSLT parameters did not reveal any significant associations to CSF MCH levels. CONCLUSIONS Our study shows that MCH levels in CSF collected in the morning are normal in narcolepsy and not associated with the clinical symptoms, REM sleep abnormalities, nor number of muscle movements during REM or NREM sleep of the patients. We conclude that morning lumbar CSF MCH measurement is not an informative diagnostic marker for narcolepsy.
Collapse
Affiliation(s)
- Maren Schrölkamp
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.,FU-Berlin, Faculty Biology, Chemistry, Pharmacy, Takustr, Berlin, Germany
| | - Poul J Jennum
- Danish Center for Sleep Medicine, University of Copenhagen, Rigshospitalet, Glostrup, Denmark
| | - Steen Gammeltoft
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Anja Holm
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte R Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Stine Knudsen
- Danish Center for Sleep Medicine, University of Copenhagen, Rigshospitalet, Glostrup, Denmark.,Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Norway
| |
Collapse
|
19
|
Sfera A, Osorio C, Inderias LA, Parker V, Price AI, Cummings M. The Obesity-Impulsivity Axis: Potential Metabolic Interventions in Chronic Psychiatric Patients. Front Psychiatry 2017; 8:20. [PMID: 28243210 PMCID: PMC5303716 DOI: 10.3389/fpsyt.2017.00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Pathological impulsivity is encountered in a broad range of psychiatric conditions and is thought to be a risk factor for aggression directed against oneself or others. Recently, a strong association was found between impulsivity and obesity which may explain the high prevalence of metabolic disorders in individuals with mental illness even in the absence of exposure to psychotropic drugs. As the overlapping neurobiology of impulsivity and obesity is being unraveled, the question asked louder and louder is whether they should be treated concomitantly. The treatment of obesity and metabolic dysregulations in chronic psychiatric patients is currently underutilized and often initiated late, making correction more difficult to achieve. Addressing obesity and metabolic dysfunction in a preventive manner may not only lower morbidity and mortality but also the excessive impulsivity, decreasing the risk for aggression. In this review, we take a look beyond psychopharmacological interventions and discuss dietary and physical therapy approaches.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, Psychiatry, Patton, CA, USA
| | | | | | | | - Amy I. Price
- Oxford University, Evidence Based Medicine, Oxford, UK
| | | |
Collapse
|
20
|
Umehara H, Fabbri R, Provensi G, Passani MB. The hypophagic factor oleoylethanolamide differentially increases c-fos expression in appetite regulating centres in the brain of wild type and histamine deficient mice. Pharmacol Res 2016; 113:100-107. [DOI: 10.1016/j.phrs.2016.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
|
21
|
Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez AM, Morales-Figueroa GE, Arias-Montaño JA. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol Pharmacol 2016; 90:649-673. [PMID: 27563055 DOI: 10.1124/mol.116.104752] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Among the four G protein-coupled receptors (H1-H4) identified as mediators of the biologic effects of histamine, the H3 receptor (H3R) is distinguished for its almost exclusive expression in the nervous system and the large variety of isoforms generated by alternative splicing of the corresponding mRNA. Additionally, it exhibits dual functionality as autoreceptor and heteroreceptor, and this enables H3Rs to modulate the histaminergic and other neurotransmitter systems. The cloning of the H3R cDNA in 1999 by Lovenberg et al. allowed for detailed studies of its molecular aspects. In this work, we review the characteristics of the H3R, namely, its structure, constitutive activity, isoforms, signal transduction pathways, regional differences in expression and localization, selective agonists, antagonists and inverse agonists, dimerization with other neurotransmitter receptors, and the main presynaptic and postsynaptic effects resulting from its activation. The H3R has attracted interest as a potential drug target for the treatment of several important neurologic and psychiatric disorders, such as Alzheimer and Parkinson diseases, Gilles de la Tourette syndrome, and addiction.
Collapse
Affiliation(s)
- Gustavo Nieto-Alamilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ricardo Márquez-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ana-Maricela García-Gálvez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| |
Collapse
|
22
|
Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. eNeuro 2016; 3:eN-NWR-0018-16. [PMID: 27022631 PMCID: PMC4801942 DOI: 10.1523/eneuro.0018-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep–wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep–wake regulatory network.
Collapse
|
23
|
Abstract
Cortical electroencephalographic activity arises from corticothalamocortical interactions, modulated by wake-promoting monoaminergic and cholinergic input. These wake-promoting systems are regulated by hypothalamic hypocretin/orexins, while GABAergic sleep-promoting nuclei are found in the preoptic area, brainstem and lateral hypothalamus. Although pontine acetylcholine is critical for REM sleep, hypothalamic melanin-concentrating hormone/GABAergic cells may "gate" REM sleep. Daily sleep-wake rhythms arise from interactions between a hypothalamic circadian pacemaker and a sleep homeostat whose anatomical locus has yet to be conclusively defined. Control of sleep and wakefulness involves multiple systems, each of which presents vulnerability to sleep/wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael D Schwartz
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
24
|
Zeng Y, Yang J, Du J, Pu X, Yang X, Yang S, Yang T. Strategies of Functional Foods Promote Sleep in Human Being. ACTA ACUST UNITED AC 2015; 9:148-155. [PMID: 26005400 PMCID: PMC4440346 DOI: 10.2174/1574362410666150205165504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sleep is a vital segment of life, however, the mechanisms of diet promoting sleep are
unclear and are the focus of research. Insomnia is a general sleep disorder and functional foods are
known to play a key role in the prevention of insomnia. A number of studies have demonstrated that
major insomnia risk factors in human being are less functional foods in dietary. There are higher
functional components in functional foods promoting sleep, including tryptophan, GABA, calcium,
potassium, melatonin, pyridoxine, L-ornithine and hexadecanoic acid; but wake-promoting neurochemical
factors include serotonin, noradrenalin, acetylcholine, histamine, orexin and so on. The factors promoting sleep in human
being are the functional foods include barley grass powder, whole grains, maca, panax, Lingzhi, asparagus powder,
lettuce, cherry, kiwifruits, walnut, schisandra wine, and milk; Barley grass powder with higher GABA and calcium, as
well as potassium is the most ideal functional food promoting sleep, however, the sleep duration for modern humans is
associated with food structure of ancient humans. In this review, we put forward possible mechanisms of functional
components in foods promoting sleep. Although there is clear relevance between sleep and diet, their molecular
mechanisms need to be studied further.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Jiazhen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China; ; Kuming Tiankang Science & Technology Limited Company, Kunming 650231, P.R. China
| | - Juan Du
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Xiaoying Pu
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Xiaomen Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Shuming Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| | - Tao Yang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R. China
| |
Collapse
|
25
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
26
|
Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2015; 8:244. [PMID: 25620917 PMCID: PMC4287014 DOI: 10.3389/fnsys.2014.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/12/2014] [Indexed: 01/22/2023] Open
Abstract
Neurons containing orexin (hypocretin), or melanin concentrating hormone (MCH) are intermingled with each other in the perifornical and lateral hypothalamus. Each is a separate and distinct neuronal population, but they project to similar target areas in the brain. Orexin has been implicated in regulating arousal since loss of orexin neurons is associated with the sleep disorder narcolepsy. Microinjections of orexin into the brain or optogenetic stimulation of orexin neurons increase waking. Orexin neurons are active in waking and quiescent in sleep, which is consistent with their role in promoting waking. On the other hand, the MCH neurons are quiet in waking but active in sleep, suggesting that they could initiate sleep. Recently, for the first time the MCH neurons were stimulated optogenetically and it increased sleep. Indeed, optogenetic activation of MCH neurons induced sleep in both mice and rats at a circadian time when they should be awake, indicating the powerful effect that MCH neurons have in suppressing the wake-promoting effect of not only orexin but also of all of the other arousal neurotransmitters. Gamma-Aminobutyric acid (GABA) is coexpressed with MCH in the MCH neurons, although MCH is also inhibitory. The inhibitory tone of the MCH neurons is opposite to the excitatory tone of the orexin neurons. We hypothesize that strength in activity of each determines wake vs. sleep.
Collapse
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Dheeraj Pelluru
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Priyattam J Shiromani
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA ; Ralph H. Johnson VA Medical Center, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
27
|
Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 2015; 213:7-18. [PMID: 25131833 PMCID: PMC5767106 DOI: 10.1111/apha.12360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/08/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate (from liver, into muscle) are balanced. Estimating nutrient challenges from indirect sensory cues may become more difficult when the cues become complex and variable (e.g. like human foods today). Consequent errors of predictive glucose control may contribute to obesity and diabetes.
Collapse
Affiliation(s)
- C. Kosse
- Division of Neurophysiology MRC National Institute for Medical Research London UK
| | - A. Gonzalez
- Division of Neurophysiology MRC National Institute for Medical Research London UK
| | - D. Burdakov
- Division of Neurophysiology MRC National Institute for Medical Research London UK
| |
Collapse
|
28
|
Parks GS, Wang L, Wang Z, Civelli O. Identification of neuropeptide receptors expressed by melanin-concentrating hormone neurons. J Comp Neurol 2014; 522:3817-33. [PMID: 24978951 PMCID: PMC4167928 DOI: 10.1002/cne.23642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
Abstract
Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI), but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of most neuropeptides are poorly understood. To gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons by using double in situ hybridization. In all, 20 receptors, selected based on either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, 11 neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: nociceptin/orphanin FQ opioid receptor (NOP), MCHR1, both orexin receptors (ORX), somatostatin receptors 1 and 2 (SSTR1, SSTR2), kisspeptin recepotor (KissR1), neurotensin receptor 1 (NTSR1), neuropeptide S receptor (NPSR), cholecystokinin receptor A (CCKAR), and the κ-opioid receptor (KOR). Among these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system.
Collapse
Affiliation(s)
- Gregory S. Parks
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, 92697
| | - Lien Wang
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
| | - Zhiwei Wang
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, California 92697
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, 92697
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697
| |
Collapse
|