1
|
Chen H, Brown J, Urban A, Zhang G, Zhe J. Continuous Viscoelasticity Measurement of Cell Spheroids via Microfluidic Electrical Aspiration. ACS Sens 2024. [PMID: 39437431 DOI: 10.1021/acssensors.4c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Measurement of viscoelastic characteristics of cells cultured in three-dimensional (3D) is critical to study many biological processes including tissue and organ growth. In this article, we present a unique electrical aspiration method to measure the viscoelastic properties of cell spheroids. A microfluidic sensor was created to demonstrate this method. Unlike the traditional optical aspiration method, the aspiration of the cell spheroids is monitored via monitoring the dynamic electrical resistance change of a symmetrical microfluidic aspiration channel. We first used the microfluidic device to measure the viscoelastic properties of two types of biological tissues derived from calfskin and porcine left ventricular myocardium. The equilibrium elastic modulus and creep time constants were measured to be 148.1 ± 24.1 kPa and 76.7 ± 3.5 s and 64.5 ± 7.7 kPa and 31.4 ± 2.7 s respectively, which matched well with reported data. The test validated the principle of the electrical aspiration method. Next, we applied the method for measuring cell spheroids made of human mesenchymal stem cells at different culture stages. The equilibrium elastic modulus and apparent viscosity decreased with increasing culture time. Compared to optical aspiration methods, this microfluidic electrical aspiration method has no reliance on transparent materials and image processing, which thus allows simple setup, fast data acquisition and analysis. The use of a symmetric aspiration channel and the linear half-space model enable measurements of a large number of viscoelastic properties via a single measurement with higher accuracy. This method will enable high throughput, continuous viscoelastic measurement of cell spheroids as well as other 3D cell culture models in flow conditions without the need for any optical measurements.
Collapse
Affiliation(s)
- Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Jacob Brown
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Aaron Urban
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
2
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Mierke CT. Magnetic tweezers in cell mechanics. Methods Enzymol 2024; 694:321-354. [PMID: 38492957 DOI: 10.1016/bs.mie.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
4
|
Herrera-Reinoza N, Tortelli Junior TC, Teixeira FDS, Chammas R, Salvadori MC. Role of galectin-3 in the elastic response of radial growth phase melanoma cancer cells. Microsc Res Tech 2023; 86:1353-1362. [PMID: 37070727 DOI: 10.1002/jemt.24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells. RESEARCH HIGHLIGHTS: AFM imaging and force spectroscopy were used to investigate the morphology and elasticity properties of healthy HaCaT cells and melanoma cells WM1366, with (shSCR) and without (shGal3) expression of galectin-3. It is shown the effect of galectin-3 protein on the elastic properties of cells: the cells without expression of galectin-3 presents lower elastic modulus. By the results, we suggest here that galectin-3 could be used as an effective biomarker of malignancy in both melanoma diagnostic and prognosis.
Collapse
Affiliation(s)
| | | | | | - Roger Chammas
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Hosseindokht Z, Kolahdouz M, Hajikhani B, Sasanpour P. Photoacoustic based evaluation of viscoelastic properties of Gram-negative and Gram-positive bacterial colonies. Sci Rep 2023; 13:14656. [PMID: 37670076 PMCID: PMC10480163 DOI: 10.1038/s41598-023-41663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Mechanical properties of bacterial colonies are crucial considering both addressing their pathogenic effects and exploring their potential applications. Viscoelasticity is a key mechanical property with major impacts on the cell shapes and functions, which reflects the information about the cell envelope constituents. Hereby, we have proposed the application of photoacoustic viscoelasticity (PAVE) for studying the rheological properties of bacterial colonies. In this regard, we employed an intensity-modulated laser beam as the excitation source followed by the phase delay measurement between the generated PA signal and the reference for the characterization of colonies of two different types of Gram-positive and Gram-negative bacteria. The results of our study show that the colony of Staphylococcus aureus as Gram-positive bacteria has a significantly higher viscoelasticity ratio compared to that value for Acinetobacter baumannii as Gram-negative bacteria (77% difference). This may be due to the differing cell envelope structure between the two species, but we cannot rule out effects of biofilm formation in the colonies. Furthermore, a lumped model has been provided for the mechanical properties of bacterial colonies.
Collapse
Affiliation(s)
- Zahra Hosseindokht
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammadreza Kolahdouz
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Su Z, Chen Z, Ma K, Chen H, Ho JWK. Molecular determinants of intrinsic cellular stiffness in health and disease. Biophys Rev 2022; 14:1197-1209. [PMID: 36345276 PMCID: PMC9636357 DOI: 10.1007/s12551-022-00997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
In recent years, the role of intrinsic biophysical features, especially cellular stiffness, in diverse cellular and disease processes is being increasingly recognized. New high throughput techniques for the quantification of cellular stiffness facilitate the study of their roles in health and diseases. In this review, we summarized recent discovery about how cellular stiffness is involved in cell stemness, tumorigenesis, and blood diseases. In addition, we review the molecular mechanisms underlying the gene regulation of cellular stiffness in health and disease progression. Finally, we discussed the current understanding on how the cytoskeleton structure and the regulation of these genes contribute to cellular stiffness, highlighting where the field of cellular stiffness is headed.
Collapse
Affiliation(s)
- Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Kun Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055 China
| | - Joshua W. K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
7
|
Godeau AL, Leoni M, Comelles J, Guyomar T, Lieb M, Delanoë-Ayari H, Ott A, Harlepp S, Sens P, Riveline D. 3D single cell migration driven by temporal correlation between oscillating force dipoles. eLife 2022; 11:71032. [PMID: 35899947 PMCID: PMC9395190 DOI: 10.7554/elife.71032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.
Collapse
Affiliation(s)
- Amélie Luise Godeau
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | | | - Jordi Comelles
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Tristan Guyomar
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Michele Lieb
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Hélène Delanoë-Ayari
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5306, LyonVilleurbanne Cedex, France
| | - Albrecht Ott
- Universität des Saarlandes, Saarbrücken, Germany
| | - Sebastien Harlepp
- INSERM UMR S1109, Institut d'Hématologie et d'Immunologie, Strasbourg, France
| | - Pierre Sens
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Daniel Riveline
- Development and stem cells, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| |
Collapse
|
8
|
|
9
|
Brás MM, Sousa SR, Carneiro F, Radmacher M, Granja PL. Mechanobiology of Colorectal Cancer. Cancers (Basel) 2022; 14:1945. [PMID: 35454852 PMCID: PMC9028036 DOI: 10.3390/cancers14081945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the mechanobiology of colorectal cancer (CRC) are discussed. Mechanotransduction of CRC is addressed considering the relationship of several biophysical cues and biochemical pathways. Mechanobiology is focused on considering how it may influence epithelial cells in terms of motility, morphometric changes, intravasation, circulation, extravasation, and metastization in CRC development. The roles of the tumor microenvironment, ECM, and stroma are also discussed, taking into account the influence of alterations and surface modifications on mechanical properties and their impact on epithelial cells and CRC progression. The role of cancer-associated fibroblasts and the impact of flow shear stress is addressed in terms of how it affects CRC metastization. Finally, some insights concerning how the knowledge of biophysical mechanisms may contribute to the development of new therapeutic strategies and targeting molecules and how mechanical changes of the microenvironment play a role in CRC disease are presented.
Collapse
Affiliation(s)
- Maria Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto (IPP), 4200-072 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-465 Porto, Portugal
- Serviço de Patologia, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manfred Radmacher
- Institute for Biophysics, University of Bremen, 28334 Bremen, Germany
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (M.M.B.); (S.R.S.); (F.C.); (P.L.G.)
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
10
|
Fregin B, Biedenweg D, Otto O. Interpretation of cell mechanical experiments in microfluidic systems depend on the choice of cellular shape descriptors. BIOMICROFLUIDICS 2022; 16:024109. [PMID: 35541026 PMCID: PMC9054269 DOI: 10.1063/5.0084673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The capability to parameterize shapes is of essential importance in biomechanics to identify cells, to track their motion, and to quantify deformation. While various shape descriptors have already been investigated to study the morphology and migration of adherent cells, little is known of how the mathematical definition of a contour impacts the outcome of rheological experiments on cells in suspension. In microfluidic systems, hydrodynamic stress distributions induce time-dependent cell deformation that needs to be quantified to determine viscoelastic properties. Here, we compared nine different shape descriptors to characterize the deformation of suspended cells in an extensional as well as shear flow using dynamic real-time deformability cytometry. While stress relaxation depends on the amplitude and duration of stress, our results demonstrate that steady-state deformation can be predicted from single cell traces even for translocation times shorter than their characteristic time. Implementing an analytical simulation, performing experiments, and testing various data analysis strategies, we compared single cell and ensemble studies to address the question of computational costs vs experimental accuracy. Results indicate that high-throughput viscoelastic measurements of cells in suspension can be performed on an ensemble scale as long as the characteristic time matches the dimensions of the microfluidic system. Finally, we introduced a score to evaluate the shape descriptor-dependent effect size for cell deformation after cytoskeletal modifications. We provide evidence that single cell analysis in an extensional flow provides the highest sensitivity independent of shape parametrization, while inverse Haralick's circularity is mostly applicable to study cells in shear flow.
Collapse
Affiliation(s)
| | | | - Oliver Otto
- Author to whom correspondence should be addressed:
| |
Collapse
|
11
|
Rothermel TM, Cook BL, Alford PW. Cellular Microbiaxial Stretching Assay for Measurement and Characterization of the Anisotropic Mechanical Properties of Micropatterned Cells. Curr Protoc 2022; 2:e370. [PMID: 35195953 DOI: 10.1002/cpz1.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Characterizing the mechanical properties of single cells is important for developing descriptive models of tissue mechanics and improving the understanding of mechanically driven cell processes. Standard methods for measuring single-cell mechanical properties typically provide isotropic mechanical descriptions. However, many cells exhibit specialized geometries in vivo, with anisotropic cytoskeletal architectures reflective of their function, and are exposed to dynamic multiaxial loads, raising the need for more complete descriptions of their anisotropic mechanical properties under complex deformations. Here, we describe the cellular microbiaxial stretching (CμBS) assay in which controlled deformations are applied to micropatterned cells while simultaneously measuring cell stress. CμBS utilizes a set of linear actuators to apply tensile or compressive, short- or long-term deformations to cells micropatterned on a fluorescent bead-doped polyacrylamide gel. Using traction force microscopy principles and the known geometry of the cell and the mechanical properties of the underlying gel, we calculate the stress within the cell to formulate stress-strain curves that can be further used to create mechanical descriptions of the cells, such as strain energy density functions. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Assembly of CμBS stretching constructs Basic Protocol 2: Polymerization of micropatterned, bead-doped polyacrylamide gel on an elastomer membrane Support Protocol: Cell culture and seeding onto CμBS constructs Basic Protocol 3: Implementing CμBS stretching protocols and traction force microscopy Basic Protocol 4: Data analysis and cell stress measurements.
Collapse
Affiliation(s)
- Taylor M Rothermel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Bernard L Cook
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Liu Y, Zhang Y, Cui M, Zhao X, Sun M, Zhao X. A Cell's Viscoelasticity Measurement Method Based on the Spheroidization Process of Non-Spherical Shaped Cell. SENSORS (BASEL, SWITZERLAND) 2021; 21:5561. [PMID: 34451003 PMCID: PMC8401595 DOI: 10.3390/s21165561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023]
Abstract
The mechanical properties of biological cells, especially the elastic modulus and viscosity of cells, have been identified to reflect cell viability and cell states. The existing measuring techniques need additional equipment or operation condition. This paper presents a cell's viscoelasticity measurement method based on the spheroidization process of non-spherical shaped cell. The viscoelasticity of porcine fetal fibroblast was measured. Firstly, we introduced the process of recording the spheroidization process of porcine fetal fibroblast. Secondly, we built the viscoelastic model for simulating a cell's spheroidization process. Then, we simulated the spheroidization process of porcine fetal fibroblast and got the simulated spheroidization process. By identifying the parameters in the viscoelastic model, we got the elasticity (500 Pa) and viscosity (10 Pa·s) of porcine fetal fibroblast. The results showed that the magnitude of the elasticity and viscosity were in agreement with those measured by traditional method. To verify the accuracy of the proposed method, we imitated the spheroidization process with silicone oil, a kind of viscous and uniform liquid with determined viscosity. We did the silicone oil's spheroidization experiment and simulated this process. The simulation results also fitted the experimental results well.
Collapse
Affiliation(s)
- Yaowei Liu
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
| | - Yujie Zhang
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
| | - Maosheng Cui
- Institute of Animal Sciences, Tianjin 300112, China;
| | - Xiangfei Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China; (Y.L.); (Y.Z.); (X.Z.); (M.S.)
| |
Collapse
|
13
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
14
|
Witko T, Baster Z, Rajfur Z, Sofińska K, Barbasz J. Increasing AFM colloidal probe accuracy by optical tweezers. Sci Rep 2021; 11:509. [PMID: 33436725 PMCID: PMC7804458 DOI: 10.1038/s41598-020-79938-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
A precise determination of the cantilever spring constant is the critical point of all colloidal probe experiments. Existing methods are based on approximations considering only cantilever geometry and do not take into account properties of any object or substance attached to the cantilever. Neglecting the influence of the colloidal sphere on the cantilever characteristics introduces significant uncertainty in a spring constant determination and affects all further considerations. In this work we propose a new method of spring constant calibration for 'colloidal probe' type cantilevers based on the direct measurement of force constant. The Optical Tweezers based calibration method will help to increase the accuracy and repeatability of the AFM colloidal probe experiments.
Collapse
Affiliation(s)
- Tomasz Witko
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Zbigniew Baster
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Zenon Rajfur
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Kamila Sofińska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| | - Jakub Barbasz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| |
Collapse
|
15
|
Zemljič Jokhadar Š, Stojković B, Vidak M, Sorčan T, Liovic M, Gouveia M, Travasso RDM, Derganc J. Cortical stiffness of keratinocytes measured by lateral indentation with optical tweezers. PLoS One 2021; 15:e0231606. [PMID: 33382707 PMCID: PMC7774922 DOI: 10.1371/journal.pone.0231606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/04/2020] [Indexed: 01/20/2023] Open
Abstract
Keratin intermediate filaments are the principal structural element of epithelial cells. Their importance in providing bulk cellular stiffness is well recognized, but their role in the mechanics of cell cortex is less understood. In this study, we therefore compared the cortical stiffness of three keratinocyte lines: primary wild type cells (NHEK2), immortalized wild type cells (NEB1) and immortalized mutant cells (KEB7). The cortical stiffness was measured by lateral indentation of cells with AOD-steered optical tweezers without employing any moving mechanical elements. The method was validated on fixed cells and Cytochalasin-D treated cells to ensure that the observed variations in stiffness within a single cell line were not a consequence of low measurement precision. The measurements of the cortical stiffness showed that primary wild type cells were significantly stiffer than immortalized wild type cells, which was also detected in previous studies of bulk elasticity. In addition, a small difference between the mutant and the wild type cells was detected, showing that mutation of keratin impacts also the cell cortex. Thus, our results indicate that the role of keratins in cortical stiffness is not negligible and call for further investigation of the mechanical interactions between keratins and elements of the cell cortex.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Biljana Stojković
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Sorčan
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marcos Gouveia
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Rui D. M. Travasso
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
16
|
Hao Y, Cheng S, Tanaka Y, Hosokawa Y, Yalikun Y, Li M. Mechanical properties of single cells: Measurement methods and applications. Biotechnol Adv 2020; 45:107648. [DOI: 10.1016/j.biotechadv.2020.107648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
|
17
|
Large-deformation strain energy density function for vascular smooth muscle cells. J Biomech 2020; 111:110005. [DOI: 10.1016/j.jbiomech.2020.110005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 01/03/2023]
|
18
|
Varlet AA, Helfer E, Badens C. Molecular and Mechanobiological Pathways Related to the Physiopathology of FPLD2. Cells 2020; 9:cells9091947. [PMID: 32842478 PMCID: PMC7565540 DOI: 10.3390/cells9091947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Laminopathies are rare and heterogeneous diseases affecting one to almost all tissues, as in Progeria, and sharing certain features such as metabolic disorders and a predisposition to atherosclerotic cardiovascular diseases. These two features are the main characteristics of the adipose tissue-specific laminopathy called familial partial lipodystrophy type 2 (FPLD2). The only gene that is involved in FPLD2 physiopathology is the LMNA gene, with at least 20 mutations that are considered pathogenic. LMNA encodes the type V intermediate filament lamin A/C, which is incorporated into the lamina meshwork lining the inner membrane of the nuclear envelope. Lamin A/C is involved in the regulation of cellular mechanical properties through the control of nuclear rigidity and deformability, gene modulation and chromatin organization. While recent studies have described new potential signaling pathways dependent on lamin A/C and associated with FPLD2 physiopathology, the whole picture of how the syndrome develops remains unknown. In this review, we summarize the signaling pathways involving lamin A/C that are associated with the progression of FPLD2. We also explore the links between alterations of the cellular mechanical properties and FPLD2 physiopathology. Finally, we introduce potential tools based on the exploration of cellular mechanical properties that could be redirected for FPLD2 diagnosis.
Collapse
Affiliation(s)
- Alice-Anaïs Varlet
- Marseille Medical Genetics (MMG), INSERM, Aix Marseille University, 13005 Marseille, France;
| | - Emmanuèle Helfer
- Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), CNRS, Aix Marseille University, 13009 Marseille, France
- Correspondence: (E.H.); (C.B.); Tel.: +33-6-60-30-28-91 (E.H.); +33-4-91-78-68-94 (C.B.)
| | - Catherine Badens
- Marseille Medical Genetics (MMG), INSERM, Aix Marseille University, 13005 Marseille, France;
- Correspondence: (E.H.); (C.B.); Tel.: +33-6-60-30-28-91 (E.H.); +33-4-91-78-68-94 (C.B.)
| |
Collapse
|
19
|
Vakhrusheva A, Endzhievskaya S, Zhuikov V, Nekrasova T, Parshina E, Ovsiannikova N, Popov V, Bagrov D, Minin AА, Sokolova OS. The role of vimentin in directional migration of rat fibroblasts. Cytoskeleton (Hoboken) 2019; 76:467-476. [PMID: 31626376 DOI: 10.1002/cm.21572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Cell migration is one of the most important processes in which the cytoskeleton plays a main role. The cytoskeleton network is formed by tubulin microtubules, actin filaments, and intermediate filaments (IFs). While the structure and functions of the two aforementioned proteins have been extensively investigated during the last decades, vimentin IFs structure and their role in cell migration and adhesion remain unclear. Here, we investigated polarity determination in rat fibroblasts with either a knocked out vim gene or with a mutation that blocks filament formation on the stage of unit-length filaments (ULFs). Structured illumination microscopy has demonstrated the difference in the morphology of IFs in wild-type fibroblasts and of ULFs in mutant fibroblasts. We have developed an approach to measure cell stiffness separately on the trailing and leading edges using atomic force microscopy. Young's modulus values on the leading and trailing edge of migrating rat fibroblasts differ approximately by two times, being larger on the leading edge. The knockout of the vim gene leads to having comparable values of Young's moduli on both edges. Vimentin-null cells change the direction of migration more frequently than those expressing wild-type or mutated vimentin. Our results have shown the principle role of vimentin, not only in the form of IFs, but also as ULFs, in the determination of the polarity and the directionality of fibroblast migration.
Collapse
Affiliation(s)
- Anna Vakhrusheva
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| | - Sofia Endzhievskaya
- Institute of Protein Research of Russian Academy of Sciences, Department of Cell Biology, Moscow, Russia
| | - Vsevolod Zhuikov
- Research Centre of Biotechnology of Russian Academy of Sciences, Moscow, Russia
| | - Tatyana Nekrasova
- Institute of Protein Research of Russian Academy of Sciences, Department of Cell Biology, Moscow, Russia
| | - Evgenia Parshina
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| | - Natalia Ovsiannikova
- Lomonosov Moscow State University, Belozersky Institute of Physico-chemical biology, Moscow, Russia
| | - Vladimir Popov
- Lomonosov Moscow State University, Department of Physics, Moscow, Russia
| | - Dmitry Bagrov
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| | - Alexander А Minin
- Institute of Protein Research of Russian Academy of Sciences, Department of Cell Biology, Moscow, Russia
| | - Olga S Sokolova
- Lomonosov Moscow State University, Department of Biology, Moscow, Russia
| |
Collapse
|
20
|
Spronck B, Humphrey JD. Arterial Stiffness: Different Metrics, Different Meanings. J Biomech Eng 2019; 141:091004. [PMID: 30985880 PMCID: PMC6808013 DOI: 10.1115/1.4043486] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Findings from basic science and clinical studies agree that arterial stiffness is fundamental to both the mechanobiology and the biomechanics that dictate vascular health and disease. There is, therefore, an appropriately growing literature on arterial stiffness. Perusal of the literature reveals, however, that many different methods and metrics are used to quantify arterial stiffness, and reported values often differ by orders of magnitude and have different meanings. Without clear definitions and an understanding of possible inter-relations therein, it is increasingly difficult to integrate results from the literature to glean true understanding. In this paper, we briefly review methods that are used to infer values of arterial stiffness that span studies on isolated cells, excised intact vessels, and clinical assessments. We highlight similarities and differences and identify a single theoretical approach that can be used across scales and applications and thus could help to unify future results. We conclude by emphasizing the need to move toward a synthesis of many disparate reports, for only in this way will we be able to move from our current fragmented understanding to a true appreciation of how vascular cells maintain, remodel, or repair the arteries that are fundamental to cardiovascular properties and function.
Collapse
Affiliation(s)
- B. Spronck
- Department of Biomedical Engineering,
Yale University,
New Haven, CT 06520
| | - J. D. Humphrey
- Fellow ASME
Department of Biomedical Engineering,
Yale University,
New Haven, CT 06520;
Vascular Biology and Therapeutics Program,
Yale School of Medicine,
New Haven, CT 06520
e-mail:
| |
Collapse
|
21
|
Liu Y, Cui M, Huang J, Sun M, Zhao X, Zhao Q. Robotic Micropipette Aspiration for Multiple Cells. MICROMACHINES 2019; 10:E348. [PMID: 31137867 PMCID: PMC6562722 DOI: 10.3390/mi10050348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/03/2022]
Abstract
As there are significant variations of cell elasticity among individual cells, measuring the elasticity of batch cells is required for obtaining statistical results of cell elasticity. At present, the micropipette aspiration (MA) technique is the most widely used cell elasticity measurement method. Due to a lack of effective cell storage and delivery methods, the existing manual and robotic MA methods are only capable of measuring a single cell at a time, making the MA of batch cells low efficiency. To address this problem, we developed a robotic MA system capable of storing multiple cells with a feeder micropipette (FM), picking up cells one-by-one to measure their elasticity with a measurement micropipette (MM). This system involved the following key techniques: Maximum permissible tilt angle of MM and FM determination, automated cell adhesion detection and cell adhesion break, and automated cell aspiration. The experimental results demonstrated that our system was able to continuously measure more than 20 cells with a manipulation speed quadrupled in comparison to existing methods. With the batch cell measurement ability, cell elasticity of pig ovum cultured in different environmental conditions was measured to find optimized culturing protocols for oocyte maturation.
Collapse
Affiliation(s)
- Yaowei Liu
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China.
| | - Maosheng Cui
- Institute of Animal Sciences, Tianjin 300112, China.
| | | | - Mingzhu Sun
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China.
| | - Xin Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China.
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Moerland CP, van IJzendoorn LJ, Prins MWJ. Rotating magnetic particles for lab-on-chip applications - a comprehensive review. LAB ON A CHIP 2019; 19:919-933. [PMID: 30785138 DOI: 10.1039/c8lc01323c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Magnetic particles are widely used in lab-on-chip and biosensing applications, because they have a high surface-to-volume ratio, they can be actuated with magnetic fields and many biofunctionalization options are available. The most well-known actuation method is to apply a magnetic field gradient which generates a translational force on the particles and allows separation of the particles from a suspension. A more recently developed magnetic actuation method is to exert torque on magnetic particles by a rotating magnetic field. Rotational actuation can be achieved with a field that is uniform in space and it allows for a precise control of torque, orientation, and angular velocity of magnetic particles in lab-on-chip devices. A wide range of studies have been performed with rotating MPs, demonstrating fluid mixing, concentration determination of biological molecules in solution, and characterization of structure and function of biomolecules at the single-molecule level. In this paper we give a comprehensive review of the historical development of MP rotation studies, including configurations for field generation, physical model descriptions, and biological applications. We conclude by sketching the scientific and technological developments that can be expected in the future in the field of rotating magnetic particles for lab-on-chip applications.
Collapse
Affiliation(s)
- C P Moerland
- Department of Applied Physics, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
23
|
Li J, Kaku T, Tokura Y, Matsukawa K, Homma K, Nishimoto T, Hiruta Y, Akimoto AM, Nagase K, Kanazawa H, Shiratori S. Adsorption–Desorption Control of Fibronectin in Real Time at the Liquid/Polymer Interface on a Quartz Crystal Microbalance by Thermoresponsivity. Biomacromolecules 2019; 20:1748-1755. [DOI: 10.1021/acs.biomac.9b00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiatu Li
- Center for Material Design Science, School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Taisei Kaku
- Center for Material Design Science, School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Yuki Tokura
- Center for Material Design Science, School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Ko Matsukawa
- The Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8656, Japan
| | - Kenta Homma
- The Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8656, Japan
| | - Taihei Nishimoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Yuki Hiruta
- Center for Material Design Science, School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Aya Mizutani Akimoto
- The Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-8656, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Seimei Shiratori
- Center for Material Design Science, School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| |
Collapse
|
24
|
Wang H, Liu Z, Shin DM, Chen ZG, Cho Y, Kim YJ, Han A. A continuous-flow acoustofluidic cytometer for single-cell mechanotyping. LAB ON A CHIP 2019; 19:387-393. [PMID: 30648172 DOI: 10.1039/c8lc00711j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The biophysical properties of cells such as their compressibility have been found to be closely related to disease progression such as cancer development and metastasis. As cancer cells are heterogeneous, rapid and high-throughput evaluation of cell biophysical properties at single-cell resolution is needed to assess their potential as biomarkers for cancer staging and prognosis. Acoustofluidics has shown promise as a contactless method for accurately measuring cell biophysical properties; however, previously reported methods had relatively low throughput due to their requirement of no-flow conditions. This work presents a high-throughput continuous flow-based acoustofluidic cell mechanotyping method at single-cell resolution that retains the advantage of simplicity and low-cost.
Collapse
Affiliation(s)
- Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Vahabikashi A, Park CY, Perkumas K, Zhang Z, Deurloo EK, Wu H, Weitz DA, Stamer WD, Goldman RD, Fredberg JJ, Johnson M. Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. Biophys J 2019; 116:518-529. [PMID: 30685055 DOI: 10.1016/j.bpj.2018.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
In development, wound healing, and pathology, cell biomechanical properties are increasingly recognized as being of central importance. To measure these properties, experimental probes of various types have been developed, but how each probe reflects the properties of heterogeneous cell regions has remained obscure. To better understand differences attributable to the probe technology, as well as to define the relative sensitivity of each probe to different cellular structures, here we took a comprehensive approach. We studied two cell types-Schlemm's canal endothelial cells and mouse embryonic fibroblasts (MEFs)-using four different probe technologies: 1) atomic force microscopy (AFM) with sharp tip, 2) AFM with round tip, 3) optical magnetic twisting cytometry (OMTC), and 4) traction microscopy (TM). Perturbation of Schlemm's canal cells with dexamethasone treatment, α-actinin overexpression, or RhoA overexpression caused increases in traction reported by TM and stiffness reported by sharp-tip AFM as compared to corresponding controls. By contrast, under these same experimental conditions, stiffness reported by round-tip AFM and by OMTC indicated little change. Knockout (KO) of vimentin in MEFs caused a diminution of traction reported by TM, as well as stiffness reported by sharp-tip and round-tip AFM. However, stiffness reported by OMTC in vimentin-KO MEFs was greater than in wild type. Finite-element analysis demonstrated that this paradoxical OMTC result in vimentin-KO MEFs could be attributed to reduced cell thickness. Our results also suggest that vimentin contributes not only to intracellular network stiffness but also cortex stiffness. Taken together, this evidence suggests that AFM sharp tip and TM emphasize properties of the actin-rich shell of the cell, whereas round-tip AFM and OMTC emphasize those of the noncortical intracellular network.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kristin Perkumas
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Zhiguo Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emily K Deurloo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Huayin Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts; Department of Physics, Harvard University, Cambridge, Massachusetts
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Mechanical Engineering, Northwestern University, Evanston, Illinois.
| |
Collapse
|
26
|
Abstract
Cell's elasticity is an integrative parameter summarizing the biophysical outcome of many known and unknown cellular processes. This includes intracellular signaling, cytoskeletal activity, changes of cell volume and morphology, and many others. Not only intracellular processes defines a cell's elasticity but also environmental factors like their biochemical and biophysical surrounding. Therefore, cell mechanics represents a comprehensive variable of life. A cell in its standard conditions shows variabilities of biochemical and biophysical processes resulting in a certain range of cell's elasticity. Changes of the standard conditions, endogenously or exogenously induced, are frequently paralleled by changes of cell elasticity. Therefore cell elasticity could serve as parameter to characterize different states of a cell. Atomic force microscopy (AFM) combines high spatial resolution with very high force sensitivity and allows investigating mechanical properties of living cells under physiological conditions. However, elastic moduli reported in the literature showed a large variability, sometimes by an order of magnitude (or even more) for the same cell type assessed in different labs. Clearly, a prerequisite for the use of cell elasticity to describe the actual cell status is a standardized procedure that allows obtaining comparable values of a cell independent from the instrument, from the lab and operator. Biologically derived variations of elasticity could not be reduced due to the nature of living cells but technically and methodologically derived variations could be minimized by a standardized procedure.This chapter provides a Standardized Nanomechanical AFM Procedure (SNAP) that reduces strongly the variability of results obtained on soft samples and living cells by a reliable method to calibrate AFM cantilevers.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Münster, Germany.
| |
Collapse
|
27
|
Myotube elasticity of an amyotrophic lateral sclerosis mouse model. Sci Rep 2018; 8:5917. [PMID: 29650983 PMCID: PMC5897453 DOI: 10.1038/s41598-018-24027-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/14/2018] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the motor system leading to generalized paralysis and death of patients. The understanding of early pathogenic mechanisms will help to define early diagnostics criteria that will eventually provide basis for efficient therapeutics. Early symptoms of ALS usually include muscle weakness or stiffness. Therefore, mechanical response of differentiated myotubes from primary cultures of mice, expressing the ALS-causing SOD1G93A mutation, was examined by atomic force microscopy. Simultaneous acquisition of topography and cell elasticity of ALS myotubes was performed by force mapping method, compared with healthy myotubes and supplemented with immunofluorescence and qRT-PCR studies. Wild type myotubes reveal a significant difference in elasticity between a narrow and a wide population, consistent with maturation occurring with higher actin expression relative to myosin together with larger myotube width. However, this is not true for SOD1G93A expressing myotubes, where a significant shift of thin population towards higher elastic modulus values was observed. We provide evidence that SOD1 mutant induces structural changes that occurs very early in muscle development and well before symptomatic stage of the disease. These findings could significantly contribute to the understanding of the role of skeletal muscle in ALS pathogenesis.
Collapse
|
28
|
Adeniba OO, Corbin EA, Ewoldt RH, Bashir R. Optomechanical microrheology of single adherent cancer cells. APL Bioeng 2018; 2:016108. [PMID: 31069293 PMCID: PMC6481704 DOI: 10.1063/1.5010721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023] Open
Abstract
There is a close relationship between the mechanical properties of cells and their physiological function. Non-invasive measurements of the physical properties of cells, especially of adherent cells, are challenging to perform. Through a non-contact optical interferometric technique, we measure and combine the phase, amplitude, and frequency of vibrating silicon pedestal micromechanical resonant sensors to quantify the "loss tangent" of individual adherent human colon cancer cells (HT-29). The loss tangent, a dimensionless ratio of viscoelastic energy loss and energy storage - a measure of the viscoelasticity of soft materials, obtained through an optical path length model, was found to be 1.88 ± 0.08 for live cells and 4.32 ± 0.13 for fixed cells, revealing significant changes (p < 0.001) in mechanical properties associated with estimated nanoscale cell membrane fluctuations of 3.86 ± 0.2 nm for live cells and 2.87 ± 0.1 nm for fixed cells. By combining these values with the corresponding two-degree-of-freedom Kelvin-Voigt model, we obtain the elastic stiffness and viscous loss associated with each individual cell rather than estimations from a population. The technique is unique as it decouples the heterogeneity of individual cells in our population and further refines the viscoelastic solution space.
Collapse
Affiliation(s)
| | | | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
29
|
Charrier EE, Montel L, Asnacios A, Delort F, Vicart P, Gallet F, Batonnet-Pichon S, Hénon S. The desmin network is a determinant of the cytoplasmic stiffness of myoblasts. Biol Cell 2018; 110:77-90. [PMID: 29388701 DOI: 10.1111/boc.201700040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND INFORMATION The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently. We study here the involvement of desmin, an IF specifically expressed in muscle cells, in the rheology of immature muscle cells. Desmin can carry mutations responsible for a class of muscle pathologies named desminopathies. RESULTS In this study, using three types of cell rheometers, we assess the consequences of expressing wild-type (WT) or mutated desmin on the rheological properties of single myoblasts. We find that the mechanical properties of the cell cortex are not correlated to the quantity, nor the quality of desmin expressed. On the contrary, the overall cell stiffness increases when the amount of WT or mutated desmin polymerised in cytoplasmic networks increases. However, myoblasts become softer when the desmin network is partially depleted by the formation of aggregates induced by the expression of a desmin mutant. CONCLUSIONS We demonstrate that desmin plays a negligible role in the mechanical properties of the cell cortex but is a determinant of the overall cell stiffness. More particularly, desmin participates to the cytoplasm viscoelasticity. SIGNIFICANCE Desminopathies are associated with muscular weaknesses attributed to a disorganisation of the structure of striated muscle that impairs the active force generation. The present study evidences for the first time the key role of desmin in the rheological properties of myoblasts, raising the hypothesis that desmin mutations could also alter the passive mechanical properties of muscles, thus participating to the lack of force build up in muscle tissue.
Collapse
Affiliation(s)
- Elisabeth E Charrier
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France.,Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France.,Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorraine Montel
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France.,Département de Chimie, École Normale Supérieure, PSL Research University, Paris, F-75005, France.,Sorbonne Universités, UPMC, PASTEUR, Paris, F-75005, France.,CNRS, UMR 8640 PASTEUR, Paris, F-75005, France
| | - Atef Asnacios
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| | - Florence Delort
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - Patrick Vicart
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - François Gallet
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| | - Sabrina Batonnet-Pichon
- Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France
| | - Sylvie Hénon
- Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France
| |
Collapse
|
30
|
Kim J, Han S, Lei A, Miyano M, Bloom J, Srivastava V, Stampfer MR, Gartner ZJ, LaBarge MA, Sohn LL. Characterizing cellular mechanical phenotypes with mechano-node-pore sensing. MICROSYSTEMS & NANOENGINEERING 2018; 4:17091. [PMID: 29780657 PMCID: PMC5958920 DOI: 10.1038/micronano.2017.91] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mechanical properties of cells change with their differentiation, chronological age, and malignant progression. Consequently, these properties may be useful label-free biomarkers of various functional or clinically relevant cell states. Here, we demonstrate mechano-node-pore sensing (mechano-NPS), a multi-parametric single-cell-analysis method that utilizes a four-terminal measurement of the current across a microfluidic channel to quantify simultaneously cell diameter, resistance to compressive deformation, transverse deformation under constant strain, and recovery time after deformation. We define a new parameter, the whole-cell deformability index (wCDI), which provides a quantitative mechanical metric of the resistance to compressive deformation that can be used to discriminate among different cell types. The wCDI and the transverse deformation under constant strain show malignant MCF-7 and A549 cell lines are mechanically distinct from non-malignant, MCF-10A and BEAS-2B cell lines, and distinguishes between cells treated or untreated with cytoskeleton-perturbing small molecules. We categorize cell recovery time, ΔTr, as instantaneous (ΔTr ~ 0 ms), transient (ΔTr ≤ 40ms), or prolonged (ΔTr > 40ms), and show that the composition of recovery types, which is a consequence of changes in cytoskeletal organization, correlates with cellular transformation. Through the wCDI and cell-recovery time, mechano-NPS discriminates between sub-lineages of normal primary human mammary epithelial cells with accuracy comparable to flow cytometry, but without antibody labeling. Mechano-NPS identifies mechanical phenotypes that distinguishes lineage, chronological age, and stage of malignant progression in human epithelial cells.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, 94720-1740 CA USA
| | - Sewoon Han
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, 94720-1740 CA USA
| | - Andy Lei
- Department of Bioengineering, University of California at Berkeley, Berkeley, 94720-1762 CA USA
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, 91010 CA USA
| | - Jessica Bloom
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, 91010 CA USA
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 94143 CA USA
| | - Martha R. Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, CA, 94720 USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 94143 CA USA
- Graduate Program in Bioengineering, University of California, Berkeley, and
University of California, San Francisco, Berkeley, 94720 CA USA
| | - Mark A. LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, 91010 CA USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, CA, 94720 USA
| | - Lydia L. Sohn
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, 94720-1740 CA USA
- Graduate Program in Bioengineering, University of California, Berkeley, and
University of California, San Francisco, Berkeley, 94720 CA USA
| |
Collapse
|
31
|
Li X, Li H, Chang HY, Lykotrafitis G, Em Karniadakis G. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. J Biomech Eng 2017; 139:2580906. [PMID: 27814430 DOI: 10.1115/1.4035120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/02/2023]
Abstract
We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269;Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - George Em Karniadakis
- Fellow ASME Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| |
Collapse
|
32
|
Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples. Sci Rep 2017; 7:5117. [PMID: 28698636 PMCID: PMC5505948 DOI: 10.1038/s41598-017-05383-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
We present a procedure that allows a reliable determination of the elastic (Young's) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever's spring constant were the main sources of error. SNAP eliminates those errors by calculating the correct deflection sensitivity based on spring constants determined with a vibrometer. The procedure was validated within a large network of European laboratories by measuring the elastic properties of gels and living cells, showing that its application reduces the variability in elastic moduli of hydrogels down to 1%, and increased the consistency of living cells elasticity measurements by a factor of two. The high reproducibility of elasticity measurements provided by SNAP could improve significantly the applicability of cell mechanics as a quantitative marker to discriminate between cell types and conditions.
Collapse
|
33
|
Bai G, Li Y, Chu HK, Wang K, Tan Q, Xiong J, Sun D. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling. Biomed Eng Online 2017; 16:41. [PMID: 28376803 PMCID: PMC5381122 DOI: 10.1186/s12938-017-0329-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/16/2017] [Indexed: 02/02/2023] Open
Abstract
Background Cytoskeleton is a highly dynamic network that helps to maintain the rigidity of a cell, and the mechanical properties of a cell are closely related to many cellular functions. This paper presents a new method to probe and
characterize cell mechanical properties through dielectrophoresis (DEP)-based cell stretching manipulation and actin cytoskeleton modeling. Methods Leukemia NB4 cells were used as cell line, and changes in their biological properties were examined after chemotherapy treatment with doxorubicin (DOX). DEP-integrated microfluidic chip was utilized as a low-cost and efficient tool to study the deformability of cells. DEP forces used in cell stretching were first evaluated through computer simulation, and the results were compared with modeling equations and with the results of optical stretching (OT) experiments. Structural parameters were then extracted by fitting the experimental data into the actin cytoskeleton model, and the underlying mechanical properties of the cells were subsequently characterized. Results The DEP forces generated under different voltage inputs were calculated and the results from different approaches demonstrate good approximations to the force estimation. Both DEP and OT stretching experiments confirmed that DOX-treated NB4 cells were stiffer than the untreated cells. The structural parameters extracted from the model and the confocal images indicated significant change in actin network after DOX treatment. Conclusion The proposed DEP method combined with actin cytoskeleton modeling is a simple engineering tool to characterize the mechanical properties of cells.
Collapse
Affiliation(s)
- Guohua Bai
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Room 418, Building No. 14, No. 3 Xueyuan Road, Taiyuan, 030051, Shanxi, China
| | - Ying Li
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR of China
| | - Henry K Chu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR of China
| | - Kaiqun Wang
- Department of Biomedical Engineering, College of Mechanics, Taiyuan University of Technology, No. 79, West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Qiulin Tan
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Room 418, Building No. 14, No. 3 Xueyuan Road, Taiyuan, 030051, Shanxi, China
| | - Jijun Xiong
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Room 418, Building No. 14, No. 3 Xueyuan Road, Taiyuan, 030051, Shanxi, China
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR of China.
| |
Collapse
|
34
|
Li H, Xu B, Zhou EH, Sunyer R, Zhang Y. Multiscale Measurements of the Mechanical Properties of Collagen Matrix. ACS Biomater Sci Eng 2017; 3:2815-2824. [DOI: 10.1021/acsbiomaterials.6b00634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Enhua H. Zhou
- Ophthalmology, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia, Baldiri-Reixac 15-21, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | | |
Collapse
|
35
|
|
36
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
37
|
Rianna C, Radmacher M. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:309-324. [DOI: 10.1007/s00249-016-1168-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
38
|
Gefen A, Weihs D. Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations: A review of the mechanobiology of chronic wounds. Med Eng Phys 2016; 38:828-33. [DOI: 10.1016/j.medengphy.2016.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
|
39
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016. [PMID: 27245584 DOI: 10.1088/0034-4885/68/3/r04] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
40
|
Ayala YA, Pontes B, Ether DS, Pires LB, Araujo GR, Frases S, Romão LF, Farina M, Moura-Neto V, Viana NB, Nussenzveig HM. Rheological properties of cells measured by optical tweezers. BMC BIOPHYSICS 2016; 9:5. [PMID: 27340552 PMCID: PMC4917937 DOI: 10.1186/s13628-016-0031-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/10/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The viscoelastic properties of cells have been investigated by a variety of techniques. However, the experimental data reported in literature for viscoelastic moduli differ by up to three orders of magnitude. This has been attributed to differences in techniques and models for cell response as well as to the natural variability of cells. RESULTS In this work we develop and apply a new methodology based on optical tweezers to investigate the rheological behavior of fibroblasts, neurons and astrocytes in the frequency range from 1Hz to 35Hz, determining the storage and loss moduli of their membrane-cortex complex. To avoid distortions associated with cell probing techniques, we use a previously developed method that takes into account the influence of under bead cell thickness and bead immersion. These two parameters were carefully measured for the three cell types used. Employing the soft glass rheology model, we obtain the scaling exponent and the Young's modulus for each cell type. The obtained viscoelastic moduli are in the order of Pa. Among the three cell types, astrocytes have the lowest elastic modulus, while neurons and fibroblasts exhibit a more solid-like behavior. CONCLUSIONS Although some discrepancies with previous results remain and may be inevitable in view of natural variability, the methodology developed in this work allows us to explore the viscoelastic behavior of the membrane-cortex complex of different cell types as well as to compare their viscous and elastic moduli, obtained under identical and well-defined experimental conditions, relating them to the cell functions.
Collapse
Affiliation(s)
- Yareni A Ayala
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Diney S Ether
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - Luis B Pires
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - Glauber R Araujo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Luciana F Romão
- Universidade Federal do Rio de Janeiro - Pólo de Xerém, Duque de Caxias, Rio de Janeiro 25245-390 Brazil
| | - Marcos Farina
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Rio de Janeiro 20231-092 Brazil
| | - Nathan B Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| | - H Moysés Nussenzveig
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902 Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-972 Brazil
| |
Collapse
|
41
|
Guillou L, Babataheri A, Puech PH, Barakat AI, Husson J. Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 2016; 6:21529. [PMID: 26857265 PMCID: PMC4746699 DOI: 10.1038/srep21529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells' actin is depolymerized using cytochalasin-D.
Collapse
Affiliation(s)
- L Guillou
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - A Babataheri
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - P-H Puech
- Aix Marseille University, LAI UM 61, Marseille, F-13288, France.,Inserm, UMR_S 1067, Marseille, F-13288, France.,CNRS, UMR 7333, Marseille, F-13288, France
| | - A I Barakat
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - J Husson
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
42
|
Lownes Urbano R, Morss Clyne A. An inverted dielectrophoretic device for analysis of attached single cell mechanics. LAB ON A CHIP 2016; 16:561-73. [PMID: 26738543 PMCID: PMC4734981 DOI: 10.1039/c5lc01297j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dielectrophoresis (DEP), the force induced on a polarizable body by a non-uniform electric field, has been widely used to manipulate single cells in suspension and analyze their stiffness. However, most cell types do not naturally exist in suspension but instead require attachment to the tissue extracellular matrix in vivo. Cells alter their cytoskeletal structure when they attach to a substrate, which impacts cell stiffness. It is therefore critical to be able to measure mechanical properties of cells attached to a substrate. We present a novel inverted quadrupole dielectrophoretic device capable of measuring changes in the mechanics of single cells attached to a micropatterned polyacrylamide gel. The device is positioned over a cell of defined size, a directed DEP pushing force is applied, and cell centroid displacement is dynamically measured by optical microscopy. Using this device, single endothelial cells showed greater centroid displacement in response to applied DEP pushing force following actin cytoskeleton disruption by cytochalasin D. In addition, transformed mammary epithelial cell (MCF10A-NeuT) showed greater centroid displacement in response to applied DEP pushing force compared to untransformed cells (MCF10A). DEP device measurements were confirmed by showing that the cells with greater centroid displacement also had a lower elastic modulus by atomic force microscopy. The current study demonstrates that an inverted DEP device can determine changes in single attached cell mechanics on varied substrates.
Collapse
Affiliation(s)
- Rebecca Lownes Urbano
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Alisa Morss Clyne
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Sun J, Luo Q, Liu L, Zhang B, Shi Y, Ju Y, Song G. Biomechanical profile of cancer stem-like cells derived from MHCC97H cell lines. J Biomech 2015; 49:45-52. [PMID: 26627368 DOI: 10.1016/j.jbiomech.2015.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/11/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022]
Abstract
Biomechanical properties and cytoskeletal organization of cancer cells are known to be closely related with their aggressive phenotype. In this study, based on atomic force microscopy (AFM), we aimed to evaluate the mechanical property of liver cancer stem-like cells (LCSCs) and compare it with human hepatoma cells (HHCs). LCSCs were enriched from human hepatoma cell line MHCC97H through a sphere culture system. AFM nanoindentation was investigated as a method for measuring the cell stiffness, and reflecting by Young׳s modulus. Microfilament bundles of F-actin were observed with immunofluorescence staining by confocal microscopy. We found that LCSCs show lower Young׳s modulus and higher migration ability compared to MHCC97H cells. Moreover, the decrease in Young׳s modulus is accompanied with a dramatic decline in F-actin content. These results demonstrated a close relationship between the cell Young׳s modulus and metastatic potential of HHCs, which suggest that Young׳s modulus detected by AFM can be used to evaluate metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Jinghui Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People׳s Republic of China.
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People׳s Republic of China.
| | - Lingling Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People׳s Republic of China.
| | - Bingyu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People׳s Republic of China.
| | - Yisong Shi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People׳s Republic of China.
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People׳s Republic of China.
| |
Collapse
|
44
|
Rianna C, Ventre M, Cavalli S, Radmacher M, Netti PA. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21503-21510. [PMID: 26372777 DOI: 10.1021/acsami.5b06693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.
Collapse
Affiliation(s)
- Carmela Rianna
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | | | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen , Otto-Hahn Allee, D-28359 Bremen, Germany
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| |
Collapse
|
45
|
He C, Zeng H, Chen J. Modeling of the Effect of Cell Deformation Associated with Microbubble Collision in Centrifugation Field. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
46
|
Affiliation(s)
- Hu Zhang
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Xiaolin Cui
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Jingxiu Bi
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Sheng Dai
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Haitao Ye
- School of Engineering and Applied Science; Aston University; Birmingham United Kingdom
| |
Collapse
|
47
|
Rigato A, Rico F, Eghiaian F, Piel M, Scheuring S. Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales. ACS NANO 2015; 9:5846-56. [PMID: 26013956 PMCID: PMC5382230 DOI: 10.1021/acsnano.5b00430] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In multicellular organisms, cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous, and unconstrained substrate with nonspecific adhesion sites, thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries (▽, T, and Y), and investigated their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young's moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics.
Collapse
Affiliation(s)
- Annafrancesca Rigato
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
| | - Felix Rico
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
| | - Frédéric Eghiaian
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
| | - Mathieu Piel
- CDC, Compartimentation et dynamique cellulaires
Université Pierre et Marie Curie - Paris 6 - INSTITUT CURIE - Centre National de la Recherche Scientifique - UMR14426 rue d'Ulm 75248 Paris Cedex 05
| | - Simon Scheuring
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
- * Correspondence should be addressed to Simon Scheuring
| |
Collapse
|
48
|
Scott CM, Forster CL, Kokkoli E. Three-Dimensional Cell Entrapment as a Function of the Weight Percent of Peptide-Amphiphile Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6122-9. [PMID: 25970351 PMCID: PMC4632991 DOI: 10.1021/acs.langmuir.5b00196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The design of scaffolds which mimic the stiffness, nanofiber structure, and biochemistry of the native extracellular matrix (ECM) has been a major objective for the tissue engineering field. Furthermore, mimicking the innate three-dimensional (3D) environment of the ECM has been shown to significantly altered cellular response compared to that of traditional two-dimensional (2D) culture. We report the development of a self-assembling, fibronectin-mimetic, peptide-amphiphile nanofiber scaffold for 3D cell culture. To form such a scaffold, 5 mol % of a bioactive PR_g fibronectin-mimetic peptide-amphiphile was mixed with 95 mol % of a diluent peptide-amphiphile (E2) whose purpose was to neutralize electrostatic interactions, increase the gelation kinetics, and promote cell survival. Atomic force microscopy verified the fibrilar structure of the gels, and the mechanical properties were characterized for various weight percent (wt %) formulations of the 5 mol % PR_g-95 mol % E2 peptide-amphiphile mixture. The 0.5 wt % formulations had an elastic modulus of 429.0 ± 21.3 Pa whereas the 1.0 wt % peptide-amphiphile hydrogels had an elastic modulus of 808.6 ± 38.1 Pa. The presence of entrapped cells in the gels decreased the elastic modulus, and the decrease was a function of cell loading. Although both formulations supported cell proliferation, the 0.5 wt % gels supported significantly greater NIH3T3/GFP fibroblast cell proliferation throughout the gels than the 1.0 wt % gels. However, compared to the 0.5 wt % formulations, the 1.0 wt % hydrogels promoted greater increases in mRNA expression and the production of fibronectin and type IV collagen ECM proteins. This study suggests that this fibronectin-mimetic scaffold holds great promise in the advancement of 3D culture applications and cell therapies.
Collapse
Affiliation(s)
- Carolyn M. Scott
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Colleen L. Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, United States
| |
Collapse
|
49
|
Mathai JC, Zhou EH, Yu W, Kim JH, Zhou G, Liao Y, Sun TT, Fredberg JJ, Zeidel ML. Hypercompliant apical membranes of bladder umbrella cells. Biophys J 2015; 107:1273-9. [PMID: 25229135 DOI: 10.1016/j.bpj.2014.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022] Open
Abstract
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.
Collapse
Affiliation(s)
- John C Mathai
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Enhua H Zhou
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jae Hun Kim
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Ge Zhou
- Department of Cell Biology, New York University, New York, New York
| | - Yi Liao
- Department of Cell Biology, New York University, New York, New York
| | - Tung-Tien Sun
- Department of Cell Biology, New York University, New York, New York
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|