1
|
Micheletti C, Shah FA. Bone hierarchical organization through the lens of materials science: Present opportunities and future challenges. Bone Rep 2024; 22:101783. [PMID: 39100913 PMCID: PMC11295937 DOI: 10.1016/j.bonr.2024.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Multiscale characterization is essential to better understand the hierarchical architecture of bone and an array of analytical methods contributes to exploring the various structural and compositional aspects. Incorporating X-ray tomography, X-ray scattering, vibrational spectroscopy, and atom probe tomography alongside electron microscopy provides a comprehensive approach, offering insights into the diverse levels of organization within bone. X-ray scattering techniques reveal information about collagen-mineral spatial relationships, while X-ray tomography captures 3D structural details, especially at the microscale. Electron microscopy, such as scanning and transmission electron microscopy, extends resolution to the nanoscale, showcasing intricate features such as collagen fibril organization. Additionally, atom probe tomography achieves sub-nanoscale resolution and high chemical sensitivity, enabling detailed examination of bone composition. Despite various technical challenges, a correlative approach allows for a comprehensive understanding of bone material properties. Real-time investigations through in situ and in operando approaches shed light on the dynamic processes in bone. Recently developed techniques such as liquid, in situ transmission electron microscopy provide insights into calcium phosphate formation and collagen mineralization. Mechanical models developed in the effort to link structure, composition, and function currently remain oversimplified but can be improved. In conclusion, correlative analytical platforms provide a holistic perspective of bone extracellular matrix and are essential for unraveling the intricate interplay between structure and composition within bone.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Benetti C, Blay A, Correa L, Verlangieri MA, Dos Santos MO, Kazarian SG, Zezell DM. ATR-FTIR spectroscopy imaging of bone repair in mandibular laser-osteotomy. JOURNAL OF BIOPHOTONICS 2024:e202400066. [PMID: 39048930 DOI: 10.1002/jbio.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
The aim of this study was to verify the effectiveness of attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy in the characterization of bone repair in mandibular osteotomy using erbium, chromium-doped yttrium, scandium, gallium and garnet (Er,Cr:YSGG) laser and multilaminate drill on each side. Two mandible bone fragments were removed from 30 rabbits, and the process of bone repair was studied immediately, 3, 7, 15, 21, and 28 days after the surgery. The histological analysis allowed detecting differences in the early stages of tissue repair after bone cutting performed with the Er,Cr:YSGG laser or multilaminate drill. The ATR-FTIR spectroscopy technique was sensitive to changes in the organic content of bone tissue repair process.
Collapse
Affiliation(s)
- Carolina Benetti
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | | | - Luciana Correa
- Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Denise M Zezell
- Center for Lasers and Application, Instituto de Pesquisas Energéticas e Nucleares-IPEN/CNEN, São Paulo, Brazil
| |
Collapse
|
3
|
Calabrese TC, Rothermund K, Gabe CM, Beniash E, Davidson LA, Syed-Picard FN. Self-Assembly of Tooth Root Organoid from Postnatal Human Dental Stem Cells. Tissue Eng Part A 2024; 30:404-414. [PMID: 38126312 PMCID: PMC11392675 DOI: 10.1089/ten.tea.2023.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Challenges remain in simultaneously regenerating the multiple diverse tissues of the tooth root in a spatially organized manner. Previously, our research group has established that scaffold-free tissue engineering approaches enable dental pulp stem/progenitor cells (DPSCs) and periodontal ligament (PDL) stem/progenitor cells (PDLSCs) to self-assemble into dentin-pulp and PDL-cementum organoids, respectively. In this study, we leveraged the innate self-organizing capacity of DPSCs and PDLSCs to now engineer organoids that resemble the full tooth root. Scaffold-free engineered tissues were generated using a heterogeneous mixture of human DPSCs and PDLSCs. Within 2 days of construct formation, PDLSCs and DPSCs became spatially restricted to the periphery and center of the constructs, respectively, emulating their anatomical positions in the tooth root. Histological and microcomputed tomography analyses showed that organoids exhibited a striated mineral pattern with a central unmineralized core, surrounded by a mineralized tissue structure, enclosed within a second peripheral unmineralized tissue, similar to the natural tooth root. Interestingly, DPSCs gave rise to the central unmineralized tissue and the inner portion of the mineralized tissue, and PDLSCs generated the outer portion of the mineralized tissue and the peripheral soft tissue. Quantitative image analysis of immunofluorescent staining revealed increased dentin sialophosphoprotein expression in the region of mineralized tissue associated with DPSCs and increased cementum protein-1 expression in the portion formed by PDLSCs, demonstrating that tooth root organoids comprise two biochemically distinct mineralized tissues characteristic of dentin-like and cementum-like structures, respectively. In addition, PDL-associated protein-1 expression was localized to the peripheral soft tissue, suggesting the formation of a rudimentary PDL-like structure. This study demonstrates that DPSCs and PDLSCs have an inherent ability to orchestrate the formation of a full tooth root-like structure. These organoids present a biomimetic model system to study cellular dynamics driving dental tissue repair or could be utilized therapeutically as biological dental implants.
Collapse
Affiliation(s)
- Tia C Calabrese
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire M Gabe
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elia Beniash
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Fatima N Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Kolliopoulos V, Harley BA. Mineralized collagen scaffolds for regenerative engineering applications. Curr Opin Biotechnol 2024; 86:103080. [PMID: 38402689 PMCID: PMC10947798 DOI: 10.1016/j.copbio.2024.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Collagen is a primary constituent of the tissue extracellular matrix. As a result, collagen has been a common component of tissue engineering biomaterials, including those to promote bone regeneration or to investigate cell-material interactions in the context of bone homeostasis or disease. This review summarizes key considerations regarding current state-of-the-art design and use of collagen biomaterials for these applications. We also describe strategic opportunities for collagen biomaterials to address a new era of challenges, including immunomodulation and appropriate consideration of sex and other patient characteristics in biomaterial design.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan Ac Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Monahan GE, Schiavi-Tritz J, Britton M, Vaughan TJ. Longitudinal alterations in bone morphometry, mechanical integrity and composition in Type-2 diabetes in a Zucker diabetic fatty (ZDF) rat. Bone 2023; 170:116672. [PMID: 36646266 DOI: 10.1016/j.bone.2023.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Individuals with Type-2 Diabetes (T2D) have an increased risk of bone fracture, without a reduction in bone mineral density. It is hypothesised that the hyperglycaemic state caused by T2D forms an excess of Advanced Glycated End-products (AGEs) in the organic matrix of bone, which are thought to stiffen the collagen network and lead to impaired mechanical properties. However, the mechanisms are not well understood. This study aimed to investigate the geometrical, structural and material properties of diabetic cortical bone during the development and progression of T2D in ZDF (fa/fa) rats at 12-, 26- and 46-weeks of age. Longitudinal bone growth was impaired as early as 12-weeks of age and by 46-weeks bone size was significantly reduced in ZDF (fa/fa) rats versus controls (fa/+). Diabetic rats had significant structural deficits, such as bending rigidity, ultimate moment and energy-to-failure measured via three-point bend testing. Tissue material properties, measured by taking bone geometry into account, were altered as the disease progressed, with significant reductions in yield and ultimate strength for ZDF (fa/fa) rats at 46-weeks. FTIR analysis on cortical bone powder demonstrated that the tissue material deficits coincided with changes in tissue composition, in ZDF (fa/fa) rats with long-term diabetes having a reduced carbonate:phosphate ratio and increased acid phosphate content when compared to age-matched controls, indicative of an altered bone turnover process. AGE accumulation, measured via fluorescent assays, was higher in the skin of ZDF (fa/fa) rats with long-term T2D, bone AGEs did not differ between strains and neither AGEs correlated with bone strength. In conclusion, bone fragility in the diabetic ZDF (fa/fa) rats likely occurs through a multifactorial mechanism influenced initially by impaired bone growth and development and proceeding to an altered bone turnover process that reduces bone quality and impairs biomechanical properties as the disease progresses.
Collapse
Affiliation(s)
- Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Jessica Schiavi-Tritz
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR, 7274 Nancy, France
| | - Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Heilbronner AK, Dash A, Straight BE, Snyder LJ, Ganesan S, Adu KB, Jae A, Clare S, Billings E, Kim HJ, Cunningham M, Lebl DR, Donnelly E, Stein EM. Peripheral cortical bone density predicts vertebral bone mineral properties in spine fusion surgery patients. Bone 2023; 169:116678. [PMID: 36646265 PMCID: PMC10081687 DOI: 10.1016/j.bone.2023.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Spine fusion surgery is one of the most common orthopedic procedures, with over 400,000 performed annually to correct deformities and pain. However, complications occur in approximately one third of cases. While many of these complications may be related to poor bone quality, it is difficult to detect bone abnormalities prior to surgery. Areal BMD (aBMD) assessed by DXA may be artifactually high in patients with spine pathology, leading to missed diagnosis of deficits. In this study, we related preoperative imaging characteristics of both central and peripheral sites to direct measurements of bone quality in vertebral biopsies. We hypothesized that pre-operative imaging outcomes would relate to vertebral bone mineralization and collagen properties. Pre-operative assessments included DXA measurements of aBMD of the spine, hip, and forearm, central quantitative computed tomography (QCT) of volumetric BMD (vBMD) at the lumbar spine, and high resolution peripheral quantitative computed tomography (HRpQCT; Xtreme CT2) measurements of vBMD and microarchitecture at the distal radius and tibia. Bone samples were collected intraoperatively from the lumbar vertebrae and analyzed using Fourier-transform Infrared (FTIR) spectroscopy. Bone samples were obtained from 23 postmenopausal women (mean age 67 ± 7 years, BMI 28 ± 8 kg/m2). We found that patients with more mature bone by FTIR, measured as lower acid phosphate content and carbonate to phosphate ratio, and greater collagen maturity and mineral maturity/crystallinity (MMC), had greater cortical vBMD at the tibia and greater aBMD at the lumbar spine and one-third radius. Our data suggests that bone quality at peripheral sites may predict bone quality at the spine. As bone quality at the spine is challenging to assess prior to surgery, there is a great need for additional screening tools. Pre-operative peripheral bone imaging may provide important insight into vertebral bone quality and may foster identification of patients with bone quality deficits.
Collapse
Affiliation(s)
- Alison K Heilbronner
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Alexander Dash
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Beth E Straight
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Leah J Snyder
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Sandhya Ganesan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Kobby B Adu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Andy Jae
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America
| | - Shannon Clare
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Emma Billings
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Han Jo Kim
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Matthew Cunningham
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Darren R Lebl
- Spine Service, Hospital for Special Surgery, New York, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research Institute, Hospital for Special Surgery, New York, NY, United States of America
| | - Emily M Stein
- Division of Endocrinology, Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
7
|
Yildirim G, Budell W, Berezovska O, Yagerman S, Maliath S, Mastrokostas P, Tommasini S, Dowd T. Lead induced differences in bone properties in osteocalcin +/+ and −/− female mice. Bone Rep 2023; 18:101672. [PMID: 37064000 PMCID: PMC10090701 DOI: 10.1016/j.bonr.2023.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Lead (Pb) toxicity is a major health problem and bone is the major reservoir. Lead is detrimental to bone, affects bone remodeling and is associated with elderly fractures. Osteocalcin (OC) affects bone remodeling, improves fracture resistance and decreases with age and in some diseases. The effect of lead in osteocalcin depleted bone is unknown and of interest. We compared bone mineral properties of control and Pb exposed (from 2 to 6 months) femora from female adult C57BL6 OC+/+ and OC-/- mice using Fourier Transform Infrared Imaging (FTIRI), Micro-computed tomography (uCT), bone biomechanical measurements and serum turnover markers (P1NP, CTX). Lead significantly increased turnover in OC+/+ and in OC-/- bones producing increased total volume, area and marrow area/total area with decreased BV/TV compared to controls. The increased turnover decreased mineral/matrix vs. Oc+/+ and increased mineral/matrix and crystallinity vs. OC-/-. PbOC-/- had increased bone formation, cross-sectional area (Imin) and decreased collagen maturity compared OC-/- and PbOC+/+. Imbalanced turnover in PbOC-/- confirmed the role of osteocalcin as a coupler of formation and resorption. Bone strength and stiffness were reduced in OC-/- and PbOC-/- due to reduced material properties vs. OC+/+ and PbOC+/+ respectively. The PbOC-/- bones had increased area to compensate for weaker material properties but were not proportionally stronger for increased size. However, at low lead levels osteocalcin plays the major role in bone strength suggesting increased fracture risk in low Pb2+ exposed elderly could be due to reduced osteocalcin as well. Years of low lead exposure or higher blood lead levels may have an additional effect on bone strength.
Collapse
Affiliation(s)
- G. Yildirim
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - W.C. Budell
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - O. Berezovska
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - S. Yagerman
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - S.S. Maliath
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - P. Mastrokostas
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - S. Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - T.L. Dowd
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Corresponding author at: Department of Chemistry, Rm. 359 NE, Brooklyn College of the City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| |
Collapse
|
8
|
Hassan MAM, Mohammed AH, Hamzh ZK. Potential Role of Laser Therapy on Scaffold Implantation for Osteogenesis and Regeneration with Microbial Protection. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Etch-mineralizing treatment to improve dentin bonding. J Dent 2022; 126:104305. [PMID: 36174766 DOI: 10.1016/j.jdent.2022.104305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the effect of etch-mineralizing solution as a dentin treatment agent on dentin bonding. METHODS This study designed four kinds of etch-mineralizing solutions (EMs) by adding sodium fluoride in 35% phosphoric acid aqueous solution with four different concentrations (5, 10, 20, and 30 mg/ml), and named F1, F2, F3 and F4, respectively. 35% phosphoric acid gel treatment was the control group. SEM, EDS, FTIR and microhardness tests were performed on the treated dentin. Shear bond strength was measured before and after aging. Nanoleakage was also evaluated. Fracture mode was researched after SBS testing. The antibacterial properties of treated dentin were also investigated through live/dead staining of biofilms. RESULTS The smear layer was removed and mineralization substances were observed on the dentin surface and tubule, and no obvious collagen fibers were observed compared with the control group. FTIR spectrums showed that the ratios of phosphate/collagen on EMs treated dentin surfaces were significantly increased (P<0.05). F2 group had the highest bonding strength (32.14±7.33 MPa) and microhardness (66.08±10.58), while the control group had the lowest bonding strength (21.81±4.03 MPa) and microhardness (42.34±7.08) (p<0.05), and excellent bonding strength caused the more cohesive fracture. Experimental groups showed less nanoleakage than group C (P<0.05). Moreover, experimental groups had better antiaging performance and antibacterial properties than the control group (p<0.05). CONCLUSION EMs treatment not only improved dentin bonding and antibacterial ability, but also remineralized dentin with autologous mineral elements. CLINICAL SIGNIFICANCE The treatment provides a novel therapeutic strategy for obtaining ideal dentin bonding strength and prolonging the longevity of the restoration.
Collapse
|
10
|
Cañas-Gutiérrez A, Arboleda-Toro D, Monsalve-Vargas T, Castro-Herazo C, Meza-Meza J. Techniques for Bone Assessment and Characterization: Porcine Hard Palate Case Study. Heliyon 2022; 8:e09626. [PMID: 35711972 PMCID: PMC9192817 DOI: 10.1016/j.heliyon.2022.e09626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022] Open
Abstract
The hard palate plate has an important structural function that separates the nasal cavity and the nasopharynx. Incomplete regeneration of palatal fistulae in children with a cleft palate deformity after primary palatoplasty is a relatively common complication. To date, the information about the physicochemical bone features of this region is deficient, due to the low availability of human samples. Swine and human bone share anatomical similarities. Specifically, pig bones are widely used as experimental animal models in dental, orthopedic, or surgical techniques. The aim of this study was to show different techniques to evaluate and characterize alternative properties of pig hard palate bone, compared to commercial hydroxyapatite, one of the most used biomaterials for bone tissue regeneration. Chemical analyses by Energy dispersive spectroscopy (EDS) and X-ray fluorescence (XRF) showed calcium and phosphate ions as the main constituents of bone, while magnesium, iron, sodium, potassium, and zinc ions were minor constituents. The calcium phosphate molar ratio (Ca/P) in the bone was low (1.1 ± 0.2) due to the very young specimen sample used. The FTIR spectrum shows the presence of phosphates ions (PO43-) and the main characteristics of collagen type I. The XRD results showed that the hard palate bone has a mixture of calcium, octacalcium dihydrogen phosphate (OCP), and apatite, where OCP is the predominant phase. Besides, this research demonstrated that the young bone has low crystallinity and small crystal size compared with commercial hydroxyapatite (HA). The palatine process of maxilla density and porosity data reported, suggest that the palate bone is getting closer to the compact bone with a 52.78 ± 2.91% porosity and their mechanical properties depend on the preparation conditions and the area of the bone analyzed.
Collapse
|
11
|
Eusemann BK, Ulrich R, Sanchez-Rodriguez E, Benavides-Reyes C, Dominguez-Gasca N, Rodriguez-Navarro AB, Petow S. Bone quality and composition are influenced by egg production, layer line, and estradiol-17ß in laying hens. Avian Pathol 2022; 51:267-282. [PMID: 35261302 DOI: 10.1080/03079457.2022.2050671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Keel bone fractures are a serious animal welfare problem in laying hens. The aim of the current study was to assess the influence of egg production, estradiol-17ß, and selection for high laying performance on bone quality. Hens of two layer lines differing in laying performance (WLA: 320 eggs per year, G11: 200 eggs per year) were allocated to four treatment groups. Group S received a deslorelin acetate implant that suppressed egg production. Group E received an implant with the sexual steroid estradiol-17ß. Group SE received both implants and group C did not receive any implant. In the 63rd week of age, composition and characteristics of the tibiotarsi were assessed using histological analysis, three-point bending test, thermogravimetric analysis, infrared spectroscopy, and two-dimensional X-ray diffraction, respectively. Non-egg laying hens showed a higher total bone area and a higher relative amount of cortical bone compared to egg laying hens. Hens of layer line G11 showed a higher relative amount of medullary bone and a higher degree of mineralization of the cortical bone compared to hens of layer line WLA. These differences in bone composition may explain different susceptibility for keel bone fractures in non-egg laying compared to egg laying hens as well as in hens of layer lines differing in laying performance. The effect of exogenous estradiol-17ß on bone parameters varied between the layer lines indicating a genetic influence on bone physiology and the way it can be modulated by hormone substitution.
Collapse
Affiliation(s)
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Germany
| | | | | | | | | | - Stefanie Petow
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| |
Collapse
|
12
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
13
|
Nakai K, Yamamoto K, Kishida T, Kotani SI, Sato Y, Horiguchi S, Yamanobe H, Adachi T, Boschetto F, Marin E, Zhu W, Akiyoshi K, Yamamoto T, Kanamura N, Pezzotti G, Mazda O. Osteogenic Response to Polysaccharide Nanogel Sheets of Human Fibroblasts After Conversion Into Functional Osteoblasts by Direct Phenotypic Cell Reprogramming. Front Bioeng Biotechnol 2021; 9:713932. [PMID: 34540813 PMCID: PMC8446423 DOI: 10.3389/fbioe.2021.713932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Human dermal fibroblasts (HDFs) were converted into osteoblasts using a ALK inhibitor II (inhibitor of transforming growth factor-β signal) on freeze-dried nanogel-cross-linked porous (FD-NanoClip) polysaccharide sheets or fibers. Then, the ability of these directly converted osteoblasts (dOBs) to produce calcified substrates and the expression of osteoblast genes were analyzed in comparison with osteoblasts converted by exactly the same procedure but seeded onto a conventional atelocollagen scaffold. dOBs exposed to FD-NanoClip in both sheet and fiber morphologies produced a significantly higher concentration of calcium deposits as compared to a control cell sample (i.e., unconverted fibroblasts), while there was no statistically significant difference in calcification level between dOBs exposed to atelocollagen sheets and the control group. The observed differences in osteogenic behaviors were interpreted according to Raman spectroscopic analyses comparing different polysaccharide scaffolds and Fourier transform infrared spectroscopy analyses of dOB cultures. This study substantiates a possible new path to repair large bone defects through a simplified transplantation procedure using FD-NanoClip sheets with better osteogenic outputs as compared to the existing atelocollagen scaffolding material.
Collapse
Affiliation(s)
- Kei Nakai
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shin-Ichiro Kotani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Sato
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Horiguchi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hironaka Yamanobe
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Giuseppe Pezzotti
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int J Mol Sci 2021; 22:7724. [PMID: 34299344 PMCID: PMC8306037 DOI: 10.3390/ijms22147724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.
Collapse
Affiliation(s)
- Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
- University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| |
Collapse
|
15
|
Taylor EA, Mileti CJ, Ganesan S, Kim JH, Donnelly E. Measures of Bone Mineral Carbonate Content and Mineral Maturity/Crystallinity for FT-IR and Raman Spectroscopic Imaging Differentially Relate to Physical-Chemical Properties of Carbonate-Substituted Hydroxyapatite. Calcif Tissue Int 2021; 109:77-91. [PMID: 33710382 DOI: 10.1007/s00223-021-00825-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Bone mineral carbonate content assessed by vibrational spectroscopy relates to fracture incidence, and mineral maturity/ crystallinity (MMC) relates to tissue age. As FT-IR and Raman spectroscopy become more widely used to characterize the chemical composition of bone in pre-clinical and translational studies, their bone mineral outcomes require improved validation to inform interpretation of spectroscopic data. In this study, our objectives were (1) to relate Raman and FT-IR carbonate:phosphate ratios calculated through direct integration of peaks to gold-standard analytical measures of carbonate content and underlying subband ratios; (2) to relate Raman and FT-IR MMC measures to gold-standard analytical measures of crystal size in chemical standards and native bone powders. Raman and FT-IR direct integration carbonate:phosphate ratios increased with carbonate content (Raman: p < 0.01, R2 = 0.87; FT-IR: p < 0.01, R2 = 0.96) and Raman was more sensitive to carbonate content than the FT-IR (Raman slope + 95% vs FT-IR slope, p < 0.01). MMC increased with crystal size for both Raman and FT-IR (Raman: p < 0.01, R2 = 0.76; FT-IR p < 0.01, R2 = 0.73) and FT-IR was more sensitive to crystal size than Raman (c-axis length: slope FT-IR MMC + 111% vs Raman MMC, p < 0.01). Additionally, FT-IR but not Raman spectroscopy detected differences in the relationship between MMC and crystal size of carbonated hydroxyapatite (CHA) vs poorly crystalline hydroxyapatites (HA) (slope CHA + 87% vs HA, p < 0.01). Combined, these results contribute to the ability of future studies to elucidate the relationships between carbonate content and fracture and provide insight to the strengths and limitations of FT-IR and Raman spectroscopy of native bone mineral.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Cassidy J Mileti
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sandhya Ganesan
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA
| | - Joo Ho Kim
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA
| | - Eve Donnelly
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA.
- Research Division, Hospital for Special Surgery, New York, NY, 10021, USA.
| |
Collapse
|
16
|
Sihota P, Yadav RN, Dhaliwal R, Bose JC, Dhiman V, Neradi D, Karn S, Sharma S, Aggarwal S, Goni VG, Mehandia V, Vashishth D, Bhadada SK, Kumar N. Investigation of Mechanical, Material, and Compositional Determinants of Human Trabecular Bone Quality in Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e2271-e2289. [PMID: 33475711 DOI: 10.1210/clinem/dgab027] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Increased bone fragility and reduced energy absorption to fracture associated with type 2 diabetes (T2D) cannot be explained by bone mineral density alone. This study, for the first time, reports on alterations in bone tissue's material properties obtained from individuals with diabetes and known fragility fracture status. OBJECTIVE To investigate the role of T2D in altering biomechanical, microstructural, and compositional properties of bone in individuals with fragility fracture. METHODS Femoral head bone tissue specimens were collected from patients who underwent replacement surgery for fragility hip fracture. Trabecular bone quality parameters were compared in samples of 2 groups, nondiabetic (n = 40) and diabetic (n = 30), with a mean duration of disease 7.5 ± 2.8 years. RESULTS No significant difference was observed in aBMD between the groups. Bone volume fraction (BV/TV) was lower in the diabetic group due to fewer and thinner trabeculae. The apparent-level toughness and postyield energy were lower in those with diabetes. Tissue-level (nanoindentation) modulus and hardness were lower in this group. Compositional differences in the diabetic group included lower mineral:matrix, wider mineral crystals, and bone collagen modifications-higher total fluorescent advanced glycation end-products (fAGEs), higher nonenzymatic cross-link ratio (NE-xLR), and altered secondary structure (amide bands). There was a strong inverse correlation between NE-xLR and postyield strain, fAGEs and postyield energy, and fAGEs and toughness. CONCLUSION The current study is novel in examining bone tissue in T2D following first hip fragility fracture. Our findings provide evidence of hyperglycemia's detrimental effects on trabecular bone quality at multiple scales leading to lower energy absorption and toughness indicative of increased propensity to bone fragility.
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ruban Dhaliwal
- Metabolic Bone Disease Center, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Jagadeesh Chandra Bose
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Neradi
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shailesh Karn
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sidhartha Sharma
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vijay G Goni
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishwajeet Mehandia
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
17
|
Chiou AE, Hinckley JA, Khaitan R, Varsano N, Wang J, Malarkey HF, Hernandez CJ, Williams RM, Estroff LA, Weiner S, Addadi L, Wiesner UB, Fischbach C. Fluorescent Silica Nanoparticles to Label Metastatic Tumor Cells in Mineralized Bone Microenvironments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001432. [PMID: 32462807 PMCID: PMC7704907 DOI: 10.1002/smll.202001432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/05/2023]
Abstract
During breast cancer bone metastasis, tumor cells interact with bone microenvironment components including inorganic minerals. Bone mineralization is a dynamic process and varies spatiotemporally as a function of cancer-promoting conditions such as age and diet. The functional relationship between skeletal dissemination of tumor cells and bone mineralization, however, is unclear. Standard histological analysis of bone metastasis frequently relies on prior demineralization of bone, while methods that maintain mineral are often harsh and damage fluorophores commonly used to label tumor cells. Here, fluorescent silica nanoparticles (SNPs) are introduced as a robust and versatile labeling strategy to analyze tumor cells within mineralized bone. SNP uptake and labeling efficiency of MDA-MB-231 breast cancer cells is characterized with cryo-scanning electron microscopy and different tissue processing methods. Using a 3D in vitro model of marrow-containing, mineralized bone as well as an in vivo model of bone metastasis, SNPs are demonstrated to allow visualization of labeled tumor cells in mineralized bone using various imaging modalities including widefield, confocal, and light sheet microscopy. This work suggests that SNPs are valuable tools to analyze tumor cells within mineralized bone using a broad range of bone processing and imaging techniques with the potential to increase the understanding of bone metastasis.
Collapse
Affiliation(s)
- Aaron E Chiou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua A Hinckley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rupal Khaitan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Neta Varsano
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jonathan Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Henry F Malarkey
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher J Hernandez
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Rebecca M Williams
- Biotechnology Resource Center Imaging Facility, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Hunt HB, Miller NA, Hemmerling KJ, Koga M, Lopez KA, Taylor EA, Sellmeyer DE, Moseley KF, Donnelly E. Bone Tissue Composition in Postmenopausal Women Varies With Glycemic Control From Normal Glucose Tolerance to Type 2 Diabetes Mellitus. J Bone Miner Res 2021; 36:334-346. [PMID: 32970898 DOI: 10.1002/jbmr.4186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The risk of fragility fracture increases for people with type 2 diabetes mellitus (T2DM), even after controlling for bone mineral density, body mass index, visual impairment, and falls. We hypothesize that progressive glycemic derangement alters microscale bone tissue composition. We used Fourier-transform infrared (FTIR) imaging to analyze the composition of iliac crest biopsies from cohorts of postmenopausal women characterized by oral glucose tolerance testing: normal glucose tolerance (NGT; n = 35, age = 65 ± 7 years, HbA1c = 5.8 ± 0.3%), impaired glucose tolerance (IGT; n = 26, age = 64 ± 5 years, HbA1c = 6.0 ± 0.4%), and overt T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.13 ± 0.6). The distributions of cortical bone mineral content had greater mean values (+7%) and were narrower (-10%) in T2DM versus NGT groups (p < 0.05). The distributions of acid phosphate, an indicator of new mineral, were narrower in cortical T2DM versus NGT and IGT groups (-14% and -14%, respectively) and in trabecular NGT and IGT versus T2DM groups (-11% and -10%, respectively) (all p < 0.05). The distributions of crystallinity were wider in cortical NGT versus T2DM groups (+16%) and in trabecular NGT versus T2DM groups (+14%) (all p < 0.05). Additionally, bone turnover was lower in T2DM versus NGT groups (P1NP: -25%, CTx: -30%, ucOC: -24%). Serum pentosidine was similar across groups. The FTIR compositional and biochemical marker values of the IGT group typically fell between the NGT and T2DM group values, although the differences were not always statistically significant. In summary, worsening glycemic control was associated with greater mineral content and narrower distributions of acid phosphate, an indicator of new mineral, which together are consistent with observations of lower turnover; however, wider distributions of mineral crystallinity were also observed. A more mineralized, less heterogeneous tissue may affect tissue-level mechanical properties and in turn degrade macroscale skeletal integrity. In conclusion, these data are the first evidence of progressive alteration of bone tissue composition with worsening glycemic control in humans. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Nicholas A Miller
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Kimberly J Hemmerling
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Maho Koga
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Kelsie A Lopez
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Erik A Taylor
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, USA
| | - Deborah E Sellmeyer
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kendall F Moseley
- Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
19
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
20
|
Sihota P, Yadav RN, Poleboina S, Mehandia V, Bhadada SK, Tikoo K, Kumar N. Development of HFD-Fed/Low-Dose STZ-Treated Female Sprague-Dawley Rat Model to Investigate Diabetic Bone Fragility at Different Organization Levels. JBMR Plus 2020; 4:e10379. [PMID: 33103024 PMCID: PMC7574700 DOI: 10.1002/jbm4.10379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/31/2020] [Indexed: 01/11/2023] Open
Abstract
Type 2 diabetes (T2D) adversely affects the normal functioning, intrinsic material properties, and structural integrity of many tissues, and bone fragility is one of them. To simulate human T2D and to investigate diabetic bone fragility, many rodent diabetic models have been developed. Still, an outbred genetically normal nonobese diabetic rat model is not available that can better simulate the disease characteristics of nonobese T2D patients, who have a high prevalence in Asia. In this study, we used a combination treatment of high-fat diet (4 weeks, 58% kcal as fat) and low-dose streptozotocin (STZ; 35 mg/kg i.p. at the end of the fourth week) to develop T2D in female Sprague-Dawley (SD) rats. After 8 weeks of the establishment of the T2D model, the femoral bones were excised after euthanizing rats (animal age approximately 21 to 22 weeks; n = 10 with T2D, n = 10 without diabetes). The bone microstructure (μCT), mechanical, and material properties (three-point bending, cyclic reference point indentation, nanoindentation), mean mineral crystallite size (XRD), bone composition (mineral-to-matrix ratio, nonenzymatic cross-link ratio [NE-xLR], Fourier transform-infrared microspectroscopy), and total fluorescent advanced glycation end products were analyzed. We found that diabetic bone had reduced whole-bone strength and compromised structural properties (μCT). The NE-xLRs were elevated in the T2D group, and strongly and negatively correlated with postyield displacement, which suggests bone fragility was caused by a lack of glycation control. Along with that, the decreased mineral-to-matrix ratio and modulus, increased indentation distance increase, and wider mineral crystallite size in the T2D group were evidence that the diabetic bone composition and material properties had changed, and bone became weaker with a tendency to easily fracture. Altogether, this model simulates the natural history and metabolic characteristics of late-stage T2D (insulin resistance and as disease progress develops, hypoinsulinemia) for nonobese young (and/or adolescent) T2D patients (Asians) and provides potential evidence of diabetic bone fragility at various organization levels. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| | - Ram Naresh Yadav
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| | - Sumathi Poleboina
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and ResearchMohaliIndia
| | - Vishwajeet Mehandia
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| | - Sanjay Kumar Bhadada
- Department of EndocrinologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Kulbhushan Tikoo
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and ResearchMohaliIndia
| | - Navin Kumar
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| |
Collapse
|
21
|
Taylor EA, Donnelly E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone 2020; 139:115490. [PMID: 32569874 DOI: 10.1016/j.bone.2020.115490] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research division, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
22
|
Bayarı SH, Özdemir K, Sen EH, Araujo-Andrade C, Erdal YS. Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118311. [PMID: 32330809 DOI: 10.1016/j.saa.2020.118311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Examining diagenetic parameters such as the organic carbonate contents and the crystallinity of bone apatite quantify the post-mortem alteration of bone. Burial conditions are one of the factors that can influence the diagenesis process. We studied the changes to the organic and mineral components and crystallinity of human bone remains from five Medieval sites in Turkey: Hakemi Use, Komana, İznik, Oluz Höyük and Tasmasor using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and principal component analysis (PCA). Analysis of spectral band ratios related to organic and mineral components of bone demonstrated differences in the molecular content in the skeletal remains from the five sites. In order to examine the degree of carbonation of a phosphate matrix, curve-fitting procedures were applied to the carbonate band. We found that the infrared crystallinity index appears to not be sensitive to carbonate content at room temperature for the bone remains studied here. The recrystallization process in bone remains behaved differently among the archaeological sites. The results demonstrate that the burial environments differently affect the organic and mineral components of archaeological bone remains.
Collapse
Affiliation(s)
- Sevgi Haman Bayarı
- Hacettepe University, Department of Physics Eng., 06800 Beytepe-Ankara, Turkey.
| | - Kameray Özdemir
- Hacettepe University, Department of Anthropology, 06800 Beytepe-Ankara, Turkey
| | - Elif Hilal Sen
- Hacettepe University, Department of Physics Eng., 06800 Beytepe-Ankara, Turkey
| | | | - Yılmaz Selim Erdal
- Hacettepe University, Department of Anthropology, 06800 Beytepe-Ankara, Turkey; Hacettepe University Skeletal Biology Lab (Husbio_l), 06800 Ankara, Turkey
| |
Collapse
|
23
|
Gitajn IL, Slobogean GP, Henderson ER, von Keudell AG, Harris MB, Scolaro JA, O’Hara NN, Elliott JT, Pogue BW, Jiang S. Perspective on optical imaging for functional assessment in musculoskeletal extremity trauma surgery. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200070-PER. [PMID: 32869567 PMCID: PMC7457961 DOI: 10.1117/1.jbo.25.8.080601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Extremity injury represents the leading cause of trauma hospitalizations among adults under the age of 65 years, and long-term impairments are often substantial. Restoring function depends, in large part, on bone and soft tissue healing. Thus, decisions around treatment strategy are based on assessment of the healing potential of injured bone and/or soft tissue. However, at the present, this assessment is based on subjective clinical clues and/or cadaveric studies without any objective measure. Optical imaging is an ideal method to solve several of these issues. AIM The aim is to highlight the current challenges in assessing bone and tissue perfusion/viability and the potentially high impact applications for optical imaging in orthopaedic surgery. APPROACH The prospective will review the current challenges faced by the orthopaedic surgeon and briefly discuss optical imaging tools that have been published. With this in mind, it will suggest key research areas that could be evolved to help make surgical assessments more objective and quantitative. RESULTS Orthopaedic surgical procedures should benefit from incorporation of methods to measure functional blood perfusion or tissue metabolism. The types of measurements though can vary in the depth of tissue sampled, with some being quite superficial and others sensing several millimeters into the tissue. Most of these intrasurgical imaging tools represent an ideal way to improve surgical treatment of orthopaedic injuries due to their inherent point-of-care use and their compatibility with real-time management. CONCLUSION While there are several optical measurements to directly measure bone function, the choice of tools can determine also the signal strength and depth of sampling. For orthopaedic surgery, real-time data regarding bone and tissue perfusion should lead to more effective patient-specific management of common orthopaedic conditions, requiring deeper penetrance commonly seen with indocyanine green imaging. This will lower morbidity and result in decreased variability associated with how these conditions are managed.
Collapse
Affiliation(s)
- Ida L. Gitajn
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Gerard P. Slobogean
- University of Maryland, Orthopaedic Associates, Baltimore, Maryland, United States
| | - Eric R. Henderson
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Arvind G. von Keudell
- Brigham and Women’s Hospital, Department of Orthopaedic Surgery, Boston, Massachusetts, United States
| | - Mitchel B. Harris
- Massachusetts General Hospital, Department of Orthopaedic Surgery, Boston, Massachusetts, United States
| | - John A. Scolaro
- University of California, Irvine, Department of Orthopaedic Surgery, Orange, California, United States
| | - Nathan N. O’Hara
- University of Maryland, Orthopaedic Associates, Baltimore, Maryland, United States
| | - Jonathan T. Elliott
- Dartmouth-Hitchcock Medical Center, Department of Surgery, Lebanon, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| |
Collapse
|
24
|
Taylor EA, Donnelly E, Yao X, Johnson ML, Amugongo SK, Kimmel DB, Lane NE. Sequential Treatment of Estrogen Deficient, Osteopenic Rats with Alendronate, Parathyroid Hormone (1-34), or Raloxifene Alters Cortical Bone Mineral and Matrix Composition. Calcif Tissue Int 2020; 106:303-314. [PMID: 31784772 DOI: 10.1007/s00223-019-00634-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah K Amugongo
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA.
- Health Center, University of California At Davis, 4625 Second Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
25
|
De Koning DJ, Dominguez-Gasca N, Fleming RH, Gill A, Kurian D, Law A, McCormack HA, Morrice D, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Preisinger R, Schmutz M, Šmídová V, Turner F, Wilson PW, Zhou R, Dunn IC. An eQTL in the cystathionine beta synthase gene is linked to osteoporosis in laying hens. Genet Sel Evol 2020; 52:13. [PMID: 32093603 PMCID: PMC7038551 DOI: 10.1186/s12711-020-00532-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal damage is a challenge for laying hens because the physiological adaptations required for egg laying make them susceptible to osteoporosis. Previously, we showed that genetic factors explain 40% of the variation in end of lay bone quality and we detected a quantitative trait locus (QTL) of large effect on chicken chromosome 1. The aim of this study was to combine data from the commercial founder White Leghorn population and the F2 mapping population to fine-map this QTL and understand its function in terms of gene expression and physiology. RESULTS Several single nucleotide polymorphisms on chromosome 1 between 104 and 110 Mb (galGal6) had highly significant associations with tibial breaking strength. The alternative genotypes of markers of large effect that flanked the region had tibial breaking strengths of 200.4 vs. 218.1 Newton (P < 0.002) and, in a subsequent founder generation, the higher breaking strength genotype was again associated with higher breaking strength. In a subsequent generation, cortical bone density and volume were increased in individuals with the better bone genotype but with significantly reduced medullary bone quality. The effects on cortical bone density were confirmed in a further generation and was accompanied by increased mineral maturity of the cortical bone as measured by infrared spectrometry and there was evidence of better collagen cross-linking in the cortical bone. Comparing the transcriptome of the tibia from individuals with good or poor bone quality genotypes indicated four differentially-expressed genes at the locus, one gene, cystathionine beta synthase (CBS), having a nine-fold higher expression in the genotype for low bone quality. The mechanism was cis-acting and although there was an amino-acid difference in the CBS protein between the genotypes, there was no difference in the activity of the enzyme. Plasma homocysteine concentration, the substrate of CBS, was higher in the poor bone quality genotype. CONCLUSIONS Validated markers that predict bone strength have been defined for selective breeding and a gene was identified that may suggest alternative ways to improve bone health in addition to genetic selection. The identification of how genetic variants affect different aspects of bone turnover shows potential for translational medicine.
Collapse
Affiliation(s)
| | | | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Gill
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,School of Chemistry, The University of Lincoln, Lincoln, LN6 7TS, England, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Law
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Heather A McCormack
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - David Morrice
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | | | | | - Veronica Šmídová
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Frances Turner
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Rongyan Zhou
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.
| |
Collapse
|
26
|
Correlation between Urine N-Terminal Telopeptide and Fourier Transform Infrared Spectroscopy Parameters: A Preliminary Study. J Osteoporos 2020; 2020:5725086. [PMID: 32095227 PMCID: PMC7036120 DOI: 10.1155/2020/5725086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
N-terminal telopeptide (NTX) is a bone resorption marker that is commonly referenced in clinical practice. Bone remodeling is also associated with changes in mineral components. Fourier transform infrared spectroscopy (FTIR) is utilized in the assessment of bone material properties and some parameters are reported to have associations with bone remodeling. The aim of this cross-sectional study is to investigate the relationship between uNTX levels and FTIR parameters, utilizing prospectively collected study data for patients who underwent lumbar fusion surgery. Bone specimens were taken from iliac crest (IC) and vertebrae (V). Cortical (C) and trabecular (T) bones were separately analyzed. 22 patients (mean age 60.0 years (35.9-73.3), male : female 9 : 13) were included in the final analysis. Women showed significantly higher uNTX levels (male : female, median [range] 21.0 [11.0-39.0] : 36.0 [15.0-74.0] nM·BCE/mM, p=0.033). Among women, a significant positive correlation was observed between uNTX and mineral-to-matrix ratio in IC-C. Among men, uNTX demonstrated significant negative correlation with collagen crosslinks (XLR: ratio of mature to immature collagen crosslinks) in IC-C, V-T, and V-C. In addition, uNTX was positively correlated with acid phosphate substitution (HPO4, a parameter of new bone formation) in IC-C, IC-T, and V-C. After age adjustment, HPO4 in IC-T and V-C among men showed significant positive associations with uNTX (IC-T: p=0.018, R 2 = 0.544; V-C: p=0.007, R 2 = 0.672). We found associations between FTIR parameters and uNTX in men, but not in women. The correlations between uNTX and FTIR parameters in men might suggest a better balance of bone breakdown (uNTX) and new bone formation (FTIR parameters: XLR, HPO4) than in women.
Collapse
|
27
|
Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers. Diagnostics (Basel) 2020; 10:diagnostics10020079. [PMID: 32023980 PMCID: PMC7168928 DOI: 10.3390/diagnostics10020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 01/19/2023] Open
Abstract
Accurate clinical evaluation of renal osteodystrophy (ROD) is currently accomplished using invasive in vivo transiliac bone biopsy, followed by in vitro histomorphometry. In this study, we demonstrate that an alternative method for ROD assessment is through a fast, label-free Raman recording of multiple biomarkers combined with computational analysis for predicting the minimally required number of spectra for sample classification at defined accuracies. Four clinically relevant biomarkers: the mineral-to-matrix ratio, the carbonate-to-matrix ratio, phenylalanine, and calcium contents were experimentally determined and simultaneously considered as input to a linear discriminant analysis (LDA). Additionally, sample evaluation was performed with a linear support vector machine (LSVM) algorithm, with a 300 variable input. The computed probabilities based on a single spectrum were only marginally different (~80% from LDA and ~87% from LSVM), both providing an unacceptable classification power for a correct sample assignment. However, the Type I and Type II assignment errors confirm that a relatively small number of independent spectra (7 spectra for Type I and 5 spectra for Type II) is necessary for a p < 0.05 error probability. This low number of spectra supports the practicality of future in vivo Raman translation for a fast and accurate ROD detection in clinical settings.
Collapse
|
28
|
Sanchez-Rodriguez E, Benavides-Reyes C, Torres C, Dominguez-Gasca N, Garcia-Ruiz AI, Gonzalez-Lopez S, Rodriguez-Navarro AB. Changes with age (from 0 to 37 D) in tibiae bone mineralization, chemical composition and structural organization in broiler chickens. Poult Sci 2020; 98:5215-5225. [PMID: 31265108 PMCID: PMC6771771 DOI: 10.3382/ps/pez363] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022] Open
Abstract
Broiler chickens have an extreme physiology (rapid growth rates) that challenges the correct bone mineralization, being an interesting animal model for studying the development of bone pathologies. This work studies in detail how the mineralization, chemistry, and structural organization of tibiae bone in broiler chickens change with age during the first 5 wk (37 D) from hatching until acquiring the final weight for slaughter. During the early growth phase (first 2 wk), the rapid addition of bone tissue does not allow for bone organic matrix to fully mineralize and mature, and seems to be a critical period for bone development at which bone mineralization cannot keep pace with the rapid growth of bones. The low degree of bone mineralization and large porosity of cortical bone at this period might be responsible of leg deformation and/or other skeletal abnormalities commonly observed in these birds. Later, cortical bone porosity gradually decreases and the cortical bone became fully mineralized (65%) at 37 D of age. At the same time, bone mineral acquires the composition of mature bone tissue (decreased amount of carbonate, higher crystallinity, Ca/P = 1.68). However, the mineral part was still poorly organized even at 37 D. The oriented fraction was about 0.45 which means that more than half of apatite crystals within the mineral are randomly oriented. Mineral organization (crystal orientation) had an important contribution to bone-breaking strength. Nevertheless, locally determined (at tibia mid-shaft) bone properties (i.e., cortical thickness, crystal orientation) has only a moderate correlation (R2 = 0.33) with bone breaking strength probably due to large and highly heterogeneous porosity of bone that acts as structural defects. On the other hand, the total amount of mineral (a global property) measured by total ash content was the best predictor for breaking strength (R2 = 0.49). Knowledge acquired in this study could help in designing strategies to improve bone quality and reduce the incidence of skeletal problems in broiler chickens that have important welfare and economic implications.
Collapse
Affiliation(s)
- Estefania Sanchez-Rodriguez
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain
| | - Cristina Benavides-Reyes
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain.,Departamento de Estomatología, Universidad de Granada, Campus Universitario de Cartuja, Colegio Máximo s/n, Granada 18071, Spain
| | - Cibele Torres
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, Toledo 45950, Spain
| | - Nazaret Dominguez-Gasca
- Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida de Fuentenueva s/n, Granada 18002, Spain
| | - Ana I Garcia-Ruiz
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, Toledo 45950, Spain
| | - Santiago Gonzalez-Lopez
- Departamento de Estomatología, Universidad de Granada, Campus Universitario de Cartuja, Colegio Máximo s/n, Granada 18071, Spain
| | | |
Collapse
|
29
|
Berezovska O, Yildirim G, Budell WC, Yagerman S, Pidhaynyy B, Bastien C, van der Meulen MCH, Dowd TL. Osteocalcin affects bone mineral and mechanical properties in female mice. Bone 2019; 128:115031. [PMID: 31401301 PMCID: PMC8243730 DOI: 10.1016/j.bone.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Osteocalcin is one of the most abundant noncollagenous proteins in bone. Phenotypes of osteocalcin knock-out mice (OC-/-) may vary on different backgrounds and with sex. Previous studies using adult female (OC-/-) mice on a mixed genetic background (129/B6) showed osteocalcin inhibited bone formation leading to weaker bone in wild-type (OC+/+). Yet on a pure (B6) genetic background male mice revealed osteocalcin improved fracture resistance and OC-/- bones were more prone to fracture. Osteocalcin is decreased with age and in some diseases (diabetes) where bone weakness is observed. The effect of osteocalcin in adult female bone from mice on a pure B6 background is unknown. We investigated differences in bone mineral properties and bone strength in female adult (6 months) (OC+/+) and (OC-/-) mice on a pure C57BL/6J background using Fourier Transform Infrared Imaging (FTIRI), micro-computed tomography (uCT), biomechanical measurements, histomorphometry and serum turnover markers (P1NP, CTX). Similar to female age matched mice on the (129/C57) background we found B6 OC-/- mice had a higher bone formation rate, no change in bone resorption, more immature mineral, decreased crystallinity and increased trabecular bone as compared to OC+/+. In contrast, the OC-/- mice on a pure B6 background had a lower bone mineral density, lower mineral to matrix ratio resulting in reduced stiffness and weaker bone strength. Our results demonstrate some properties of the OC-/- phenotype are dependent on genetic background. This may suggest that reduced osteocalcin may contribute to fracture and weaker bone in some groups of elderly and adults with diseases where osteocalcin is low.
Collapse
Affiliation(s)
- O Berezovska
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States of America
| | - G Yildirim
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States of America
| | - W C Budell
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, United States of America
| | - S Yagerman
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America; Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - B Pidhaynyy
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, United States of America
| | - C Bastien
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States of America
| | - M C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America; Research Division, Hospital for Special Surgery, NY, NY, United States of America; Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - T L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States of America; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States of America.
| |
Collapse
|
30
|
Hunt HB, Torres AM, Palomino PM, Marty E, Saiyed R, Cohn M, Jo J, Warner S, Sroga GE, King KB, Lane JM, Vashishth D, Hernandez CJ, Donnelly E. Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone From Men With Type 2 Diabetes Mellitus. J Bone Miner Res 2019; 34:1191-1206. [PMID: 30866111 PMCID: PMC6650336 DOI: 10.1002/jbmr.3711] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 01/07/2023]
Abstract
People with type 2 diabetes mellitus (T2DM) have normal-to-high BMDs, but, counterintuitively, have greater fracture risks than people without T2DM, even after accounting for potential confounders like BMI and falls. Therefore, T2DM may alter aspects of bone quality, including material properties or microarchitecture, that increase fragility independently of bone mass. Our objective was to elucidate the factors that influence fragility in T2DM by comparing the material properties, microarchitecture, and mechanical performance of cancellous bone in a clinical population of men with and without T2DM. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 31, age = 65 ± 8 years, HbA1c = 7.1 ± 0.9%; non-DM: n = 34, age = 62 ± 9 years, HbA1c = 5.5 ± 0.4%). The T2DM specimens had greater concentrations of the advanced glycation endproduct pentosidine (+ 36%, P < 0.05) and sugars bound to the collagen matrix (+ 42%, P < 0.05) than the non-DM specimens. The T2DM specimens trended toward a greater bone volume fraction (BV/TV) (+ 24%, NS, P = 0.13) and had greater mineral content (+ 7%, P < 0.05) than the non-DM specimens. Regression modeling of the mechanical outcomes revealed competing effects of T2DM on bone mechanical behavior. The trend of higher BV/TV values and the greater mineral content observed in the T2DM specimens increased strength, whereas the greater values of pentosidine in the T2DM group decreased postyield strain and toughness. The long-term medical management and presence of osteoarthritis in these patients may influence these outcomes. Nevertheless, our data indicate a beneficial effect of T2DM on cancellous microarchitecture, but a deleterious effect of T2DM on the collagen matrix. These data suggest that high concentrations of advanced glycation endproducts can increase fragility by reducing the ability of bone to absorb energy before failure, especially for the subset of T2DM patients with low BV/TV. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley M Torres
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Pablo M Palomino
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eric Marty
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rehan Saiyed
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Matthew Cohn
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Jonathan Jo
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Stephen Warner
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Grazyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Karen B King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.,Surgical Service/Orthopaedic Service, Rocky Mountain Veterans Affairs Regional Medical Center, Aurora, CO, USA
| | - Joseph M Lane
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Christopher J Hernandez
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
31
|
Abstract
Fourier transform infrared imaging (FTIRI) is a technique that can be used to analyze the material properties of bone using tissue sections. This chapter describes the basic principles of FTIR and the methods for capturing and analyzing FTIR images in bone sections.
Collapse
|
32
|
Ishimaru Y, Oshima Y, Imai Y, Iimura T, Takanezawa S, Hino K, Miura H. Raman Spectroscopic Analysis to Detect Reduced Bone Quality after Sciatic Neurectomy in Mice. Molecules 2018; 23:molecules23123081. [PMID: 30477282 PMCID: PMC6321365 DOI: 10.3390/molecules23123081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 01/07/2023] Open
Abstract
Bone mineral density (BMD) is a commonly used diagnostic indicator for bone fracture risk in osteoporosis. Along with low BMD, bone fragility accounts for reduced bone quality in addition to low BMD, but there is no diagnostic method to directly assess the bone quality. In this study, we investigated changes in bone quality using the Raman spectroscopic technique. Sciatic neurectomy (NX) was performed in male C57/BL6J mice (NX group) as a model of disuse osteoporosis, and sham surgery was used as an experimental control (Sham group). Eight months after surgery, we acquired Raman spectral data from the anterior cortical surface of the proximal tibia. We also performed a BMD measurement and micro-CT measurement to investigate the pathogenesis of osteoporosis. Quantitative analysis based on the Raman peak intensities showed that the carbonate/phosphate ratio and the mineral/matrix ratio were significantly higher in the NX group than in the Sham group. There was direct evidence of alterations in the mineral content associated with mechanical properties of bone. To fully understand the spectral changes, we performed principal component analysis of the spectral dataset, focusing on the matrix content. In conclusion, Raman spectroscopy provides reliable information on chemical changes in both mineral and matrix contents, and it also identifies possible mechanisms of disuse osteoporosis.
Collapse
Affiliation(s)
- Yasumitsu Ishimaru
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan.
| | - Yusuke Oshima
- Biomedical Optics Laboratory, Graduate School of Biomedical Engineering Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Miyagi, Japan.
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu City 879-5593, Oita, Japan.
- Oral-Maxillofacial Surgery and Orthodontics, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku 113-8655, Tokyo, Japan.
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Shitsukawa, Toon 791-0295, Ehime, Japan.
| | - Tadahiro Iimura
- Division of Bio-imaging, Proteo-Science Center, Ehime university graduate school of medicine, Shitsukawa, Toon 791-0295, Ehime, Japan.
- Division of Analytical Bio-Medicine, Advanced Research Support Center, Ehime University, Shitsukawa, Toon 791-0295, Ehime, Japan.
| | - Sota Takanezawa
- Molecular Medicine for Pathogenesis, Ehime university graduate school of medicine, Shitsukawa, Toon 791-0295, Ehime, Japan.
| | - Kazunori Hino
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan.
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan.
| |
Collapse
|
33
|
Hunt HB, Pearl JC, Diaz DR, King KB, Donnelly E. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes. J Bone Miner Res 2018; 33:921-929. [PMID: 29281127 PMCID: PMC5935591 DOI: 10.1002/jbmr.3365] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 11/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Jared C Pearl
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - David R Diaz
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Karen B King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.,Surgical Service/Orthopaedic Service, Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
34
|
Richards JM, Kunitake JA, Hunt HB, Wnorowski AN, Lin DW, Boskey AL, Donnelly E, Estroff LA, Butcher JT. Crystallinity of hydroxyapatite drives myofibroblastic activation and calcification in aortic valves. Acta Biomater 2018; 71:24-36. [PMID: 29505892 DOI: 10.1016/j.actbio.2018.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022]
Abstract
Calcific aortic valve disease (CAVD) is an inexorably degenerative pathology characterized by progressive calcific lesion formation on the valve leaflets. The interaction of valvular cells in advanced lesion environments is not well understood yet highly relevant as clinically detectable CAVD exhibits calcifications composed of non-stoichiometric hydroxyapatite (HA). In this study, Fourier transform infrared spectroscopic imaging was used to spatially analyze mineral properties as a function of disease progression. Crystallinity (size and perfection) increased with increased valve calcification. To study the relationship between crystallinity and cellular behavior in CAVD, valve cells were seeded into 3D mineral-rich collagen gels containing synthetic HA particles, which had varying crystallinities. Lower crystallinity HA drove myofibroblastic activation in both valve interstitial and endothelial cells, as well as osteoblastic differentiation in interstitial cells. Additionally, calcium accumulation within gels depended on crystallinity, and apoptosis was insufficient to explain differences in HA-driven cellular activity. The protective nature of endothelial cells against interstitial cell activation and calcium accumulation was completely inhibited in the presence of less crystalline HA particles. Elucidating valve cellular behavior post-calcification is of vital importance to better predict and treat clinical pathogenesis, and mineral-containing hydrogel models provide a unique 3D platform to evaluate valve cell responses to a later stage of valve disease. STATEMENT OF SIGNIFICANCE We implement a 3D in vitro platform with embedded hydroxyapatite (HA) nanoparticles to investigate the interaction between valve interstitial cells, valve endothelial cells, and a mineral-rich extracellular environment. HA nanoparticles were synthesized based on analysis of the mineral properties of calcific regions of diseased human aortic valves. Our findings indicate that crystallinity of HA drives activation and differentiation in interstitial and endothelial cells. We also show that a mineralized environment blocks endothelial protection against interstitial cell calcification. Our HA-containing hydrogel model provides a unique 3D platform to evaluate valve cell responses to a mineralized ECM. This study additionally lays the groundwork to capture the diversity of mineral properties in calcified valves, and link these properties to progression of the disease.
Collapse
|
35
|
Ciubuc JD, Manciu M, Maran A, Yaszemski MJ, Sundin EM, Bennet KE, Manciu FS. Raman Spectroscopic and Microscopic Analysis for Monitoring Renal Osteodystrophy Signatures. BIOSENSORS-BASEL 2018; 8:bios8020038. [PMID: 29642494 PMCID: PMC6022865 DOI: 10.3390/bios8020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
Defining the pathogenesis of renal osteodystrophy (ROD) and its treatment efficacy are difficult, since many factors potentially affect bone quality. In this study, confocal Raman microscopy and parallel statistical analysis were used to identify differences in bone composition between healthy and ROD bone tissues through direct visualization of three main compositional parametric ratios, namely, calcium content, mineral-to-matrix, and carbonate-to-matrix. Besides the substantially lower values found in ROD specimens for these representative ratios, an obvious accumulation of phenylalanine is Raman spectroscopically observed for the first time in ROD samples and reported here. Thus, elevated phenylalanine could also be considered as an indicator of the disease. Since the image results are based on tens of thousands of spectra per sample, not only are the average ratios statistically significantly different for normal and ROD bone, but the method is clearly powerful in distinguishing between the two types of samples. Furthermore, the statistical outcomes demonstrate that only a relatively small number of spectra need to be recorded in order to classify the samples. This work thus opens the possibility of future development of in vivo Raman sensors for assessment of bone structure, remodeling, and mineralization, where different biomarkers are simultaneously detected with unprecedented accuracy.
Collapse
Affiliation(s)
- John D Ciubuc
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Marian Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Avudaiappan Maran
- Department of Orthopedic Surgery and Biomaterials and Histomorphometry Core Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | - Michael J Yaszemski
- Department of Orthopedic Surgery and Biomaterials and Histomorphometry Core Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emma M Sundin
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Kevin E Bennet
- Division of Engineering, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Felicia S Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA.
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
36
|
Shi C, Mandair GS, Zhang H, Vanrenterghem GG, Ridella R, Takahashi A, Zhang Y, Kohn DH, Morris MD, Mishina Y, Sun H. Bone morphogenetic protein signaling through ACVR1 and BMPR1A negatively regulates bone mass along with alterations in bone composition. J Struct Biol 2018; 201:237-246. [PMID: 29175363 PMCID: PMC5820174 DOI: 10.1016/j.jsb.2017.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Bone quantity and bone quality are important factors in determining the properties and the mechanical functions of bone. This study examined the effects of disrupting bone morphogenetic protein (BMP) signaling through BMP receptors on bone quantity and bone quality. More specifically, we disrupted two BMP receptors, Acvr1 and Bmpr1a, respectively, in Osterix-expressing osteogenic progenitor cells in mice. We examined the structural changes to the femora from 3-month old male and female conditional knockout (cKO) mice using micro-computed tomography (micro-CT) and histology, as well as compositional changes to both cortical and trabecular compartments of bone using Raman spectroscopy. We found that the deletion of Acvr1 and Bmpr1a, respectively, in an osteoblast-specific manner resulted in higher bone mass in the trabecular compartment. Disruption of Bmpr1a resulted in a more significantly increased bone mass in the trabecular compartment. We also found that these cKO mice showed lower mineral-to-matrix ratio, while tissue mineral density was lower in the cortical compartment. Collagen crosslink ratio was higher in both cortical and trabecular compartments of male cKO mice. Our study suggested that BMP signaling in osteoblast mediated by BMP receptors, namely ACVR1 and BMPR1A, is critical in regulating bone quantity and bone quality.
Collapse
Affiliation(s)
- Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130000, China; Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Gurjit S Mandair
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Gloria G Vanrenterghem
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Ryan Ridella
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48108-1055, USA
| | - Akira Takahashi
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Yanshuai Zhang
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - David H Kohn
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA; Biomedical Engineering College of Engineering, University of Michigan, MI 48109-2110, USA.
| | - Michael D Morris
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48108-1055, USA.
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130000, China.
| |
Collapse
|
37
|
Rodriguez-Navarro AB, McCormack HM, Fleming RH, Alvarez-Lloret P, Romero-Pastor J, Dominguez-Gasca N, Prozorov T, Dunn IC. Influence of physical activity on tibial bone material properties in laying hens. J Struct Biol 2017; 201:36-45. [PMID: 29109023 DOI: 10.1016/j.jsb.2017.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/22/2023]
Abstract
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as cortical and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. These differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.
Collapse
Affiliation(s)
- A B Rodriguez-Navarro
- Departamento de Mineralogía y Petrologia, Universidad de Granada, 18002 Granada, Spain.
| | - H M McCormack
- The Roslin Institute, University of Edinburgh, EH25 9PS Scotland, UK
| | - R H Fleming
- The Roslin Institute, University of Edinburgh, EH25 9PS Scotland, UK
| | - P Alvarez-Lloret
- Departamento de Geología, Universidad de Oviedo, 33005 Oviedo, Spain
| | - J Romero-Pastor
- Departamento de Mineralogía y Petrologia, Universidad de Granada, 18002 Granada, Spain
| | - N Dominguez-Gasca
- Departamento de Mineralogía y Petrologia, Universidad de Granada, 18002 Granada, Spain
| | - Tanya Prozorov
- Ames Laboratory, Iowa State University, Ames, IA 50100, USA
| | - I C Dunn
- The Roslin Institute, University of Edinburgh, EH25 9PS Scotland, UK
| |
Collapse
|
38
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
39
|
Brennan O, Sweeney J, O'Meara B, Widaa A, Bonnier F, Byrne HJ, O'Gorman DM, O'Brien FJ. A Natural, Calcium-Rich Marine Multi-mineral Complex Preserves Bone Structure, Composition and Strength in an Ovariectomised Rat Model of Osteoporosis. Calcif Tissue Int 2017. [PMID: 28647775 DOI: 10.1007/s00223-017-0299-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Calcium supplements are used as an aid in the prevention of osteopenia and osteoporosis and also for the treatment of patients when used along with medication. Many of these supplements are calcium carbonate based. This study compared a calcium-rich, marine multi-mineral complex (Aquamin) to calcium carbonate in an ovariectomised rat model of osteoporosis in order to assess Aquamin's efficacy in preventing the onset of bone loss. Animals were randomly assigned to either non-ovariectomy control (Control), ovariectomy (OVX) plus calcium carbonate, ovariectomy plus Aquamin or ovariectomy plus Aquamin delay where Aquamin treatment started 8 weeks post OVX. At the end of the 20-week study, the trabecular architecture was measured using micro computed tomography, bone composition was assessed using Fourier transform infrared spectroscopy and the mechanical properties were assessed using nanoindentation and three-point bend testing. The study demonstrates that oral ingestion of Aquamin results in less deterioration of trabecular bone structure, mineral composition and tissue level biomechanical properties in the tibia of rats following ovariectomy than calcium carbonate. This study has shown that in an animal model of osteoporosis, Aquamin is superior to calcium carbonate at slowing down the onset of bone loss.
Collapse
Affiliation(s)
- Orlaith Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Joseph Sweeney
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Brian O'Meara
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Amro Widaa
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, UFR Sciences Pharmaceutiques, Université François-Rabelais de Tours, 31 avenue Monge, 37200, Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Denise M O'Gorman
- Marigot Ltd, Strand Farm, Currabinny, Carrigaline, Co. Cork, Ireland.
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
40
|
Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis. Proc Natl Acad Sci U S A 2017; 114:10542-10547. [PMID: 28923958 DOI: 10.1073/pnas.1708161114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.
Collapse
|
41
|
Rosa JAD, Sakane KK, Santos KCP, Corrêa VB, Arana-Chavez VE, Oliveira JXD. Strontium Ranelate Effect on the Repair of Bone Defects and Molecular Components of the Cortical Bone of Rats. Braz Dent J 2017; 27:502-507. [PMID: 27982225 DOI: 10.1590/0103-6440201600693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/24/2016] [Indexed: 01/28/2023] Open
Abstract
This study was conducted to evaluate the effects of treatment with strontium ranelate (SR) on the repair of bone defects and molecular components of bones in femurs. Adult female rats (n=27) were subjected to ovariectomy (OVX) or Sham surgery. Thirty days after surgery, a defect was made in the femur and the animals were then divided into three groups: OVX, SHAM and OVX+SR. Euthanasia was performed four weeks after the bone defect surgery. Repair in bone defect was assessed by computed microtomography (μCT) and chemical composition of cortical bone was analyzed by Fourier transform infrared (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). The trabecular thickness (Tb.Th) of the newly formed bone in the OVX+SR group was significantly higher than that for the OVX group. The collagen maturity in the OVX+SR group was smaller than in the other two groups. In this group, a significant increase in the amount of strontium (Sr) and a decrease in the amount of calcium (Ca) embedded to bone tissue were also observed. Systemic treatment with SR improved microarchitecture of the newly formed bone inside the defect, but decreased cross-linking of mature collagen in cortical bone.
Collapse
Affiliation(s)
- Jucely Aparecida da Rosa
- Department of Stomatology, Dental School, USP - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kumiko Koibuchi Sakane
- Institute for Research and Development, UNIVAP - Universidade do Vale do Paraíba, SP, Brazil
| | | | | | - Victor Elias Arana-Chavez
- Department of Biomaterials and Oral Biology, Dental School, USP - Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
42
|
Donmez BO, Unal M, Ozdemir S, Ozturk N, Oguz N, Akkus O. Effects of losartan treatment on the physicochemical properties of diabetic rat bone. J Bone Miner Metab 2017; 35:161-170. [PMID: 27038987 DOI: 10.1007/s00774-016-0748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.
Collapse
Affiliation(s)
- Baris Ozgur Donmez
- Department of Nutrition and Dietetics, School of Health, Akdeniz University, 07070, Antalya, Turkey.
| | - Mustafa Unal
- Department of Mechanical and Aerospace Engineering, Orthopaedic Bioengineering Laboratories, Case Western Reserve University, Cleveland, OH, USA
| | - Semir Ozdemir
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nihal Ozturk
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nurettin Oguz
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Orthopaedic Bioengineering Laboratories, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
43
|
Timchenko PE, Timchenko EV, Pisareva EV, Vlasov MY, Red’kin NA, Frolov OO. Spectral analysis of allogeneic hydroxyapatite powders. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/784/1/012060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Greenwood C, Clement J, Dicken A, Evans JPO, Lyburn I, Martin RM, Rogers K, Stone N, Zioupos P. Towards new material biomarkers for fracture risk. Bone 2016; 93:55-63. [PMID: 27622884 DOI: 10.1016/j.bone.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/28/2022]
Abstract
Osteoporosis is a prevalent bone condition, characterised by low bone mass and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density (BMD) using dual energy X-ray absorption (DEXA). However, the risk of osteoporotic fracture is determined collectively by bone mass, architecture and physicochemistry of the mineral composite building blocks. Thus DEXA scans alone inevitably fail to fully discriminate individuals who will suffer a fragility fracture. This study examines trabecular bone at both ultrastructure and microarchitectural levels to provide a detailed material view of bone, and therefore provides a more comprehensive explanation of osteoporotic fracture risk. Physicochemical characterisation obtained through X-ray diffraction and infrared analysis indicated significant differences in apatite crystal chemistry and nanostructure between fracture and non-fracture groups. Further, this study, through considering the potential correlations between the chemical biomarkers and microarchitectural properties of trabecular bone, has investigated the relationship between bone mechanical properties (e.g. fragility) and physicochemical material features.
Collapse
Affiliation(s)
- C Greenwood
- Cranfield Forensic Institute, Cranfield University, Defence Academy of the UK, Shrivenham, UK.
| | - J Clement
- Forensic Odontology, Melbourne Dental School, University of Melbourne, Melbourne, Australia
| | - A Dicken
- The Imaging Science Group, Nottingham Trent University, Nottingham, UK
| | - J P O Evans
- The Imaging Science Group, Nottingham Trent University, Nottingham, UK
| | | | - R M Martin
- Social and Community Medicine, Bristol University, Bristol, UK
| | - K Rogers
- Cranfield Forensic Institute, Cranfield University, Defence Academy of the UK, Shrivenham, UK
| | - N Stone
- Physics and Astronomy, Exeter University, Exeter, UK
| | - P Zioupos
- Cranfield Forensic Institute, Cranfield University, Defence Academy of the UK, Shrivenham, UK
| |
Collapse
|
45
|
Bozkurt O, Bilgin MD, Evis Z, Pleshko N, Severcan F. Early Alterations in Bone Characteristics of Type I Diabetic Rat Femur: A Fourier Transform Infrared (FT-IR) Imaging Study. APPLIED SPECTROSCOPY 2016; 70:2005-2015. [PMID: 27680083 DOI: 10.1177/0003702816671059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Alterations in microstructure and mineral features can affect the mechanical and chemical properties of bones and their capacity to resist mechanical forces. Controversial results on diabetic bone mineral content have been reported and little is known about the structural alterations in collagen, maturation of apatite crystals, and carbonate content in diabetic bone. This current study is the first to report the mineral and organic properties of cortical, trabecular, and growth plate regions of diabetic rat femurs using Fourier transform infrared (FT-IR) microspectroscopy and the Vickers microhardness test. Femurs of type I diabetic rats were embedded into polymethylmethacrylate blocks, which were used for FT-IR imaging and microhardness studies. A lower mineral content and microhardness, a higher carbonate content especially labile type carbonate content, and an increase in size and maturation of hydroxyapatite crystals were observed in diabetic femurs, which indicate that diabetes has detrimental effects on bone just like osteoporosis. There was a decrease in the level of collagen maturity in diabetic femurs, implying a decrease in bone collagen quality that may contribute to the decrease in tensile strength and bone fragility. Taken together, the findings revealed alterations in structure and composition of mineral and matrix components, and an altered quality and mechanical strength of rat femurs in an early stage of type I diabetes. The results contribute to the knowledge of structure-function relationship of mineral and matrix components in diabetic bone disorder and can further be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Ozlem Bozkurt
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Feride Severcan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
46
|
Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab 2016; 14:133-149. [PMID: 28936129 DOI: 10.1007/s12018-016-9222-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review presents an overview of the characterization techniques available to experimentally evaluate bone quality, defined as the geometric and material factors that contribute to fracture resistance independently of areal bone mineral density (aBMD) assessed by dual energy x-ray absorptiometry. The methods available for characterization of the geometric, compositional, and mechanical properties of bone across multiple length scales are summarized, along with their outcomes and their advantages and disadvantages. Examples of how each technique is used are discussed, as well as practical concerns such as sample preparation and whether or not each testing method is destructive. Techniques that can be used in vivo and those that have been recently improved or developed are emphasized, including high resolution peripheral quantitative computed tomography to evaluate geometric properties and reference point indentation to evaluate material properties. Because no single method can completely characterize bone quality, we provide a framework for how multiple characterization methods can be used together to generate a more comprehensive analysis of bone quality to complement aBMD in fracture risk assessment.
Collapse
|
47
|
Farman HH, Windahl SH, Westberg L, Isaksson H, Egecioglu E, Schele E, Ryberg H, Jansson JO, Tuukkanen J, Koskela A, Xie SK, Hahner L, Zehr J, Clegg DJ, Lagerquist MK, Ohlsson C. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass. Endocrinology 2016; 157:3242-52. [PMID: 27254004 PMCID: PMC4967117 DOI: 10.1210/en.2016-1181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.
Collapse
Affiliation(s)
- H H Farman
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - S H Windahl
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - L Westberg
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - H Isaksson
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - E Egecioglu
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - E Schele
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - H Ryberg
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - J O Jansson
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - J Tuukkanen
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - A Koskela
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - S K Xie
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - L Hahner
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - J Zehr
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - D J Clegg
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - M K Lagerquist
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - C Ohlsson
- Centre for Bone and Arthritis Research (H.H.F., S.H.W., H.R., M.K.L., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden; Department of Pharmacology (L.W., E.E.), Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Biomedical Engineering (H.I.), Lund University, SE221 85 Lund, Sweden; Department of Orthopaedics (H.I.), Clinical Sciences, Lund University, SE221 85 Lund, Sweden; Institute of Neuroscience and Physiology/Endocrinology (E.S., J.O.J.), Sahlgrenska Academy, University of Gothenburg, SE405 30 Gothenburg, Sweden; Department of Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden; Department of Anatomy and Cell Biology (J.T., A.K.), Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, FI900 14 Oulu, Finland; and Touchstone Diabetes Center (S.K.X., L.H., J.Z., D.J.C.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
48
|
Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures. Bone 2016; 84:237-244. [PMID: 26780445 DOI: 10.1016/j.bone.2016.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023]
Abstract
Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals and immature crosslinks, as well as moderately mature tissue, is an important characteristic of healthy, fracture-resistant bone. Finally, the larger mean and low-tail values of mineral:matrix ratio and collagen maturity noted in our -Fx+HRT vs. -Fx-HRT biopsies are consistent with greater tissue age and greater BMD arising from decreased osteoclastic resorption in HRT-treated patients.
Collapse
Affiliation(s)
- Zhen Xiang Wang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Ashley A Lloyd
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Jayme C Burket
- Hospital for Special Surgery, New York, NY, United States
| | | | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States; Hospital for Special Surgery, New York, NY, United States.
| |
Collapse
|
49
|
Benetti C, Ana PA, Bachmann L, Zezell DM. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components. APPLIED SPECTROSCOPY 2015; 69:1496-1504. [PMID: 26555304 DOI: 10.1366/14-07726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.
Collapse
Affiliation(s)
- Carolina Benetti
- Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), Centro de Lasers e Aplicacões, Av. Prof. Lineu Prestes, 2242, Cidade Universitária, CEP 05508-000, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
50
|
Sroka-Bartnicka A, Kimber JA, Borkowski L, Pawlowska M, Polkowska I, Kalisz G, Belcarz A, Jozwiak K, Ginalska G, Kazarian SG. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal Bioanal Chem 2015; 407:7775-85. [PMID: 26277184 DOI: 10.1007/s00216-015-8943-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
Abstract
The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.
Collapse
Affiliation(s)
- Anna Sroka-Bartnicka
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - James A Kimber
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Leszek Borkowski
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Marta Pawlowska
- Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|