1
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2024:S1547-5271(24)02742-5. [PMID: 38908461 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
2
|
Nasilli G, Verkerk AO, O’Reilly M, Yiangou L, Davis RP, Casini S, Remme CA. Chronic Mexiletine Administration Increases Sodium Current in Non-Diseased Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Biomedicines 2024; 12:1212. [PMID: 38927420 PMCID: PMC11200762 DOI: 10.3390/biomedicines12061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A sodium current (INa) reduction occurs in the setting of many acquired and inherited conditions and is associated with cardiac conduction slowing and increased arrhythmia risks. The sodium channel blocker mexiletine has been shown to restore the trafficking of mutant sodium channels to the membrane. However, these studies were mostly performed in heterologous expression systems using high mexiletine concentrations. Moreover, the chronic effects on INa in a non-diseased cardiomyocyte environment remain unknown. In this paper, we investigated the chronic and acute effects of a therapeutic dose of mexiletine on INa and the action potential (AP) characteristics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of a healthy individual. Control hiPSC-CMs were incubated for 48 h with 10 µM mexiletine or vehicle. Following the wash-out of mexiletine, patch clamp analysis and immunocytochemistry experiments were performed. The incubation of hiPSC-CMs for 48 h with mexiletine (followed by wash-out) induced a significant increase in peak INa of ~75%, without any significant change in the voltage dependence of (in)activation. This was accompanied by a significant increase in AP upstroke velocity, without changes in other AP parameters. The immunocytochemistry experiments showed a significant increase in membrane Nav1.5 fluorescence following a 48 h incubation with mexiletine. The acute re-exposure of hiPSC-CMs to 10 µM mexiletine resulted in a small but significant increase in AP duration, without changes in AP upstroke velocity, peak INa density, or the INa voltage dependence of (in)activation. Importantly, the increase in the peak INa density and resulting AP upstroke velocity induced by chronic mexiletine incubation was not counteracted by the acute re-administration of the drug. In conclusion, the chronic administration of a clinically relevant concentration of mexiletine increases INa density in non-diseased hiPSC-CMs, likely by enhancing the membrane trafficking of sodium channels. Our findings identify mexiletine as a potential therapeutic strategy to enhance and/or restore INa and cardiac conduction.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Molly O’Reilly
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Bertaud A, Cens T, Chavanieu A, Estaran S, Rousset M, Soussi L, Ménard C, Kadala A, Collet C, Dutertre S, Bois P, Gosselin-Badaroudine P, Thibaud JB, Roussel J, Vignes M, Chahine M, Charnet P. Honeybee CaV4 has distinct permeation, inactivation, and pharmacology from homologous NaV channels. J Gen Physiol 2024; 156:e202313509. [PMID: 38557788 PMCID: PMC10983803 DOI: 10.1085/jgp.202313509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4. In this study, we characterize CaV4, showing that it exhibits an unprecedented type of inactivation, which depends on both an IFM motif and on the permeating divalent cation, like NaV and CaV1 channels, respectively. CaV4 displays a specific pharmacology with an unusual response to the alkaloid veratrine. It also possesses an inactivation mechanism that uses the same structural domains as NaV but permeates Ca2+ ions instead. This distinctive feature may provide valuable insights into how voltage- and calcium-dependent modulation of voltage-gated Ca2+ and Na+ channels occur under conditions involving local changes in intracellular calcium concentrations. Our study underscores the unique profile of CaV4 and defines this channel as a novel class of voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- Anaïs Bertaud
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Cens
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alain Chavanieu
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sébastien Estaran
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Matthieu Rousset
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Lisa Soussi
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Claudine Ménard
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Akelsso Kadala
- INRAE UR 406, Abeilles et Environnement, Domaine Saint Paul—Site Agroparc, Avignon, France
| | - Claude Collet
- INRAE UR 406, Abeilles et Environnement, Domaine Saint Paul—Site Agroparc, Avignon, France
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Patrick Bois
- Laboratoire PRéTI, UR 24184—UFR SFA Pôle Biologie Santé Bâtiment B36/B37, Université de Poitiers, Poitiers, France
| | | | - Jean-Baptiste Thibaud
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Julien Roussel
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Michel Vignes
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Mohamed Chahine
- CERVO Brain Research Centre, Institut Universitaire en Santé Mentale de Québec, Quebec City, Canada
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
4
|
Bernas T, Seo J, Wilson ZT, Tan BH, Deschenes I, Carter C, Liu J, Tseng GN. Persistent PKA activation redistributes NaV1.5 to the cell surface of adult rat ventricular myocytes. J Gen Physiol 2024; 156:e202313436. [PMID: 38226948 PMCID: PMC10791559 DOI: 10.1085/jgp.202313436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and β-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and β-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.
Collapse
Affiliation(s)
- Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - John Seo
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary T. Wilson
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi-hua Tan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Isabelle Deschenes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Christiane Carter
- Massey Center Bioinformatics Shared Resource, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Massey Center Bioinformatics Shared Resource, Virginia Commonwealth University, Richmond, VA, USA
| | - Gea-Ny Tseng
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Pham HM, Nguyen DP, Ta TD, Le TP, Phan PH, Trinh HA, Tran TV, Luong TLA, Nguyen HM, Bui T, Tran TH, Ta TV, Tran V. In silico validation revealed the role of SCN5A mutations and their genotype-phenotype correlations in Brugada syndrome. Mol Genet Genomic Med 2023; 11:e2263. [PMID: 37547970 PMCID: PMC10724507 DOI: 10.1002/mgg3.2263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is a rare genetic disease that causes sudden cardiac death (SCD) and arrhythmia. SCN5A pathogenic variants (about 30% of diagnosed patients) are responsible for BrS. AIMS Lack of knowledge regarding molecular characteristics and the correlation between genotype and phenotype interfere with the risk stratification and finding the optimal treatment in Vietnam. Therefore, we identified SCN5A variants and evaluated the genotype-phenotype correlation of BrS on 117 Vietnamese probands. MATERIALS AND METHODS The clinical characteristics and blood samples of BrS patients were collected. To determine SCN5A variants, Sanger sequencing was conducted, and subsequently, these variants were analyzed by bioinformatic tools. RESULTS In this cohort, the overall rate of detected variants in SCN5A was 25.6%, which could include both pathogenic and benign variants. In genetic testing, 21 SCN5A variants were identified, including eight novels and 15 published variants. Multiple bioinformatic tools were used to predict variant effect with c.551A>G, c.1890+14G>A, c.3338C>T, c.3578G>A, and c.5484C>T as benign, while other variants were predicted as disease-causing. The family history of SCD (risk ratio [RR] = 4.324, 95% CI: 2.290-8.269, p < 0.001), syncope (RR = 3.147, 95% CI: 1.668-5.982, p = 0.0004), and ventricular tachycardia/ventricular fibrillation (RR = 3.406, 95% CI: 1.722-5.400, p = 0.0035) presented a significantly higher risk in the SCN5A (+) group, consisting of individuals carrying any variant in the SCN5A gene, compared to SCN5A (-) individuals. CONCLUSION The results contribute to clarifying the impact of SCN5A variants on these phenotypes. Further follow-up studies need to be carried out to understand the functional effects of these SCN5A variants on the severity of BrS.
Collapse
Affiliation(s)
- Hung Manh Pham
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Vietnam National Heart InstituteBach Mai HospitalHanoiVietnam
| | - Duy Phuong Nguyen
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Ho Chi Minh City Heart InstituteHo Chi MinhVietnam
| | - Thanh Dat Ta
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Thi Phuong Le
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Phong Hai Phan
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Vietnam National Heart InstituteBach Mai HospitalHanoiVietnam
| | | | - Tuan Viet Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Vietnam National Heart InstituteBach Mai HospitalHanoiVietnam
| | - Thi Lan Anh Luong
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Ha Minh Nguyen
- Hue Central HospitalHueVietnam
- Pham Ngoc Thanh UniversityHo Chi MinhVietnam
| | - The‐Hung Bui
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Center for Molecular Medicine, Clinical Genetics UnitKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Thinh Huy Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Thanh Van Ta
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Van‐Khanh Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| |
Collapse
|
6
|
Lesage A, Lorenzini M, Burel S, Sarlandie M, Bibault F, Lindskog C, Maloney D, Silva JR, Townsend RR, Nerbonne JM, Marionneau C. Determinants of iFGF13-mediated regulation of myocardial voltage-gated sodium (NaV) channels in mouse. J Gen Physiol 2023; 155:e202213293. [PMID: 37516919 PMCID: PMC10374952 DOI: 10.1085/jgp.202213293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023] Open
Abstract
Posttranslational regulation of cardiac NaV1.5 channels is critical in modulating channel expression and function, yet their regulation by phosphorylation of accessory proteins has gone largely unexplored. Using phosphoproteomic analysis of NaV channel complexes from adult mouse left ventricles, we identified nine phosphorylation sites on intracellular fibroblast growth factor 13 (iFGF13). To explore the potential roles of these phosphosites in regulating cardiac NaV currents, we abolished expression of iFGF13 in neonatal and adult mouse ventricular myocytes and rescued it with wild-type (WT), phosphosilent, or phosphomimetic iFGF13-VY. While the increased rate of closed-state inactivation of NaV channels induced by Fgf13 knockout in adult cardiomyocytes was completely restored by adenoviral-mediated expression of WT iFGF13-VY, only partial rescue was observed in neonatal cardiomyocytes after knockdown. The knockdown of iFGF13 in neonatal ventricular myocytes also shifted the voltage dependence of channel activation toward hyperpolarized potentials, a shift that was not reversed by WT iFGF13-VY expression. Additionally, we found that iFGF13-VY is the predominant isoform in adult ventricular myocytes, whereas both iFGF13-VY and iFGF13-S are expressed comparably in neonatal ventricular myocytes. Similar to WT iFGF13-VY, each of the iFGF13-VY phosphomutants studied restored NaV channel inactivation properties in both models. Lastly, Fgf13 knockout also increased the late Na+ current in adult cardiomyocytes, and this effect was restored with expression of WT and phosphosilent iFGF13-VY. Together, our results demonstrate that iFGF13 is highly phosphorylated and displays differential isoform expression in neonatal and adult ventricular myocytes. While we found no roles for iFGF13 phosphorylation, our results demonstrate differential effects of iFGF13 on neonatal and adult mouse ventricular NaV channels.
Collapse
Affiliation(s)
- Adrien Lesage
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Maxime Lorenzini
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Sophie Burel
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Marine Sarlandie
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Floriane Bibault
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | | | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - R. Reid Townsend
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO, USA
- Department of Medicine, Washington University Medical School, St. Louis, MO, USA
| | - Jeanne M. Nerbonne
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University Medical School, St. Louis, MO, USA
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO, USA
| | - Céline Marionneau
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| |
Collapse
|
7
|
Patel N, B Urolagin S, Haq MA, Patel C, Bhatt R, Girdhar G, Sinha S, Haque M, Kumar S. Anesthetic Effect of 2% Amitriptyline Versus 2% Lidocaine: A Comparative Evaluation. Cureus 2023; 15:e43405. [PMID: 37581201 PMCID: PMC10423460 DOI: 10.7759/cureus.43405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2023] [Indexed: 08/16/2023] Open
Abstract
Introduction A common dental problem is the fear of pain during needle prick for giving local anesthesia (LA). The needle prick pain during dental procedures often varies with sex and age. Perception of pain depends on various factors, which can be psychological and biological. This perception of pain may change the behavior of patients toward dental treatments. Traditionally, lidocaine gel formulation was utilized before the parenteral dosage form. The lidocaine gel formulation is considered the drug of choice for LA in dental surgery. Currently, amitriptyline has been utilized in dental practice because of its beneficial pharmacology. Hence, the present study has been undertaken to compare the anesthetic ability of amitriptyline as an intraoral topical anesthetic agent with lidocaine gel. Methods This study was a comparative clinical study between two medications' anesthetic properties. This study included 120 patients indicated for bilateral orthodontics (the subdivision of dentistry that emphasizes identifying necessary interventions for the malocclusion of teeth) procedures. All the subjects were divided into amitriptyline and lidocaine groups. Both anesthetic gels were applied at separate sites before the injection of LA. The time of the onset of anesthesia was noted and analyzed. Patients were selected on the basis of inclusion and exclusion criteria. Individuals aged 18 to 30 years who were systemically healthy and orthodontically indicated for bilateral premolar extraction were included in this study. Again, patients with a history of neurological disorders and allergies to amitriptyline and lidocaine were excluded from the current study. Results Significant differences emerged between groups at five and 10 minutes, with amitriptyline-induced partial numbness (36.7% and 6.7%). At 40 and 45 minutes, both groups showed varied partial and complete numbness, with amitriptyline leading to partial recovery (23.3% and 73.3% complete numbness, 23.3% partial recovery) and lidocaine resulting in partial recovery (81.7%). When comparing the visual analog scale (VAS) scores, both groups exhibited a similar simultaneous effect at 15 minutes. Nonetheless, amitriptyline displayed significantly lower scores at 25 and 35 minutes (p < 0.001) in comparison to lidocaine. Similar observations were made when controlling for pain intensity. Conclusion It was concluded that amitriptyline holds both anesthetic and analgesic properties. Nevertheless, this study was unable to generalize the study findings because of the small sample size and being a single-center study. However, the VAS scores of anesthetic and analgesic pharmacodynamics properties of amitriptyline were statistically significantly lower than lidocaine, particularly at 25 and 35 minutes. Additionally, amitriptyline-induced anesthetic and analgesic pharmacology, especially pharmacokinetics properties, depends on the location and pattern of pain.
Collapse
Affiliation(s)
- Nirav Patel
- Department of Oral and Maxillofacial Surgery, Goenka Research Institute of Dental Science, Gandhinagar, IND
| | - Sarvesh B Urolagin
- Department of Oral and Maxillofacial Surgery, Subbaiah Institute of Dental Sciences, Shimoga, IND
| | - Md Ahsanul Haq
- Department of Biostatistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, BGD
| | - Chhaya Patel
- Department of Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rohan Bhatt
- Department of Pediatric Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav Girdhar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Mainul Haque
- Karnavati Scientific Research Center, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
8
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
9
|
Lesage A, Lorenzini M, Burel S, Sarlandie M, Bibault F, Maloney D, Silva JR, Reid Townsend R, Nerbonne JM, Marionneau C. FHF2 phosphorylation and regulation of native myocardial Na V 1.5 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526475. [PMID: 36778222 PMCID: PMC9915605 DOI: 10.1101/2023.01.31.526475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorylation of the cardiac Na V 1.5 channel pore-forming subunit is extensive and critical in modulating channel expression and function, yet the regulation of Na V 1.5 by phosphorylation of its accessory proteins remains elusive. Using a phosphoproteomic analysis of Na V channel complexes purified from mouse left ventricles, we identified nine phosphorylation sites on Fibroblast growth factor Homologous Factor 2 (FHF2). To determine the roles of phosphosites in regulating Na V 1.5, we developed two models from neonatal and adult mouse ventricular cardiomyocytes in which FHF2 expression is knockdown and rescued by WT, phosphosilent or phosphomimetic FHF2-VY. While the increased rates of closed-state and open-state inactivation of Na V channels induced by the FHF2 knockdown are completely restored by the FHF2-VY isoform in adult cardiomyocytes, sole a partial rescue is obtained in neonatal cardiomyocytes. The FHF2 knockdown also shifts the voltage-dependence of activation towards hyperpolarized potentials in neonatal cardiomyocytes, which is not rescued by FHF2-VY. Parallel investigations showed that the FHF2-VY isoform is predominant in adult cardiomyocytes, while expression of FHF2-VY and FHF2-A is comparable in neonatal cardiomyocytes. Similar to WT FHF2-VY, however, each FHF2-VY phosphomutant restores the Na V channel inactivation properties in both models, preventing identification of FHF2 phosphosite roles. FHF2 knockdown also increases the late Na + current in adult cardiomyocytes, which is restored similarly by WT and phosphosilent FHF2-VY. Together, our results demonstrate that ventricular FHF2 is highly phosphorylated, implicate differential roles for FHF2 in regulating neonatal and adult mouse ventricular Na V 1.5, and suggest that the regulation of Na V 1.5 by FHF2 phosphorylation is highly complex. eTOC Summary Lesage et al . identify the phosphorylation sites of FHF2 from mouse left ventricular Na V 1.5 channel complexes. While no roles for FHF2 phosphosites could be recognized yet, the findings demonstrate differential FHF2-dependent regulation of neonatal and adult mouse ventricular Na V 1.5 channels.
Collapse
|
10
|
Aguiar-Neves I, Santos-Ferreira D, Fontes-Carvalho R. SGLT2 Inhibition in Heart Failure with Preserved Ejection Fraction - The New Frontier. Rev Cardiovasc Med 2023; 24:1. [PMID: 39076855 PMCID: PMC11270412 DOI: 10.31083/j.rcm2401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 07/31/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with high morbidity and increasing socio-economic burden, compounded by the lack of effective treatment options available to treat this disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have previously been shown to improve cardiovascular and renal outcomes in patients with type 2 diabetes and patients with heart failure with reduced ejection fraction (HFrEF). Recent major clinical trials with SGLT2 inhibitors, both empagliflozin and dapagliflozin, have now demonstrated improved cardiovascular outcomes in patients with HFpEF and a significant reduction in heart failure hospitalization. Current evidence shows a potential for cardiovascular benefits with SGLT2 inhibition that is consistent across the spectrum of ejection fraction, age, New York Heart Association (NYHA) functional class, natriuretic peptide levels and diabetes status. Although the cardioprotective mechanisms behind SGLT2 inhibition remain unclear, ongoing clinical studies aim to clarify the role of SGLT2 inhibitors on biomarkers of cardiac metabolism, diastolic function and exercise capacity in HFpEF. This article analyzes current clinical evidence from randomized controlled trials and meta-analyses and explores the potential cardioprotective mechanisms of SGLT2 inhibitors, while also looking towards the future of SGLT2 inhibition in HFpEF.
Collapse
Affiliation(s)
- Inês Aguiar-Neves
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
| | - Diogo Santos-Ferreira
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-450 Porto, Portugal
| | - Ricardo Fontes-Carvalho
- Cardiology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
11
|
Rogalska ME, Vafiadaki E, Erpapazoglou Z, Haghighi K, Green L, Mantzoros CS, Hajjar RJ, Tranter M, Karakikes I, Kranias EG, Stillitano F, Kafasla P, Sanoudou D. Isoform changes of action potential regulators in the ventricles of arrhythmogenic phospholamban-R14del humanized mouse hearts. Metabolism 2023; 138:155344. [PMID: 36375644 DOI: 10.1016/j.metabol.2022.155344] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is characterized by life-threatening ventricular arrhythmias and sudden cardiac death and affects hundreds of thousands of patients worldwide. The deletion of Arginine 14 (p.R14del) in the phospholamban (PLN) gene has been implicated in the pathogenesis of ACM. PLN is a key regulator of sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Despite global gene and protein expression studies, the molecular mechanisms of PLN-R14del ACM pathogenesis remain unclear. Using a humanized PLN-R14del mouse model and human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs), we investigated the transcriptome-wide mRNA splicing changes associated with the R14del mutation. We identified >200 significant alternative splicing (AS) events and distinct AS profiles were observed in the right (RV) and left (LV) ventricles in PLN-R14del compared to WT mouse hearts. Enrichment analysis of the AS events showed that the most affected biological process was associated with "cardiac cell action potential", specifically in the RV. We found that splicing of 2 key genes, Trpm4 and Camk2d, which encode proteins regulating calcium homeostasis in the heart, were altered in PLN-R14del mouse hearts and human iPSC-CMs. Bioinformatical analysis pointed to the tissue-specific splicing factors Srrm4 and Nova1 as likely upstream regulators of the observed splicing changes in the PLN-R14del cardiomyocytes. Our findings suggest that aberrant splicing may affect Ca2+-homeostasis in the heart, contributing to the increased risk of arrythmogenesis in PLN-R14del ACM.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Zoi Erpapazoglou
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 16672 Athens, Greece
| | - Kobra Haghighi
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa Green
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02215, USA
| | | | - Michael Tranter
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Francesca Stillitano
- Division Heart and Lung, Department of Cardiology, University Medical Center Utrecht, 3584, CX, Utrecht, the Netherlands
| | - Panagiota Kafasla
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 16672 Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Clinical Genomics and Pharmacogenomics Unit, 4(th) Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
12
|
Salvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, Di Salvo J, Epifani R, Marfella R, Docimo G, Lettieri M, Sardu C, Sasso FC. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci 2022; 23:3651. [PMID: 35409011 PMCID: PMC8998569 DOI: 10.3390/ijms23073651] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
- Mediterrannea Cardiocentro, 80122 Napoli, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Miriam Lettieri
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
13
|
Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol 2022; 167:17-31. [PMID: 35331696 DOI: 10.1016/j.yjmcc.2022.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute a promising drug treatment for heart failure patients with either preserved or reduced ejection fraction. Whereas SGLT2i were originally developed to target SGLT2 in the kidney to facilitate glucosuria in diabetic patients, it is becoming increasingly clear that these drugs also have important effects outside of the kidney. In this review we summarize the literature on cardiac effects of SGLT2i, focussing on pro-inflammatory and oxidative stress processes, ion transport mechanisms controlling sodium and calcium homeostasis and metabolic/mitochondrial pathways. These mechanisms are particularly important as disturbances in these pathways result in endothelial dysfunction, diastolic dysfunction, cardiac stiffness, and cardiac arrhythmias that together contribute to heart failure. We review the findings that support the concept that SGLT2i directly and beneficially interfere with inflammation, oxidative stress, ionic homeostasis, and metabolism within the cardiac cell. However, given the very low levels of SGLT2 in cardiac cells, the evidence suggests that SGLT2-independent effects of this class of drugs likely occurs via off-target effects in the myocardium. Thus, while there is still much to be understood about the various factors which determine how SGLT2i affect cardiac cells, much of the research clearly demonstrates that direct cardiac effects of these SGLT2i exist, albeit mediated via SGLT2-independent pathways, and these pathways may play a role in explaining the beneficial effects of SGLT2 inhibitors in heart failure.
Collapse
Affiliation(s)
- Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany; Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen, DZHK (German Centre for Cardiovascular Research), Robert-Koch Str. 40, D-37075 Goettingen, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital Ruhr University Bochum, Bochum, Germany
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Nina C Weber
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Peter E Light
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Coert J Zuurbier
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Abnormal Expression of Connexin43 in Cardiac Injury Induced by S-Band and X-Band Microwave Exposure in Rats. J Immunol Res 2021; 2021:3985697. [PMID: 34957312 PMCID: PMC8709747 DOI: 10.1155/2021/3985697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022] Open
Abstract
Although the effects of microwave exposure on the heart have gradually become the focus of domestic and foreign scholars, the biological effects caused by different doses and different frequency bands of exposure are still unclear. In this study, we will investigate the damaging effect of S-band and X-band microwave composite exposure on cardiac structure and function, as well as the pathophysiological significance of Cx43 in cardiac conduction dysfunction after exposure. We used S- and X-band radiation sources with the average power density of 5 and 10 mW/cm2 to expose Wistar rats to single or composite exposure. At the 6th hour, on the 7th, 14th, and 28th days after exposure, ECG was used to detect the electrical conduction of the heart, and the myocardial enzyme was measured by the automatic biochemical analyzer. We selected the observation time points and groups with severe damage to observe the changes of myocardial structure and ultrastructure with an optical microscope and TEM; and to detect the expression and distribution of Cx43 by western blotting and immunohistochemistry. After exposure, the heart rate increased, the P wave amplitude decreased, and the R wave amplitude increased; the content of the myocardial enzyme in serum increased; the structure and ultrastructure of cardiac tissue were damaged. The damage was dose-dependent and frequency-dependent. The expression of Cx43 in myocardial tissue decreased, and distribution was abnormal. Taken together, these findings suggested that the mechanism of abnormal electrical conduction in the heart of rats by S- and X-band microwave exposure might be related to the decreased expression and disordered distribution of Cx43 after microwave exposure.
Collapse
|
15
|
Angelini M, Pezhouman A, Savalli N, Chang MG, Steccanella F, Scranton K, Calmettes G, Ottolia M, Pantazis A, Karagueuzian HS, Weiss JN, Olcese R. Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current. J Gen Physiol 2021; 153:212725. [PMID: 34698805 PMCID: PMC8552156 DOI: 10.1085/jgp.202012584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Ventricular arrhythmias, a leading cause of sudden cardiac death, can be triggered by cardiomyocyte early afterdepolarizations (EADs). EADs can result from an abnormal late activation of L-type Ca2+ channels (LTCCs). Current LTCC blockers (class IV antiarrhythmics), while effective at suppressing EADs, block both early and late components of ICa,L, compromising inotropy. However, computational studies have recently demonstrated that selective reduction of late ICa,L (Ca2+ influx during late phases of the action potential) is sufficient to potently suppress EADs, suggesting that effective antiarrhythmic action can be achieved without blocking the early peak ICa,L, which is essential for proper excitation–contraction coupling. We tested this new strategy using a purine analogue, roscovitine, which reduces late ICa,L with minimal effect on peak current. Scaling our investigation from a human CaV1.2 channel clone to rabbit ventricular myocytes and rat and rabbit perfused hearts, we demonstrate that (1) roscovitine selectively reduces ICa,L noninactivating component in a human CaV1.2 channel clone and in ventricular myocytes native current, (2) the pharmacological reduction of late ICa,L suppresses EADs and EATs (early after Ca2+ transients) induced by oxidative stress and hypokalemia in isolated myocytes, largely preserving cell shortening and normal Ca2+ transient, and (3) late ICa,L reduction prevents/suppresses ventricular tachycardia/fibrillation in ex vivo rabbit and rat hearts subjected to hypokalemia and/or oxidative stress. These results support the value of an antiarrhythmic strategy based on the selective reduction of late ICa,L to suppress EAD-mediated arrhythmias. Antiarrhythmic therapies based on this idea would modify the gating properties of CaV1.2 channels rather than blocking their pore, largely preserving contractility.
Collapse
Affiliation(s)
- Marina Angelini
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Arash Pezhouman
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Nicoletta Savalli
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marvin G Chang
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Federica Steccanella
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kyle Scranton
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Michela Ottolia
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,University of California, Los Angeles Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Antonios Pantazis
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Hrayr S Karagueuzian
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - James N Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Riccardo Olcese
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,University of California, Los Angeles Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
16
|
Monteiro O, Bhaskar A, Ng AKM, Murdoch CE, Baptista-Hon DT. Computer-based virtual laboratory simulations: LabHEART cardiac physiology practical. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:856-868. [PMID: 34473584 DOI: 10.1152/advan.00094.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Practical demonstration of cardiomyocyte function requires substantial preparation, a source of freshly isolated animal hearts, and specialized equipment. Even where such resources are available, it is not conducive for demonstration to any more than a few students at a time. These approaches are also not consistent with the 3R principle (replacement, reduction, and refinement) of ethical use of animals. We present an implementation of the LabHEART software, developed by Donald Bers and Jose Puglisi, for medical students. Prior to the activity, students had lectures covering the physiological and pharmacological aspects of cardiac excitation-contraction (EC) coupling. We used this problem-based activity to help students consolidate their knowledge and to allow a hands-on approach to explore the key features of EC coupling. Students simulate and measure action potentials, intracellular calcium changes, and cardiomyocyte contraction. They also apply drugs that target ion channels (e.g., nifedipine or tetrodotoxin) or sympathetic input (using isoproterenol) and explore changes to EC coupling. Furthermore, by modifying the biophysical parameters of key ion channels involved in the electrical activity of the heart, students also explore the effect of channelopathies such as long QT syndromes. We describe approaches to implement this activity in a flipped classroom format, with recorded lecture materials provided ahead of the practical to facilitate active learning. We also describe our experiences implementing this activity online. The content and difficulty of the activity can be altered to suit individual courses and is also amenable to promote peer-driven learning.
Collapse
Affiliation(s)
- Olivia Monteiro
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Anand Bhaskar
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Anna K M Ng
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Daniel T Baptista-Hon
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
- Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
17
|
Distributed synthesis of sarcolemmal and sarcoplasmic reticulum membrane proteins in cardiac myocytes. Basic Res Cardiol 2021; 116:63. [PMID: 34713358 PMCID: PMC8553722 DOI: 10.1007/s00395-021-00895-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
It is widely assumed that synthesis of membrane proteins, particularly in the heart, follows the classical secretory pathway with mRNA translation occurring in perinuclear regions followed by protein trafficking to sites of deployment. However, this view is based on studies conducted in less-specialized cells, and has not been experimentally addressed in cardiac myocytes. Therefore, we undertook direct experimental investigation of protein synthesis in cardiac tissue and isolated myocytes using single-molecule visualization techniques and a novel proximity-ligated in situ hybridization approach for visualizing ribosome-associated mRNA molecules for a specific protein species, indicative of translation sites. We identify here, for the first time, that the molecular machinery for membrane protein synthesis occurs throughout the cardiac myocyte, and enables distributed synthesis of membrane proteins within sub-cellular niches where the synthesized protein functions using local mRNA pools trafficked, in part, by microtubules. We also observed cell-wide distribution of membrane protein mRNA in myocardial tissue from both non-failing and hypertrophied (failing) human hearts, demonstrating an evolutionarily conserved distributed mechanism from mouse to human. Our results identify previously unanticipated aspects of local control of cardiac myocyte biology and highlight local protein synthesis in cardiac myocytes as an important potential determinant of the heart’s biology in health and disease.
Collapse
|
18
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
19
|
Kaplan AD, Joca HC, Boyman L, Greiser M. Calcium Signaling Silencing in Atrial Fibrillation: Implications for Atrial Sodium Homeostasis. Int J Mol Sci 2021; 22:10513. [PMID: 34638854 PMCID: PMC8508839 DOI: 10.3390/ijms221910513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more than 33 million people worldwide. Despite important advances in therapy, AF's incidence remains high, and treatment often results in recurrence of the arrhythmia. A better understanding of the cellular and molecular changes that (1) trigger AF and (2) occur after the onset of AF will help to identify novel therapeutic targets. Over the past 20 years, a large body of research has shown that intracellular Ca2+ handling is dramatically altered in AF. While some of these changes are arrhythmogenic, other changes counteract cellular arrhythmogenic mechanisms (Calcium Signaling Silencing). The intracellular Na+ concentration ([Na+])i is a key regulator of intracellular Ca2+ handling in cardiac myocytes. Despite its importance in the regulation of intracellular Ca2+ handling, little is known about [Na+]i, its regulation, and how it might be changed in AF. Previous work suggests that there might be increases in the late component of the atrial Na+ current (INa,L) in AF, suggesting that [Na+]i levels might be high in AF. Indeed, a pharmacological blockade of INa,L has been suggested as a treatment for AF. Here, we review calcium signaling silencing and changes in intracellular Na+ homeostasis during AF. We summarize the proposed arrhythmogenic mechanisms associated with increases in INa,L during AF and discuss the evidence from clinical trials that have tested the pharmacological INa,L blocker ranolazine in the treatment of AF.
Collapse
Affiliation(s)
- Aaron D. Kaplan
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Humberto C. Joca
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| | - Maura Greiser
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| |
Collapse
|
20
|
Nerbonne JM. Controlling the Traffic to Keep the Beat: Targeting of Myocardial Sodium Channels. Circ Res 2021; 129:366-368. [PMID: 34292782 DOI: 10.1161/circresaha.121.319653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jeanne M Nerbonne
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University Medical School, St. Louis, MO
| |
Collapse
|
21
|
Philippaert K, Kalyaanamoorthy S, Fatehi M, Long W, Soni S, Byrne NJ, Barr A, Singh J, Wong J, Palechuk T, Schneider C, Darwesh AM, Maayah ZH, Seubert JM, Barakat K, Dyck JR, Light PE. Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation 2021; 143:2188-2204. [PMID: 33832341 PMCID: PMC8154177 DOI: 10.1161/circulationaha.121.053350] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND SGLT2 (sodium/glucose cotransporter 2) inhibitors exert robust cardioprotective effects against heart failure in patients with diabetes, and there is intense interest to identify the underlying molecular mechanisms that afford this protection. Because the induction of the late component of the cardiac sodium channel current (late-INa) is involved in the etiology of heart failure, we investigated whether these drugs inhibit late-INa. METHODS Electrophysiological, in silico molecular docking, molecular, calcium imaging, and whole heart perfusion techniques were used to address this question. RESULTS The SGLT2 inhibitor empagliflozin reduced late-INa in cardiomyocytes from mice with heart failure and in cardiac Nav1.5 sodium channels containing the long QT syndrome 3 mutations R1623Q or ΔKPQ. Empagliflozin, dapagliflozin, and canagliflozin are all potent and selective inhibitors of H2O2-induced late-INa (half maximal inhibitory concentration = 0.79, 0.58, and 1.26 µM, respectively) with little effect on peak sodium current. In mouse cardiomyocytes, empagliflozin reduced the incidence of spontaneous calcium transients induced by the late-INa activator veratridine in a similar manner to tetrodotoxin, ranolazine, and lidocaine. The putative binding sites for empagliflozin within Nav1.5 were investigated by simulations of empagliflozin docking to a three-dimensional homology model of human Nav1.5 and point mutagenic approaches. Our results indicate that empagliflozin binds to Nav1.5 in the same region as local anesthetics and ranolazine. In an acute model of myocardial injury, perfusion of isolated mouse hearts with empagliflozin or tetrodotoxin prevented activation of the cardiac NLRP3 (nuclear-binding domain-like receptor 3) inflammasome and improved functional recovery after ischemia. CONCLUSIONS Our results provide evidence that late-INa may be an important molecular target in the heart for the SGLT2 inhibitors, contributing to their unexpected cardioprotective effects.
Collapse
Affiliation(s)
- Koenraad Philippaert
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Subha Kalyaanamoorthy
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
| | - Mohammad Fatehi
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Wentong Long
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Shubham Soni
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Nikole J. Byrne
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Amy Barr
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Jyoti Singh
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Jordan Wong
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Taylor Palechuk
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Chloe Schneider
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| | - Ahmed M. Darwesh
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
| | - Zaid H. Maayah
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - John M. Seubert
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
| | - Khaled Barakat
- Faculty of Medicine and Dentistry (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences (S.K., A.M.D., J.M.S., K.B.), University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology (K.B.), University of Alberta, Edmonton, Canada
| | - Jason R.B. Dyck
- Department of Pediatrics (S.S., N.J.B., Z.H.M., J.R.B.D.), University of Alberta, Edmonton, Canada
| | - Peter E. Light
- Alberta Diabetes Institute (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada.xs
- Department of Pharmacology (K.P., M.F., W.L., A.B., J.S., J.W., T.P., C.S., J.M.S., P.E.L.), University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
Boyd-Gibbins N, Tardieu CH, Blunskyte M, Kirkwood N, Somers J, Albert JT. Turnover and activity-dependent transcriptional control of NompC in the Drosophila ear. iScience 2021; 24:102486. [PMID: 34027326 PMCID: PMC8134069 DOI: 10.1016/j.isci.2021.102486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023] Open
Abstract
Across their lives, biological sensors maintain near-constant functional outputs despite countless exogenous and endogenous perturbations. This sensory homeostasis is the product of multiple dynamic equilibria, the breakdown of which contributes to age-related decline. The mechanisms of homeostatic maintenance, however, are still poorly understood. The ears of vertebrates and insects are characterized by exquisite sensitivities but also by marked functional vulnerabilities. Being under the permanent load of thermal and acoustic noise, auditory transducer channels exemplify the homeostatic challenge. We show that (1) NompC-dependent mechanotransducers in the ear of the fruit fly Drosophila melanogaster undergo continual replacement with estimated turnover times of 9.1 hr; (2) a de novo synthesis of NompC can restore transducer function in the adult ears of congenitally hearing-impaired flies; (3) key components of the auditory transduction chain, including NompC, are under activity-dependent transcriptional control, likely forming a transducer-operated mechanosensory gain control system that extends beyond hearing organs. De novo NompC synthesis restores auditory transduction in congenitally deafened flies. Complete turnover of NompC mechanotransducers within less than 24 hr. Activity-dependent transcriptional control of transducers controls auditory function.
Collapse
Affiliation(s)
| | - Camille H Tardieu
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Modesta Blunskyte
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Nerissa Kirkwood
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Jason Somers
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joerg T Albert
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6DE, UK
| |
Collapse
|
23
|
Liu C, Yu M, Li Y, Wang H, Xu C, Zhang X, Li M, Guo H, Ma D, Guo X. Lidocaine inhibits the metastatic potential of ovarian cancer by blocking Na V 1.5-mediated EMT and FAK/Paxillin signaling pathway. Cancer Med 2021; 10:337-349. [PMID: 33280262 PMCID: PMC7826465 DOI: 10.1002/cam4.3621] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Lidocaine, one of the most commonly used local anesthetics during surgery, has been reported to suppress cancer cell growth via blocking voltage-gated sodium channels (VGSCs). VGSC 1.5 (NaV 1.5) is highly expressed in invasive cancers including ovarian cancer. This study aims to investigate whether lidocaine inhibits the malignancy of ovarian cancer through NaV 1.5 blockage. Human ovarian cancer, its metastatic cancer and normal ovarian tissues were probed with anti-NaV 1.5 antibody in situ. Human ovarian cancer A2780 and SKOV3 cells were cultured and their growth, epithelial-mesenchymal transition (EMT), migration, and invasion in the presence or absence of lidocaine together with underlying molecular mechanisms were assessed. Murine syngeneic ovarian cancer (ID8) model was also used to determine the chemotherapeutic efficiency of cisplatin in combination with lidocaine. The high level of NaV 1.5 expression was found in human ovarian cancer and even higher in its metastatic cancer but not in normal ovarian tissues. Lidocaine decreased the growth, EMT, migration, and invasion of human ovarian cancer A2780 and SKOV3 cells. Lidocaine enhanced the chemotherapeutic efficiency of cisplatin in both ovarian cancer cell cultures and a murine ovarian metastatic model. Furthermore, a downregulation of NaV 1.5 by siRNA transfection, or FAK inhibitor application, inhibited the malignant properties of SKOV3 cells through inactivating FAK/Paxillin signaling pathway. Our data may indicate that lidocaine suppresses the metastasis of ovarian cancer and sensitizes cisplatin through blocking NaV 1.5-mediated EMT and FAK/paxillin signaling pathway. The translational value of lidocaine local application as an ovarian cancer adjuvant treatment warrants further study.
Collapse
Affiliation(s)
- Chang Liu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Ming Yu
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Yi Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hao Wang
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Chuanya Xu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Xiaoqing Zhang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Min Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hongyan Guo
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea and Westminster HospitalLondonUnited Kingdom
| | - Xiangyang Guo
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
24
|
Bers DM, Kohl P, Chen-Izu Y. Mechanics and energetics in cardiac arrhythmias and heart failure. J Physiol 2020; 598:1275-1277. [PMID: 31998965 DOI: 10.1113/jp279385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Donald M Bers
- Department of Pharmacology and Cardiovascular Research Institute, University of California, Davis, CA, USA
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, and Faculty of Medicine, University of Freiburg, Freiburg, D-79110, Germany
| | - Ye Chen-Izu
- Department of Pharmacology and Cardiovascular Research Institute, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Yang HQ, Pérez-Hernández M, Sanchez-Alonso J, Shevchuk A, Gorelik J, Rothenberg E, Delmar M, Coetzee WA. Ankyrin-G mediates targeting of both Na + and K ATP channels to the rat cardiac intercalated disc. eLife 2020; 9:52373. [PMID: 31934859 PMCID: PMC7299345 DOI: 10.7554/elife.52373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
We investigated targeting mechanisms of Na+ and KATP channels to the intercalated disk (ICD) of cardiomyocytes. Patch clamp and surface biotinylation data show reciprocal downregulation of each other’s surface density. Mutagenesis of the Kir6.2 ankyrin binding site disrupts this functional coupling. Duplex patch clamping and Angle SICM recordings show that INa and IKATP functionally co-localize at the rat ICD, but not at the lateral membrane. Quantitative STORM imaging show that Na+ and KATP channels are localized close to each other and to AnkG, but not to AnkB, at the ICD. Peptides corresponding to Nav1.5 and Kir6.2 ankyrin binding sites dysregulate targeting of both Na+ and KATP channels to the ICD, but not to lateral membranes. Finally, a clinically relevant gene variant that disrupts KATP channel trafficking also regulates Na+ channel surface expression. The functional coupling between these two channels need to be considered when assessing clinical variants and therapeutics.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Pediatrics, NYU School of Medicine, New York, United States
| | | | - Jose Sanchez-Alonso
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Andriy Shevchuk
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Eli Rothenberg
- Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States
| | - Mario Delmar
- Medicine, NYU School of Medicine, New York, United States.,Cell Biology, NYU School of Medicine, New York, United States
| | - William A Coetzee
- Pediatrics, NYU School of Medicine, New York, United States.,Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, United States.,Neuroscience and Physiology, NYU School of Medicine, New York, United States
| |
Collapse
|
26
|
El Refaey M, Musa H, Murphy NP, Lubbers ER, Skaf M, Han M, Cavus O, Koenig SN, Wallace MJ, Gratz D, Bradley E, Alsina KM, Wehrens XHT, Hund TJ, Mohler PJ. Protein Phosphatase 2A Regulates Cardiac Na + Channels. Circ Res 2019; 124:737-746. [PMID: 30602331 DOI: 10.1161/circresaha.118.314350] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Voltage-gated Na+ channel ( INa) function is critical for normal cardiac excitability. However, the Na+ channel late component ( INa,L) is directly associated with potentially fatal forms of congenital and acquired human arrhythmia. CaMKII (Ca2+/calmodulin-dependent kinase II) enhances INa,L in response to increased adrenergic tone. However, the pathways that negatively regulate the CaMKII/Nav1.5 axis are unknown and essential for the design of new therapies to regulate the pathogenic INa,L. OBJECTIVE To define phosphatase pathways that regulate INa,L in vivo. METHODS AND RESULTS A mouse model lacking a key regulatory subunit (B56α) of the PP (protein phosphatase) 2A holoenzyme displayed aberrant action potentials after adrenergic stimulation. Unbiased computational modeling of B56α KO (knockout) mouse myocyte action potentials revealed an unexpected role of PP2A in INa,L regulation that was confirmed by direct INa,L recordings from B56α KO myocytes. Further, B56α KO myocytes display decreased sensitivity to isoproterenol-induced induction of arrhythmogenic INa,L, and reduced CaMKII-dependent phosphorylation of Nav1.5. At the molecular level, PP2A/B56α complex was found to localize and coimmunoprecipitate with the primary cardiac Nav channel, Nav1.5. CONCLUSIONS PP2A regulates Nav1.5 activity in mouse cardiomyocytes. This regulation is critical for pathogenic Nav1.5 late current and requires PP2A-B56α. Our study supports B56α as a novel target for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Mona El Refaey
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Hassan Musa
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Nathaniel P Murphy
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Ellen R Lubbers
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Michel Skaf
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Mei Han
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Omer Cavus
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Sara N Koenig
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Michael J Wallace
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| | - Daniel Gratz
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Biomedical Engineering, Ohio State University College of Engineering, Columbus (D.G., T.J.H.)
| | - Elisa Bradley
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.)
| | - Katherina M Alsina
- Department of Molecular Physiology and Biophysics (K.M.A.), Baylor College of Medicine, Houston, TX.,Division of Cardiology, Department of Medicine (K.M.A.), Baylor College of Medicine, Houston, TX.,Division of Cardiology, Department of Pediatrics (K.M.A.), Baylor College of Medicine, Houston, TX
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.H.T.W.)
| | - Thomas J Hund
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.).,Department of Biomedical Engineering, Ohio State University College of Engineering, Columbus (D.G., T.J.H.)
| | - Peter J Mohler
- From the Ohio State University College of Medicine and Wexner Medical Center, The Frick Center for Heart Failure and Arrhythmia, The Dorothy M. Davis Heart and Lung Research Institute, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., D.G., E.B., T.J.H., P.J.M.).,Department of Internal Medicine, Ohio State University College of Medicine, Columbus (E.B., T.J.H., P.J.M.).,Department of Physiology and Cell Biology, Ohio State University, Columbus (M.E.R., H.M., N.P.M., E.R.L., M.S., M.H., O.C., S.N.K., M.J.W., P.J.M.)
| |
Collapse
|
27
|
Nof E, Vysochek L, Meisel E, Burashnikov E, Antzelevitch C, Clatot J, Beinart R, Luria D, Glikson M, Oz S. Mutations in Na V1.5 Reveal Calcium-Calmodulin Regulation of Sodium Channel. Front Physiol 2019; 10:700. [PMID: 31231243 PMCID: PMC6560087 DOI: 10.3389/fphys.2019.00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SCN5A gene, encoding the cardiac voltage-gated sodium channel NaV1.5, are associated with inherited cardiac arrhythmia and conduction disease. Ca2+-dependent mechanisms and the involvement of β-subunit (NaVβ) in NaV1.5 regulation are not fully understood. A patient with severe sinus-bradycardia and cardiac conduction-disease was genetically evaluated and compound heterozygosity in the SCN5A gene was found. Mutations were identified in the cytoplasmic DIII-IV linker (K1493del) and the C-terminus (A1924T) of NaV1.5, both are putative CaM-binding domains. These mutants were functionally studied in human embryonic kidney (HEK) cells and HL-1 cells using whole-cell patch clamp technique. Calmodulin (CaM) interaction and cell-surface expression of heterologously expressed NaV1.5 mutants were studied by pull-down and biotinylation assays. The mutation K1493del rendered NaV1.5 non-conductive. NaV1.5K1493del altered the gating properties of co-expressed functional NaV1.5, in a Ca2+ and NaVβ1-dependent manner. NaV1.5A1924T impaired NaVβ1-dependent gating regulation. Ca2+-dependent CaM-interaction with NaV1.5 was blunted in NaV1.5K1493del. Electrical charge substitution at position 1493 did not affect CaM-interaction and channel functionality. Arrhythmia and conduction-disease -associated mutations revealed Ca2+-dependent gating regulation of NaV1.5 channels. Our results highlight the role of NaV1.5 DIII-IV linker in the CaM-binding complex and channel function, and suggest that the Ca2+-sensing machinery of NaV1.5 involves NaVβ1.
Collapse
Affiliation(s)
- Eyal Nof
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Eshcar Meisel
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena Burashnikov
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, United States.,Lankenau Heart Institute, Wynnewood, PA, United States.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jerome Clatot
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Roy Beinart
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Luria
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Glikson
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimrit Oz
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
28
|
Johnson CN. Calcium modulation of cardiac sodium channels. J Physiol 2019; 598:2835-2846. [PMID: 30707447 DOI: 10.1113/jp277553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Modification of voltage-gated Na+ channel (NaV ) function by intracellular Ca2+ has been a topic of much controversy. Early studies relied on measuring NaV function in the absence or presence of intracellular Ca2+ , and generated seemingly disparate results. Subsequent investigations revealed the mechanism(s) of Ca2+ -driven NaV modulation are complex and involve multiple accessory proteins. The Ca2+ -sensing protein calmodulin (CaM) has a central role in tuning NaV function to [Ca2+ ]i , but the mechanism has been obscured by other proteins (such as fibroblast growth factors (FGF) or CaM-dependent kinase II (CaMKII)) that can also modify channel function or exert an influence in a Ca2+ -dependent manner. Significant progress has been made in understanding the architecture of full-length ion channels and the structural and biophysical details of NaV -accessory protein interactions. Interdisciplinary structure-function studies are beginning to resolve the effect each interaction has on NaV gating. Carefully designed structure-guided or strategically selected disease-associated mutations are able to impair NaV -accessory protein interactions without altering other properties of channel function. Recently CaM was found to engage part of NaV 1.5 that is required for channel inactivation with high affinity. Careful impairment of this interaction disrupted NaV 1.5's ability to recover from inactivation. Such results support a paradigm of CaM-facilitated recovery from inactivation (CFRI). How NaV -CaM, CaMKII and FGF/fibroblast growth factor homologous factor interactions affect the timing or function of CFRI in cardiomyocytes remain open questions that are discussed herein. Moreover whether CFRI dysfunction or premature activation underlie certain NaV channelopathies are important questions that will require further investigation.
Collapse
Affiliation(s)
- Christopher N Johnson
- The Ohio State Wexner Medical Centre, Dorothy M. Davis Heart & Lung Research Institute, Columbus, OH, USA.,Vanderbilt Centre for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Nashville, TN, USA
| |
Collapse
|
29
|
Iqbal SM, Lemmens‐Gruber R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. Acta Physiol (Oxf) 2019; 225:e13210. [PMID: 30362642 PMCID: PMC6590314 DOI: 10.1111/apha.13210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes are highly coordinated cells with multiple proteins organized in micro domains. Minor changes or interference in subcellular proteins can cause major disturbances in physiology. The cardiac sodium channel (NaV1.5) is an important determinant of correct electrical activity in cardiomyocytes which are localized at intercalated discs, T‐tubules and lateral membranes in the form of a macromolecular complex with multiple interacting protein partners. The channel is tightly regulated by post‐translational modifications for smooth conduction and propagation of action potentials. Among regulatory mechanisms, phosphorylation is an enzymatic and reversible process which modulates NaV1.5 channel function by attaching phosphate groups to serine, threonine or tyrosine residues. Phosphorylation of NaV1.5 is implicated in both normal physiological and pathological processes and is carried out by multiple kinases. In this review, we discuss and summarize recent literature about the (a) structure of NaV1.5 channel, (b) formation and subcellular localization of NaV1.5 channel macromolecular complex, (c) post‐translational phosphorylation and regulation of NaV1.5 channel, and (d) how these phosphorylation events of NaV1.5 channel alter the biophysical properties and affect the channel during disease status. We expect, by reviewing these aspects will greatly improve our understanding of NaV1.5 channel biology, physiology and pathology, which will also provide an insight into the mechanism of arrythmogenesis at molecular level.
Collapse
Affiliation(s)
- Shahid M. Iqbal
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
- Drugs Regulatory Authority of Pakistan Telecom Foundation (TF) Complex Islamabad Pakistan
| | - Rosa Lemmens‐Gruber
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
| |
Collapse
|
30
|
Hegyi B, Morotti S, Liu C, Ginsburg KS, Bossuyt J, Belardinelli L, Izu LT, Chen-Izu Y, Bányász T, Grandi E, Bers DM. Enhanced Depolarization Drive in Failing Rabbit Ventricular Myocytes: Calcium-Dependent and β-Adrenergic Effects on Late Sodium, L-Type Calcium, and Sodium-Calcium Exchange Currents. Circ Arrhythm Electrophysiol 2019; 12:e007061. [PMID: 30879336 PMCID: PMC6720130 DOI: 10.1161/circep.118.007061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Heart failure (HF) is characterized by electrophysiological remodeling resulting in increased risk of cardiac arrhythmias. Previous reports suggest that elevated inward ionic currents in HF promote action potential (AP) prolongation, increased short-term variability of AP repolarization, and delayed afterdepolarizations. However, the underlying changes in late Na+ current (INaL), L-type Ca2+ current, and NCX (Na+/Ca2+ exchanger) current are often measured in nonphysiological conditions (square-pulse voltage clamp, slow pacing rates, exogenous Ca2+ buffers). METHODS We measured the major inward currents and their Ca2+- and β-adrenergic dependence under physiological AP clamp in rabbit ventricular myocytes in chronic pressure/volume overload-induced HF (versus age-matched control). RESULTS AP duration and short-term variability of AP repolarization were increased in HF, and importantly, inhibition of INaL decreased both parameters to the control level. INaL was slightly increased in HF versus control even when intracellular Ca2+ was strongly buffered. But under physiological AP clamp with normal Ca2+ cycling, INaL was markedly upregulated in HF versus control (dependent largely on CaMKII [Ca2+/calmodulin-dependent protein kinase II] activity). β-Adrenergic stimulation (often elevated in HF) further enhanced INaL. L-type Ca2+ current was decreased in HF when Ca2+ was buffered, but CaMKII-mediated Ca2+-dependent facilitation upregulated physiological L-type Ca2+ current to the control level. Furthermore, L-type Ca2+ current response to β-adrenergic stimulation was significantly attenuated in HF. Inward NCX current was upregulated at phase 3 of AP in HF when assessed by combining experimental data and computational modeling. CONCLUSIONS Our results suggest that CaMKII-dependent upregulation of INaL in HF significantly contributes to AP prolongation and increased short-term variability of AP repolarization, which may lead to increased arrhythmia propensity, and is further exacerbated by adrenergic stress.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis
| | - Caroline Liu
- Department of Pharmacology, University of California Davis, Davis
| | | | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis
| | | | - Leighton T. Izu
- Department of Pharmacology, University of California Davis, Davis
| | - Ye Chen-Izu
- Department of Pharmacology, University of California Davis, Davis
- Department of Biomedical Engineering, University of California Davis, Davis
- Department of Internal Medicine/Cardiology, University of California Davis, Davis
| | - Tamás Bányász
- Department of Pharmacology, University of California Davis, Davis
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis
| |
Collapse
|
31
|
Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proc Natl Acad Sci U S A 2019; 116:2945-2954. [PMID: 30728299 PMCID: PMC6386684 DOI: 10.1073/pnas.1817446116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels play a central role in cellular excitability and are key targets for drug development. Recent breakthroughs in high-resolution cryo-electron microscopy protein structure determination, Rosetta computational protein structure modeling, and multimicrosecond molecular dynamics simulations are empowering advances in structural biology to study the atomistic details of channel−drug interactions. We used Rosetta structural computational modeling and molecular dynamics simulations to study the interactions of antiarrhythmic and local anesthetic drugs with cardiac sodium channel. Our results provide crucial atomic-scale mechanistic insights into the channel–drug interactions, necessary for the rational design of novel modulators of the human cardiac sodium channel to be used for the treatment of cardiac arrhythmias. The human voltage-gated sodium channel, hNaV1.5, is responsible for the rapid upstroke of the cardiac action potential and is target for antiarrhythmic therapy. Despite the clinical relevance of hNaV1.5-targeting drugs, structure-based molecular mechanisms of promising or problematic drugs have not been investigated at atomic scale to inform drug design. Here, we used Rosetta structural modeling and docking as well as molecular dynamics simulations to study the interactions of antiarrhythmic and local anesthetic drugs with hNaV1.5. These calculations revealed several key drug binding sites formed within the pore lumen that can simultaneously accommodate up to two drug molecules. Molecular dynamics simulations identified a hydrophilic access pathway through the intracellular gate and a hydrophobic access pathway through a fenestration between DIII and DIV. Our results advance the understanding of molecular mechanisms of antiarrhythmic and local anesthetic drug interactions with hNaV1.5 and will be useful for rational design of novel therapeutics.
Collapse
|
32
|
Li W, Yin L, Shen C, Hu K, Ge J, Sun A. SCN5A Variants: Association With Cardiac Disorders. Front Physiol 2018; 9:1372. [PMID: 30364184 PMCID: PMC6191725 DOI: 10.3389/fphys.2018.01372] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
The SCN5A gene encodes the alpha subunit of the main cardiac sodium channel Nav1.5. This channel predominates inward sodium current (INa) and plays a critical role in regulation of cardiac electrophysiological function. Since 1995, SCN5A variants have been found to be causatively associated with Brugada syndrome, long QT syndrome, cardiac conduction system dysfunction, dilated cardiomyopathy, etc. Previous genetic, electrophysiological, and molecular studies have identified the arrhythmic and cardiac structural characteristics induced by SCN5A variants. However, due to the variation of disease manifestations and genetic background, impact of environmental factors, as well as the presence of mixed phenotypes, the detailed and individualized physiological mechanisms in various SCN5A-related syndromes are not fully elucidated. This review summarizes the current knowledge of SCN5A genetic variations in different SCN5A-related cardiac disorders and the newly developed therapy strategies potentially useful to prevent and treat these disorders in clinical setting.
Collapse
Affiliation(s)
- Wenjia Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Cheng Shen
- Department of Cardiology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiology, Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiology, Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Pérez-Hernández M, Matamoros M, Alfayate S, Nieto-Marín P, Utrilla RG, Tinaquero D, de Andrés R, Crespo T, Ponce-Balbuena D, Willis BC, Jiménez-Vazquez EN, Guerrero-Serna G, da Rocha AM, Campbell K, Herron TJ, Díez-Guerra FJ, Tamargo J, Jalife J, Caballero R, Delpón E. Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels. JCI Insight 2018; 3:96291. [PMID: 30232268 DOI: 10.1172/jci.insight.96291] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Cardiac Nav1.5 and Kir2.1-2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems - rat ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) - demonstrated that endoplasmic reticulum (ER) trafficking-defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking-defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking-defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Marcos Matamoros
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Silvia Alfayate
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - David Tinaquero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Raquel de Andrés
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Teresa Crespo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Daniela Ponce-Balbuena
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - B Cicero Willis
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric N Jiménez-Vazquez
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Guadalupe Guerrero-Serna
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Andre M da Rocha
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Campbell
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Todd J Herron
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - F Javier Díez-Guerra
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - José Jalife
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.,Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| |
Collapse
|
34
|
Veeraraghavan R, Hoeker GS, Alvarez-Laviada A, Hoagland D, Wan X, King DR, Sanchez-Alonso J, Chen C, Jourdan J, Isom LL, Deschenes I, Smyth JW, Gorelik J, Poelzing S, Gourdie RG. The adhesion function of the sodium channel beta subunit (β1) contributes to cardiac action potential propagation. eLife 2018; 7:37610. [PMID: 30106376 PMCID: PMC6122953 DOI: 10.7554/elife.37610] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
Computational modeling indicates that cardiac conduction may involve ephaptic coupling – intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that β1(SCN1B) –mediated adhesion scaffolds trans-activating NaV1.5 (SCN5A) channels within narrow (<30 nm) perinexal clefts adjacent to gap junctions (GJs), facilitating ephaptic coupling. Super-resolution imaging indicated preferential β1 localization at the perinexus, where it co-locates with NaV1.5. Smart patch clamp (SPC) indicated greater sodium current density (INa) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, βadp1, potently and selectively inhibited β1-mediated adhesion, in electric cell-substrate impedance sensing studies. βadp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal INa, but not whole cell INa, in myocyte monolayers. In optical mapping studies, βadp1 precipitated arrhythmogenic conduction slowing. In summary, β1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | - Gregory S Hoeker
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | | | - Daniel Hoagland
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | - Xiaoping Wan
- Heart and Vascular Research Center, MetroHealth Medical Center, Department of Medicine, Case Western Reserve University, Cleveland, United States
| | - D Ryan King
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Virginia, United States
| | - Jose Sanchez-Alonso
- Department of Myocardial Function, Imperial College London, London, United Kingdom
| | - Chunling Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
| | - Jane Jourdan
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
| | - Isabelle Deschenes
- Heart and Vascular Research Center, MetroHealth Medical Center, Department of Medicine, Case Western Reserve University, Cleveland, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Unites States
| | - James W Smyth
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Department of Biological Sciences, College of Science, Blacksburg, United States
| | - Julia Gorelik
- Department of Myocardial Function, Imperial College London, London, United Kingdom
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, United States
| | - Robert G Gourdie
- Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States.,School of Medicine, Virginia Polytechnic University, Roanoke, United States.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, United States
| |
Collapse
|
35
|
Sirabella R, Valsecchi V, Anzilotti S, Cuomo O, Vinciguerra A, Cepparulo P, Brancaccio P, Guida N, Blondeau N, Canzoniero LMT, Franco C, Amoroso S, Annunziato L, Pignataro G. Ionic Homeostasis Maintenance in ALS: Focus on New Therapeutic Targets. Front Neurosci 2018; 12:510. [PMID: 30131665 PMCID: PMC6090999 DOI: 10.3389/fnins.2018.00510] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most threatening neurodegenerative disease since it causes muscular paralysis for the loss of Motor Neurons in the spinal cord, brainstem and motor cortex. Up until now, no effective pharmacological treatment is available. Two forms of ALS have been described so far: 90% of the cases presents the sporadic form (sALS) whereas the remaining 10% of the cases displays the familiar form (fALS). Approximately 20% of fALS is associated with inherited mutations in the Cu, Zn-superoxide dismutase 1 (SOD1) gene. In the last decade, ionic homeostasis dysregulation has been proposed as the main trigger of the pathological cascade that brings to motor-neurons loss. In the light of these premises, the present review will analyze the involvement in ALS pathophysiology of the most well studied metal ions, i.e., calcium, sodium, iron, copper and zinc, with particular focus to the role of ionic channels and transporters able to contribute in the regulation of ionic homeostasis, in order to propose new putative molecular targets for future therapeutic strategies to ameliorate the progression of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy.,Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Nicolas Blondeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Cristina Franco
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Salvatore Amoroso
- Department of Neuroscience, Università Politecnica delle Marche, Ancona, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
36
|
Han D, Tan H, Sun C, Li G. Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med (Maywood) 2018; 243:852-863. [PMID: 29806494 DOI: 10.1177/1535370218777972] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The voltage-gated sodium channel 1.5 (Nav1.5), encoded by the SCN5A gene, is responsible for the rising phase of the action potential of cardiomyocytes. The sodium current mediated by Nav1.5 consists of peak and late components (INa-P and INa-L). Mutant Nav1.5 causes alterations in the peak and late sodium current and is associated with an increasingly wide range of congenital arrhythmias. More than 400 mutations have been identified in the SCN5A gene. Although the mechanisms of SCN5A mutations leading to a variety of arrhythmias can be classified according to the alteration of INa-P and INa-L as gain-of-function, loss-of-function and both, few researchers have summarized the mechanisms in this way before. In this review article, we aim to review the mechanisms underlying dysfunctional Nav1.5 due to SCN5A mutations and to provide some new insights into further approaches in the treatment of arrhythmias. Impact statement The field of ion channelopathy caused by dysfunctional Nav1.5 due to SCN5A mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of various arrhythmias develops. In this review, we focus on the dysfunctional Nav1.5 related to arrhythmias and the underlying mechanisms. We update SCN5A mutations in a precise way since 2013 and presents novel classifications of SCN5A mutations responsible for the dysfunction of the peak (INa-P) and late (INa-L) sodium channels based on their phenotypes, including loss-, gain-, and coexistence of gain- and loss-of function mutations in INa-P, INa-L, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying arrhythmias from cell to bedside, promoting the management of various arrhythmias in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Hui Tan
- 2 Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chaofeng Sun
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Guoliang Li
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
37
|
Iqbal SM, Aufy M, Shabbir W, Lemmens-Gruber R. Identification of phosphorylation sites and binding pockets for modulation of Na V 1.5 channel by Fyn tyrosine kinase. FEBS J 2018; 285:2520-2530. [PMID: 29734505 DOI: 10.1111/febs.14496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022]
Abstract
Cardiac sodium channel NaV 1.5 is the predominant form of sodium channels in cardiomyocytes, which exists as a macromolecular complex and interacts with multiple protein partners. Fyn kinase is one of the interacting proteins which colocalize, phosphorylate and modulate the NaV 1.5 channel. To elaborate this interaction we created expression vectors for the N-terminal, intracellular loop, and C-terminal regions of the NaV 1.5 channel, to express in HEK-293 cells. By co-immunoprecipitation and anti-phosphotyrosine blotting, we identified proline-rich binding sites for Fyn kinase in the N-terminal, IC-loopi-ii and C-terminal. After binding, Fyn kinase phosphorylates tyrosine residues present in the N- and C-terminal, which produce a depolarizing shift of 7 mV in fast inactivation. The functional relevance of these binding and phosphorylation sites was further underpinned by creating full length mutants masking these sites sequentially. An activation and inactivation curves were recorded with or without co-expressed Fyn kinase which indicates that phosphorylation of tyrosine residues at positions 68, 87, 112 in the N-terminal and at positions 1811 and 1889 in the C-terminal creates a depolarizing shift in fast inactivation of NaV 1.5 channel.
Collapse
Affiliation(s)
- Shahid Muhammad Iqbal
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.,Drugs Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Mohammed Aufy
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Waheed Shabbir
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and TherapeuticsMcGill UniversityMontréalQuébec H3G 1Y6Canada
| |
Collapse
|
39
|
SCN10A-Dependent Late I
Na
Current. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002167. [DOI: 10.1161/circgen.118.002167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Boddum K, Saljic A, Jespersen T, Christensen AH. A Novel SCN5A Variant Associated with Abnormal Repolarization, Atrial Fibrillation, and Reversible Cardiomyopathy. Cardiology 2018; 140:8-13. [PMID: 29635243 DOI: 10.1159/000487475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 01/17/2023]
Abstract
A variety of life-threating arrhythmias are caused by mutations in the cardiac voltage-gated sodium channel encoded by the SCN5A gene. In this study, we report a novel loss-of-function SCN5A variant, p.Ile1343Val (c.4027A>G), identified in a 42-year-old proband who presented with an unusual ECG with abnormal repolarization with biphasic T-waves in anteroseptal leads, persistent atrial fibrillation (AF), intermittent left bundle branch block (LBBB), and reversible cardiomyopathy. The patient did not meet the diagnostic criteria for Brugada syndrome, long QT syndrome, or any other known SCN5A-associated phenotype. Characterization of the biophysical properties of the variant by in vitro patch clamp experiments revealed a reduced Na+ current with no effect on the inactivation kinetics of the channel. This loss-of-function of Na+ current could explain the intermittent LBBB as well as the AF. In conclusion, we describe a unique combination of electrical and structural abnormalities associated with a novel SCN5A variant. Our findings broaden the spectrum of cardiac phenotypes associated with SCN5A channelopathy, underlining the complex clinical manifestations of genetic variations within this gene.
Collapse
Affiliation(s)
- Kim Boddum
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alex Hørby Christensen
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
41
|
Multifocal atrial and ventricular premature contractions with an increased risk of dilated cardiomyopathy caused by a Na v 1.5 gain-of-function mutation (G213D). Int J Cardiol 2018; 257:160-167. [DOI: 10.1016/j.ijcard.2017.11.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 01/14/2023]
|
42
|
Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q, Lolignier S, Morohashi T, Gossage SJ, Jay M, Linley JE, Baskozos G, Kessler BM, Cox JJ, Dolphin AC, Zufall F, Wood JN, Zhao J. Mapping protein interactions of sodium channel Na V1.7 using epitope-tagged gene-targeted mice. EMBO J 2018; 37:427-445. [PMID: 29335280 PMCID: PMC5793798 DOI: 10.15252/embj.201796692] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 11/24/2022] Open
Abstract
The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.
Collapse
Affiliation(s)
| | - Jennifer Koenig
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Honglei Huang
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Queensta Millet
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Stéphane Lolignier
- Molecular Nociception Group, WIBR, University College London, London, UK
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Toru Morohashi
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Samuel J Gossage
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Maude Jay
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - John E Linley
- Molecular Nociception Group, WIBR, University College London, London, UK
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - James J Cox
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Jing Zhao
- Molecular Nociception Group, WIBR, University College London, London, UK
| |
Collapse
|
43
|
Meraviglia V, Bocchi L, Sacchetto R, Florio MC, Motta BM, Corti C, Weichenberger CX, Savi M, D'Elia Y, Rosato-Siri MD, Suffredini S, Piubelli C, Pompilio G, Pramstaller PP, Domingues FS, Stilli D, Rossini A. HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca 2+-ATPase Activity in Cardiac Myocytes. Int J Mol Sci 2018; 19:ijms19020419. [PMID: 29385061 PMCID: PMC5855641 DOI: 10.3390/ijms19020419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.
Collapse
Affiliation(s)
- Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro (Padova), Italy.
| | - Maria Cristina Florio
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Benedetta M Motta
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Christian X Weichenberger
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Yuri D'Elia
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Marcelo D Rosato-Siri
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Silvia Suffredini
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Chiara Piubelli
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, 20122 Milano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Francisco S Domingues
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, 39100 Bolzano, Italy (affiliated institute of the University of Lübeck, 23562 Lübeck, Germany).
| |
Collapse
|
44
|
Aromolaran AS, Boutjdir M. Cardiac Ion Channel Regulation in Obesity and the Metabolic Syndrome: Relevance to Long QT Syndrome and Atrial Fibrillation. Front Physiol 2017; 8:431. [PMID: 28680407 PMCID: PMC5479057 DOI: 10.3389/fphys.2017.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
Obesity and its associated metabolic dysregulation leading to metabolic syndrome is an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese leading to enhanced risk of cardiovascular disease (CVD) incidence and mortality. Obesity predisposes to atrial fibrillation, ventricular, and supraventricular arrhythmias; conditions that are underlain by dysfunction in electrical activity of the heart. To date, current therapeutic options for cardiomyopathy of obesity are limited, suggesting that there is considerable room for development of therapeutic interventions with novel mechanisms of action that will help normalize rhythm in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels/Ca handling proteins remain incompletely understood. Obesity is marked by accumulation of adipose tissue associated with a variety of adverse adaptations including dyslipidemia (or abnormal levels of serum free fatty acids), increased secretion of pro-inflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, that will cause electrical remodeling and thus predispose to arrhythmias. Further, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which are marked by distinct signaling mechanisms. Thus, there may also be functional differences in the outcome of regional distribution of fat deposits on ion channel/Ca handling proteins expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge about the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. The objective of this article is to review cardiac ion channel/Ca handling proteins remodeling that predispose to arrhythmias. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States.,Department of Medicine, New York University School of MedicineNew York, NY, United States
| |
Collapse
|
45
|
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
46
|
Veeraraghavan R, Györke S, Radwański PB. Neuronal sodium channels: emerging components of the nano-machinery of cardiac calcium cycling. J Physiol 2017; 595:3823-3834. [PMID: 28195313 DOI: 10.1113/jp273058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
Excitation-contraction coupling is the bridge between cardiac electrical activation and mechanical contraction. It is driven by the influx of Ca2+ across the sarcolemma triggering Ca2+ release from the sarcoplasmic reticulum (SR) - a process termed Ca2+ -induced Ca2+ release (CICR) - followed by re-sequestration of Ca2+ into the SR. The Na+ /Ca2+ exchanger inextricably couples the cycling of Ca2+ and Na+ in cardiac myocytes. Thus, influx of Na+ via voltage-gated Na+ channels (NaV ) has emerged as an important regulator of CICR both in health and in disease. Recent insights into the subcellular distribution of cardiac and neuronal NaV isoforms and their ultrastructural milieu have important implications for the roles of these channels in mediating Ca2+ -driven arrhythmias. This review will discuss functional insights into the role of neuronal NaV isoforms vis-à-vis cardiac NaV s in triggering such arrhythmias and their potential as therapeutic targets in the context of the aforementioned structural observations.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Virginia Tech Carilion Research Institute, and Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, VA, USA
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, Ohio State University Wexner Medical Center, 473 West 12th Avenue, Room 510, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH, USA.,Division of Pharmacy Practice and Science, College of Pharmacy, Ohio State University, Columbus, OH, USA
| |
Collapse
|
47
|
Vikram A, Lewarchik CM, Yoon JY, Naqvi A, Kumar S, Morgan GM, Jacobs JS, Li Q, Kim YR, Kassan M, Liu J, Gabani M, Kumar A, Mehdi H, Zhu X, Guan X, Kutschke W, Zhang X, Boudreau RL, Dai S, Matasic DS, Jung SB, Margulies KB, Kumar V, Bachschmid MM, London B, Irani K. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nat Med 2017; 23:361-367. [PMID: 28191886 PMCID: PMC6218171 DOI: 10.1038/nm.4284] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/17/2017] [Indexed: 11/08/2022]
Abstract
The voltage-gated cardiac Na+ channel (Nav1.5), encoded by the SCN5A gene, conducts the inward depolarizing cardiac Na+ current (INa) and is vital for normal cardiac electrical activity. Inherited loss-of-function mutations in SCN5A lead to defects in the generation and conduction of the cardiac electrical impulse and are associated with various arrhythmia phenotypes. Here we show that sirtuin 1 deacetylase (Sirt1) deacetylates Nav1.5 at lysine 1479 (K1479) and stimulates INa via lysine-deacetylation-mediated trafficking of Nav1.5 to the plasma membrane. Cardiac Sirt1 deficiency in mice induces hyperacetylation of K1479 in Nav1.5, decreases expression of Nav1.5 on the cardiomyocyte membrane, reduces INa and leads to cardiac conduction abnormalities and premature death owing to arrhythmia. The arrhythmic phenotype of cardiac-Sirt1-deficient mice recapitulated human cardiac arrhythmias resulting from loss of function of Nav1.5. Increased Sirt1 activity or expression results in decreased lysine acetylation of Nav1.5, which promotes the trafficking of Nav1.5 to the plasma membrane and stimulation of INa. As compared to wild-type Nav1.5, Nav1.5 with K1479 mutated to a nonacetylatable residue increases peak INa and is not regulated by Sirt1, whereas Nav1.5 with K1479 mutated to mimic acetylation decreases INa. Nav1.5 is hyperacetylated on K1479 in the hearts of patients with cardiomyopathy and clinical conduction disease. Thus, Sirt1, by deacetylating Nav1.5, plays an essential part in the regulation of INa and cardiac electrical activity.
Collapse
Affiliation(s)
- Ajit Vikram
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Jin-Young Yoon
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Asma Naqvi
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Santosh Kumar
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Gina M Morgan
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julia S Jacobs
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Qiuxia Li
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Modar Kassan
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mohanad Gabani
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ajay Kumar
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider Mehdi
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Xiaodong Zhu
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Xiaoqun Guan
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - William Kutschke
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Xiaoming Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ryan L Boudreau
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Shengchuan Dai
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kenneth B Margulies
- Cardiovascular Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vikas Kumar
- Vascular Biology Section, Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Markus M Bachschmid
- Vascular Biology Section, Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Barry London
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, and Heart and Vascular Center, University of Iowa, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
48
|
Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald-Smith S, To TLO, Yan BP, Liu T, Tse G. Animal models of atherosclerosis. Biomed Rep 2017; 6:259-266. [PMID: 28451383 PMCID: PMC5403338 DOI: 10.3892/br.2017.843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a significant cause of morbidity and mortality globally. Many animal models have been developed to study atherosclerosis, and permit experimental conditions, diet and environmental risk factors to be carefully controlled. Pathophysiological changes can be produced using genetic or pharmacological means to study the harmful consequences of different interventions. Experiments using such models have elucidated its molecular and pathophysiological mechanisms, and provided platforms for pharmacological development. Different models have their own advantages and disadvantages, and can be used to answer different research questions. In the present review article, different species of atherosclerosis models are outlined, with discussions on the practicality of their use for experimentation.
Collapse
Affiliation(s)
- Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Victoria Laxton
- Intensive Care Department, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yin Wah Fiona Chan
- School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK
| | | | - Tsz Ling Olivia To
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
49
|
Paramonov AS, Lyukmanova EN, Myshkin MY, Shulepko MA, Kulbatskii DS, Petrosian NS, Chugunov AO, Dolgikh DA, Kirpichnikov MP, Arseniev AS, Shenkarev ZO. NMR investigation of the isolated second voltage-sensing domain of human Nav1.4 channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:493-506. [PMID: 28065835 DOI: 10.1016/j.bbamem.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Voltage-gated Na+ channels are essential for the functioning of cardiovascular, muscular, and nervous systems. The α-subunit of eukaryotic Na+ channel consists of ~2000 amino acid residues and encloses 24 transmembrane (TM) helices, which form five membrane domains: four voltage-sensing (VSD) and one pore domain. The structural complexity significantly impedes recombinant production and structural studies of full-sized Na+ channels. Modular organization of voltage-gated channels gives an idea for studying of the isolated second VSD of human skeletal muscle Nav1.4 channel (VSD-II). Several variants of VSD-II (~150a.a., four TM helices) with different N- and C-termini were produced by cell-free expression. Screening of membrane mimetics revealed low stability of VSD-II samples in media containing phospholipids (bicelles, nanodiscs) associated with the aggregation of electrically neutral domain molecules. The almost complete resonance assignment of 13C,15N-labeled VSD-II was obtained in LPPG micelles. The secondary structure of VSD-II showed similarity with the structures of bacterial Na+ channels. The fragment of S4 TM helix between the first and second conserved Arg residues probably adopts 310-helical conformation. Water accessibility of S3 helix, observed by the Mn2+ titration, pointed to the formation of water-filled crevices in the micelle embedded VSD-II. 15N relaxation data revealed characteristic pattern of μs-ms time scale motions in the VSD-II regions sharing expected interhelical contacts. VSD-II demonstrated enhanced mobility at ps-ns time scale as compared to isolated VSDs of K+ channels. These results validate structural studies of isolated VSDs of Na+ channels and show possible pitfalls in application of this 'divide and conquer' approach.
Collapse
Affiliation(s)
- A S Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - E N Lyukmanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - M Yu Myshkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia
| | - M A Shulepko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - D S Kulbatskii
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - N S Petrosian
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia
| | - A O Chugunov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia
| | - D A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - M P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Lomonosov Moscow State University, Moscow 119991, Russia
| | - A S Arseniev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Z O Shenkarev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia.
| |
Collapse
|
50
|
Aromolaran AS, Chahine M, Boutjdir M. Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C. Handb Exp Pharmacol 2017; 246:161-184. [PMID: 29032483 DOI: 10.1007/164_2017_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the heart, voltage-gated sodium (Nav) channel (Nav1.5) is defined by its pore-forming α-subunit and its auxiliary β-subunits, both of which are important for its critical contribution to the initiation and maintenance of the cardiac action potential (AP) that underlie normal heart rhythm. The physiological relevance of Nav1.5 is further marked by the fact that inherited or congenital mutations in Nav1.5 channel gene SCN5A lead to altered functional expression (including expression, trafficking, and current density), and are generally manifested in the form of distinct cardiac arrhythmic events, epilepsy, neuropathic pain, migraine, and neuromuscular disorders. However, despite significant advances in defining the pathophysiology of Nav1.5, the molecular mechanisms that underlie its regulation and contribution to cardiac disorders are poorly understood. It is rapidly becoming evident that the functional expression (localization, trafficking and gating) of Nav1.5 may be under modulation by post-translational modifications that are associated with phosphorylation. We review here the molecular basis of cardiac Na channel regulation by kinases (PKA and PKC) and the resulting functional consequences. Specifically, we discuss: (1) recent literature on the structural, molecular, and functional properties of cardiac Nav1.5 channels; (2) how these properties may be altered by phosphorylation in disease states underlain by congenital mutations in Nav1.5 channel and/or subunits such as long QT and Brugada syndromes. Our expectation is that understanding the roles of these distinct and complex phosphorylation processes on the functional expression of Nav1.5 is likely to provide crucial mechanistic insights into Na channel associated arrhythmogenic events and will facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA.
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|