1
|
Friis SJ, Hansen TS, Olesen C, Poulsen M, Gregersen H, Vinge Nygaard J. Experimental and numerical study of solid needle insertions into human stomach tissue. J Mech Behav Biomed Mater 2025; 162:106832. [PMID: 39591721 DOI: 10.1016/j.jmbbm.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE Oral drug delivery is the Holy Grail in the field of drug delivery. However, poor bioavailability limits the oral intake of macromolecular drugs. Oral devices may overcome this limitation, but a knowledge gap exists on the device-tissue interaction. This study focuses on needle insertion into the human stomach experimentally and numerically. This will guide early stages of device development. METHODS Needle insertions were done into excised human gastric tissue with sharp and blunt needles at velocities of 0.0001 and 0.1 m/s. Parameters for constitutive models were determined from tensile visco-hyperelastic biomechanical tests. The computational setup modeled four different needle shape indentations at five velocities from 0.0001 to 5 m/s. RESULTS From experiments, peak forces at 0.1 and 0.0001 m/s were 0.995 ± 0.296 N and 1.281 ± 0.670 N (blunt needle) and 0.325 ± 0.235 N and 0.362 ± 0.119 N (sharp needle). The needle geometry significantly influenced peak forces (p < 0.05). A Yeoh-Prony series combination was fitted to the tensile visco-hyperelastic biomechanical data and used for the numerical model with excellent fit (R2 = 0.973). Both needle geometry and insertion velocity influenced the stress contour and displacement magnitudes as well as energy curves. CONCLUSION This study contributes to a better understanding of needle insertion into the stomach wall. The numerical model demonstrated agreement with experimental data providing a good approach to early device iterations. Findings in this study showed that insertion velocity and needle shape affect tissue mechanical outcomes.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Camilla Olesen
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark
| | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, United States
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Majdak M, Bogović S, Somogyi Škoc M, Rezić Meštrović I. Assessment of the Mechanical Properties and Fragment Characteristics of a 3D-Printed Forearm Orthosis. Polymers (Basel) 2024; 16:3349. [PMID: 39684093 DOI: 10.3390/polym16233349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Distal radius fractures (DRF) are one of the most prevalent injuries a person may sustain. The current treatment of DRF involves the use of casts made from Plaster of Paris or fiberglass. The application of these materials is a serious endeavor that influences their intended use, and should be conducted by specially trained personnel. In this research, with the use of the full-body 3D scanner Vitus Smart, 3D modelling software Rhinoceros 3D, and 3D printer Creality CR-10 max, an easy, yet effective workflow of orthosis fabrication was developed. Furthermore, samples that represent segments of the orthosis were subjected to static loading. Lastly, fragments that occurred due to excessive force were characterized with the use of a digital microscope. It was observed that with the implementation of the designed workflow, a faster 3D printing process was present. Samples subjected to mechanical loading had values that exceeded those of conventional Plaster of Paris; the minimum recorded value was 681 N, while the highest was 914 N. Microscopic characterization enabled a clear insight into the occurrence of fragments, as well as their potential risk. Therefore, in this research, an insight into different stages of fabrication, characterization of undesirable events, as well as the risks they may pose were presented.
Collapse
Affiliation(s)
- Mislav Majdak
- Department of Applied Chemistry, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia
| | - Slavica Bogović
- Department of Clothing Technology, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia
| | - Maja Somogyi Škoc
- Department of Materials, Fibres and Textile Testing, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia
| | - Iva Rezić Meštrović
- Department of Applied Chemistry, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Mohammadi H, Ebrahimian A, Maftoon N. Experimental Study of Needle Insertion into Gerbil Tympanic Membrane. J Assoc Res Otolaryngol 2024; 25:427-450. [PMID: 38992318 PMCID: PMC11639447 DOI: 10.1007/s10162-024-00953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The perforation characteristics and fracture-related mechanical properties of the tympanic membrane (TM) greatly affect surgical procedures like myringotomy and tympanostomy performed on the middle ear. We analyzed the most important features of the gerbil TM perforation using an experimental approach that was based on force measurement during a 2-cycle needle insertion/extraction process. Fracture energy, friction energy, strain energy, and hysteresis loss were taken into consideration for the analysis of the different stages of needle insertion and extraction. The results demonstrated that (1) although the TM shows viscoelastic behavior, the contribution of hysteresis loss was negligible compared to other irreversible dissipated energy components (i.e., fracture energy and friction energy). (2) The TM puncture force did not substantially change during the first hours after animal death, but interestingly, it increased after 1 week due to the drying effects of soft tissue. (3) The needle geometry affected the crack length and the most important features of the force-displacement plot for the needle insertion process (puncture force, puncture displacement, and jump-in force) increased with increasing needle diameter, whereas the insertion velocity only changed the puncture and jump-in forces (both increased with increasing insertion velocity) and did not have a noticeable effect on the puncture displacement. (4) The fracture toughness of the gerbil TM was almost independent of the needle geometry and was found to be around 0.33 ± 0.10 kJ/m2.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Arash Ebrahimian
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Nima Maftoon
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
4
|
Zhang B, Baskota B, Anderson PSL. Being thin-skinned can still reduce damage from dynamic puncture. J R Soc Interface 2024; 21:20240311. [PMID: 39439314 PMCID: PMC11496953 DOI: 10.1098/rsif.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
The integumentary system in animals serves as an important line of defence against physiological and mechanical external forces. Over time, integuments have evolved layered structures (scales, cuticle and skin) with high toughness and strength to resist damage and prevent wound expansion. While previous studies have examined their defensive performance under low-rate conditions, the failure response and damage resistance of these thin layers under dynamic biological puncture remain underexplored. Here, we utilize a novel experimental framework to investigate the mechanics of dynamic puncture in both bilayer structures of synthetic tissue-mimicking composite materials and natural skin tissues. Our findings reveal the remarkable efficiency of a thin outer skin layer in reducing the overall extent of dynamic puncture damage. This enhanced damage resistance is governed by interlayer properties through puncture energetics and diminishes in strength at higher puncture rates due to rate-dependent effects in silicone tissue simulants. In addition, natural skin tissues exhibit unique material properties and failure behaviours, leading to superior damage reduction capability compared with synthetic counterparts. These findings contribute to a deeper understanding of the inherent biomechanical complexity of biological puncture systems with layered composite material structures. They lay the groundwork for future comparative studies and bio-inspired applications.
Collapse
Affiliation(s)
- Bingyang Zhang
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| | - Bishal Baskota
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| | - Philip S. L. Anderson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| |
Collapse
|
5
|
LeSueur J, Koser J, Hampton C, Kleinberger M, Pintar FA. Penetration Thresholds of Porcine Limbs for Low Sectional Density Projectiles in High-Rate Impact. Mil Med 2024; 189:517-524. [PMID: 39160835 DOI: 10.1093/milmed/usae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION With similar prevalence to injuries from fires, stings, and natural disasters, soft tissue injuries may occur from fireworks, industrial accidents, or other explosives. Surgeons are less familiar with treating high-velocity penetration from small debris, which may increase the chance of infection and subsequent fatality. Penetration risk curves have been developed to predict V50, the velocity with 50% probability of penetration, for various sized projectiles. However, there has been limited research using nonmetallic materials to achieve lower density projectiles less than 1 g cm-2, such as sand or rocks. MATERIAL AND METHODS To emulate the size and density of these energized particles, 14 ball bearings of stainless steel, silicon nitride, or Delrin acetal plastic ranging from 1.59 mm (1/16") to 9.53 mm (3/8") with sectional densities between 0.3 g cm-2 and 5 g cm-2 were launched toward porcine legs at a range of velocities to determine the penetration thresholds. High-speed videography was captured laterally at 40 kHz and impact velocity was captured using a physics-based tracking software. A generalized linear model with repeated measures and a logit link function was used to predict probability of penetration for each projectile. A total of 600 impacts were conducted to achieve at least 15 penetrating impacts for each projectile over a range of velocities. RESULTS Higher impact velocities were required to penetrate the skin as sectional density of the projectile decreased, and the relationship between velocity and sectional density exhibited an exponential relationship (V50, $ = 184.6*S{D^{ - 0.385}}$, R2 = 0.95) with substantial change for nonlinearity in sectional densities ranging from 0.3 g cm-2 to 1 g cm-2. Compared to previous studies, the empirical relationship was consistent in the linear region (2-5 g cm-2), and novel experimentation filled in the gaps for sectional densities less than 1 g cm-2, which expressed more nonlinearity than previously estimated. For low-density projectiles with diameters of 1.59 (1/16") or 3.18 (1/8"), 32 impacts were lodged into the epidermis but did not penetrate through the dermis; however, penetration was defined as displacement into or through the dermis. CONCLUSIONS These experimental results may be used to develop and validate finite element simulations of low-density projectile impacts to address complex, multivariate loading conditions for the development of protective clothing to reduce wounding and subsequent infection rates.
Collapse
Affiliation(s)
- Joseph LeSueur
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53223, USA
| | - Jared Koser
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | - Frank A Pintar
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53223, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
LeSueur J, Hampton C, Kleinberger M, Dzwierzynski W, Pintar FA. In vitro skin puncture methodology for material characterization. Med Eng Phys 2024; 130:104199. [PMID: 39160027 DOI: 10.1016/j.medengphy.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
Quantifying the mechanical behavior of skin has been foundational in applications of cosmetics, surgical techniques, forensic science, and protective clothing development. However, previous puncture studies have lacked consistent and physiological boundary conditions of skin. To determine natural skin tension, excision of in situ porcine skin resulted in significantly different diameter reduction (shrinkage) in leg (19.5 %) and abdominal skin (38.4 %) compared to flank skin (28.5 %) (p = 0.047). To examine effects of initial tension and pre-conditioning, five conditions of initial tension (as percentage of diameter increase) and pre-conditioning were tested in quasistatic puncture with a 5 mm spherical impactor using an electrohydraulic load frame and custom clamping apparatus. Samples with less than 5 % initial tension resulted in significantly greater (p = 0.011) force at failure (279.2 N) compared to samples with greater than 25 % initial tension (195.1 N). Eight pre-conditioning cycles of 15 mm displacement reduced hysteresis by 45 %. The coefficient of variance was substantially reduced for force, force normalized by cutis thickness, displacement, stiffness, and strain energy up to 46 %. Pre-conditioned samples at physiological initial tension (14-25 %) resulted in significantly greater (p = 0.03) normalized forces at failure (278.3 N/mm) compared to non-conditioned samples of the same initial tension (234.4 N/mm). Pre-conditioned samples with 14-25 % initial tension, representing physiological boundary conditions, resulted in the most appropriate failure thresholds with the least variation. For in vitro puncture studies, the magnitude of applied initial tension should be defined based on anatomical location, through a shrinkage experimentation, to match natural tension of skin. Characterizing the biological behavior and tolerances of skin may be utilized in finite element models to aid in protective clothing development and forensic science analyses.
Collapse
Affiliation(s)
- Joseph LeSueur
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, WI, USA; Neroscience Research Labs, Zablocki Veterans Affairs Medical Center, WI, USA
| | - Carolyn Hampton
- US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, USA
| | | | - William Dzwierzynski
- Department of Surgery, Division of Plastic Surgery, Medical College of Wisconsin, WI, USA
| | - Frank A Pintar
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, WI, USA; Neroscience Research Labs, Zablocki Veterans Affairs Medical Center, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, WI, USA.
| |
Collapse
|
7
|
Arnbjerg-Nielsen SF, Biviano MD, Jensen KH. Competition between slicing and buckling underlies the erratic nature of paper cuts. Phys Rev E 2024; 110:025003. [PMID: 39294970 DOI: 10.1103/physreve.110.025003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 09/21/2024]
Abstract
By enabling the dissemination and storage of information, paper has been central to human culture for more than a millennium. Its use is, however, associated with a common injury: the paper cut. Surprisingly, the physics underpinning a flexible sheet of paper slicing into soft tissues remains unresolved. In particular, the unpredictable occurrence of paper cuts, often restricted to a limited thickness range, has not been explained. Here we visualize and quantify the motion, deformation, and stresses during paper cuts, uncovering a remarkably complex relationship between cutting, geometry, and material properties. A model based on the hypothesis that a competition between slicing and buckling controls the probability of initiating a paper cut is developed and successfully validated. This explains why paper with a specific thickness is most hazardous (65µm, corresponding, e.g., to dot matrix paper) and suggests a probabilistic interpretation of irregular occurrence of paper cuts. Stimulated by these findings, we finally show how a recyclable cutting tool can harness the surprising power of paper.
Collapse
|
8
|
Shrestha P, Geffner C, Jaffey M, Wu Z, Iapichino M, Bacca M, Stoeber B. Force decomposition and toughness estimation from puncture experiments in soft solids. SOFT MATTER 2024; 20:5377-5388. [PMID: 38932556 DOI: 10.1039/d4sm00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Several medical applications, like drug delivery and biosensing, are critically preceded by the insertion of needles and microneedles into biological tissue. However, the mechanical process of needle insertions, especially at high velocities, is currently not fully understood. Here, we explore the insertion of hollow needles into transparent silicone samples with an insertion velocity v ranging from 0.1 mm s-1 to 2.3 m s-1 (with needle radius R = 101.5 μm, thus strain rates ∼v/R ranging from 1 s-1 to 2.3 × 104 s-1). We use a double-insertion method, where the needle is inserted and re-inserted at the same location, to estimate the fracture properties of the material. The deflection of the specimen's free surface is found to be different between insertion and re-insertion experiments for identical needle positions, which is associated with different force magnitudes between insertion/reinsertion. This aspect was previously neglected in the original double-insertion method, thus here we develop a method based on imaging, image analyses and force measurements to decompose the measured force into individual force components, including deflection force Fd, frictional and spreading force Ff + Fs, and cutting force Ft. We estimate that the toughness Γ of our silicone samples, calculated using the cutting force Ft and the crack dimensions, increases with needle velocity, and ranges within observed values in previous literature for the same material and for some soft biological materials. In addition to toughness Γ, other parameters, such as critical force Fc and mechanical work Wc, also show strain-rate dependence, suggesting tissue stiffening, due to accumulated strain energy, at high speeds.
Collapse
Affiliation(s)
- Pranav Shrestha
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Curtis Geffner
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Matthew Jaffey
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Zhongnan Wu
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Martina Iapichino
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Mattia Bacca
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Boris Stoeber
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
- Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
9
|
Fischer VKS, Rothschild MA, Kneubuehl BP, Kamphausen T. Skin simulants for wound ballistic investigation - an experimental study. Int J Legal Med 2024; 138:1357-1368. [PMID: 38570340 PMCID: PMC11164785 DOI: 10.1007/s00414-024-03223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Gunshot wound analysis is an important part of medicolegal practice, in both autopsies and examinations of living persons. Well-established and studied simulants exist that exhibit both physical and biomechanical properties of soft-tissues and bones. Current research literature on ballistic wounds focuses on the biomechanical properties of skin simulants. In our extensive experimental study, we tested numerous synthetic and natural materials, regarding their macromorphological bullet impact characteristics, and compared these data with those from real bullet injuries gathered from medicolegal practice. Over thirty varieties of potential skin simulants were shot perpendicularly, and at 45°, at a distance of 10 m and 0.3 m, using full metal jacket (FMJ) projectiles (9 × 19 mm Luger). Simulants included ballistic gelatine at various concentrations, dental silicones with several degrees of hardness, alginates, latex, chamois leather, suture trainers for medical training purposes and various material compound models. In addition to complying to the general requirements for a synthetic simulant, results obtained from dental silicones shore hardness 70 (backed with 20 % by mass gelatine), were especially highly comparable to gunshot entry wounds in skin from real cases. Based on these results, particularly focusing on the macroscopically detectable criteria, we can strongly recommend dental silicone shore hardness 70 as a skin simulant for wound ballistics examinations.
Collapse
Affiliation(s)
- Victoria K S Fischer
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Melatenguertel 60/62, 50823, Cologne, Germany.
| | - Markus A Rothschild
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Melatenguertel 60/62, 50823, Cologne, Germany
| | | | - Thomas Kamphausen
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Melatenguertel 60/62, 50823, Cologne, Germany
| |
Collapse
|
10
|
Kho ASK, Béguin S, O'Cearbhaill ED, Ní Annaidh A. Mechanical characterisation of commercial artificial skin models. J Mech Behav Biomed Mater 2023; 147:106090. [PMID: 37717289 DOI: 10.1016/j.jmbbm.2023.106090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
Understanding of the mechanical properties of skin is crucial in evaluating the performance of skin-interfacing medical devices. Artificial skin models (ASMs) have rapidly gained attention as they are able to overcome the challenges in ethically sourcing consistent and representative ex vivo animal or human tissue models. Although some ASMs have become commercialised, a thorough understanding of the mechanical properties of the skin models is crucial to ensure that they are suitable for the purpose of the study. In the present study, skin and fat layers of ASMs (Simulab®, LifeLike®, SynDaver® and Parafilm®) were mechanically characterised through hardness, needle insertion, tensile and compression testing. Different boundary constraint conditions (minimally and highly constrained) were investigated for needle insertion testing, while anisotropic properties of the skin models were investigated through different specimen orientations during tensile testing. Analysis of variance (ANOVA) tests were performed to compare the mechanical properties between the skin models. Properties of the skin models were compared against literature to determine the suitability of the skin models based on the material property of interest. All skin models offer relatively consistent mechanical performance, providing a solid basis for benchtop evaluation of skin-interfacing medical device performance. Through prioritising models with mechanical properties that are consistent with human skin data, and with limited variance, researchers can use the data presented here as a toolbox to select the most appropriate ASM for their particular application.
Collapse
Affiliation(s)
- Antony S K Kho
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; BD Research Centre Ireland Ltd, Carysfort Avenue, Blackrock, Ireland
| | - Steve Béguin
- BD Research Centre Ireland Ltd, Carysfort Avenue, Blackrock, Ireland
| | - Eoin D O'Cearbhaill
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aisling Ní Annaidh
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland.
| |
Collapse
|
11
|
Nadda R, Repaka R, Sahani AK. Honeybee stinger-based biopsy needle and influence of the barbs on needle forces during insertion/extraction into the iliac crest: A multilayer finite element approach. Comput Biol Med 2023; 162:107125. [PMID: 37290393 DOI: 10.1016/j.compbiomed.2023.107125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Bone marrow biopsy (BMB) needles are frequently used in medical procedures, including extracting biological tissue to identify specific lesions or abnormalities discovered during a medical examination or a radiological scan. The forces applied by the needle during the cutting operation significantly impact the sample quality. Excessive needle insertion force and possible deflection might cause tissue damage, compromising the integrity of the biopsy specimen. The present study aims at proposing a revolutionary bioinspired needle design that will be utilized during the BMB procedure. A non-linear finite element method (FEM) has been used to analyze the insertion/extraction mechanisms of the honeybee-inspired biopsy needle with barbs into/from the human skin-bone domain (i.e., iliac crest model). It can be seen from the results of the FEM analysis that stresses are concentrated around the bioinspired biopsy needle tip and barbs during the needle insertion process. Also, these needles reduce the insertion force and reduce the tip deflection. The insertion force in the current study has been reduced by 8.6% for bone tissue and 22.66% for skin tissue layers. Similarly, the extraction force has been reduced by an average of 57.54%. Additionally, it has been observed that the needle-tip deflection got reduced from 10.44 mm for a plain bevel needle to 6.3 mm for a barbed biopsy bevel needle. According to the research findings, the proposed bioinspired barbed biopsy needle design could be utilized to create and produce novel biopsy needles for successful and minimally invasive piercing operations.
Collapse
Affiliation(s)
- Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India; Department of Mechanical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Ashish Kumar Sahani
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| |
Collapse
|
12
|
Sang M, Cho M, Lim S, Min IS, Han Y, Lee C, Shin J, Yoon K, Yeo WH, Lee T, Won SM, Jung Y, Heo YJ, Yu KJ. Fluorescent-based biodegradable microneedle sensor array for tether-free continuous glucose monitoring with smartphone application. SCIENCE ADVANCES 2023; 9:eadh1765. [PMID: 37256939 PMCID: PMC10413647 DOI: 10.1126/sciadv.adh1765] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Continuous glucose monitoring (CGM) allows patients with diabetes to manage critical disease effectively and autonomously and prevent exacerbation. A painless, wireless, compact, and minimally invasive device that can provide CGM is essential for monitoring the health conditions of freely moving patients with diabetes. Here, we propose a glucose-responsive fluorescence-based highly sensitive biodegradable microneedle CGM system. These ultrathin and ultralight microneedle sensor arrays continuously and precisely monitored glucose concentration in the interstitial fluid with minimally invasive, pain-free, wound-free, and skin inflammation-free outcomes at various locations and thicknesses of the skin. Bioresorbability in the body without a need for device removal after use was a key characteristic of the microneedle glucose sensor. We demonstrated the potential long-term use of the bioresorbable device by applying the tether-free CGM system, thus confirming the successful detection of glucose levels based on changes in fluorescence intensity. In addition, this microneedle glucose sensor with a user-friendly designed home diagnosis system using mobile applications and portable accessories offers an advance in CGM and its applicability to other bioresorbable, wearable, and implantable monitoring device technology.
Collapse
Affiliation(s)
- Mingyu Sang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Myeongki Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Selin Lim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - In Sik Min
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yuna Han
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Chanwoo Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jongwoon Shin
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kukro Yoon
- NanoBio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Republic of Korea
| | - Woon-Hong Yeo
- Bio-Interfaced Translational Nanoengineering Group, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taeyoon Lee
- NanoBio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Republic of Korea
| | - Sang Min Won
- Flexible Electronic System Research Group, Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Youngmee Jung
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Montanari M, Brighenti R, Terzano M, Spagnoli A. Puncturing of soft tissues: experimental and fracture mechanics-based study. SOFT MATTER 2023; 19:3629-3639. [PMID: 37161966 DOI: 10.1039/d3sm00011g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The integrity of soft materials against puncturing is of great relevance for their performance because of the high sensitivity to local rupture caused by rigid sharp objects. In this work, the mechanics of puncturing is studied with respect to a sharp-tipped rigid needle with a circular cross section, penetrating a soft target solid. The failure mode associated with puncturing is identified as a mode-I crack propagation, which is analytically described by a two-dimensional model of the target solid, taking place in a plane normal to the penetration axis. It is shown that the force required for the onset of needle penetration is dependent on two energy contributions, that are, the strain energy stored in the target solid and the energy consumed in crack propagation. More specifically, the force is found to be dependent on the fracture toughness of the material, its stiffness and the sharpness of the penetrating tool. The reference case within the framework of small strain elasticity is first investigated, leading to closed-form toughness parameters related to classical linear elastic fracture mechanics. Then, nonlinear finite element analyses for an Ogden hyperelastic material are presented. Supporting the proposed theoretical framework, a series of puncturing experiments on two commercial silicones is presented. The combined experimental-theoretical findings suggest a simple, yet reliable tool to easily handle and assess safety against puncturing of soft materials.
Collapse
Affiliation(s)
- Matteo Montanari
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy.
| | - Roberto Brighenti
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy.
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria
| | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy.
| |
Collapse
|
14
|
Hannay V, Rahul FNU, Josyula K, Kruger U, Gallagher S, Lee S, Ye H, Makled B, Parsey C, Norfleet J, De S. Synthetic tissues lack the fidelity for the use in burn care simulators. Sci Rep 2022; 12:21398. [PMID: 36496535 PMCID: PMC9741590 DOI: 10.1038/s41598-022-25234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
This work compares the mechanical response of synthetic tissues used in burn care simulators from ten different manufacturers with that of ex vivo full thickness burned porcine skin as a surrogate for human skin tissues. This is of high practical importance since incorrect mechanical properties of synthetic tissues may introduce a negative bias during training due to the inaccurate haptic feedback from burn care simulator. A negative training may result in inadequately performed procedures, such as in escharotomy, which may lead to muscle necrosis endangering life and limb. Accurate haptic feedback in physical simulators is necessary to improve the practical training of non-expert providers for pre-deployment/pre-hospital burn care. With the U.S. Army's emerging doctrine of prolonged field care, non-expert providers must be trained to perform even invasive burn care surgical procedures when indicated. The comparison reported in this article is based on the ultimate tensile stress, ultimate tensile strain, and toughness that are measured at strain rates relevant to skin surgery. A multivariate analysis using logistic regression reveals significant differences in the mechanical properties of the synthetic and the porcine skin tissues. The synthetic and porcine skin tissues show a similar rate dependent behavior. The findings of this study are expected to guide the development of high-fidelity burn care simulators for the pre-deployment/pre-hospital burn care provider education.
Collapse
Affiliation(s)
- Vanessa Hannay
- grid.33647.350000 0001 2160 9198Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY USA
| | - F. N. U. Rahul
- grid.33647.350000 0001 2160 9198Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY USA
| | - Kartik Josyula
- grid.33647.350000 0001 2160 9198Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY USA
| | - Uwe Kruger
- grid.33647.350000 0001 2160 9198Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY USA
| | - Samara Gallagher
- grid.33647.350000 0001 2160 9198Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY USA
| | - Sangrock Lee
- grid.33647.350000 0001 2160 9198Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY USA ,grid.33647.350000 0001 2160 9198Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY USA
| | - Hanglin Ye
- grid.33647.350000 0001 2160 9198Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY USA ,grid.33647.350000 0001 2160 9198Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY USA
| | - Basiel Makled
- U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL USA
| | - Conner Parsey
- U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL USA
| | - Jack Norfleet
- U.S. Army Futures Command, Combat Capabilities Development Command Soldier Center STTC, Orlando, FL USA
| | - Suvranu De
- grid.33647.350000 0001 2160 9198Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY USA
| |
Collapse
|
15
|
Chawla D, Eriten M, Henak CR. Effect of osmolarity and displacement rate on cartilage microfracture clusters failure into two regimes. J Mech Behav Biomed Mater 2022; 136:105467. [PMID: 36198233 DOI: 10.1016/j.jmbbm.2022.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Articular cartilage is a poroviscoelastic (PVE) material with remarkable resistance to fracture and fatigue failure. Cartilage failure mechanisms and material properties that govern failure are incompletely understood. Because cartilage is partially comprised of negatively charged glycosaminoglycans, altering solvent osmolarity can influence PVE relaxations. Therefore, this study aims to use osmolarity as a tool to provide additional data to interpret the role of PVE relaxations and identify cartilage failure regimes. Cartilage fracture was induced using a 100 μm radius spheroconical indenter at controlled displacement rates under three different osmolarity solvents. Secondarily, contact pressure (CP) and strain energy density (SED) were estimated to cluster data into two failure regimes with an expectation maximization algorithm. Critical displacement, critical load, critical time, and critical work to fracture increased with increasing osmolarity at a slow displacement rate whereas no significant effect was observed at a fast displacement rate. Clustering provided two distinct failure regimes, with regime (I) at lower normalized thickness (contact radius divided by sample thickness), and regime (II) at higher normalized thickness. Varied CP and SED in regime (I) suggest that failure in the regime is strain-governed. Constant CP and SED in regime (II) suggests that failure in the regime is dominantly governed by stress. These regimes can be interpreted as ductile versus brittle, or using a pressurized fragmentation interpretation. These findings demonstrated fundamental failure properties and postulate failure regimes for articular cartilage.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 University Ave., Madison, WI, 53706, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
16
|
Zhang B, Anderson PSL. Modelling biological puncture: a mathematical framework for determining the energetics and scaling. J R Soc Interface 2022; 19:20220559. [PMID: 36259171 PMCID: PMC9579757 DOI: 10.1098/rsif.2022.0559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Biological puncture systems use a diversity of morphological tools (stingers, teeth, spines etc.) to penetrate target tissues for a variety of functions (prey capture, defence, reproduction). These systems are united by a set of underlying physical rules which dictate their mechanics. While previous studies have illustrated form-function relationships in individual systems, these underlying rules have not been formalized. We present a mathematical model for biological puncture events based on energy balance that allows for the derivation of analytical scaling relations between energy expenditure and shape, size and material response. The model identifies three necessary energy contributions during puncture: fracture creation, elastic deformation of the material and overcoming friction during penetration. The theoretical predictions are verified using finite-element analyses and experimental tests. Comparison between different scaling relationships leads to a ratio of released fracture energy and deformation energy contributions acting as a measure of puncture efficiency for a system that incorporates both tool shape and material response. The model represents a framework for exploring the diversity of biological puncture systems in a rigorous fashion and allows future work to examine how fundamental physical laws influence the evolution of these systems.
Collapse
Affiliation(s)
- Bingyang Zhang
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip S. L. Anderson
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Fregonese S, Bacca M. How friction and adhesion affect the mechanics of deep penetration in soft solids. SOFT MATTER 2022; 18:6882-6887. [PMID: 36043847 DOI: 10.1039/d2sm00638c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanics of puncture and soft solid penetration is commonly explored with the assumption of frictionless contact between the needle (penetrator) and the specimen. This leads to the hypothesis of a constant penetration force. Experimental observations, however, report a linear increment of penetration force with needle tip depth. This force increment is due to friction and adhesion, and this paper provides its correlation with the properties of the cut material. Specifically, the force-depth slope depends on the rigidity and toughness of the soft material, the radius of the penetrator and the interfacial properties (friction and adhesion) between the two. We observe that adhesion prevails at relatively low toughness, while friction is dominant at high toughness. Finally, we compare our results with experiments and observe good agreement. Our model provides a valuable tool to predict the evolution of penetration force with depth and to measure the friction and adhesion characteristics at the needle-specimen interface from puncture experiments.
Collapse
Affiliation(s)
- Stefano Fregonese
- Mechanical Engineering Department, Institute of Applied Mathematics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Mattia Bacca
- Mechanical Engineering Department, Institute of Applied Mathematics, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
18
|
Barua R, Datta S, RoyChowdhury A, Datta P. Study of the surgical needle and biological soft tissue interaction phenomenon during insertion process for medical application: A Survey. Proc Inst Mech Eng H 2022; 236:1465-1477. [DOI: 10.1177/09544119221122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The insertion of the surgical needle in soft tissue has involved significant interest in the current time because of its purpose in minimally invasive surgery (MIS) and percutaneous events like biopsies, PCNL, and brachytherapy. This study represents a review of the existing condition of investigation on insertion of a surgical needle in biological living soft tissue material. As observes the issue from numerous phases, like, analysis of the cutting forces modeling (insertion), tissue material deformation, analysis of the needle deflection for the period of the needle insertion, and the robot-controlled insertion procedures. All analysis confirms that the total needle insertion force is the total of dissimilar forces spread sideways the shaft of the insertion needle for example cutting force, stiffness force, and frictional force. Various investigations have analyzed all these kinds of forces during the needle insertion process. The force data in several measures are applied for recognizing the biological tissue materials as the needle is penetrated or for path planning. The deflection of the needle during insertion and tissue material deformation is the main trouble for defined needle placing and efforts have been prepared to model them. Applying existing models numerous insertion methods are established that are discussed in this review.
Collapse
Affiliation(s)
- Ranjit Barua
- Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Sudipto Datta
- Indian Institute of Technology, Delhi, New Delhi, Delhi, India
| | - Amit RoyChowdhury
- Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Pallab Datta
- National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Xue Q, He Y, Zhang X, Zhang X, Cai M, Guo CF, Yang C. Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33797-33805. [PMID: 35819313 DOI: 10.1021/acsami.2c07133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many biological hydrogels are mechanically robust to bear quasi-static and impact loads. In contrast, the mechanical properties of synthetic hydrogels against impact loads remain substantially unexplored, albeit their mechanical robustness under quasi-static loads has been extensively developed. Here, we report on the design and synthesis of strong, tough, and impact-resistant hydrogel composites by reinforcing Ca-alginate/polyacrylamide hydrogels with glass fabrics and conferring strong interfaces between the hydrogel matrix and the fibers. The fabric enables high elastic modulus, the hydrogel matrix enables large dissipation, and the strong interfaces enable efficient load transfer for synergistic strengthening and toughening, which is manifested by digital image correlation analyses. Under quasi-static loads, the hydrogel composite exhibits an elastic modulus of 35 MPa and a toughness of 206.7 kJ/m2. Under impact loads, a piece of 7.7 g sample bears the impact of energy of 7.4 J and resists more than 100 cycles of consecutive impact of 600 mJ. As a proof-of-concept, a hydrogel composite as a safeguard to protect fragile glasses from impact is demonstrated. Because impact phenomena are universal, it is expected that the study on the impact of hydrogels will draw increasing attention.
Collapse
Affiliation(s)
- Qiqi Xue
- Shenzhen Key Laboratory of Soft Mechanics and Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Yunfeng He
- Shenzhen Key Laboratory of Soft Mechanics and Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoyu Zhang
- Structural Dynamic and Impact Lab, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Xin Zhang
- Structural Dynamic and Impact Lab, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Minkun Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Canhui Yang
- Shenzhen Key Laboratory of Soft Mechanics and Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
20
|
Anderson PSL, Kawano SM. Different traits at different rates: The effects of dynamic strain rate on structural traits in biology. Integr Comp Biol 2022; 62:icac066. [PMID: 35640914 DOI: 10.1093/icb/icac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phenotypic diversity is influenced by physical laws that govern how an organism's morphology relates to functional performance. To study comparative organismal biology, we need to quantify this diversity using biological traits (definable aspects of the morphology, behavior, and/or life history of an organism). Traits are often assumed to be immutable properties that need only be measured a single time in each adult. However, organisms often experience changes in their biotic and abiotic environments that can alter trait function. In particular, structural traits represent the physical capabilities of an organism and may be heavily influenced by the rate at which they are exposed to physical demands ('loads'). For instance, materials tend to become more brittle when loaded at faster rates which could negatively affect structures trying to resist those loads (e.g., brittle materials are more likely to fracture). In the following perspective piece, we address the dynamic properties of structural traits and present case studies that demonstrate how dynamic strain rates affect the function of these traits in diverse groups of organisms. First, we review how strain rate affects deformation and fracture in biomaterials and demonstrate how these effects alter puncture mechanics in systems such as snake strikes. Second, we discuss how different rates of bone loading affect the locomotor biomechanics of vertebrates and their ecology. Through these examinations of diverse taxa and ecological functions, we aim to highlight how rate-dependent properties of structural traits can generate dynamic form-function relationships in response to changing environmental conditions. Findings from these studies serve as a foundation to develop more nuanced ecomechanical models that can predict how complex traits emerge and, thereby, advance progress on outlining the Rules of Life.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Evolution, Ecology, and Behavior; University of Illinois Urbana-Champaign, Champaign, IL 61820, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
21
|
Hankare P, Agrawala A, Menezes V. High-Speed Jet Injector for Pharmaceutical Applications. J Med Device 2022. [DOI: 10.1115/1.4054549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
A shock wave-driven needle-free syringe was developed and tested for liquid jet delivery into an artificial skin model and porcine skin samples. The device could deliver an adequate volume of liquid to a depth sufficient for drug dissemination in skin samples. The device is equipped with a splash-proof conduit and a silencer for smooth operation. The concept is expected to minimize the pain of liquid injection by a) minimally breaching the blood vessels in the skin, b) reducing trauma, inflammation and aiding regeneration of the incised spot by the liquid of the jet, and c) preserving most of the micro-circulation system in the target, enabling an effective drug uptake. A theoretical model that predicts jet penetration into viscoelastic targets is derived and presented. A sound agreement has been observed between the experimental jet penetration depths and the corresponding theoretical predictions. The development can offer a cost-effective, minimally invasive health care solution for immunization and drug delivery.
Collapse
Affiliation(s)
- Priyanka Hankare
- Indian Institute of Technology Bombay, Department of Aerospace Engineering, IIT Bombay, Powai, Mumbai - 400076, India
| | - Ashish Agrawala
- Indian Institute of Technology Bombay, Department of Aerospace Engineering, IIT Bombay, Powai, Mumbai - 400076, India
| | - Viren Menezes
- Indian Institute of Technology Bombay, Department of Aerospace Engineering, IIT Bombay, Powai, Mumbai - 400076, India
| |
Collapse
|
22
|
Hughes AC, Dixon J, Driscoll HF, Booth J, Carré MJ. Padded rugby clothing to prevent laceration and abrasion injuries from stud raking: a method of assessment. SPORTS ENGINEERING 2022. [DOI: 10.1007/s12283-022-00369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractPadded clothing (shoulder padding) is worn in Rugby Union to give players an opportunity to protect themselves. A performance specification for padded clothing has been set out by World Rugby™, with the intention that padded clothing only protects against lacerations and abrasions. Test protocols in this specification provide an assessment of the impact force attenuative properties of the material, this itself will not indicate what injuries they may have the potential to prevent or lessen the severity of. The current study has used previously established biomechanical parameters to develop a mechanical test procedure to assess the ability of padded clothing to prevent or lessen the severity of stud-induced laceration and abrasion injuries. A synthetic skin and soft tissue surrogate was developed and validated to mimic human anatomy. Without the addition of padded clothing, both wearing (abrasion) and tearing (laceration) of the synthetic tissue surrogate were seen. The addition of padded clothing saw no sign of stud-induced injury, even after six repeated trials of the same product, showing padded clothing can prevent or lessen the severity of lacerations and abrasions. The developed testing protocols could be used to assess the safety of any sports stud designs in relation to skin injury as well as the effectiveness of various protective clothing products across the sports industry.
Collapse
|
23
|
WU KAIYU, SUN YIMIN, ZHANG GUANYI, ZHANG YONGDE, ZHANG SHU. NEEDLE–TISSUE INTERACTION MODEL AND EXPERIMENTAL STUDY OF SUBCLAVIAN VEIN PUNCTURE. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The subclavian venous puncture catheter has been widely used in treatment of critically ill patients. However, the lack of a mechanical model for subclavian vein puncture and selection of puncture parameters lead to procedure failures. This paper develops a puncture force model, and explores the factors affecting puncture force through a series of experiments. The puncture process is divided into four stages, and a mechanical model is established for each stage. The parameters of the puncture model, including the needle insertion angle and diameter, and venous pressure, are analyzed experimentally using biological tissues. The Box–Behnken experiment design is chosen to account for the cross-interactions of the various factors considered.
Collapse
Affiliation(s)
- KAIYU WU
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - YIMIN SUN
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - GUANYI ZHANG
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - YONGDE ZHANG
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
- Foshan Baikang Robot Technology Co., Ltd., Nanhai District, Foshan City, Guangdong Province 528225, P. R. China
| | - SHU ZHANG
- Foshan Baikang Robot Technology Co., Ltd., Nanhai District, Foshan City, Guangdong Province 528225, P. R. China
| |
Collapse
|
24
|
Zhong J, Chen S, Zhao Y, Yin J, Wang Y, Gong H, Zhang X, Wang J, Wu Y, Huang W. Shape Optimization of Costal Cartilage Framework Fabrication Based on Finite Element Analysis for Reducing Incidence of Auricular Reconstruction Complications. Front Bioeng Biotechnol 2021; 9:766599. [PMID: 34966727 PMCID: PMC8711272 DOI: 10.3389/fbioe.2021.766599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
Skin necrosis is the most common complication in total auricular reconstruction, which is mainly induced by vascular compromise and local stress concentration of the overlying skin. Previous studies generally emphasized the increase in the skin flap blood supply, while few reports considered the mechanical factors. However, skin injury is inevitable due to uneasily altered loads generated by the intraoperative continuous negative suction and uneven cartilage framework structure. Herein, this study aims to attain the stable design protocol of the ear cartilage framework to decrease mechanical damage and the incidence of skin necrosis. Finite element analysis was initially utilized to simulate the reconstructive process while the shape optimization technique was then adopted to optimize the three-pretested shape of the hollows inside the scapha and fossa triangularis under negative suction pressure. Finally, the optimal results would be output automatically to meet clinical requirement. Guided by the results of FE-based shape optimization, the optimum framework with the smallest holes inside the scapha and fossa triangularis was derived. Subsequent finite element analysis results also demonstrated the displacement and stress of the post-optimized model were declined 64.9 and 40.1%, respectively. The following clinical study was performed to reveal that this new design reported lower rates of skin necrosis decrease to 5.08%, as well as the cartilage disclosure decreased sharply from 14.2 to 3.39% compared to the conventional method. Both the biomechanical analysis and the clinical study confirmed that the novel design framework could effectively reduce the rates of skin necrosis, which shows important clinical significance for protecting against skin necrosis.
Collapse
Affiliation(s)
- Jing Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Zhao
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junfeiyang Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yilin Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haihuan Gong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xueyuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiejie Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
de Boer HH, Berger CEH, Blau S. Providing a Forensic Expert Opinion on the "Degree of Force": Evidentiary Considerations. BIOLOGY 2021; 10:1336. [PMID: 34943251 PMCID: PMC8698358 DOI: 10.3390/biology10121336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022]
Abstract
Forensic pathologists and anthropologists are often asked in court for an opinion about the degree of force required to cause a specific injury. This paper examines and discusses the concept of 'degree of force' and why it is considered a pertinent issue in legal proceedings. This discussion identifies the implicit assumptions that often underpin questions about the 'degree of force'. The current knowledge base for opinions on the degree of force is then provided by means of a literature review. A critical appraisal of this literature shows that much of the results from experimental research is of limited value in routine casework. An alternative approach to addressing the issue is provided through a discussion of the application of Bayes' theorem, also called the likelihood ratio framework. It is argued that the use of this framework makes it possible for an expert to provide relevant and specific evidence, whilst maintaining the boundaries of their field of expertise.
Collapse
Affiliation(s)
- Hans H. de Boer
- Victorian Institute of Forensic Medicine/Department of Forensic Medicine, Monash University, Southbank, VIC 3006, Australia;
| | - Charles E. H. Berger
- Institute of Criminal Law and Criminology, Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands;
- Netherlands Forensic Institute, Ministry of Justice and Security, Government of The Netherlands, 2511 DP The Hague, The Netherlands
| | - Soren Blau
- Victorian Institute of Forensic Medicine/Department of Forensic Medicine, Monash University, Southbank, VIC 3006, Australia;
| |
Collapse
|
26
|
Jushiddi MG, Mani A, Silien C, Tofail SA, Tiernan P, Mulvihill JJ. A computational multilayer model to simulate hollow needle insertion into biological porcine liver tissue. Acta Biomater 2021; 136:389-401. [PMID: 34624554 DOI: 10.1016/j.actbio.2021.09.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/27/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022]
Abstract
Modelling of needle insertion in soft tissue has developed significant interest in recent years due to its application in robot-assisted minimally invasive surgeries such as biopsies and brachytherapy. However, this type of surgery requires real-time feedback and processing which complex computational models may not be able to provide. In contrast to the existing mechanics-based kinetic models, a simple multilayer tissue model using a Coupled Eulerian Lagrangian based Finite Element method has been developed using the dynamic principle. The model simulates the needle motion for flexible hollow bevel-angled needle (15° and 30°, 22 Gauge) insertion into porcine liver tissue, which includes material parameters obtained from unconfined compression testing of porcine liver tissue. To validate simulation results, needle insertion force and cutting force within porcine liver tissue were compared with corresponding experimental results obtained from a custom-built needle insertion system. For the 15° and 30° bevel-angle needles, the percentage error for cutting force (mean) of each needle compared to computational model, were 18.7% and 11.9% respectively. Varying the needle bevel angle from 30° to 15° results in an increase of the cutting force, but insertion force does not vary among the tested bevel angles. The validation of this computationally efficient multilayer Finite Element model can help engineers to better understand the biomechanical behaviour of medical needle inside soft biological tissue. Ultimately, this multilayer approach can help advance state-of-art clinical applications such as robot-assisted surgery that requires real-time feedback and processing. STATEMENT OF SIGNIFICANCE: The significance of the work is in confirming the effectiveness of multilayer material based finite element (FE) method to model biopsy needle insertion into soft biological porcine liver tissue. A multilayer Coupled Eulerian Lagrangian (CEL) based FE modelling technique allowed testing of heterogeneous, non-linear viscoelastic porcine liver tissue in a system, so direct comparison of needle tissue interaction forces on the intrinsic material (tissue) behaviour could be made. To the best of the authors' knowledge, the present research investigates for the first time modelling of a three dimensional (3D) hollow needle insertion using a multilayer stiffness model of biological tissue using FE based CEL method and presents a comparison of simulation results with experimental data.
Collapse
|
27
|
Fracture behaviour of human skin in deep needle insertion can be captured using validated cohesive zone finite-element method. Comput Biol Med 2021; 139:104982. [PMID: 34749097 DOI: 10.1016/j.compbiomed.2021.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 11/24/2022]
Abstract
Medical needles have shown an appreciable contribution to the development of novel medical devices and surgical technologies. A better understanding of needle-skin interactions can advance the design of medical needles, modern surgical robots, and haptic devices. This study employed finite element (FE) modelling to explore the effect of different mechanical and geometrical parameters on the needle's force-displacement relationship, the required force for the skin puncture, and generated mechanical stress around the cutting zone. To this end, we established a cohesive FE model, and identified its parameters by a three-stage parameter identification algorithm to closely replicate the experimental data of needle insertion into the human skin available in the literature. We showed that a bilinear cohesive model with initial stiffness of 5000 MPa/mm, failure traction of 2 MPa, and separation length of 1.6 mm can lead to a model that can closely replicate experimental results. The FE results indicated that while the coefficient of friction between the needle and skin substantially changes the needle reaction force, the insertion velocity does not have a noticeable effect on the reaction force. Regarding the geometrical parameters, needle cutting angle is the prominent factor in terms of stress fields generated in the skin tissue. However, the needle diameter is more influential on the needle reaction force. We also presented an energy study on the frictional dissipation, damage dissipation, and strain energy throughout the insertion process.
Collapse
|
28
|
Krings W, Karabacak H, Gorb SN. From the knitting shop: the first physical and dynamic model of the taenioglossan radula (Mollusca: Gastropoda) aids in unravelling functional principles of the radular morphology. J R Soc Interface 2021; 18:20210377. [PMID: 34520692 PMCID: PMC8440039 DOI: 10.1098/rsif.2021.0377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
The radula is the structure used for food processing in Mollusca. It can consist of a membrane with stiffer teeth, which is, together with alary processus, muscles and odontophoral cartilages, part of the buccal mass. In malacology, it is common practice to infer potential tooth functions from morphology. Thus, past approaches to explain functional principles are mainly hypothesis driven. Therefore, there is an urgent need for a workflow testing hypotheses on the function of teeth and buccal mass components and interaction of structures, which can contribute to understanding the structure as a whole. Here, in a non-conventional approach, we introduce a physical and dynamic radular model, based on morphological data of Spekia zonata (Gastropoda, Paludomidae). Structures were documented, computer-modelled, three-dimensional-printed and assembled to gather a simplistic but realistic physical and dynamic radular model. Such a bioinspired design enabled studying of radular kinematics and interaction of parts when underlain supporting structures were manipulated in a similar manner as could result from muscle contractions. The presented work is a first step to provide a constructional manual, paving the way for even more realistic physical radular models, which could be used for understanding radular functional morphology and for the development of novel gripping devices.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Mammalogy and Paleoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Hasan Karabacak
- Department of Mammalogy and Paleoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
29
|
Irwin T, Speirs A, Merrett C. The effect of skin tension, needle diameter and insertion velocity on the fracture properties of porcine tissue. J Mech Behav Biomed Mater 2021; 123:104660. [PMID: 34329813 DOI: 10.1016/j.jmbbm.2021.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Using metal needles to penetrate skin tissue is common in medical treatments for the delivery of medication or minimally invasive surgery. In most applications the fracture properties of skin tissue is not important as the human surgeon has full control over the needle. Given that robotically controlled surgeries and self applied medical devices have become increasingly popular, a better understanding of the fracture properties and how to mathematically model the fracture process is needed. Experiments measuring the force required to fracture porcine skin tissue were done while varying the applied skin tension, needle insertion speed and needle diameter. The applied skin tension was found to have the greatest influence on the fracture properties, while the insertion speed was found to have a negligible impact. The variance in experimental results was not well explained by the three independent variables alone, suggesting that additional parameters influence the fracture process.
Collapse
Affiliation(s)
- T Irwin
- Carleton University, 1125 Colonel By Drive, Ottawa, Canada.
| | - A Speirs
- Carleton University, 1125 Colonel By Drive, Ottawa, Canada.
| | - C Merrett
- Carleton University, 1125 Colonel By Drive, Ottawa, Canada.
| |
Collapse
|
30
|
Feeding experiments on Vittina turrita (Mollusca, Gastropoda, Neritidae) reveal tooth contact areas and bent radular shape during foraging. Sci Rep 2021; 11:9556. [PMID: 33953284 PMCID: PMC8099886 DOI: 10.1038/s41598-021-88953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
The radula is the food gathering and processing structure and one important autapomorphy of the Mollusca. It is composed of a chitinous membrane with small, embedded teeth representing the interface between the organism and its ingesta. In the past, various approaches aimed at connecting the tooth morphologies, which can be highly distinct even within single radulae, to their functionality. However, conclusions from the literature were mainly drawn from analyzing mounted radulae, even though the configuration of the radula during foraging is not necessarily the same as in mounted specimens. Thus, the truly interacting radular parts and teeth, including 3D architecture of this complex structure during foraging were not previously determined. Here we present an experimental approach on individuals of Vittina turrita (Neritidae, Gastropoda), which were fed with algae paste attached to different sandpaper types. By comparing these radulae to radulae from control group, sandpaper-induced tooth wear patterns were identified and both area and volume loss could be quantified. In addition to the exact contact area of each tooth, conclusions about the 3D position of teeth and radular bending during feeding motion could be drawn. Furthermore, hypotheses about specific tooth functions could be put forward. These feeding experiments under controlled conditions were introduced for stylommatophoran gastropods with isodont radulae and are now applied to heterodont and complex radulae, which may provide a good basis for future studies on radula functional morphology.
Collapse
|
31
|
Han G, Chowdhury U, Eriten M, Henak CR. Relaxation capacity of cartilage is a critical factor in rate- and integrity-dependent fracture. Sci Rep 2021; 11:9527. [PMID: 33947908 PMCID: PMC8096812 DOI: 10.1038/s41598-021-88942-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Articular cartilage heals poorly but experiences mechanically induced damage across a broad range of loading rates and matrix integrity. Because loading rates and matrix integrity affect cartilage mechanical responses due to poroviscoelastic relaxation mechanisms, their effects on cartilage failure are important for assessing and preventing failure. This paper investigated rate- and integrity-dependent crack nucleation in cartilage from pre- to post-relaxation timescales. Rate-dependent crack nucleation and relaxation responses were obtained as a function of matrix integrity through microindentation. Total work for crack nucleation increased with decreased matrix integrity, and with decreased loading rates. Critical energy release rate of intact cartilage was estimated as 2.39 ± 1.39 to 2.48 ± 1.26 kJ m-2 in a pre-relaxation timescale. These findings showed that crack nucleation is delayed when cartilage can accommodate localized loading through poroviscoelastic relaxation mechanisms before fracture at a given loading rate and integrity state.
Collapse
Affiliation(s)
- G Han
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA
| | - U Chowdhury
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - M Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA
| | - C R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave., Madison, WI, 53706, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 University Ave., Madison, WI, 53706, USA.
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
32
|
Chang B, Cornett A, Nourmohammadi Z, Law J, Weld B, Crotts SJ, Hollister SJ, Lombaert IMA, Zopf DA. Hybrid Three-Dimensional-Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications. Laryngoscope 2021; 131:1008-1015. [PMID: 33022112 PMCID: PMC8021596 DOI: 10.1002/lary.29114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES/HYPOTHESIS To analyze the use of highly translatable three-dimensional (3D)-printed auricular scaffolds with and without novel cartilage tissue inserts in a rodent model. STUDY DESIGN Preclinical rodent animal model. METHODS This prospective study assessed a single-stage 3D-printed auricular bioscaffold with or without porcine cartilage tissue inserts in an athymic rodent model. Digital Imaging and Communications in Medicine computed tomography images of a human auricle were segmented to create an external anatomic envelope filled with orthogonally interconnected spherical pores. Scaffolds with and without tissue inset sites were 3D printed by laser sintering bioresorbable polycaprolactone, then implanted subcutaneously in five rats for each group. RESULTS Ten athymic rats were studied to a goal of 24 weeks postoperatively. Precise anatomic similarity and scaffold integrity were maintained in both scaffold conditions throughout experimentation with grossly visible tissue ingrowth and angiogenesis upon explantation. Cartilage-seeded scaffolds had relatively lower rates of nonsurgical site complications compared to unseeded scaffolds with relatively increased surgical site ulceration, though neither met statistical significance. Histology revealed robust soft tissue infiltration and vascularization in both seeded and unseeded scaffolds, and demonstrated impressive maintenance of viable cartilage in cartilage-seeded scaffolds. Radiology confirmed soft tissue infiltration in all scaffolds, and biomechanical modeling suggested amelioration of stress in scaffolds implanted with cartilage. CONCLUSIONS A hybrid approach incorporating cartilage insets into 3D-printed bioscaffolds suggests enhanced clinical and histological outcomes. These data demonstrate the potential to integrate point-of-care tissue engineering techniques into 3D printing to generate alternatives to current reconstructive surgery techniques and avoid the demands of traditional tissue engineering. LEVEL OF EVIDENCE NA Laryngoscope, 131:1008-1015, 2021.
Collapse
Affiliation(s)
- Brian Chang
- Department of Pediatrics, University of California Los Angeles Mattel Children's Hospital, Los Angeles, California, U.S.A
| | - Ashley Cornett
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, U.S.A
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Zahra Nourmohammadi
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Jadan Law
- Department of Biomedical Engineering, Michigan Engineering, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, U.S.A
| | - Blaine Weld
- Department of Biomedical Engineering, Michigan Engineering, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, U.S.A
| | - Sarah J Crotts
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, U.S.A
| | - Scott J Hollister
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, U.S.A
| | - Isabelle M A Lombaert
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, U.S.A
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - David A Zopf
- Department of Biomedical Engineering, Michigan Engineering, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, C.S. Mott Children's Hospital, Ann Arbor, Michigan, U.S.A
| |
Collapse
|
33
|
Torossian K, Ottenio M, Brulez AC, Lafon Y, Viste A, Attali P, Benayoun S. Biomechanical analysis of practitioner's gesture for peripheral venous catheter insertion. Med Eng Phys 2021; 90:92-99. [PMID: 33781485 DOI: 10.1016/j.medengphy.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
Peripheral venous catheter insertion (PVCI) is one of the most common procedures performed by healthcare professionals but remains technically difficult. To develop new medical simulators with better representativeness of the human forearm, an experimental study was performed to collect data related to the puncturing of human skin and a vein in the antebrachial area. A total of 31 volunteers participated in this study. Force sensors and digital image correlation were used to measure the force during the palpation and puncturing of the vein and to retrieve the kinematics of the practitioner's gesture. The in vivo skin rupture load, vein rupture load, and friction loads for skin only and for both the skin and vein were (mean ± standard deviation) 0.85 ± 0.34 N, 1.25 ± 0.37 N, -0.49 ± 0.19 N, and -0.51 ± 0.16 N, respectively. The results of this study can be used to develop realistic skin and vein substitutes and mechanically assess them by reproducing the practitioner's gesture in a controlled fashion.
Collapse
Affiliation(s)
- K Torossian
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, 36 avenue Guy de Collongues, 69134 Ecully, France; Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France.
| | - M Ottenio
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - A-C Brulez
- Laboratoire de Génie de la Fonctionnalisation des Matériaux Polymères, Institut Textile et Chimique de Lyon, 87 chemin des Mouilles, 69134 Ecully cedex, France
| | - Y Lafon
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - A Viste
- Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Hospices Civils de Lyon, Hôpital Lyon Sud, Chirurgie Orthopédique, 165 Chemin du Grand Revoyet, 69495 Pierre Benite Cedex, France
| | - P Attali
- Institut de Formation en Soins Infirmiers, 5 Avenue Esquirol, 69003 Lyon, France
| | - S Benayoun
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, 36 avenue Guy de Collongues, 69134 Ecully, France
| |
Collapse
|
34
|
Lim H, Ha S, Bae M, Yoon SH. A highly robust approach to fabricate the mass-customizable mold of sharp-tipped biodegradable polymer microneedles for drug delivery. Int J Pharm 2021; 600:120475. [PMID: 33737092 DOI: 10.1016/j.ijpharm.2021.120475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
A skin-perforable dissolving microneedle is a promising mediator for painlessly delivering active pharmaceutical compounds across the skin. All the microneedle manufacturing processes so far, however, are much sensitive to input variation and unfavorable for make-to-order approach. Here, a robust method for fabricating mass-customizable master molds is developed to prepare sharp-tipped biodegradable polymer microneedles. Our approach combines the predrying and chip casting (PCC) of an ultrathick photoresist layer with a substrateless, inclined, and rotational exposure (SIR exposure). The PCC achieves the uniform reduction of solvent across the photoresist thickness which is critically required for the formation of a sharp tip; the SIR exposure creates master molds whose geometry is easily customizable and virtually insensitive to a variation in ultraviolet (UV) exposure dose. A theoretical model for the spatiotemporal distribution of UV dose under SIR exposure is established to show the technological superiority of our method. Next, our method's applicability is proven by fabricating a set of poly(lactic-co-glycolic) acid (PLGA) microneedles and performing both porcine skin penetration test and their in vitro degradation test. Our approach is verified to be robust in manufacturing mass-customizable molds for skin-perforable dissolving microneedles and to have high compatibility with almost all existing biodegradable polymers. The findings of this study lead to both a significant growth of dissolving microneedle-mediated drug delivery and better understanding of drug release kinetics.
Collapse
Affiliation(s)
- Hyeoncheol Lim
- Bioinspired Engineering Laboratory, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seulki Ha
- Bioinspired Engineering Laboratory, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Minwoo Bae
- Bioinspired Engineering Laboratory, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sang-Hee Yoon
- Bioinspired Engineering Laboratory, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
35
|
Brennan JR, Cornett A, Chang B, Crotts SJ, Nourmohammadi Z, Lombaert I, Hollister SJ, Zopf DA. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. J Biomed Mater Res B Appl Biomater 2021; 109:394-400. [PMID: 32830908 PMCID: PMC8130560 DOI: 10.1002/jbm.b.34707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 11/11/2022]
Abstract
Auricular reconstruction is a technically demanding procedure requiring significant surgical expertise, as the current gold standard involves hand carving of the costal cartilage into an auricular framework and re-implantation of the tissue. 3D-printing presents a powerful tool that can reduce technical demands associated with the procedure. Our group compared clinical, radiological, histological, and biomechanical outcomes in single- and two-stage 3D-printed auricular tissue scaffolds in an athymic rodent model. Briefly, an external anatomic envelope of a human auricle was created using DICOM computed tomography (CT) images and modified in design to create a two-stage, lock-in-key base and elevating platform. Single- and two-stage scaffolds were 3D-printed by laser sintering poly-L-caprolactone (PCL) then implanted subcutaneously in five athymic rats each. Rats were monitored for ulcer formation, site infection, and scaffold distortion weekly, and scaffolds were explanted at 8 weeks with analysis using microCT and histologic staining. Nonlinear finite element analysis was performed to determine areas of high strain in relation to ulcer formation. Scaffolds demonstrated precise anatomic appearance and maintenance of integrity of both anterior and posterior auricular surfaces and scaffold projection, with no statistically significant differences in complications noted between the single- and two-staged implantation. While minor superficial ulcers occurred most commonly at the lateral and superior helix coincident with finite element predictions of high skin strains, evidence of robust tissue ingrowth and angiogenesis was visible grossly and histologically. This promising preclinical small animal model supports future initiatives for making clinically viable options for an ear tissue scaffold.
Collapse
Affiliation(s)
- Julia R Brennan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashley Cornett
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian Chang
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, California, USA
| | - Sarah J Crotts
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zahra Nourmohammadi
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabelle Lombaert
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott J Hollister
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David A Zopf
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, Michigan Engineering, Ann & Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Cohen KE, Weller HI, Westneat MW, Summers AP. The Evolutionary Continuum of Functional Homodonty to Heterodonty in the Dentition of Halichoeres Wrasses. Integr Comp Biol 2020; 63:icaa137. [PMID: 32970795 DOI: 10.1093/icb/icaa137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 01/01/2023] Open
Abstract
Vertebrate dentitions are often collapsed into a few discrete categories, obscuring both potentially important functional differences between them and insight into their evolution. The terms homodonty and heterodonty typically conflate tooth morphology with tooth function, and require context-dependent subcategories to take on any specific meaning. Qualifiers like incipient, transient, or phylogenetic homodonty attempt to provide a more rigorous definition but instead highlight the difficulties in categorizing dentitions. To address these issues, we recently proposed a method for quantifying the function of dental batteries based on the estimated stress of each tooth (inferred using surface area) standardized for jaw out-lever (inferred using tooth position). This method reveals a homodonty-heterodonty functional continuum where small and large teeth work together to transmit forces to a prey item. Morphological homodonty or heterodonty refers to morphology, whereas functional homodonty or heterodonty refers to transmission of stress. In this study, we use Halichoeres wrasses to explore how functional continuum can be used in phylogenetic analyses by generating two continuous metrics from the functional homodonty-heterodonty continuum. Here we show that functionally heterodont teeth have evolved at least three times in Halichoeres wrasses. There are more functionally heterodont teeth on upper jaws than on lower jaws, but functionally heterodont teeth on the lower jaws bear significantly more stress. These nuances, which have functional consequences, would be missed by binning entire dentitions into discrete categories. This analysis points out areas worth taking a closer look at from a mechanical and developmental point of view with respect to the distribution and type of heterodonty seen in different jaws and different areas of jaws. These data, on a small group of wrasses, suggest continuous dental variables can be a rich source of insight into the evolution of fish feeding mechanisms across a wider variety of species.
Collapse
Affiliation(s)
- Karly E Cohen
- University of Washington, Biology Department Seattle, WA
- University of Washington Friday Harbor, Labs Friday Harbor, WA
| | - Hannah I Weller
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI
| | - Mark W Westneat
- University of Chicago, Department of Organismal Biology and Anatomy, Chicago, IL
| | - Adam P Summers
- University of Washington Friday Harbor, Labs Friday Harbor, WA
| |
Collapse
|
37
|
Dehghani H, Sun Y, Cubrich L, Oleynikov D, Farritor S, Terry B. An Optimization-Based Algorithm for Trajectory Planning of an Under-Actuated Robotic Arm to Perform Autonomous Suturing. IEEE Trans Biomed Eng 2020; 68:1262-1272. [PMID: 32946377 DOI: 10.1109/tbme.2020.3024632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In single-port access surgeries, robot size is crucial due to the limited workspace. Thus, a robot may be designed under-actuated. Suturing, in contrast, is a complicated task and requires full actuation. This study aims to overcome this shortcoming by implementing an optimization-based algorithm for autonomous suturing for an under-actuated robot. The proposed algorithm approximates the ideal suturing trajectory by slightly reorienting the needle while deviating as little as possible from the ideal, full degree-of-freedom suturing case. The deviation of the path taken by a custom robot with respect to the ideal trajectory varies depending on the suturing starting location within the workspace as well as the needle size. A quantitative analysis reveals that in 13% of the investigated workspace, the accumulative deviation was less than 10 mm. In the remaining workspace, the accumulative deviation was less than 30 mm. Likewise, the accumulative deviation of a needle with a radius of 10 mm was 2.2 mm as opposed to 8 mm when the radius was 20 mm. The optimization-based algorithm maximized the accuracy of a four-DOF robot to perform a path-constrained trajectory and illustrates the accuracy-workspace correlation.
Collapse
|
38
|
Pullen A, Kieser DC, Hooper G. Validation of Roebuck 1518 synthetic chamois as a skin simulant when backed by 10% gelatin. Int J Legal Med 2020; 135:909-912. [PMID: 32845356 DOI: 10.1007/s00414-020-02408-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Synthetic skin simulants are used both in wound ballistics and forensic investigations and should display similar mechanical properties to human tissue and therefore need to be validated. It is recognised that skin simulants may have a significantly different performance when different backing combinations are used; therefore, it is essential to specify and control the backing material. Roebuck 1518 synthetic chamois (RBK) backed by 20% ballistic gelatin has been validated as a suitable skin simulant; this study looks at validating the RBK simulant when backed by 10% ballistic gelatin. METHODS Two layers of RBK synthetic chamois backed by calibrated 10% ballistic gelatin were placed onto the long face of the block and secured. Steel spheres with various sectional densities were fired using a custom-made gas gun to determine the V50 of the simulants and compared with the predicted V50. RESULTS The results demonstrate that for a sectional density between 2.1 and 6.6 g/cm2, the skin simulants backed by 10% gelatin are within the 35% error bounds predicted by James' patent equation. All samples had a close fit to the regression line (R2 = 0.9738), and a Spearman rho test indicates that there is a "strong" negative correlation between sectional density and the V50 (Rs =- 0.957, p = 0.00). CONCLUSIONS This validation study confirms that RBK synthetic simulant backed by 10% gelatin is a suitable skin simulant when testing non-deforming projectiles with sectional densities ranging from 2.1 to 6.6 g/cm2. A predictive trend line also indicates that the skin simulant is suitable for non-deforming projectiles with sectional densities ranging from 0.6 to 20 g/cm2 although this needs to be confirmed.
Collapse
Affiliation(s)
- Amy Pullen
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch School of Medicine, University of Otago, P O Box 4545, Christchurch, 8140, New Zealand.
| | - David C Kieser
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch School of Medicine, University of Otago, P O Box 4545, Christchurch, 8140, New Zealand
| | - Gary Hooper
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch School of Medicine, University of Otago, P O Box 4545, Christchurch, 8140, New Zealand
| |
Collapse
|
39
|
Jushiddi MG, Cahalane RM, Byrne M, Mani A, Silien C, Tofail SAM, Mulvihill JJE, Tiernan P. Bevel angle study of flexible hollow needle insertion into biological mimetic soft-gel: Simulation and experimental validation. J Mech Behav Biomed Mater 2020; 111:103896. [PMID: 32791488 DOI: 10.1016/j.jmbbm.2020.103896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/16/2020] [Accepted: 05/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND A thorough understanding of cutting-edge geometry and cutting forces of hollow biopsy needles are required to optimise needle tip design to improve fine needle aspiration procedures. OBJECTIVES To incorporate the dynamics of needle motion in a model for flexible hollow bevel tipped needle insertion into a biological mimetic soft-gel using parameters obtained from experimental work. Additionally, the models will be verified against corresponding needle insertion experiments. METHODS To verify simulation results, needle deflection and insertion forces were compared with corresponding experimental results acquired with an in-house developed needle insertion mechanical system. Additionally, contact stress distribution on needles from agar gel for various time scales were also studied. RESULTS For the 15°, 30°, 45°, 60° bevel angle needles, and 90° blunt needle, the percentage error in needle deflection of each needle compared to experiments, were 7.3%, 9.9%, 8.6%, 7.8%, and 9.7% respectively. Varying the bevel angle at the needle tip demonstrates that the needle with a lower bevel angle produces the largest deflection, although the insertion force does not vary too much among the tested bevel angles. CONCLUSION This experimentally verified computer-based simulation model could be used as an alternative tool for better understanding the needle-tissue interaction to optimise needle tip design towards improved biopsy efficiency.
Collapse
Affiliation(s)
- Mohamed G Jushiddi
- Modeling, Simulation and Innovative Characterisation (MOSAIC), Bernal Institute and Department of Physics, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Rachel M Cahalane
- BioScience and BioEngineering Research (BioSciBer), Bernal Institute, Health Research Institute (HRI), School of Engineering, University of Limerick, Ireland.
| | - Michael Byrne
- School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Aladin Mani
- Modeling, Simulation and Innovative Characterisation (MOSAIC), Bernal Institute and Department of Physics, University of Limerick, Limerick, Ireland.
| | - Christophe Silien
- Modeling, Simulation and Innovative Characterisation (MOSAIC), Bernal Institute and Department of Physics, University of Limerick, Limerick, Ireland.
| | - Syed A M Tofail
- Modeling, Simulation and Innovative Characterisation (MOSAIC), Bernal Institute and Department of Physics, University of Limerick, Limerick, Ireland.
| | - John J E Mulvihill
- BioScience and BioEngineering Research (BioSciBer), Bernal Institute, Health Research Institute (HRI), School of Engineering, University of Limerick, Ireland.
| | - Peter Tiernan
- School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
40
|
Microstructural and Tribological Properties of a Dopamine Hydrochloride and Graphene Oxide Coating Applied to Multifilament Surgical Sutures. Polymers (Basel) 2020; 12:polym12081630. [PMID: 32708037 PMCID: PMC7465952 DOI: 10.3390/polym12081630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
With the development of fine surgery and desire for low-injury methods, the frictional properties of surgical sutures are one of the crucial factors that can cause damage to tissue, especially for some fragile and sensitive human tissues such as the eyeball. In this study, dopamine hydrochloride and graphene oxide were used as external application agents to prepare a biological coating for the surface of multifilament surgical sutures. The effects of this biocoating on the surface morphology, chemical properties, mechanical properties, and tribological properties of surgical sutures were studied. The friction force and the coefficient of friction of surgical sutures penetrating through a skin substitute were evaluated using a penetration friction apparatus and a linear elastic model. The tribological mechanism of the coating on the multifilament surgical sutures was investigated according to the results of the tribological test. The results showed that there were uniform dopamine and graphene oxide films on the surface of the surgical sutures, and that the fracture strength and yield stress of the coated sutures both increased. The surface wettability of the surgical sutures was improved after the coating treatment. The friction force and the coefficient of friction of the multifilament surgical sutures with the dopamine hydrochloride and graphene oxide coating changed little compared to those of the untreated multifilament surgical sutures.
Collapse
|
41
|
Reddy Gidde ST, Ciuciu A, Devaravar N, Doracio R, Kianzad K, Hutapea P. Effect of vibration on insertion force and deflection of bioinspired needle in tissues. BIOINSPIRATION & BIOMIMETICS 2020; 15:054001. [PMID: 32408278 DOI: 10.1088/1748-3190/ab9341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of surgical needles used in biopsy procedures have remained fairly standard despite the increase in complexity of surgeries. Higher needle insertion forces and deflection can increase tissue damage and decrease biopsy sample integrity. To overcome these drawbacks, we present a novel bioinspired approach to reduce insertion forces and minimize needle-tip deflection. It is well known from the literature, design of bioinspired surgical needles results in decreasing insertion forces and needle-tip deflection from the needle insertion path. This technical note studies the influence of vibration on bioinspired needle to further reduce insertion forces and needle-tip deflection. Bioinspired needle geometrical parameters such as barb shapes and geometries were analyzed to determine the best design parameters. Static and dynamic (vibration) needle insertion tests were performed to determine the maximum insertion forces and to estimate needle-tip deflection. Our results show that introducing vibration on the bioinspired needle insertion can reduce the maximum insertion force by up to 50%. It was also found that the needle-tip deflection is decreased by 47%.
Collapse
Affiliation(s)
- Sai Teja Reddy Gidde
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, United States of America
| | | | | | | | | | | |
Collapse
|
42
|
Terzano M, Dini D, Rodriguez Y Baena F, Spagnoli A, Oldfield M. An adaptive finite element model for steerable needles. Biomech Model Mechanobiol 2020; 19:1809-1825. [PMID: 32152795 PMCID: PMC7502456 DOI: 10.1007/s10237-020-01310-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
Abstract
Penetration of a flexible and steerable needle into a soft target material is a complex problem to be modelled, involving several mechanical challenges. In the present paper, an adaptive finite element algorithm is developed to simulate the penetration of a steerable needle in brain-like gelatine material, where the penetration path is not predetermined. The geometry of the needle tip induces asymmetric tractions along the tool–substrate frictional interfaces, generating a bending action on the needle in addition to combined normal and shear loading in the region where fracture takes place during penetration. The fracture process is described by a cohesive zone model, and the direction of crack propagation is determined by the distribution of strain energy density in the tissue surrounding the tip. Simulation results of deep needle penetration for a programmable bevel-tip needle design, where steering can be controlled by changing the offset between interlocked needle segments, are mainly discussed in terms of penetration force versus displacement along with a detailed description of the needle tip trajectories. It is shown that such results are strongly dependent on the relative stiffness of needle and tissue and on the tip offset. The simulated relationship between programmable bevel offset and needle curvature is found to be approximately linear, confirming empirical results derived experimentally in a previous work. The proposed model enables a detailed analysis of the tool–tissue interactions during needle penetration, providing a reliable means to optimise the design of surgical catheters and aid pre-operative planning.
Collapse
Affiliation(s)
- Michele Terzano
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Matthew Oldfield
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
43
|
Crofts SB, Lai Y, Hu Y, Anderson PSL. How do morphological sharpness measures relate to puncture performance in viperid snake fangs? Biol Lett 2019; 15:20180905. [PMID: 30991915 DOI: 10.1098/rsbl.2018.0905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It makes intuitive sense that you need a sharp tool to puncture through a tough material. The typical approach to evaluating sharpness in biological puncturing tools is to treat morphological measurements as a proxy for puncture ability. However, there are multiple approaches to measuring sharpness, and the relative influence of morphology on function remains unclear. Our goal is to determine what aspects of tip morphology have the greatest impact on puncture ability, using ( a) viper fangs and ( b) engineered punches to isolate the effects of different sharpness measures. Our results indicate that tip included angle is the strongest predictor of puncture performance in both viper fangs and engineered punches. For puncture tools with small included angles, sharpness index (based on the radius of curvature) also affects puncture ability. Finally, we found that punches serve as good predictors of fang performance at small angles and sharpness index values.
Collapse
Affiliation(s)
- S B Crofts
- 1 Department of Animal Biology, University of Illinois at Urbana-Champaign , 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801 , USA
| | - Y Lai
- 2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , 801 Ferst Drive, Atlanta, GA 30332 , USA
| | - Y Hu
- 2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , 801 Ferst Drive, Atlanta, GA 30332 , USA.,3 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, GA 30332 , USA
| | - P S L Anderson
- 1 Department of Animal Biology, University of Illinois at Urbana-Champaign , 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801 , USA
| |
Collapse
|
44
|
Torossian K, Benayoun S, Ottenio M, Brulez AC. Guidelines for designing a realistic peripheral venous catheter insertion simulator: A literature review. Proc Inst Mech Eng H 2019; 233:963-978. [DOI: 10.1177/0954411919864786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A literature review was conducted to develop more realistic medical simulators that better prepare aspiring health professionals to perform a medical procedure in vivo. Thus, this review proposes an approach that might assist researchers design improved medical simulators, particularly new materials that would enhance the sensation of touch for skin substitutes. By targeting the current needs in the field of simulation learning, we concluded that peripheral venous catheter insertion simulators lack realistic haptic feedback. Enhanced peripheral venous catheter insertion simulators will accelerate the mastery of the medical procedure, thus decreasing the number of failures in patients and costs related to this procedure.
Collapse
Affiliation(s)
- Kevin Torossian
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, Écully, France
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| | - Stéphane Benayoun
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon, Écully, France
| | - Mélanie Ottenio
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| | - Anne-Catherine Brulez
- Laboratoire de Génie de la Fonctionnalisation des Matériaux Polymères, Institut Textile et Chimique de Lyon, Écully, France
| |
Collapse
|
45
|
Rattan S, Crosby AJ. Effect of Polymer Volume Fraction on Fracture Initiation in Soft Gels at Small Length Scales. ACS Macro Lett 2019; 8:492-498. [PMID: 35619377 DOI: 10.1021/acsmacrolett.9b00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of polymer volume fraction, ϕv on fracture initiation via puncture is studied in self-assembled triblock copolymer gels. Spherically tipped indenters of radii varying over a wide range were used to characterize puncture at length scales on the same order of magnitude as the elasto-capillary length (∼μm) and significantly below the elasto-fracture length (∼mm) for ϕv = 0.12-0.53. Critical energy release rate, Gc for ϕv = 0.12-0.30 was found to be in agreement with the predicted scaling from the classical Lake-Thomas model modified for gel fracture via the failure mechanism of chain pull-out and plastic yielding of micelles (Gc ∼ ϕv2.2). Interestingly, we demonstrate that fracture initiation energy, Γo, from puncture scales as Γo ∼ ϕv, thus, indicating the role played by different fundamental mechanisms governing fracture initiation in soft gels. Additionally, gels with ϕv = 0.53 show deviation from experimental scalings for Gc and Γo, likely due to a change in micellar morphology leading to anomalous fracture behavior.
Collapse
Affiliation(s)
- Shruti Rattan
- Polymer Science and Engineering Department, University of Massachusetts−Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Alfred J. Crosby
- Polymer Science and Engineering Department, University of Massachusetts−Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
46
|
Demas NP, Hunter IW. An Electronic Force Sensor for Medical Jet Injection. J Med Device 2019. [DOI: 10.1115/1.4043196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In medical jet injection, a narrow fluid drug stream is propelled at high velocity into skin without a needle. Previous studies have shown that the volume delivered is highly dependent on a number of factors. This paper details the development of an electronic force sensor for medical jet injection and shows that the normal contact force exerted on the tissue by the nozzle is an additional factor affecting volume delivered. Using this sensor, we measure the forces at the nozzle tip in the normal direction with a sensitivity of 18 μN, calibrated over a range from 1 N to 8 N with a mean absolute error of 8 mN, and a maximum overload of 300 N. We further measure forces at the nozzle tip in the lateral direction with a sensitivity of 8 μN, calibrated over a range from 0.1 N to 7 N, with a mean absolute error of 101 mN for lateral contact force magnitude and 1.60 deg for lateral contact force direction. Experimental validation confirms that the force sensor does not adversely affect the accuracy and precision of ejected volume from the jet injector. We use this setup to examine the effect of normal contact force on volume delivered into postmortem porcine tissue. Experimental results demonstrate that volume delivered with normal contact force between 4 N and 8 N is significantly more accurate and precise compared to volume delivered with normal contact force between 0 N and 3.9 N.
Collapse
Affiliation(s)
- Nickolas P. Demas
- BioInstrumentation Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 e-mail:
| | - Ian W. Hunter
- George N. Hatsopoulos Professor in Thermodynamics, BioInstrumentation Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 e-mail:
| |
Collapse
|
47
|
Abstract
Soft matter denotes a large category of materials showing unique properties, resulting from a low elastic modulus, a very high deformation capability, time-dependent mechanical behavior, and a peculiar mechanics of damage and fracture. The flaw tolerance, commonly understood as the ability of a given material to withstand external loading in the presence of a defect, is certainly one of the most noticeable attributes. This feature results from a complex and highly entangled microstructure, where the mechanical response to external loading is mainly governed by entropic-related effects. In the present paper, the flaw tolerance of soft elastomeric polymers, subjected to large deformation, is investigated experimentally. In particular, we consider the tensile response of thin plates made of different silicone rubbers, containing defects of various severity at different scales. Full-field strain maps are acquired by means of the Digital Image Correlation (DIC) technique. The experimental results are interpreted by accounting for the blunting of the defects due to large deformation in the material. The effect of blunting is interpreted in terms of reduction of the stress concentration factor generated by the defect, and failure is compared to that of traditional crystalline brittle materials.
Collapse
|
48
|
Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye. Eur J Pharm Biopharm 2018; 133:31-41. [DOI: 10.1016/j.ejpb.2018.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023]
|
49
|
Alhaddad AY, Cabibihan JJ, Bonarini A. Head Impact Severity Measures for Small Social Robots Thrown During Meltdown in Autism. Int J Soc Robot 2018. [DOI: 10.1007/s12369-018-0494-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Radhakrishnan JK, Nithila S, Kartik SN, Bhuvana T, Kulkarni GU, Singh UK. A Novel, Needle-Array Dry-Electrode With Stainless Steel Micro-Tips, for Electroencephalography Monitoring. J Med Device 2018. [DOI: 10.1115/1.4041227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A novel, needle array dry electrode consisting of 10 × 10 array of stainless steel (SS) Microtips was developed for electroencephalography (EEG) monitoring. The developed dry electrode uses commercially available, inexpensive, SS acupuncture needles certified for invasive use, to collect the EEG signal. The microtips of the acupuncture needles project out of a flat Teflon base by approximately 150 μm. Mechanical failure analysis was carried out, with theoretical calculations for individual needles and experimental measurements with a universal testing machine (UTM). The theoretically calculated critical load for failure for individual needle was 0.88 N, while the UTM measurements show the failure occurring at 0.95 N; this difference is probably due to the simplified assumptions used in calculations. The UTM measurements of the individual needle applied against a Silicone elastomer reveal that the force required for the penetration of the needle of the electrode into skin maybe as low as 0.01 N. Needle array insertion into silicone elastomer sheet and its optical inspection was carried out to assess the ability of the microneedles to penetrate the skin. The impedance of the electrode, measured in three electrode configuration in 0.9% NaCl solution, was approximately 6.8KΩ at 20 Hz, which is sufficiently low to fulfill the requirements of biopotential measurement. The construction and characteristics of the developed needle array dry electrode show that they are suitable for penetrating the stratum corneum of the skin and acquire the EEG signal directly from the interstitial fluidic layer underneath. The construction of the electrode and its mechanical and electrical characteristics show that it is a promising dry electrode for long duration EEG Monitoring.
Collapse
Affiliation(s)
- J. K. Radhakrishnan
- Defence Bioengineering and Electromedical Laboratory (DEBEL), DRDO, Bangalore 560093, India e-mail:
| | - S. Nithila
- Defence Bioengineering and Electromedical Laboratory (DEBEL), DRDO, Bangalore 560093, India
| | - S. N. Kartik
- Defence Bioengineering and Electromedical Laboratory (DEBEL), DRDO, Bangalore 560093, India
| | - T. Bhuvana
- Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - G. U. Kulkarni
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560093, India
| | - U. K. Singh
- Defence Bioengineering and Electromedical Laboratory (DEBEL), DRDO, Bangalore 560093, India
| |
Collapse
|