1
|
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2024; 30:101147. [PMID: 39086551 PMCID: PMC11290093 DOI: 10.1016/j.cossms.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.
Collapse
Affiliation(s)
- Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
2
|
Konovalov AB, Vlasov VV, Samarin SI, Soloviev ID, Savitsky AP, Tuchin VV. Reconstruction of fluorophore absorption and fluorescence lifetime using early photon mesoscopic fluorescence molecular tomography: a phantom study. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:126001. [PMID: 36519075 PMCID: PMC9743783 DOI: 10.1117/1.jbo.27.12.126001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Fluorescence molecular lifetime tomography (FMLT) plays an increasingly important role in experimental oncology. The article presents and experimentally verifies an original method of mesoscopic time domain FMLT, based on an asymptotic approximation to the fluorescence source function, which is valid for early arriving photons. AIM The aim was to justify the efficiency of the method by experimental scanning and reconstruction of a phantom with a fluorophore. The experimental facility included the TCSPC system, the pulsed supercontinuum Fianium laser, and a three-channel fiber probe. Phantom scanning was done in mesoscopic regime for three-dimensional (3D) reflectance geometry. APPROACH The sensitivity functions were simulated with a Monte Carlo method. A compressed-sensing-like reconstruction algorithm was used to solve the inverse problem for the fluorescence parameter distribution function, which included the fluorophore absorption coefficient and fluorescence lifetime distributions. The distributions were separated directly in the time domain with the QR-factorization least square method. RESULTS 3D tomograms of fluorescence parameters were obtained and analyzed using two strategies for the formation of measurement data arrays and sensitivity matrices. An algorithm is developed for the flexible choice of optimal strategy in view of attaining better reconstruction quality. Variants on how to improve the method are proposed, specifically, through stepped extraction and further use of a posteriori information about the object. CONCLUSIONS Even if measurement data are limited, the proposed method is capable of giving adequate reconstructions but their quality depends on available a priori (or a posteriori) information. Further research aims to improve the method by implementing the variants proposed.
Collapse
Affiliation(s)
- Alexander B. Konovalov
- Federal State Unitary Enterprise “Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics,” Snezhinsk, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V. Vlasov
- Federal State Unitary Enterprise “Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics,” Snezhinsk, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Sergei I. Samarin
- Federal State Unitary Enterprise “Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics,” Snezhinsk, Russia
| | - Ilya D. Soloviev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P. Savitsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V. Tuchin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Saratov State University, Saratov, Russia
| |
Collapse
|
3
|
Pal R, Hom M, van den Berg NS, Lwin TM, Lee YJ, Prilutskiy A, Faquin W, Yang E, Saladi SV, Varvares MA, Rosenthal EL, Kumar ATN. First Clinical Results of Fluorescence Lifetime-enhanced Tumor Imaging Using Receptor-targeted Fluorescent Probes. Clin Cancer Res 2022; 28:2373-2384. [PMID: 35302604 PMCID: PMC9167767 DOI: 10.1158/1078-0432.ccr-21-3429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Fluorescence molecular imaging, using cancer-targeted near infrared (NIR) fluorescent probes, offers the promise of accurate tumor delineation during surgeries and the detection of cancer specific molecular expression in vivo. However, nonspecific probe accumulation in normal tissue results in poor tumor fluorescence contrast, precluding widespread clinical adoption of novel imaging agents. Here we present the first clinical evidence that fluorescence lifetime (FLT) imaging can provide tumor specificity at the cellular level in patients systemically injected with panitumumab-IRDye800CW, an EGFR-targeted NIR fluorescent probe. EXPERIMENTAL DESIGN We performed wide-field and microscopic FLT imaging of resection specimens from patients injected with panitumumab-IRDye800CW under an FDA directed clinical trial. RESULTS We show that the FLT within EGFR-overexpressing cancer cells is significantly longer than the FLT of normal tissue, providing high sensitivity (>98%) and specificity (>98%) for tumor versus normal tissue classification, despite the presence of significant nonspecific probe accumulation. We further show microscopic evidence that the mean tissue FLT is spatially correlated (r > 0.85) with tumor-specific EGFR expression in tissue and is consistent across multiple patients. These tumor cell-specific FLT changes can be detected through thick biological tissue, allowing highly specific tumor detection and noninvasive monitoring of tumor EFGR expression in vivo. CONCLUSIONS Our data indicate that FLT imaging is a promising approach for enhancing tumor contrast using an antibody-targeted NIR probe with a proven safety profile in humans, suggesting a strong potential for clinical applications in image guided surgery, cancer diagnostics, and staging.
Collapse
Affiliation(s)
- Rahul Pal
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13 Street, Building 149, Charlestown MA 02129
| | - Marisa Hom
- Department of Otolaryngology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232
| | | | - Thinzar M Lwin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Yu-Jin Lee
- Department of Otolaryngology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
| | - Andrey Prilutskiy
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - William Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Eric Yang
- Department of Pathology, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford CA
| | - Srinivas V. Saladi
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Mark A. Varvares
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, 55 Fruit Street, Boston MA
| | - Eben L. Rosenthal
- Department of Otolaryngology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232
| | - Anand T. N. Kumar
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 13 Street, Building 149, Charlestown MA 02129
| |
Collapse
|
4
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
5
|
Konovalov AB, Vlasov VV, Uglov AS. Early-photon reflectance fluorescence molecular tomography for small animal imaging: Mathematical model and numerical experiment. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e03408. [PMID: 33094558 DOI: 10.1002/cnm.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/04/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
The paper presents an original approach to time-domain reflectance fluorescence molecular tomography (FMT) of small animals. It is based on the use of early arriving photons and state-of-the-art compressed-sensing-like reconstruction algorithms and aims to improve the spatial resolution of fluorescent images. We deduce the fundamental equation that models the imaging operator and derive analytical representations for the sensitivity functions which are responsible for the reconstruction of the fluorophore absorption coefficient. The idea of fluorescence lifetime tomography with our approach is also discussed. We conduct a numerical experiment on 3D reconstruction of box phantoms with spherical fluorescent inclusions of small diameters. For modeling measurement data and constructing the sensitivity matrix we assume a virtual fluorescence tomograph with a scanning fiber probe that illuminates and collects light in reflectance geometry. It provides for large source-receiver separations which correspond to the macroscopic regime. Two compressed-sensing-like reconstruction algorithms are used to solve the inverse problem. These are the algebraic reconstruction technique with total variation regularization and our modification of the fast iterative shrinkage-thresholding algorithm. Results of our numerical experiment show that our approach is capable of achieving as good spatial resolution as 0.2 mm and even better at depths to 9 mm inclusive.
Collapse
Affiliation(s)
- Alexander B Konovalov
- Computational Center, Federal State Unitary Enterprise "Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics,", Snezhinsk, Russia
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V Vlasov
- Computational Center, Federal State Unitary Enterprise "Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics,", Snezhinsk, Russia
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Uglov
- Computational Center, Federal State Unitary Enterprise "Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics,", Snezhinsk, Russia
| |
Collapse
|
6
|
Mo W, Patel NJ, Chen Y, Pandey R, Sunar U. Mapping fluorescence resonance energy transfer parameters of a bifunctional agent using time-domain fluorescence diffuse optical tomography. JOURNAL OF BIOPHOTONICS 2021; 14:e202000291. [PMID: 33025728 DOI: 10.1002/jbio.202000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
We present a method to map fluorescence resonance energy transfer (FRET) parameters of a bifunctional photodynamic therapy agent, (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a)-cyanine dye (HPPH-CD) conjugate, which consists of a photosensitizer (HPPH) and a fluorescent agent CD. We utilized time-domain fluorescence diffuse optical tomography, the normalized Born ratio model in the Fourier-domain, and an iterative algorithm to map depth-resolved spatial heterogeneities of FRET parameters. Our results exhibited depth-resolved changes of fluorophore's lifetime and the distance maps due to FRET between HPPH and CD. Our model suggests a potential approach of using FRET parameters to monitor efficacies of multifunctional photodynamic therapy agents in deep tissue.
Collapse
Affiliation(s)
- Weirong Mo
- Topcon Healthcare Solutions, San Jose, California, USA
| | - Nayan J Patel
- Department of Cell Stress Biology and PDT Center, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Yihui Chen
- Department of Cell Stress Biology and PDT Center, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ravindra Pandey
- Department of Cell Stress Biology and PDT Center, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ulas Sunar
- Department of Biomedical Engineering, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
7
|
Bergonzi KM, Burns-Yocum TM, Bumstead JR, Buckley EM, Mannion PC, Tracy CH, Mennerick E, Ferradal SL, Dehghani H, Eggebrecht AT, Culver JP. Lightweight sCMOS-based high-density diffuse optical tomography. NEUROPHOTONICS 2018; 5:035006. [PMID: 30137925 PMCID: PMC6096280 DOI: 10.1117/1.nph.5.3.035006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
Though optical imaging of human brain function is gaining momentum, widespread adoption is restricted in part by a tradeoff among cap wearability, field of view, and resolution. To increase coverage while maintaining functional magnetic resonance imaging (fMRI)-comparable image quality, optical systems require more fibers. However, these modifications drastically reduce the wearability of the imaging cap. The primary obstacle to optimizing wearability is cap weight, which is largely determined by fiber diameter. Smaller fibers collect less light and lead to challenges in obtaining adequate signal-to-noise ratio. Here, we report on a design that leverages the exquisite sensitivity of scientific CMOS cameras to use fibers with ∼30× smaller cross-sectional area than current high-density diffuse optical tomography (HD-DOT) systems. This superpixel sCMOS DOT (SP-DOT) system uses 200-μm -diameter fibers that facilitate a lightweight, wearable cap. We developed a superpixel algorithm with pixel binning and electronic noise subtraction to provide high dynamic range ( >105 ), high frame rate ( >6 Hz ), and a low effective detectivity threshold ( ∼200 fW/Hz1/2-mm2 ), each comparable with previous HD-DOT systems. To assess system performance, we present retinotopic mapping of the visual cortex ( n=5 subjects). SP-DOT offers a practical solution to providing a wearable, large field-of-view, and high-resolution optical neuroimaging system.
Collapse
Affiliation(s)
- Karla M. Bergonzi
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Tracy M. Burns-Yocum
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Jonathan R. Bumstead
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Elise M. Buckley
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Patrick C. Mannion
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Christopher H. Tracy
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Eli Mennerick
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Silvina L. Ferradal
- Boston Children’s Hospital, Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts, United States
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Adam T. Eggebrecht
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Joseph P. Culver
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Physics, St. Louis, Missouri, United States
| |
Collapse
|
8
|
Funane T, Hou SS, Zoltowska KM, van Veluw SJ, Berezovska O, Kumar ATN, Bacskai BJ. Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:053705. [PMID: 29864842 PMCID: PMC6910582 DOI: 10.1063/1.5018846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/24/2018] [Indexed: 05/02/2023]
Abstract
We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.
Collapse
Affiliation(s)
- Tsukasa Funane
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Steven S Hou
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Katarzyna Marta Zoltowska
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Susanne J van Veluw
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Oksana Berezovska
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Anand T N Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Brian J Bacskai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
9
|
Abstract
OBJECTIVE The objective of this article is to summarize the physical principles, technology features, and first clinical applications of optical imaging techniques to the breast. CONCLUSION Light-breast tissue interaction is expressed as absorption and scattering coefficients, allowing image reconstruction based on endogenous or exogenous contrast. Diffuse optical spectroscopy and imaging, fluorescence molecular tomography, photoacoustic imaging, and multiparametric infrared imaging show potential for clinical application, especially for lesion characterization, estimation of cancer probability, and monitoring the effect of neoadjuvant therapy.
Collapse
|
10
|
Cai C, Cai W, Cheng J, Yang Y, Luo J. Self-guided reconstruction for time-domain fluorescence molecular lifetime tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:126012. [PMID: 27999862 DOI: 10.1117/1.jbo.21.12.126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Fluorescence probes have distinct yields and lifetimes when located in different environments, which makes the reconstruction of fluorescence molecular lifetime tomography (FMLT) challenging. To enhance the reconstruction performance of time-domain (TD) FMLT with heterogeneous targets, a self-guided L 1 regularization projected steepest descent (SGL1PSD) algorithm is proposed. Different from other algorithms performed in time domain, SGL1PSD introduces a time-resolved strategy into fluorescence yield reconstruction. The algorithm consists of four steps. Step 1 reconstructs the initial yield map with full time gate strategy; steps 2–4 reconstruct the inverse lifetime map, the yield map, and the inverse lifetime map again with time-resolved strategy, respectively. The reconstruction result of each step is used as a priori for the reconstruction of the next step. Projected iterated Tikhonov regularization algorithm is adopted for the yield map reconstructions in steps 1 and 3 to provide a solution with iterative refinement and nonnegative constraint. The inverse lifetime map reconstructions in steps 2 and 4 are based on L 1 regularization projected steepest descent algorithm, which employ the L 1 regularization to reduce the ill-posedness of the high-dimensional nonlinear problem. Phantom experiments with heterogeneous targets at different edge-to-edge distances demonstrate that SG
Collapse
Affiliation(s)
- Chuangjian Cai
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Wenjuan Cai
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Jiaju Cheng
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Yuxuan Yang
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, China
| | - Jianwen Luo
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing 100084, ChinabTsinghua University, Center for Biomedical Imaging Research, Beijing 100084, China
| |
Collapse
|
11
|
Fluorescence Lifetime Imaging of Cancer In Vivo. Methods Mol Biol 2016. [PMID: 27283417 DOI: 10.1007/978-1-4939-3721-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Optical imaging of fluorescent reporters in animal models of cancer has become a common tool in oncologic research. Fluorescent reporters including fluorescent proteins, organic dyes, and inorganic photonic materials are used in fluorescence spectroscopy, microscopy, and whole body preclinical imaging. Fluorescence lifetime imaging provides additional, quantitative information beyond that of conventional fluorescence intensity signals, enabling signal multiplexing, background separation, and biological sensing unique to fluorescent materials.
Collapse
|
12
|
Cai C, Zhang L, Cai W, Zhang D, Lv Y, Luo J. Nonlinear greedy sparsity-constrained algorithm for direct reconstruction of fluorescence molecular lifetime tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:1210-1226. [PMID: 27446648 PMCID: PMC4929634 DOI: 10.1364/boe.7.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/06/2023]
Abstract
In order to improve the spatial resolution of time-domain (TD) fluorescence molecular lifetime tomography (FMLT), an accelerated nonlinear orthogonal matching pursuit (ANOMP) algorithm is proposed. As a kind of nonlinear greedy sparsity-constrained methods, ANOMP can find an approximate solution of L0 minimization problem. ANOMP consists of two parts, i.e., the outer iterations and the inner iterations. Each outer iteration selects multiple elements to expand the support set of the inverse lifetime based on the gradients of a mismatch error. The inner iterations obtain an intermediate estimate based on the support set estimated in the outer iterations. The stopping criterion for the outer iterations is based on the stability of the maximum reconstructed values and is robust for problems with targets at different edge-to-edge distances (EEDs). Phantom experiments with two fluorophores at different EEDs and in vivo mouse experiments demonstrate that ANOMP can provide high quantification accuracy, even if the EED is relatively small, and high resolution.
Collapse
|
13
|
Turchin IV. Methods of biomedical optical imaging: from subcellular structures to tissues and organs. ACTA ACUST UNITED AC 2016. [DOI: 10.3367/ufnr.2015.12.037734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
14
|
Lin Y, Nouizi F, Kwong TC, Gulsen G. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography. APPLIED OPTICS 2015; 54:7612-21. [PMID: 26368884 PMCID: PMC4896397 DOI: 10.1364/ao.54.007612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed "temperature-modulated fluorescence tomography" (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40 mm×W:100 mm) is recovered as an elongated object in the conventional FT (x=4.5 mm; y=10.4 mm), while TM-FT recovers it successfully in both directions (x=3.8 mm; y=4.6 mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT.
Collapse
Affiliation(s)
- Yuting Lin
- Tu and Yuen Center for Functional Onco Imaging, Department of Radiological Sciences, University of California, Irvine, California 92697, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Farouk Nouizi
- Tu and Yuen Center for Functional Onco Imaging, Department of Radiological Sciences, University of California, Irvine, California 92697, USA
| | - Tiffany C. Kwong
- Tu and Yuen Center for Functional Onco Imaging, Department of Radiological Sciences, University of California, Irvine, California 92697, USA
| | - Gultekin Gulsen
- Tu and Yuen Center for Functional Onco Imaging, Department of Radiological Sciences, University of California, Irvine, California 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| |
Collapse
|
15
|
Cai C, Zhang L, Zhang J, Bai J, Luo J. Direct reconstruction method for time-domain fluorescence molecular lifetime tomography. OPTICS LETTERS 2015; 40:4038-4041. [PMID: 26368706 DOI: 10.1364/ol.40.004038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
For the reconstruction of time-domain fluorescence molecular lifetime tomography, conventional methods based on the Laplace or Fourier transform utilize only part of the information from the measurement data, and rely on the selection of transformation factors. To make the best of all the measurement data, a direct reconstruction algorithm is proposed. The fluorescence yield map is first reconstructed with a full-time gate, and then an objective function for the inverse lifetime tomography (instead of the lifetime) is developed so as to avoid dealing with the singularity of the zero points in the lifetime image. Through simulations and physical phantom experiments, the proposed algorithm is demonstrated to have high localization accuracy for fluorescent targets, high quantification accuracy for fluorescence lifetime, and good contrast between different fluorescence targets.
Collapse
|
16
|
Abstract
Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely relies on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well-established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems and outlines areas of potential high impact in the future.
Collapse
Affiliation(s)
- Pinaki Sarder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Dolonchampa Maji
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| |
Collapse
|
17
|
|
18
|
Piao D. Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. VI. Time-domain analysis. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:2232-43. [PMID: 25401250 DOI: 10.1364/josaa.31.002232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Part VI analytically examines time-domain (TD) photon diffusion in a homogeneous medium enclosed by a "concave" circular cylindrical applicator or enclosing a "convex" circular cylindrical applicator, both geometries being infinite in the longitudinal dimension. The aim is to assess characteristics of TD photon diffusion, in response to a spatially and temporally impulsive source, versus the line-of-sight source-detector distance along the azimuthal or longitudinal direction on the concave or convex medium-applicator interface. By comparing to their counterparts evaluated along a straight line on a semi-infinite medium-applicator interface versus the same source-detector distance, the following patterns are indicated: (1) the peak photon fluence rate is always reached sooner in concave and later in convex geometry; (2) the peak photon fluence rate decreases slower along the azimuthal and faster along the longitudinal direction on the concave interface, and conversely on the convex interface; (3) the total photon fluence decreases slower along the azimuthal and faster along the longitudinal direction on the concave interface, and conversely on the convex interface; (4) the ratio between the peak photon fluence rate and the total fluence is always greater in concave geometry and smaller in convex geometry. The total fluence is equivalent to the steady-state photon fluence analyzed in Part I [J. Opt. Soc. Am. A27, 648 (2010)10.1364/JOSAA.27.000648JOAOD61084-7529]. The patterns of peak fluence rate, time to reaching peak fluence rate, and the ratio of these two, correspond to those of AC amplitude, phase, and modulation depth of frequency-domain results demonstrated in Part IV [J. Opt. Soc. Am. A29, 1445 (2012)10.1364/JOSAA.29.001445JOAOD61084-7529].
Collapse
|
19
|
Abstract
Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast.
Collapse
|
20
|
Zanganeh S, Xu Y, Hamby CV, Backer MV, Backer JM, Zhu Q. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:126014. [PMID: 24346856 PMCID: PMC3893938 DOI: 10.1117/1.jbo.18.12.126014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/25/2013] [Accepted: 11/18/2013] [Indexed: 05/27/2023]
Abstract
To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.
Collapse
Affiliation(s)
- Saeid Zanganeh
- University of Connecticut, Departments of Bioengineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Yan Xu
- University of Connecticut, Departments of Bioengineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Carl V. Hamby
- New York Medical College, Department of Microbiology and Immunology, Valhalla, New York 10595
| | - Marina V. Backer
- SibTech, Inc., 115A Commerce Drive, Brookfield, Connecticut 06804
| | - Joseph M. Backer
- SibTech, Inc., 115A Commerce Drive, Brookfield, Connecticut 06804
| | - Quing Zhu
- University of Connecticut, Departments of Bioengineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| |
Collapse
|
21
|
Pichette J, Domínguez JB, Bérubé-Lauzière Y. Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times. APPLIED OPTICS 2013; 52:5985-5999. [PMID: 24085003 DOI: 10.1364/ao.52.005985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
We introduce a novel approach for localizing a plurality of discrete point-like fluorescent inclusions embedded in a thick turbid medium using time-domain measurements. The approach uses early photon information contained in measured time-of-flight distributions originating from fluorescence emission. Fluorescence time point-spread functions (FTPSFs) are acquired with ultrafast time-correlated single photon counting after short pulse laser excitation. Early photon arrival times are extracted from the FTPSFs obtained from several source-detector positions. Each source-detector measurement allows defining a geometrical locus where an inclusion is to be found. These loci take the form of ovals in 2D or ovoids in 3D. From these loci a map can be built, with the maxima thereof corresponding to positions of inclusions. This geometrical approach is supported by Monte Carlo simulations performed for biological tissue-like media with embedded fluorescent inclusions. To validate the approach, several experiments are conducted with a homogeneous phantom mimicking tissue optical properties. In the experiments, inclusions filled with indocyanine green are embedded in the phantom and the fluorescence response to a short pulse of excitation laser is recorded. With our approach, several inclusions can be localized with low millimeter positional error. Our results support the approach as an accurate, efficient, and fast method for localizing fluorescent inclusions embedded in highly turbid media mimicking biological tissues. Further Monte Carlo simulations on a realistic mouse model show the feasibility of the technique for small animal imaging.
Collapse
|
22
|
Rice WL, Hou S, Kumar ATN. Resolution below the point spread function for diffuse optical imaging using fluorescence lifetime multiplexing. OPTICS LETTERS 2013; 38:2038-2040. [PMID: 23938969 PMCID: PMC3992832 DOI: 10.1364/ol.38.002038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We show that asymptotic lifetime-based fluorescence tomography can localize multiple-lifetime targets separated well below the diffuse point spread function of a turbid medium. This is made possible due to a complete diagonalization of the time domain forward problem in the asymptotic limit. We also show that continuous wave or direct time gate approaches to fluorescence tomography are unable to achieve this separation, indicating the unique advantage of a decay-amplitude-based approach for tomographic lifetime multiplexing with time domain data.
Collapse
|
23
|
Okawa S, Yano A, Uchida K, Mitsui Y, Yoshida M, Takekoshi M, Marjono A, Gao F, Hoshi Y, Kida I, Masamoto K, Yamada Y. Phantom and mouse experiments of time-domain fluorescence tomography using total light approach. BIOMEDICAL OPTICS EXPRESS 2013; 4:635-651. [PMID: 23577297 PMCID: PMC3617724 DOI: 10.1364/boe.4.000635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
Phantom and mouse experiments of time-domain fluorescence tomography were conducted to demonstrate the total light approach which was previously proposed by authors. The total light approach reduces the computation time to solve the forward model for light propagation. Time-resolved temporal profiles were acquired for cylindrical phantoms having single or double targets containing indocyanine green (ICG) solutions. The reconstructed images of ICG concentration reflected the true distributions of ICG concentration with a spatial resolution of about 10 mm. In vivo experiments were conducted using a mouse in which an ICG capsule was embedded beneath the skin in the abdomen. The reconstructed image of the ICG concentration again reflected the true distribution of ICG although artifacts due to autofluorescence appeared in the vicinity of the skin. The effectiveness of the total light approach was demonstrated by the phantom and mouse experiments.
Collapse
Affiliation(s)
- Shinpei Okawa
- Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
- Currently with the Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akira Yano
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Kazuki Uchida
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Yohei Mitsui
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Masaki Yoshida
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Masashi Takekoshi
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Andhi Marjono
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Feng Gao
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yoko Hoshi
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Ikuhiro Kida
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Yukio Yamada
- Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
24
|
Ma W, Zhang W, Yi X, Li J, Wu L, Wang X, Zhang L, Zhou Z, Zhao H, Gao F. Time-domain fluorescence-guided diffuse optical tomography based on the third-order simplified harmonics approximation. APPLIED OPTICS 2012; 51:8656-8668. [PMID: 23262607 DOI: 10.1364/ao.51.008656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
Extensive efforts have been made to integrate diffuse optical tomography (DOT) with other imaging modalities, such as magnetic-resonance imaging and x-ray computerized tomography, for its performance improvement. However, the experimental apparatus is in general intricate and costly due to adoption of the physically distinct radiation regimes. In this study, a time-domain fluorescence-guided DOT methodology that incorporates a priori localization information provided by diffuse fluorescence tomography (DFT) is investigated in an attempt to optimize recovery of the optical property distributions. The methodology is based on a specifically designed multichannel time-correlated single-photon-counting DOT/DFT system as well as a featured-data image reconstruction scheme that is developed within the framework of the generalized pulse spectrum technique and employs the third-order simplified harmonics approximation to the radiative transfer equation as the forward model. We have validated the methodology using phantom experiments and demonstrated that, with the guidance of fluorescence a priori, the quantitativeness and spatial resolution of the recovered optical target can be considerably improved in terms of the absorption and scattering images.
Collapse
Affiliation(s)
- Wenjuan Ma
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lin Y, Ghijsen M, Nalcioglu O, Gulsen G. In vivo validation of quantitative frequency domain fluorescence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:126021. [PMID: 23323291 PMCID: PMC3525318 DOI: 10.1117/1.jbo.17.12.126021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have developed a hybrid frequency domain fluorescence tomography and magnetic resonance imaging system (MRI) for small animal imaging. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration and lifetime images using a multi-modality approach. In vivo experiments are undertaken to evaluate the system. We compare the recovered fluorescence parameters with and without MRI structural a priori information. In addition, we compare two optical background heterogeneity correction methods: Born normalization and utilizing diffuse optical tomography (DOT) functional a priori information. The results show that the concentration and lifetime of a 4.2-mm diameter indocyanine green inclusion located 15 mm deep inside a rat can be recovered with less than a 5% error when functional a priori information from DOT and structural a priori information from MRI are utilized.
Collapse
Affiliation(s)
- Yuting Lin
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Michael Ghijsen
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Orhan Nalcioglu
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Gultekin Gulsen
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
- Address all correspondence to: Gultekin Gulsen, University of California, Tu and Yuen Center for Functional Onco-Imaging, 164 Irvine Hall, Irvine, California 92697. Tel: 949 824 6557; Fax: 949 824 3481; E-mail:
| |
Collapse
|
26
|
Nothdurft R, Sarder P, Bloch S, Culver J, Achilefu S. Fluorescence lifetime imaging microscopy using near-infrared contrast agents. J Microsc 2012; 247:202-7. [PMID: 22788550 PMCID: PMC3607809 DOI: 10.1111/j.1365-2818.2012.03634.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.
Collapse
Affiliation(s)
| | | | - Sharon Bloch
- Washington University, School of Medicine, Department of Radiology, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Joseph Culver
- Washington University, School of Medicine, Department of Radiology, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Samuel Achilefu
- Washington University, School of Medicine, Department of Radiology, 4525 Scott Avenue, St. Louis, Missouri 63110
| |
Collapse
|
27
|
Mo W, Rohrbach D, Sunar U. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:071306. [PMID: 22894467 PMCID: PMC3381019 DOI: 10.1117/1.jbo.17.7.071306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/20/2012] [Accepted: 03/05/2012] [Indexed: 05/29/2023]
Abstract
We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.
Collapse
Affiliation(s)
- Weirong Mo
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Daniel Rohrbach
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Ulas Sunar
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| |
Collapse
|
28
|
Lapointe E, Pichette J, Bérubé-Lauzière Y. A multi-view time-domain non-contact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:063703. [PMID: 22755630 DOI: 10.1063/1.4726016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a non-contact diffuse optical tomography (DOT) scanner with multi-view detection (over 360°) for localizing fluorescent markers in scattering and absorbing media, in particular small animals. It relies on time-domain detection after short pulse laser excitation. Ultrafast time-correlated single photon counting and photomultiplier tubes are used for time-domain measurements. For light collection, seven free-space optics non-contact dual wavelength detection channels comprising 14 detectors overall are placed around the subject, allowing the measurement of time point-spread functions at both excitation and fluorescence wavelengths. The scanner is endowed with a stereo camera pair for measuring the outer shape of the subject in 3D. Surface and DOT measurements are acquired simultaneously with the same laser beam. The hardware and software architecture of the scanner are discussed. Phantoms are used to validate the instrument. Results on the localization of fluorescent point-like inclusions immersed in a scattering and absorbing object are presented. The localization algorithm relies on distance ranging based on the measurement of early photons arrival times at different positions around the subject. This requires exquisite timing accuracy from the scanner. Further exploiting this capability, we show results on the effect of a scattering hetereogenity on the arrival time of early photons. These results demonstrate that our scanner provides all that is necessary for reconstructing images of small animals using full tomographic reconstruction algorithms, which will be the next step. Through its free-space optics design and the short pulse laser used, our scanner shows unprecedented timing resolution compared to other multi-view time-domain scanners.
Collapse
Affiliation(s)
- Eric Lapointe
- Laboratoire TomOptUS, Département de génie électrique et de génie informatique, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Québec J1K 2R1, Canada
| | | | | |
Collapse
|
29
|
Goergen CJ, Chen HH, Bogdanov A, Sosnovik DE, Kumar ATN. In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056001. [PMID: 22612124 PMCID: PMC3381023 DOI: 10.1117/1.jbo.17.5.056001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 05/25/2023]
Abstract
Activatable fluorescent molecular probes are predominantly nonfluorescent in their inactivated state due to intramolecular quenching, but increase fluorescence yield significantly after enzyme-mediated hydrolysis of peptides. Continuous wave in vivo detection of these protease-activatable fluorophores in the heart, however, is limited by the inability to differentiate between activated and nonactivated fractions of the probe and is frequently complicated by large background signal from probe accumulation in the liver. Using a cathepsin-activatable near-infrared probe (PGC-800), we demonstrate here that fluorescence lifetime (FL) significantly increases in infarcted murine myocardial tissue (0.67 ns) when compared with healthy myocardium (0.59 ns) after 24 h. Furthermore, we show that lifetime contrast can be used to distinguish in vivo cardiac fluorescence from background nonspecific liver signal. The results of this study show that lifetime contrast is a helpful addition to preclinical imaging of activatable fluorophores in the myocardium by reporting molecular activity in vivo due to changes in intramolecular quenching. This characterization of FL from activatable molecular probes will be helpful for advancing in vivo imaging of enzyme activity.
Collapse
Affiliation(s)
- Craig J. Goergen
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Howard H. Chen
- Harvard Medical School, Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Alexei Bogdanov
- University of Massachusetts Medical School, Laboratory of Molecular Imaging Probes, Department of Radiology, 55 Lake Avenue North, Worcester, Massachusetts 01605
| | - David E. Sosnovik
- Harvard Medical School, Athinoula A Martinos Center for Biomedical Imaging and Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Anand T. N. Kumar
- Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
30
|
Lin Y, Kwong TC, Bolisay L, Gulsen G. Temperature-modulated fluorescence tomography based on both concentration and lifetime contrast. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056007. [PMID: 22612130 PMCID: PMC3381013 DOI: 10.1117/1.jbo.17.5.056007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It is challenging to image fluorescence objects with high spatial resolution in a highly scattering medium. Recently reported temperature-sensitive indocyanine green-loaded pluronic nanocapsules can potentially alleviate this problem. Here we demonstrate a frequency-domain temperature-modulated fluorescence tomography system that could acquire images at high intensity-focused ultrasound resolution with use of these nanocapsules. The system is experimentally verified with a phantom study, where a 3-mm fluorescence object embedded 2 cm deep in a turbid medium is successfully recovered based on both intensity and lifetime contrast.
Collapse
Affiliation(s)
- Yuting Lin
- University of California, Department of Radiological Sciences, Tu and Yuen Center for Functional Onco-Imaging, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
31
|
Chang CW, Mycek MA. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. JOURNAL OF BIOPHOTONICS 2012; 5:449-457. [PMID: 22415891 PMCID: PMC4106132 DOI: 10.1002/jbio.201100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
We report the first application of wavelet-based denoising (noise removal) methods to time-domain box-car fluorescence lifetime imaging microscopy (FLIM) images and compare the results to novel total variation (TV) denoising methods. Methods were tested first on artificial images and then applied to low-light live-cell images. Relative to undenoised images, TV methods could improve lifetime precision up to 10-fold in artificial images, while preserving the overall accuracy of lifetime and amplitude values of a single-exponential decay model and improving local lifetime fitting in live-cell images. Wavelet-based methods were at least 4-fold faster than TV methods, but could introduce significant inaccuracies in recovered lifetime values. The denoising methods discussed can potentially enhance a variety of FLIM applications, including live-cell, in vivo animal, or endoscopic imaging studies, especially under challenging imaging conditions such as low-light or fast video-rate imaging.
Collapse
Affiliation(s)
- Ching-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099
| | - Mary-Ann Mycek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-2099
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-2099
| |
Collapse
|
32
|
Taka SJ, Srinivasan S. NIRViz: 3D visualization software for multimodality optical imaging using visualization toolkit (VTK) and insight segmentation toolkit (ITK). J Digit Imaging 2012; 24:1103-11. [PMID: 21274590 DOI: 10.1007/s10278-011-9362-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Optical imaging using near-infrared light is used for noninvasive probing of tissues to recover vascular and molecular status of healthy and diseased tissues using hemoglobin contrast arising due to absorption of light. While multimodality optical techniques exist, visualization techniques in this area are limited. Addressing this issue, we present a simple framework for image overlay of optical and magnetic resonance (MRI) or computerized tomographic images which is intuitive and easily usable, called NIRViz. NIRViz is a multimodality software platform for the display and navigation of Digital Imaging and Communications in Medicine (DICOM) MRI datasets and 3D optical image solutions geared toward visualization and coregistration of optical contrast in diseased tissues such as cancer. We present the design decisions undertaken during the design of the software, the libraries used in the implementation, and other implementation details as well as preliminary results from the software package. Our implementation uses the Visualization Toolkit library to do most of the work, with a Qt graphical user interface for the front end. Challenges encountered include reslicing DICOM image data and coregistration of image space and mesh space. The resulting software provides a simple and customized platform to display surface and volume meshes with optical parameters such as hemoglobin concentration, overlay them on magnetic resonance images, allow the user to interactively change transparency of different image sets, rotate geometries, clip through the resulting datasets, obtain mesh and optical solution information, and successfully interact with both functional and structural medical image information.
Collapse
|
33
|
Soloviev VY, McGinty J, Stuckey DW, Laine R, Wylezinska-Arridge M, Wells DJ, Sardini A, Hajnal JV, French PMW, Arridge SR. Förster resonance energy transfer imaging in vivo with approximated radiative transfer equation. APPLIED OPTICS 2011; 50:6583-6590. [PMID: 22193187 PMCID: PMC3492744 DOI: 10.1364/ao.50.006583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe a new light transport model, which was applied to three-dimensional lifetime imaging of Förster resonance energy transfer in mice in vivo. The model is an approximation to the radiative transfer equation and combines light diffusion and ray optics. This approximation is well adopted to wide-field time-gated intensity-based data acquisition. Reconstructed image data are presented and compared with results obtained by using the telegraph equation approximation. The new approach provides improved recovery of absorption and scattering parameters while returning similar values for the fluorescence parameters.
Collapse
Affiliation(s)
- Vadim Y Soloviev
- Department of Computer Science, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ardeshirpour Y, Chernomordik V, Capala J, Hassan M, Zielinsky R, Griffiths G, Achilefu S, Smith P, Gandjbakhckhe A. Using in-vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol Cancer Res Treat 2011; 10:549-60. [PMID: 22066595 PMCID: PMC3718028 DOI: 10.1177/153303461101000605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The major goal in developing drugs targeting specific tumor receptors, such as Monoclonal AntiBodies (MAB), is to make a drug compound that targets selectively the cancer-causing biomarkers, inhibits their functionality, and/or delivers the toxin specifically to the malignant cells. Recent advances in MABs show that their efficacy depends strongly on characterization of tumor biomarkers. Therefore, one of the main tasks in cancer diagnostics and treatment is to develop non-invasive in-vivo imaging techniques for detection of cancer biomarkers and monitoring their down regulation during the treatment. Such methods can potentially result in a new imaging and treatment paradigm for cancer therapy. In this article we have reviewed fluorescence imaging approaches, including those developed in our group, to detect and monitor Human Epidermal Growth Factor 2 (HER2) receptors before and during therapy. Transition of these techniques from the bench to bedside is the ultimate goal of our project. Similar approaches can be used potentially for characterization of other cancer related cell biomarkers.
Collapse
Affiliation(s)
- Yasaman Ardeshirpour
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Victor Chernomordik
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Jacek Capala
- NIH/National Cancer Institute, Building 10-Magnuson Clinical Center, 10 Center Dr, Bethesda, MD, 20892
| | - Moinuddin Hassan
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| | - Rafal Zielinsky
- NIH/National Cancer Institute, Building 10-Magnuson Clinical Center, 10 Center Dr, Bethesda, MD, 20892
| | - Gary Griffiths
- NIH/Imaging Probe Development Center, Building 9800, Medical Center Dr., Rockville, MD, 20850
| | - Samuel Achilefu
- Optical Radiology Lab, Department of Radiology, Washington University, 4525 Scott Avenue, St. Louis, MO 63110
| | - Paul Smith
- NIH/National Institute of Biomedical Imaging and Bioengineering, Building 13, 3N18A 13 South Dr, Bethesda, MD, 20892
| | - Amir Gandjbakhckhe
- NIH/National Institute of Child Health and Human Development, Building 9, 9 Memorial Dr., Bethesda, MD, 20892
| |
Collapse
|
35
|
Mathejczyk JE, Pauli J, Dullin C, Napp J, Tietze LF, Kessler H, Resch-Genger U, Alves F. Spectroscopically Well-Characterized RGD Optical Probe as a Prerequisite for Lifetime-Gated Tumor Imaging. Mol Imaging 2011. [DOI: 10.2310/7290.2011.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Labeling of RGD peptides with near-infrared fluorophores yields optical probes for noninvasive imaging of tumors overexpressing αvβ3 integrins. An important prerequisite for optimum detection sensitivity in vivo is strongly absorbing and highly emissive probes with a known fluorescence lifetime. The RGD-Cy5.5 optical probe was derived by coupling Cy5.5 to a cyclic arginine–glycine–aspartic acid–d-phenylalanine–lysine (RGDfK) peptide via an aminohexanoic acid spacer. Spectroscopic properties of the probe were studied in different matrices in comparison to Cy5.5. For in vivo imaging, human glioblastoma cells were subcutaneously implanted into nude mice, and in vivo fluorescence intensity and lifetime were measured. The fluorescence quantum yield and lifetime of Cy5.5 were found to be barely affected on RGD conjugation but dramatically changed in the presence of proteins. By time domain fluorescence imaging, we demonstrated specific binding of RGD-Cy5.5 to glioblastoma xenografts in nude mice. Discrimination of unspecific fluorescence by lifetime-gated analysis further enhanced the detection sensitivity of RGD-Cy5.5-derived signals. We characterized RGD-Cy5.5 as a strongly emissive and stable probe adequate for selective targeting of αvβ3 integrins. The specificity and thus the overall detection sensitivity in vivo were optimized with lifetime gating, based on the previous determination of the probes fluorescence lifetime under application-relevant conditions.
Collapse
Affiliation(s)
- Julia Eva Mathejczyk
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Jutta Pauli
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Christian Dullin
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Joanna Napp
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Lutz-F. Tietze
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Horst Kessler
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Ute Resch-Genger
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| | - Frauke Alves
- From the Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Departments of Hematology and Oncology and Diagnostic Radiology, University Medical Center Göttingen, Göttingen, Germany; BAM Federal Institute for Materials Research and Testing, Berlin, Germany; Department of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; and Institute for Advanced Study and Center of Integrated Protein Science Munich,
| |
Collapse
|
36
|
Tichauer KM, Holt RW, El-Ghussein F, Zhu Q, Dehghani H, Leblond F, Pogue BW. Imaging workflow and calibration for CT-guided time-domain fluorescence tomography. BIOMEDICAL OPTICS EXPRESS 2011; 2:3021-36. [PMID: 22076264 PMCID: PMC3207372 DOI: 10.1364/boe.2.003021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/17/2011] [Accepted: 09/22/2011] [Indexed: 05/20/2023]
Abstract
In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates.
Collapse
Affiliation(s)
- Kenneth M. Tichauer
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Robert W. Holt
- Department of Physics and Astronomy, Dartmouth College, NH 03755, USA
| | - Fadi El-Ghussein
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Qun Zhu
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Frederic Leblond
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
- Department of Physics and Astronomy, Dartmouth College, NH 03755, USA
| |
Collapse
|
37
|
Berezin MY, Guo K, Akers W, Northdurft RE, Culver JP, Teng B, Vasalatiy O, Barbacow K, Gandjbakhche A, Griffiths GL, Achilefu S. Near-infrared fluorescence lifetime pH-sensitive probes. Biophys J 2011; 100:2063-72. [PMID: 21504743 DOI: 10.1016/j.bpj.2011.02.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/16/2011] [Accepted: 02/23/2011] [Indexed: 11/18/2022] Open
Abstract
We report what we believe to be the first near-infrared pH-sensitive fluorescence lifetime molecular probe suitable for biological applications in physiological range. Specifically, we modified a known fluorophore skeleton, hexamethylindotricarbocyanine, with a tertiary amine functionality that was electronically coupled to the fluorophore, to generate a pH-sensitive probe. The pK(a) of the probe depended critically on the location of the amine. Peripheral substitution at the 5-position of the indole ring resulted in a compound with pK(a) ∼ 4.9 as determined by emission spectroscopy. In contrast, substitution at the meso-position shifted the pK(a) to 5.5. The resulting compound, LS482, demonstrated steady-state and fluorescence-lifetime pH-sensitivity. This sensitivity stemmed from distinct lifetimes for protonated (∼1.16 ns in acidic DMSO) and deprotonated (∼1.4 ns in basic DMSO) components. The suitability of the fluorescent dyes for biological applications was demonstrated with a fluorescence-lifetime tomography system. The ability to interrogate cellular processes and subsequently translate the findings in living organisms further augments the potential of these lifetime-based pH probes.
Collapse
Affiliation(s)
- Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lin Y, Ghijsen MT, Gao H, Liu N, Nalcioglu O, Gulsen G. A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging. Phys Med Biol 2011; 56:4731-47. [PMID: 21753235 PMCID: PMC3961472 DOI: 10.1088/0031-9155/56/15/007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescence tomography (FT) is a promising molecular imaging technique that can spatially resolve both fluorophore concentration and lifetime parameters. However, recovered fluorophore parameters highly depend on the size and depth of the object due to the ill-posedness of the FT inverse problem. Structural a priori information from another high spatial resolution imaging modality has been demonstrated to significantly improve FT reconstruction accuracy. In this study, we have constructed a combined magnetic resonance imaging (MRI) and FT system for small animal imaging. A photo-multiplier tube is used as the detector to acquire frequency domain FT measurements. This is the first MR-compatible time-resolved FT system that can reconstruct both fluorescence concentration and lifetime maps simultaneously. The performance of the hybrid system is evaluated with phantom studies. Two different fluorophores, indocyanine green and 3-3' diethylthiatricarbocyanine iodide, which have similar excitation and emission spectra but different lifetimes, are utilized. The fluorescence concentration and lifetime maps are both reconstructed with and without the structural a priori information obtained from MRI for comparison. We show that the hybrid system can accurately recover both fluorescence intensity and lifetime within 10% error for two 4.2 mm-diameter cylindrical objects embedded in a 38 mm-diameter cylindrical phantom when MRI structural a priori information is utilized.
Collapse
Affiliation(s)
- Y Lin
- Tu and Yuen Center for Functional Onco Imaging, University of California, Irvine, CA, 92697, USA
| | - M T Ghijsen
- Tu and Yuen Center for Functional Onco Imaging, University of California, Irvine, CA, 92697, USA
| | - H Gao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - N Liu
- Tu and Yuen Center for Functional Onco Imaging, University of California, Irvine, CA, 92697, USA
| | - O Nalcioglu
- Tu and Yuen Center for Functional Onco Imaging, University of California, Irvine, CA, 92697, USA
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan, Korea
| | - G Gulsen
- Tu and Yuen Center for Functional Onco Imaging, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
39
|
Tichauer KM, Migueis M, Leblond F, Elliott JT, Diop M, St Lawrence K, Lee TY. Depth resolution and multiexponential lifetime analyses of reflectance-based time-domain fluorescence data. APPLIED OPTICS 2011; 50:3962-3972. [PMID: 21772380 DOI: 10.1364/ao.50.003962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Time-domain fluorescence imaging is a powerful new technique that adds a rich amount of information to conventional fluorescence imaging. Specifically, time-domain fluorescence can be used to remove autofluorescence from signals, resolve multiple fluorophore concentrations, provide information about tissue microenvironments, and, for reflectance-based imaging systems, resolve inclusion depth. The present study provides the theory behind an improved method of analyzing reflectance-based time-domain data that is capable of accurately recovering mixed concentration ratios of multiple fluorescent agents while also recovering the depth of the inclusion. The utility of the approach was demonstrated in a number of simulations and in tissuelike phantom experiments using a short source-detector separation system. The major findings of this study were (1) both depth of an inclusion and accurate ratios of two-fluorophore concentrations can be recovered accurately up to depths of approximately 1 cm with only the optical properties of the medium as prior knowledge, (2) resolving the depth and accounting for the dispersion effects on fluorescent lifetimes is crucial to the accuracy of recovered ratios, and (3) ratios of three-fluorophore concentrations can be resolved at depth but only if the lifetimes of the three fluorophores are used as prior knowledge. By accurately resolving the concentration ratios of two to three fluorophores, it may be possible to remove autofluorescence or carry out quantitative techniques, such as reference tracer kinetic modeling or ratiometric approaches, to determine receptor binding or microenvironment parameters in point-based time-domain fluorescence applications.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Optical imaging has emerged as a powerful modality for studying molecular recognitions and molecular imaging in a noninvasive, sensitive, and real-time way. Some advantages of optical imaging include cost-effectiveness, convenience, and non-ionization safety as well as complementation with other imaging modalities such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). Over the past decade, considerable advances have been made in tumor optical imaging by targeting integrin receptors in preclinical studies. This review has emphasized the construction and evaluation of diverse integrin targeting agents for optical imaging of tumors in mouse models. They mainly include some near-infrared fluorescent dye-RGD peptide conjugates, their multivalent analogs, and nanoparticle conjugates for targeting integrin αvβ3. Some compounds targeting other integrin subtypes such as α4β1 and α3 for tumor optical imaging have also been included. Both in vitro and in vivo studies have revealed some promising integrin-targeting optical agents which have further enhanced our understanding of integrin expression and targeting in cancer biology as well as related anticancer drug discovery. Especially, some integrin-targeted multifunctional optical agents including nanoparticle-based optical agents can multiplex optical imaging with other imaging modalities and targeted therapy, serving as an attractive type of theranostics for simultaneous imaging and targeted therapy. Continued efforts to discover and develop novel, innovative integrin-based optical agents with improved targeting specificity and imaging sensitivity hold great promises for improving cancer early detection, diagnosis, and targeted therapy in clinic.
Collapse
|
41
|
McGinty J, Stuckey DW, Soloviev VY, Laine R, Wylezinska-Arridge M, Wells DJ, Arridge SR, French PMW, Hajnal JV, Sardini A. In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse. BIOMEDICAL OPTICS EXPRESS 2011; 2:1907-17. [PMID: 21750768 PMCID: PMC3130577 DOI: 10.1364/boe.2.001907] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 05/06/2023]
Abstract
Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a tomographic imaging system and applying inverse scattering algorithms, we can reconstruct the three dimensional spatial localization of fluorescence quantum efficiency and lifetime. We demonstrate in vivo spatial mapping of FRET between genetically expressed fluorescent proteins in live mice read out using FLIM. Following transfection by electroporation, mouse hind leg muscles were imaged in vivo and the emission of free donor (eGFP) in the presence of free acceptor (mCherry) could be clearly distinguished from the fluorescence of the donor when directly linked to the acceptor in a tandem (eGFP-mCherry) FRET construct.
Collapse
Affiliation(s)
- James McGinty
- Photonics Group, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
- These authors contributed equally to this work
| | - Daniel W. Stuckey
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
- These authors contributed equally to this work
| | - Vadim Y. Soloviev
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Romain Laine
- Photonics Group, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
| | | | - Dominic J. Wells
- Department of Veterinary Basic Sciences, The Royal Veterinary College, London NW1 0TU, UK
| | - Simon R. Arridge
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Paul M. W. French
- Photonics Group, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
| | - Joseph V. Hajnal
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Alessandro Sardini
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
42
|
Cicchi R, Pavone FS. Non-linear fluorescence lifetime imaging of biological tissues. Anal Bioanal Chem 2011; 400:2687-97. [PMID: 21455652 DOI: 10.1007/s00216-011-4896-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
In recent years fluorescence microscopy has become a widely used tool for tissue imaging and spectroscopy. Optical techniques, based on both linear and non-linear excitation, have been broadly applied to imaging and characterization of biological tissues. Among fluorescence techniques used in tissue imaging applications, in recent years two and three-photon excited fluorescence have gained increased importance because of their high-resolution deep tissue imaging capability inside optically turbid samples. The main limitation of steady-state fluorescence imaging techniques consists in providing only morphological information; functional information is not detectable without technical improvements. A spectroscopic approach, based on lifetime measurement of tissue fluorescence, can provide functional information about tissue conditions, including its environment, red-ox state, and pH, and hence physiological characterization of the tissue under investigation. Measurement of the fluorescence lifetime is a very important issue for characterizing a biological tissue. Deviation of this property from a control value can be taken as an indicator of disorder and/or malignancy in diseased tissues. Even if much work on this topic has still to be done, including the interpretation of fluorescence lifetime data, we believe that this methodology will gain increasing importance in the field of biophotonics. In this paper, we review methodologies, potentials and results obtained by using fluorescence lifetime imaging microscopy for the investigation of biological tissues.
Collapse
Affiliation(s)
- Riccardo Cicchi
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy.
| | | |
Collapse
|
43
|
Domínguez JB, Bérubé-Lauzière Y. Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations. BIOMEDICAL OPTICS EXPRESS 2011; 2:817-37. [PMID: 21483606 PMCID: PMC3072124 DOI: 10.1364/boe.2.000817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/23/2011] [Accepted: 03/07/2011] [Indexed: 05/16/2023]
Abstract
We introduce a system of coupled time-dependent parabolic simplified spherical harmonic equations to model the propagation of both excitation and fluorescence light in biological tissues. We resort to a finite element approach to obtain the time-dependent profile of the excitation and the fluorescence light fields in the medium. We present results for cases involving two geometries in three-dimensions: a homogeneous cylinder with an embedded fluorescent inclusion and a realistically-shaped rodent with an embedded inclusion alike an organ filled with a fluorescent probe. For the cylindrical geometry, we show the differences in the time-dependent fluorescence response for a point-like, a spherical, and a spherically Gaussian distributed fluorescent inclusion. From our results, we conclude that the model is able to describe the time-dependent excitation and fluorescent light transfer in small geometries with high absorption coefficients and in nondiffusive domains, as may be found in small animal diffuse optical tomography (DOT) and fluorescence DOT imaging.
Collapse
Affiliation(s)
- Jorge Bouza Domínguez
- Laboratoire TomOptUS, Département de génie électrique et de génie informatique, Faculté de génie, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Yves Bérubé-Lauzière
- Laboratoire TomOptUS, Département de génie électrique et de génie informatique, Faculté de génie, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Québec, J1K 2R1, Canada
- Centre d’imagerie moléculaire de Sherbrooke (CIMS) - Centre de recherche clinique Étienne-Le Bel du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| |
Collapse
|
44
|
Liu X, Liu F, Bai J. A linear correction for principal component analysis of dynamic fluorescence diffuse optical tomography images. IEEE Trans Biomed Eng 2011; 58:1602-11. [PMID: 21245001 DOI: 10.1109/tbme.2011.2106501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis of dynamic fluorescence diffuse optical tomography (D-FDOT) is important both for drug delivery research and for medical diagnosis and treatment. The low spatial resolution and complex kinetics, however, limit the ability of FDOT in resolving drug distributions within small animals. Principal component analysis (PCA) provides the capability of detecting and visualizing functional structures with different kinetic patterns from D-FDOT images. A particular challenge in using PCA is to reduce the level of noise in D-FDOT images. This is particularly relevant in drug study, where the time-varying fluorophore concentration (drug concentration) will result in the reconstructed images containing more noise and, therefore, affect the performance of PCA. In this paper, a new linear corrected method is proposed for modeling these time-varying fluorescence measurements before performing PCA. To evaluate the performance of the new method in resolving drug biodistribution, the metabolic processes of indocyanine green within mouse is dynamically simulated and used as the input data of PCA. Simulation results suggest that the principal component (PC) images generated using the new method improve SNR and discrimination capability, compared to the PC images generated using the uncorrected D-FDOT images.
Collapse
Affiliation(s)
- Xin Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
45
|
Solomon M, Liu Y, Berezin MY, Achilefu S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Princ Pract 2011; 20:397-415. [PMID: 21757928 PMCID: PMC7388590 DOI: 10.1159/000327655] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023] Open
Abstract
Accurate and rapid detection of diseases is of great importance for assessing the molecular basis of pathogenesis, preventing the onset of complications, and implementing a tailored therapeutic regimen. The ability of optical imaging to transcend wide spatial imaging scales ranging from cells to organ systems has rejuvenated interest in using this technology for medical imaging. Moreover, optical imaging has at its disposal diverse contrast mechanisms for distinguishing normal from pathologic processes and tissues. To accommodate these signaling strategies, an array of imaging techniques has been developed. Importantly, light absorption, and emission methods, as well as hybrid optical imaging approaches are amenable to both small animal and human studies. Typically, complex methods are needed to extract quantitative data from deep tissues. This review focuses on the development of optical imaging platforms, image processing techniques, and molecular probes, as well as their applications in cancer diagnosis, staging, and monitoring therapeutic response.
Collapse
Affiliation(s)
- Metasebya Solomon
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Yang Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
| | - Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Mo., USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
46
|
Laidevant A, Hervé L, Debourdeau M, Boutet J, Grenier N, Dinten JM. Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe. BIOMEDICAL OPTICS EXPRESS 2010; 2:194-206. [PMID: 21326649 PMCID: PMC3028494 DOI: 10.1364/boe.2.000194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 05/03/2023]
Abstract
Ultrasound imaging (US) of the prostate has a low specificity to distinguish tumors from the surrounding tissues. This limitation leads to systematic biopsies. Fluorescent diffuse optical imaging may represent an innovative approach to guide biopsies to tumors marked with high specificity contrast agents and therefore enable an early detection of prostate cancer. This article describes a time-resolved optical system embedded in a transrectal US probe, as well as the fluorescence reconstruction method and its performance. Optical measurements were performed using a pulsed laser, optical fibers and a time-resolved detection system. A novel fast reconstruction method was derived and used to locate a 45 µL ICG fluorescent inclusion at a concentration of 10 µM, in a liquid prostate phantom. Very high location accuracy (0.15 cm) was achieved after reconstruction, for different positions of the inclusion, in the three directions of space. The repeatability, tested with ten sequential measurements, was of the same order of magnitude. Influence of the input parameters (optical properties and lifetime) is presented. These results confirm the feasibility of using optical imaging for prostate guided biopsies.
Collapse
Affiliation(s)
- Aurélie Laidevant
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Lionel Hervé
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | - Jérôme Boutet
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Groupe Hospitalier Pellegrin, Place Amélie Raba-Léon, 33076 BORDEAUX Cedex, France
| | - Jean-Marc Dinten
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
47
|
Rusanov AL, Ivashina TV, Vinokurov LM, Fiks II, Orlova AG, Turchin IV, Meerovich IG, Zherdeva VV, Savitsky AP. Lifetime imaging of FRET between red fluorescent proteins. JOURNAL OF BIOPHOTONICS 2010; 3:774-83. [PMID: 20925107 DOI: 10.1002/jbio.201000065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous processes in cells can be traced by using fluorescence resonance energy transfer (FRET) between two fluorescent proteins. The novel FRET pair including the red fluorescent protein TagRFP and kindling fluorescent protein KFP for sensing caspase-3 activity is developed. The lifetime mode of FRET measurements with a nonfluorescent protein KFP as an acceptor is used to minimize crosstalk due to its direct excitation. The red fluorescence is characterized by a better penetrability through the tissues and minimizes the cell autofluorescence signal. The effective transfection and expression of the FRET sensor in eukaryotic cells is shown by FLIM. The induction of apoptosis by camptothecine increases the fluorescence lifetime, which means effective cleavage of the FRET sensor by caspase-3. The instruments for detecting whole-body fluorescent lifetime imaging are described. Experiments on animals show distinct fluorescence lifetimes for the red fluorescent proteins possessing similar spectral properties.
Collapse
Affiliation(s)
- Alexander L Rusanov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Solomon M, Achilefu S. Perspectives and potential applications of nanomedicine in breast and prostate cancer. Med Res Rev 2010; 33:3-32. [PMID: 23239045 DOI: 10.1002/med.20233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanomedicine is a branch of nanotechnology that includes the development of nanostructures and nanoanalytical systems for various medical applications. Among these applications, utilization of nanotechnology in oncology has captivated the attention of many research endeavors in recent years. The rapid development of nano-oncology raises new possibilities in cancer diagnosis and treatment. It also holds great promise for realization of point-of-care, theranostics, and personalized medicine. In this article, we review advances in nano-oncology, with an emphasis on breast and prostate cancer because these organs are amenable to the translation of nanomedicine from small animals to humans. As new drugs are developed, the incorporation of nanotechnology approaches into medicinal research becomes critical. Diverse aspects of nano-oncology are discussed, including nanocarriers, targeting strategies, nanodevices, as well as nanomedical diagnostics, therapeutics, and safety. The review concludes by identifying some limitations and future perspectives of nano-oncology in breast and prostate cancer management.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
49
|
Soloviev VY, D'Andrea C, Mohan PS, Valentini G, Cubeddu R, Arridge SR. Fluorescence lifetime optical tomography with Discontinuous Galerkin discretisation scheme. BIOMEDICAL OPTICS EXPRESS 2010; 1:998-1013. [PMID: 21258525 PMCID: PMC3018046 DOI: 10.1364/boe.1.000998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/07/2010] [Accepted: 09/12/2010] [Indexed: 05/23/2023]
Abstract
We develop discontinuous Galerkin framework for solving direct and inverse problems in fluorescence diffusion optical tomography in turbid media. We show the advantages and the disadvantages of this method by comparing it with previously developed framework based on the finite volume discretization. The reconstruction algorithm was used with time-gated experimental dataset acquired by imaging a highly scattering cylindrical phantom concealing small fluorescent tubes. Optical parameters, quantum yield and lifetime were simultaneously reconstructed. Reconstruction results are presented and discussed.
Collapse
Affiliation(s)
- Vadim Y. Soloviev
- Departments of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Cosimo D'Andrea
- Centre for Nano Science and Technology of Italian Institute of Technology (IIT), Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - P. Surya Mohan
- Departments of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Gianluca Valentini
- Istituto di Fotonica e Nanotecnologie (IFN-CNR), Italian Institute of Technology (IIT), Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Rinaldo Cubeddu
- Istituto di Fotonica e Nanotecnologie (IFN-CNR), Italian Institute of Technology (IIT), Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Simon R. Arridge
- Departments of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
50
|
Raymond SB, Boas DA, Bacskai BJ, Kumar ATN. Lifetime-based tomographic multiplexing. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:046011. [PMID: 20799813 PMCID: PMC2929260 DOI: 10.1117/1.3469797] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 05/16/2010] [Accepted: 06/01/2010] [Indexed: 05/18/2023]
Abstract
Near-infrared (NIR) fluorescence tomography of multiple fluorophores has previously been limited by the bandwidth of the NIR spectral regime and the broad emission spectra of most NIR fluorophores. We describe in vivo tomography of three spectrally overlapping fluorophores using fluorescence lifetime-based separation. Time-domain images are acquired using a voltage-gated, intensified charge-coupled device (CCD) in free-space transmission geometry with 750 nm Ti:sapphire laser excitation. Lifetime components are fit from the asymptotic portion of fluorescence decay curve and reconstructed separately with a lifetime-adjusted forward model. We use this system to test the in vivo lifetime multiplexing suitability of commercially available fluorophores, and demonstrate lifetime multiplexing in solution mixtures and in nude mice. All of the fluorophores tested exhibit nearly monoexponential decays, with narrow in vivo lifetime distributions suitable for lifetime multiplexing. Quantitative separation of two fluorophores with lifetimes of 1.1 and 1.37 ns is demonstrated for relative concentrations of 1:5. Finally, we demonstrate tomographic imaging of two and three fluorophores in nude mice with fluorophores that localize to distinct organ systems. This technique should be widely applicable to imaging multiple NIR fluorophores in 3-D.
Collapse
Affiliation(s)
- Scott B Raymond
- The Harvard-MIT Division of Health Sciences and Technology, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|