1
|
Jethe JV, Shen YY, La Gamma EF, Vinukonda G, Fisher JAN. Noninvasive optical monitoring of cerebral hemodynamics in a preclinical model of neonatal intraventricular hemorrhage. Front Pediatr 2025; 13:1512613. [PMID: 40129699 PMCID: PMC11930821 DOI: 10.3389/fped.2025.1512613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Intraventricular hemorrhage (IVH) is a common complication in premature infants and is associated with white matter injury and long-term neurodevelopmental disabilities. Standard diagnostic tools such as cranial ultrasound and MRI are widely used in both preclinical drug development and clinical practice to detect IVH. However, these methods are limited to endpoint assessments of blood accumulation and do not capture real-time changes in germinal matrix blood flow leading to IVH. This limitation could potentially result in missed opportunities to advance drug candidates that may have protective effects against IVH. In this pilot study, we aimed to develop a noninvasive optical approach using diffuse correlation spectroscopy (DCS) to monitor real-time hemodynamic changes associated with hemorrhagic events and pre-hemorrhagic blood flow in a preclinical rabbit model of IVH. DCS measurements were conducted during the experimental induction of IVH, and results were compared with ultrasound and histological analysis to validate findings. Significant changes in hemodynamics were detected in all animals subjected to IVH-inducing procedures, including those that did not show clear positive results on ultrasound 18 h later. The study revealed progressively elevated coefficients of variation in blood flow, largely driven by temporal fluctuations in the <0.25 Hz range. Our findings suggest that real-time optical monitoring with DCS can provide critical insights heralding pathological blood flow changes, offering a more sensitive and informative tool for evaluating potential therapeutics that may help avert the progression to IVH.
Collapse
Affiliation(s)
- Jyoti V. Jethe
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - YuBing Y. Shen
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Edmund F. La Gamma
- Department Pediatrics, Division of Newborn Medicine, New York Medical College, Valhalla, NY, United States
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Govindaiah Vinukonda
- Department Pediatrics, Division of Newborn Medicine, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | | |
Collapse
|
2
|
Chalifoux N, Ko T, Slovis J, Spelde A, Kilbaugh T, Mavroudis CD. Cerebral Autoregulation: A Target for Improving Neurological Outcomes in Extracorporeal Life Support. Neurocrit Care 2024; 41:1055-1072. [PMID: 38811513 PMCID: PMC11599328 DOI: 10.1007/s12028-024-02002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Despite improvements in survival after illnesses requiring extracorporeal life support, cerebral injury continues to hinder successful outcomes. Cerebral autoregulation (CA) is an innate protective mechanism that maintains constant cerebral blood flow in the face of varying systemic blood pressure. However, it is impaired in certain disease states and, potentially, following initiation of extracorporeal circulatory support. In this review, we first discuss patient-related factors pertaining to venovenous and venoarterial extracorporeal membrane oxygenation (ECMO) and their potential role in CA impairment. Next, we examine factors intrinsic to ECMO that may affect CA, such as cannulation, changes in pulsatility, the inflammatory and adaptive immune response, intracranial hemorrhage, and ischemic stroke, in addition to ECMO management factors, such as oxygenation, ventilation, flow rates, and blood pressure management. We highlight potential mechanisms that lead to disruption of CA in both pediatric and adult populations, the challenges of measuring CA in these patients, and potential associations with neurological outcome. Altogether, we discuss individualized CA monitoring as a potential target for improving neurological outcomes in extracorporeal life support.
Collapse
Affiliation(s)
- Nolan Chalifoux
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Tiffany Ko
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Slovis
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Spelde
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Todd Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Dar IA, Khan IR, Johnson TW, Helmy SM, Cardona JI, Escobar S, Selioutski O, Marinescu MA, Zhang CT, Proctor AR, AbdAllah N, Busch DR, Maddox RK, Choe R. Wavelet and time-based cerebral autoregulation analysis using diffuse correlation spectroscopy on adults undergoing extracorporeal membrane oxygenation therapy. PLoS One 2024; 19:e0299752. [PMID: 39471182 PMCID: PMC11521301 DOI: 10.1371/journal.pone.0299752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Adult patients who have suffered acute cardiac or pulmonary failure are increasingly being treated using extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass technique. While ECMO has improved the long-term outcomes of these patients, neurological injuries can occur from underlying illness or ECMO itself. Cerebral autoregulation (CA) allows the brain to maintain steady perfusion during changes in systemic blood pressure. Dysfunctional CA is a marker of acute brain injury and can worsen neurologic damage. Monitoring CA using invasive modalities can be risky in ECMO patients due to the necessity of anticoagulation therapy. Diffuse correlation spectroscopy (DCS) measures cerebral blood flow continuously, noninvasively, at the bedside, and can monitor CA. In this study, we compare DCS-based markers of CA in veno-arterial ECMO patients with and without acute brain injury. METHODS Adults undergoing ECMO were prospectively enrolled at a single tertiary hospital and underwent DCS and arterial blood pressure monitoring during ECMO. Neurologic injuries were identified using brain computerized tomography (CT) scans obtained in all patients. CA was calculated over a twenty-minute window via wavelet coherence analysis (WCA) over 0.05 Hz to 0.1 Hz and a Pearson correlation (DCSx) between cerebral blood flow measured by DCS and mean arterial pressure. RESULTS Eleven ECMO patients who received CT neuroimaging were recruited. 5 (45%) patients were found to have neurologic injury. CA indices WCOH, the area under the curve of the WCA, were significantly higher for patients with neurological injuries compared to those without neurological injuries (right hemisphere p = 0.041, left hemisphere p = 0.041). %DCSx, percentage of time DCSx was above a threshold 0.4, were not significantly higher (right hemisphere p = 0.268, left hemisphere p = 0.073). CONCLUSION DCS can be used to detect differences in CA for ECMO patients with neurological injuries compared to uninjured patients using WCA.
Collapse
Affiliation(s)
- Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Marie Helmy
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jeronimo I. Cardona
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Escobar
- Clinical and Translational Sciences Program, University of Rochester, Rochester, New York, United States of America
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Mississippi, Jackson, Mississippi, United States of America
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chloe T. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Ashley R. Proctor
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Noura AbdAllah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - David R. Busch
- Departments of Anesthesiology and Pain Management, Neurology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
4
|
Cucerea M, Ognean ML, Pinzariu AC, Simon M, Suciu LM, Ghiga DV, Moldovan E, Moscalu M. Effects of Prostaglandin E1 and Balloon Atrial Septostomy on Cerebral Blood Flow and Oxygenation in Newborns Diagnosed with Transposition of the Great Arteries. Biomedicines 2024; 12:2018. [PMID: 39335532 PMCID: PMC11428714 DOI: 10.3390/biomedicines12092018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Dextro-transposition of the great arteries (D-TGA) is a critical congenital heart defect that can impact neurodevelopment due to cerebral perfusion and oxygenation disorders followed by alterations in synaptogenesis, gyrification, sulcation, and the microstructure. Brain injuries can occur both pre-operatively and postoperatively, especially white matter injuries, neuronal loss, and stroke. Materials and Methods: In a retrospective study conducted at a tertiary center between 2016 and 2023, we investigated the early effects of Prostaglandin E1 (PGE1) administration and balloon atrial septostomy (BAS) on cerebral blood flow and oxygenation in inborn neonates with D-TGA. Cerebral Doppler Ultrasound in the anterior cerebral artery (ACA) was performed to assess the resistive index (RI), Peak Systolic Velocity (PSV), and End-Diastolic Velocity (EVD) before PGE1, before the BAS procedure, and 24 h after birth. Cerebral regional saturations of oxygen (crSO2) and cerebral fractional tissue oxygen extraction (cFTOE) were evaluated. D-TGA patients were divided into the PGE1 group and the PGE1 + BAS group. Age-matched healthy controls were used for comparison. Results: All 83 D-TGA newborns received PGE1 within two hours after delivery, of whom 46 (55.42%) underwent BAS. In addition, 77 newborns composed the control group. PGE1 administration increased crSO2 from 47% to 50% in the PGE1 group, but lower than in controls at 24 h of life, while cFTOE remained elevated. The RI increased 24 h after delivery (0.718 vs. 0.769; p = 0.000002) due to decreased EDV (10.71 vs. 8.74; p < 0.0001) following PGE1 treatment. The BAS procedure resulted in a significant increase in crSO2 from 42% to 51% at 24 h of life in the PGE1 + BAS group. Doppler parameters exhibited a similar trend as observed in the PGE1 group. Conclusions: PGE1 treatment and BAS are lifesaving interventions that may improve cerebral perfusion and oxygenation in newborns with D-TGA during the transition period, as reflected by increasing SpO2 and crSO2.
Collapse
Affiliation(s)
- Manuela Cucerea
- Neonatology Department, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania
| | - Maria-Livia Ognean
- Dental Medicine and Nursing Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Alin-Constantin Pinzariu
- Department of Morpho-Functional Sciences II, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Marta Simon
- Neonatology Department, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania
| | - Laura Mihaela Suciu
- Neonatology Department, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania
| | - Dana-Valentina Ghiga
- Faculty of Dental Medicine, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540139 Târgu Mureș, Romania
| | - Elena Moldovan
- Pediatric Intensive Care Unit, Cardiovascular and Transplant Emergency Institute, 540136 Târgu Mureș, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
5
|
Martini S, Thewissen L, Austin T, da Costa CS, de Boode WP, Dempsey E, Kooi E, Pellicer A, Rhee CJ, Riera J, Wolf M, Wong F. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now? Pediatr Res 2024; 96:884-895. [PMID: 36997690 DOI: 10.1038/s41390-023-02574-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cerebrovascular reactivity defines the ability of the cerebral vasculature to regulate its resistance in response to both local and systemic factors to ensure an adequate cerebral blood flow to meet the metabolic demands of the brain. The increasing adoption of near-infrared spectroscopy (NIRS) for non-invasive monitoring of cerebral oxygenation and perfusion allowed investigation of the mechanisms underlying cerebrovascular reactivity in the neonatal population, confirming important associations with pathological conditions including the development of brain injury and adverse neurodevelopmental outcomes. However, the current literature on neonatal cerebrovascular reactivity is mainly still based on small, observational studies and is characterised by methodological heterogeneity; this has hindered the routine application of NIRS-based monitoring of cerebrovascular reactivity to identify infants most at risk of brain injury. This review aims (1) to provide an updated review on neonatal cerebrovascular reactivity, assessed using NIRS; (2) to identify critical points that need to be addressed with targeted research; and (3) to propose feasibility trials in order to fill the current knowledge gaps and to possibly develop a preventive or curative approach for preterm brain injury. IMPACT: NIRS monitoring has been largely applied in neonatal research to assess cerebrovascular reactivity in response to blood pressure, PaCO2 and other biochemical or metabolic factors, providing novel insights into the pathophysiological mechanisms underlying cerebral blood flow regulation. Despite these insights, the current literature shows important pitfalls that would benefit to be addressed in a series of targeted trials, proposed in the present review, in order to translate the assessment of cerebrovascular reactivity into routine monitoring in neonatal clinical practice.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | | | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, INFANT Centre, University College Cork, Cork, Ireland
| | - Elisabeth Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
| | - Christopher J Rhee
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Joan Riera
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Technology, Technical University, Madrid, Spain
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Flora Wong
- Monash Newborn, Monash Children's Hospital, Hudson Institute of Medical Research, Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
7
|
Pardo AC, Carrasco M, Wintermark P, Nunes D, Chock VY, Sen S, Wusthoff CJ. Neuromonitoring practices for neonates with congenital heart disease: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03484-x. [PMID: 39183308 DOI: 10.1038/s41390-024-03484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Neonates with congenital heart disease (CHD) are at risk for adverse neurodevelopmental outcomes. This scoping review summarizes neuromonitoring methods in neonates with CHD. We identified 84 studies investigating the use of near-infrared spectroscopy (NIRS) (n = 37), electroencephalography (EEG) (n = 20), amplitude-integrated electroencephalography (aEEG) (n = 10), transcranial Doppler sonography (TCD) (n = 6), and multimodal monitoring (n = 11). NIRS was used to evaluate cerebral oxygenation, identify risk thresholds and adverse events in the intensive care unit (ICU), and outcomes. EEG was utilized to screen for seizures and to predict adverse outcomes. Studies of aEEG have focused on characterizing background patterns, detecting seizures, and outcomes. Studies of TCD have focused on correlation with short-term clinical outcomes. Multimodal monitoring studies characterized cerebral physiologic dynamics. Most of the studies were performed in single centers, had a limited number of neonates (range 3-183), demonstrated variability in neuromonitoring practices, and lacked standardized approaches to neurodevelopmental testing. We identified areas of improvement for future research: (1) large multicenter studies to evaluate developmental correlates of neuromonitoring practices; (2) guidelines to standardize neurodevelopmental testing methodologies; (3) research to address geographic variation in resource utilization; (4) integration and synchronization of multimodal monitoring; and (5) research to establish a standardized framework for neuromonitoring techniques across diverse settings. IMPACT: This scoping review summarizes the literature regarding neuromonitoring practices in neonates with congenital heart disease (CHD). The identification of low cerebral oxygenation thresholds with NIRS may be used to identify neonates at risk for adverse events in the ICU or adverse neurodevelopmental outcomes. Postoperative neuromonitoring with continuous EEG screening for subclinical seizures and status epilepticus, allow for early and appropriate therapy. Future studies should focus on enrolling larger multicenter cohorts of neonates with CHD with a standardized framework of neuromonitoring practices in this population. Postoperative neurodevelopmental testing should utilize standard assessments and testing intervals.
Collapse
Affiliation(s)
- Andrea C Pardo
- Department of Pediatrics (Neurology and Epilepsy). Northwestern University Feinberg School of Medicine, Chicago, IL, US.
| | - Melisa Carrasco
- Department of Neurology. University of Wisconsin School of Medicine and Public Health, Madison, WI, US
| | - Pia Wintermark
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Qc, Canada
| | - Denise Nunes
- Galter Health Sciences Library. Northwestern University Feinberg School of Medicine, Chicago, IL, US
| | - Valerie Y Chock
- Department of Pediatrics (Neonatology), Lucile Packard Children's Hospital and Stanford University, Palo Alto, CA, US
| | - Shawn Sen
- Department of Pediatrics (Neonatology). Northwestern University Feinberg School of Medicine, Chicago, IL, US
- Department of Pediatrics, University of California Irvine, Orange, CA, US
| | | |
Collapse
|
8
|
Moore CH, Sunar U, Lin W. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA. BIOSENSORS 2024; 14:384. [PMID: 39194613 DOI: 10.3390/bios14080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive technology for the evaluation of blood perfusion in deep tissue. However, it requires high computational resources for data analysis, which poses challenges in its implementation for real-time applications. To address the unmet need, we developed a novel device-on-chip solution that fully integrates all the necessary computational components needed for DCS. It takes the output of a photon detector and determines the blood flow index (BFI). It is implemented on a field-programmable gate array (FPGA) chip including a multi-tau correlator for the calculation of the temporal light intensity autocorrelation function and a DCS analyzer to perform the curve fitting operation that derives the BFI at a rate of 6000 BFIs/s. The FPGA DCS system was evaluated against a lab-standard DCS system for both phantom and cuff ischemia studies. The results indicate that the autocorrelation of the light correlation and BFI from both the FPGA DCS and the reference DCS matched well. Furthermore, the FPGA DCS system was able to achieve a measurement rate of 50 Hz and resolve pulsatile blood flow. This can significantly lower the cost and footprint of the computational components of DCS and pave the way for portable, real-time DCS systems.
Collapse
Affiliation(s)
- Christopher H Moore
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ulas Sunar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Matlis GC, Zhang Q, Benson EJ, Weeks MK, Andersen K, Jahnavi J, Lafontant A, Breimann J, Hallowell T, Lin Y, Licht DJ, Yodh AG, Kilbaugh TJ, Forti RM, White BR, Baker WB, Xiao R, Ko TS. Chassis-based fiber-coupled optical probe design for reproducible quantitative diffuse optical spectroscopy measurements. PLoS One 2024; 19:e0305254. [PMID: 39052686 PMCID: PMC11271963 DOI: 10.1371/journal.pone.0305254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024] Open
Abstract
Advanced optical neuromonitoring of cerebral hemodynamics with hybrid diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) methods holds promise for non-invasive characterization of brain health in critically ill patients. However, the methods' fiber-coupled patient interfaces (probes) are challenging to apply in emergent clinical scenarios that require rapid and reproducible attachment to the head. To address this challenge, we developed a novel chassis-based optical probe design for DOS/DCS measurements and validated its measurement accuracy and reproducibility against conventional, manually held measurements of cerebral hemodynamics in pediatric swine (n = 20). The chassis-based probe design comprises a detachable fiber housing which snaps into a 3D-printed, circumferential chassis piece that is secured to the skin. To validate its reproducibility, eight measurement repetitions of cerebral tissue blood flow index (BFI), oxygen saturation (StO2), and oxy-, deoxy- and total hemoglobin concentration were acquired at the same demarcated measurement location for each pig. The probe was detached after each measurement. Of the eight measurements, four were acquired by placing the probe into a secured chassis, and four were visually aligned and manually held. We compared the absolute value and intra-subject coefficient of variation (CV) of chassis versus manual measurements. No significant differences were observed in either absolute value or CV between chassis and manual measurements (p > 0.05). However, the CV for BFI (mean ± SD: manual, 19.5% ± 9.6; chassis, 19.0% ± 10.8) was significantly higher than StO2 (manual, 5.8% ± 6.7; chassis, 6.6% ± 7.1) regardless of measurement methodology (p<0.001). The chassis-based DOS/DCS probe design facilitated rapid probe attachment/re-attachment and demonstrated comparable accuracy and reproducibility to conventional, manual alignment. In the future, this design may be adapted for clinical applications to allow for non-invasive monitoring of cerebral health during pediatric critical care.
Collapse
Affiliation(s)
- Giselle C. Matlis
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Qihuang Zhang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Emilie J. Benson
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - M. Katie Weeks
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Kristen Andersen
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jharna Jahnavi
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Alec Lafontant
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jake Breimann
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Thomas Hallowell
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Daniel J. Licht
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Department of Pediatrics, Children’s National, Washington, District of Columbia, United States of America
- Division of Neurology, George Washington University, Washington, District of Columbia, United States of America
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rodrigo M. Forti
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Brian R. White
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Wesley B. Baker
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rui Xiao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Tiffany S. Ko
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
10
|
Wehrli FW. Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism. Magn Reson Med Sci 2024; 23:377-403. [PMID: 38866481 PMCID: PMC11234951 DOI: 10.2463/mrms.rev.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The metabolic rate of oxygen (MRO2) is fundamental to tissue metabolism. Determination of MRO2 demands knowledge of the arterio-venous difference in hemoglobin-bound oxygen concentration, typically expressed as oxygen extraction fraction (OEF), and blood flow rate (BFR). MRI is uniquely suited for measurement of both these quantities, yielding MRO2 in absolute physiologic units of µmol O2 min-1/100 g tissue. Two approaches are discussed, both relying on hemoglobin magnetism. Emphasis will be on cerebral oxygen metabolism expressed in terms of the cerebral MRO2 (CMRO2), but translation of the relevant technologies to other organs, including kidney and placenta will be touched upon as well. The first class of methods exploits the blood's bulk magnetic susceptibility, which can be derived from field maps. The second is based on measurement of blood water T2, which is modulated by diffusion and exchange in the local-induced fields within and surrounding erythrocytes. Some whole-organ methods achieve temporal resolution adequate to permit time-series studies of brain energetics, for instance, during sleep in the scanner with concurrent electroencephalogram (EEG) sleep stage monitoring. Conversely, trading temporal for spatial resolution has led to techniques for spatially resolved approaches based on quantitative blood oxygen level dependent (BOLD) or calibrated BOLD models, allowing regional assessment of vascular-metabolic parameters, both also exploiting deoxyhemoglobin paramagnetism like their whole-organ counterparts.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, Perelman School of Medicine, University Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Mazumder D, Kholiqov O, Srinivasan VJ. Interferometric near-infrared spectroscopy (iNIRS) reveals that blood flow index depends on wavelength. BIOMEDICAL OPTICS EXPRESS 2024; 15:2152-2174. [PMID: 38633063 PMCID: PMC11019706 DOI: 10.1364/boe.507373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/19/2024]
Abstract
Blood flow index (BFI) is an optically accessible parameter, with unit distance-squared-over-time, that is widely used as a proxy for tissue perfusion. BFI is defined as the dynamic scattering probability (i.e. the ratio of dynamic to overall reduced scattering coefficients) times an effective Brownian diffusion coefficient that describes red blood cell (RBC) motion. Here, using a wavelength division multiplexed, time-of-flight- (TOF) - resolved iNIRS system, we obtain TOF-resolved field autocorrelations at 773 nm and 855 nm via the same source and collector. We measure the human forearm, comprising biological tissues with mixed static and dynamic scattering, as well as a purely dynamic scattering phantom. Our primary finding is that forearm BFI increases from 773 nm to 855 nm, though the magnitude of this increase varies across subjects (23% ± 19% for N = 3). However, BFI is wavelength-independent in the purely dynamic scattering phantom. From these data, we infer that the wavelength-dependence of BFI arises from the wavelength-dependence of the dynamic scattering probability. This inference is further supported by RBC scattering literature. Our secondary finding is that the higher-order cumulant terms of the mean squared displacement (MSD) of RBCs are significant, but decrease with wavelength. Thus, laser speckle and related modalities should exercise caution when interpreting field autocorrelations.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
12
|
Benson EJ, Aronowitz DI, Forti RM, Lafontant A, Ranieri NR, Starr JP, Melchior RW, Lewis A, Jahnavi J, Breimann J, Yun B, Laurent GH, Lynch JM, White BR, Gaynor JW, Licht DJ, Yodh AG, Kilbaugh TJ, Mavroudis CD, Baker WB, Ko TS. Diffuse Optical Monitoring of Cerebral Hemodynamics and Oxygen Metabolism during and after Cardiopulmonary Bypass: Hematocrit Correction and Neurological Vulnerability. Metabolites 2023; 13:1153. [PMID: 37999249 PMCID: PMC10672802 DOI: 10.3390/metabo13111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiopulmonary bypass (CPB) provides cerebral oxygenation and blood flow (CBF) during neonatal congenital heart surgery, but the impacts of CPB on brain oxygen supply and metabolic demands are generally unknown. To elucidate this physiology, we used diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy to continuously measure CBF, oxygen extraction fraction (OEF), and oxygen metabolism (CMRO2) in 27 neonatal swine before, during, and up to 24 h after CPB. Concurrently, we sampled cerebral microdialysis biomarkers of metabolic distress (lactate-pyruvate ratio) and injury (glycerol). We applied a novel theoretical approach to correct for hematocrit variation during optical quantification of CBF in vivo. Without correction, a mean (95% CI) +53% (42, 63) increase in hematocrit resulted in a physiologically improbable +58% (27, 90) increase in CMRO2 relative to baseline at CPB initiation; following correction, CMRO2 did not differ from baseline at this timepoint. After CPB initiation, OEF increased but CBF and CMRO2 decreased with CPB time; these temporal trends persisted for 0-8 h following CPB and coincided with a 48% (7, 90) elevation of glycerol. The temporal trends and glycerol elevation resolved by 8-24 h. The hematocrit correction improved quantification of cerebral physiologic trends that precede and coincide with neurological injury following CPB.
Collapse
Affiliation(s)
- Emilie J. Benson
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.J.B.); (A.G.Y.)
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Danielle I. Aronowitz
- Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (D.I.A.); (J.W.G.); (C.D.M.)
| | - Rodrigo M. Forti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Alec Lafontant
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Nicolina R. Ranieri
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Jonathan P. Starr
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (J.P.S.); (T.J.K.)
| | - Richard W. Melchior
- Department of Perfusion Services, Cardiac Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Alistair Lewis
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jharna Jahnavi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Jake Breimann
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Bohyun Yun
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Gerard H. Laurent
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Jennifer M. Lynch
- Division of Cardiothoracic Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Brian R. White
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - J. William Gaynor
- Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (D.I.A.); (J.W.G.); (C.D.M.)
| | - Daniel J. Licht
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Arjun G. Yodh
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.J.B.); (A.G.Y.)
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (J.P.S.); (T.J.K.)
| | - Constantine D. Mavroudis
- Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (D.I.A.); (J.W.G.); (C.D.M.)
| | - Wesley B. Baker
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.M.F.); (A.L.); (N.R.R.); (J.J.); (J.B.); (B.Y.); (G.H.L.); (D.J.L.); (W.B.B.)
| | - Tiffany S. Ko
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (J.P.S.); (T.J.K.)
| |
Collapse
|
13
|
Cowdrick KR, Akbar M, Boodooram T, Harris LH, Bai S, Brothers RO, Arrington M, Lee SY, Khemani K, Gee B, Buckley EM. Impaired cerebrovascular reactivity in pediatric sickle cell disease using diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5696-5708. [PMID: 38021121 PMCID: PMC10659811 DOI: 10.1364/boe.499274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
Cerebrovascular reactivity (CVR), defined as the ability of cerebral vasculature to dilate in response to a vasodilatory stimulus, is an integral mechanism in brain homeostasis that is thought to be impaired in sickle cell disease (SCD). This study used diffuse correlation spectroscopy and a simple breath-hold stimulus to quantify CVR non-invasively in a cohort of 12 children with SCD and 14 controls. Median [interquartile range] CVR was significantly decreased in SCD compared to controls (2.03 [1.31, 2.44] versus 3.49 [3.00, 4.11] %/mmHg, p = 0.028). These results suggest DCS may provide a feasible means to routinely monitor CVR impairments in pediatric SCD.
Collapse
Affiliation(s)
- Kyle R. Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
| | - Mariam Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
| | - Tisha Boodooram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
| | - LaBeausha H. Harris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, 1405 Clifton Road NE, Atlanta, GA 30322, USA
| | - Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
| | - Michael Arrington
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
| | - Seung Yup Lee
- Department of Electrical and Computer Engineering, Kennesaw State University, 840 Polytechnic Lane, Marietta, GA 30060, USA
| | - Kirsma Khemani
- Aflac Cancer and Blood Disorders Center, Division of Pediatric Hematology/Oncology, Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatrice Gee
- Aflac Cancer and Blood Disorders Center, Division of Pediatric Hematology/Oncology, Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children's Research Scholar, Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Yee MEM, Fasano RM. Novel approaches to measure transfusion effectiveness. Curr Opin Hematol 2023; 30:230-236. [PMID: 37594015 PMCID: PMC10924773 DOI: 10.1097/moh.0000000000000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW This review encompasses different considerations of transfusion effectiveness based upon clinical scenario and transfusion indication. Tissue oxygenation, cerebral metabolic oxygen use, and red blood cell (RBC) survival are important elements of transfusion effectiveness in individuals with acute and chronic transfusion requirements. RECENT FINDINGS Noninvasive measures of tissue and cerebral oxygen extraction include near-infrared spectroscopy (NIRS) and specialized MRI sequences. RBC survival timepoints including 24 h posttransfusion recovery, 50% recovery timepoint, and mean potential lifespan may be accurately measured with biotin-labeling of RBC prior to transfusion. Labeling at different cell surface densities allows survival of multiple RBC populations to be determined. SUMMARY Although past trials of optimal transfusion thresholds have focused on Hb as a singular marker for transfusion needs, measures of oxygenation (via NIRS or specialized MRI) and RBC survival (via biotin labeling) provide the opportunity to personalize transfusion decisions to individual patient's acute health needs or chronic transfusion goals.
Collapse
Affiliation(s)
- Marianne Elaine McPherson Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta
- Division of Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
15
|
Passera S, De Carli A, Fumagalli M, Contini D, Pesenti N, Amendola C, Giovannella M, Durduran T, Weigel UM, Spinelli L, Torricelli A, Greisen G. Cerebrovascular reactivity to carbon dioxide tension in newborns: data from combined time-resolved near-infrared spectroscopy and diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:045003. [PMID: 37841558 PMCID: PMC10576436 DOI: 10.1117/1.nph.10.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023]
Abstract
Significance Critically ill newborns are at risk of brain damage from cerebrovascular disturbances. A cerebral hemodynamic monitoring system would have the potential role to guide targeted intervention. Aim To obtain, in a population of newborn infants, simultaneous near-infrared spectroscopy (NIRS)-based estimates of cerebral tissue oxygen saturation (StO 2 ) and blood flow during variations of carbon dioxide tension (pCO 2 ) levels within physiologic values up to moderate permissive hypercapnia, and to examine if the derived estimate of metabolic rate of oxygen would stay constant, during the same variations. Approach We enrolled clinically stable mechanically ventilated newborns at postnatal age > 24 h without brain abnormalities at ultrasound. StO 2 and blood flow index were measured using a non-invasive device (BabyLux), which combine time-resolved NIRS and diffuse-correlation spectroscopy. The effect of changes in transcutaneous pCO 2 on StO 2 , cerebral blood flow (CBF), and cerebral metabolic rate of oxygen index (tCMRO 2 i ) were estimated. Results Ten babies were enrolled and three were excluded. Median GA at enrollment was 39 weeks and median weight 2720 g. StO 2 increased 0.58% (95% CI 0.55; 0.61, p < 0.001 ), CBF 2% (1.9; 2.3, p < 0.001 ), and tCMRO 2 0.3% (0.05; 0.46, p = 0.017 ) per mmHg increase in pCO 2 . Conclusions BabyLux device detected pCO 2 -induced changes in cerebral StO 2 and CBF, as expected. The small statistically significant positive relationship between pCO 2 and tCMRO 2 i variation is not considered clinically relevant and we are inclined to consider it as an artifact.
Collapse
Affiliation(s)
- Sofia Passera
- NICU Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Agnese De Carli
- NICU Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Monica Fumagalli
- NICU Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
| | - Nicola Pesenti
- University of Milano-Bicocca, Division of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, Milan, Italy
| | | | - Martina Giovannella
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Casteldefells, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Casteldefells, Spain
- ICREA – Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Gorm Greisen
- Rigshospitalet and University of Copenhagen, Department of Neonatology, Copenhagen, Denmark
| |
Collapse
|
16
|
De Silvestro AA, Kellenberger CJ, Gosteli M, O'Gorman R, Knirsch W. Postnatal cerebral hemodynamics in infants with severe congenital heart disease: a scoping review. Pediatr Res 2023; 94:931-943. [PMID: 36944722 PMCID: PMC10444615 DOI: 10.1038/s41390-023-02543-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023]
Abstract
Patients with severe congenital heart disease (CHD) are at risk for impaired neurodevelopment. Cerebral blood supply may be diminished by congenital anomalies of cardiovascular anatomy and myocardial function. The aim of this scoping review was to summarize the current knowledge on cerebral hemodynamics in infants with severe CHD. A scoping review was performed. Five databases were searched for articles published from 01/1990 to 02/2022 containing information on cerebral hemodynamics assessed by neuroimaging methods in patients with severe CHD within their first year of life. A total of 1488 publications were identified, of which 26 were included. Half of the studies used Doppler ultrasound, and half used magnetic resonance imaging techniques. Studies focused on preoperative findings of cerebral hemodynamics, effects of surgical and conservative interventions, as well as on associations between cerebral hemodynamics and brain morphology or neurodevelopment. Cerebral perfusion was most severely affected in patients with single ventricle and other cyanotic disease. Neuroimaging methods provide a large variety of information on cerebral hemodynamics. Nevertheless, small and heterogeneous cohorts complicate this field of research. Further studies are needed to improve our understanding of the link between CHD and altered cerebral hemodynamics to optimize neuroprotection strategies. IMPACT: Postnatal cerebral hemodynamics are altered in infants with congenital heart disease (CHD) as compared to healthy controls, especially in most severe types such as single ventricle or other cyanotic CHD. Associations of these alterations with brain volume and maturation reveal their clinical relevance. Research in this area is limited due to the rarity and heterogeneity of diagnoses. Furthermore, longitudinal studies have rarely been conducted. Further effort is needed to better understand the deviation from physiological cerebral perfusion and its consequences in patients with CHD to optimize neuroprotection strategies.
Collapse
Affiliation(s)
- Alexandra Angela De Silvestro
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Johannes Kellenberger
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Diagnostic Imaging, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martina Gosteli
- University Library, University of Zurich, Zurich, Switzerland
| | - Ruth O'Gorman
- Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Scano A, Guanziroli E, Brambilla C, Amendola C, Pirovano I, Gasperini G, Molteni F, Spinelli L, Molinari Tosatti L, Rizzo G, Re R, Mastropietro A. A Narrative Review on Multi-Domain Instrumental Approaches to Evaluate Neuromotor Function in Rehabilitation. Healthcare (Basel) 2023; 11:2282. [PMID: 37628480 PMCID: PMC10454517 DOI: 10.3390/healthcare11162282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assessments is fundamental to provide a comprehensive portrait of patients' state, in order to adapt and personalize rehabilitation interventions and support clinical decision-making. However, there is a huge gap between the potential of the multidomain techniques available and the limited practical use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides insights into future directions of multi-domain instrumental approaches in the clinical assessment of patients involved in neuromotor rehabilitation. We also summarize the main achievements and challenges of using multi-domain approaches in the assessment of rehabilitation for various neurological disorders affecting motor functions. Our results showed that multi-domain approaches combine information and measurements from different tools and biological signals, such as kinematics, electromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical scales, to provide a comprehensive and objective evaluation of patients' state and recovery. This multi-domain approach permits the progress of research in clinical and rehabilitative practice and the understanding of the pathophysiological changes occurring during and after rehabilitation. We discuss the potential benefits and limitations of multi-domain approaches for clinical decision-making, personalized therapy, and prognosis. We conclude by highlighting the need for more standardized methods, validation studies, and the integration of multi-domain approaches in clinical practice and research.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Caterina Amendola
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
| | - Ileana Pirovano
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Giulio Gasperini
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Lorenzo Spinelli
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Giovanna Rizzo
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Alfonso Mastropietro
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| |
Collapse
|
18
|
Shaw K, Mavroudis CD, Ko TS, Jahnavi J, Jacobwitz M, Ranieri N, Forti RM, Melchior RW, Baker WB, Yodh AG, Licht DJ, Nicolson SC, Lynch JM. The use of novel diffuse optical spectroscopies for improved neuromonitoring during neonatal cardiac surgery requiring antegrade cerebral perfusion. Front Pediatr 2023; 11:1125985. [PMID: 37425272 PMCID: PMC10327557 DOI: 10.3389/fped.2023.1125985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Background Surgical procedures involving the aortic arch present unique challenges to maintaining cerebral perfusion, and optimal neuroprotective strategies to prevent neurological injury during such high-risk procedures are not completely understood. The use of antegrade cerebral perfusion (ACP) has gained favor as a neuroprotective strategy over deep hypothermic circulatory arrest (DHCA) due to the ability to selectively perfuse the brain. Despite this theoretical advantage over DHCA, there has not been conclusive evidence that ACP is superior to DHCA. One potential reason for this is the incomplete understanding of ideal ACP flow rates to prevent both ischemia from underflowing and hyperemia and cerebral edema from overflowing. Critically, there are no continuous, noninvasive measurements of cerebral blood flow (CBF) and cerebral oxygenation (StO2) to guide ACP flow rates and help develop standard clinical practices. The purpose of this study is to demonstrate the feasibility of using noninvasive, diffuse optical spectroscopy measurements of CBF and cerebral oxygenation during the conduct of ACP in human neonates undergoing the Norwood procedure. Methods Four neonates prenatally diagnosed with hypoplastic left heart syndrome (HLHS) or a similar variant underwent the Norwood procedure with continuous intraoperative monitoring of CBF and cerebral oxygen saturation (StO2) using two non-invasive optical techniques, namely diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS). Changes in CBF and StO2 due to ACP were calculated by comparing these parameters during a stable 5 min period of ACP to the last 5 min of full-body CPB immediately prior to ACP initiation. Flow rates for ACP were left to the discretion of the surgeon and ranged from 30 to 50 ml/kg/min, and all subjects were cooled to 18°C prior to initiation of ACP. Results During ACP, the continuous optical monitoring demonstrated a median (IQR) percent change in CBF of -43.4% (38.6) and a median (IQR) absolute change in StO2 of -3.6% (12.3) compared to a baseline period during full-body cardiopulmonary bypass (CPB). The four subjects demonstrated varying responses in StO2 due to ACP. ACP flow rates of 30 and 40 ml/kg/min (n = 3) were associated with decreased CBF during ACP compared to full-body CPB. Conversely, one subject with a higher flow6Di rate of 50 ml/kg/min demonstrated increased CBF and StO2 during ACP. Conclusions This feasibility study demonstrates that novel diffuse optical technologies can be utilized for improved neuromonitoring in neonates undergoing cardiac surgery where ACP is utilized. Future studies are needed to correlate these findings with neurological outcomes to inform best practices during ACP in these high-risk neonates.
Collapse
Affiliation(s)
- Kalil Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Constantine D. Mavroudis
- Division of Cardiothoracic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tiffany S. Ko
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jharna Jahnavi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marin Jacobwitz
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nicolina Ranieri
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rodrigo M. Forti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Richard W. Melchior
- Department of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Wesley B. Baker
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Licht
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Susan C. Nicolson
- Division of Cardiothoracic Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer M. Lynch
- Division of Cardiothoracic Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
19
|
Ko TS, Catennacio E, Shin SS, Stern J, Massey SL, Kilbaugh TJ, Hwang M. Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children. Neurocrit Care 2023; 38:791-811. [PMID: 36949362 PMCID: PMC10241718 DOI: 10.1007/s12028-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/31/2023] [Indexed: 03/24/2023]
Abstract
Timely detection and monitoring of acute brain injury in children is essential to mitigate causes of injury and prevent secondary insults. Increasing survival in critically ill children has emphasized the importance of neuroprotective management strategies for long-term quality of life. In emergent and critical care settings, traditional neuroimaging modalities, such as computed tomography and magnetic resonance imaging (MRI), remain frontline diagnostic techniques to detect acute brain injury. Although detection of structural and anatomical abnormalities remains crucial, advanced MRI sequences assessing functional alterations in cerebral physiology provide unique diagnostic utility. Head ultrasound has emerged as a portable neuroimaging modality for point-of-care diagnosis via assessments of anatomical and perfusion abnormalities. Application of electroencephalography and near-infrared spectroscopy provides the opportunity for real-time detection and goal-directed management of neurological abnormalities at the bedside. In this review, we describe recent technological advancements in these neurodiagnostic modalities and elaborate on their current and potential utility in the detection and management of acute brain injury.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Eva Catennacio
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Samuel S Shin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| | - Shavonne L Massey
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
20
|
Liu X, Irwin DA, Huang C, Gu Y, Chen L, Donohue KD, Chen L, Yu G. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Freely Behaving Mice. IEEE Trans Biomed Eng 2023; 70:1838-1848. [PMID: 37015409 PMCID: PMC10542964 DOI: 10.1109/tbme.2022.3229513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Wearable technologies for functional brain monitoring in freely behaving subjects can advance our understanding of cognitive processing and adaptive behavior. Existing technologies are lacking in this capability or need procedures that are invasive and/or otherwise impede brain assessments during social behavioral conditions, exercise, and sleep. METHODS In response a complete system was developed to combine relative cerebral blood flow (rCBF) measurement, O2 and CO2 supplies, and behavior recording for use on conscious, freely behaving mice. An innovative diffuse speckle contrast flowmetry (DSCF) device and associated hardware were miniaturized and optimized for rCBF measurements in small subject applications. The use of this wearable, fiber-free, near-infrared DSCF head-stage/probe allowed no craniotomy, minimally invasive probe implantation, and minimal restraint of the awake animal. RESULTS AND CONCLUSIONS Significant correlations were found between measurements with the new DSCF design and an optical standard. The system successfully detected rCBF responses to CO2-induced hypercapnia in both anesthetized and freely behaving mice. SIGNIFICANCE Collecting rCBF and activity information together during natural behaviors provides realistic physiological results and opens the path to exploring their correlations with pathophysiological conditions.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Daniel A. Irwin
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Yutong Gu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Li Chen
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Kevin D. Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Cowdrick KR, Urner T, Sathialingam E, Fang Z, Quadri A, Turrentine K, Yup Lee S, Buckley EM. Agreement in cerebrovascular reactivity assessed with diffuse correlation spectroscopy across experimental paradigms improves with short separation regression. NEUROPHOTONICS 2023; 10:025002. [PMID: 37034012 PMCID: PMC10079775 DOI: 10.1117/1.nph.10.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Significance Cerebrovascular reactivity (CVR), i.e., the ability of cerebral vasculature to dilate or constrict in response to vasoactive stimuli, is a biomarker of vascular health. Exogenous administration of inhaled carbon dioxide, i.e., hypercapnia (HC), remains the "gold-standard" intervention to assess CVR. More tolerable paradigms that enable CVR quantification when HC is difficult/contraindicated have been proposed. However, because these paradigms feature mechanistic differences in action, an assessment of agreement of these more tolerable paradigms to HC is needed. Aim We aim to determine the agreement of CVR assessed during HC, breath-hold (BH), and resting state (RS) paradigms. Approach Healthy adults were subject to HC, BH, and RS paradigms. End tidal carbon dioxide (EtCO2) and cerebral blood flow (CBF, assessed with diffuse correlation spectroscopy) were monitored continuously. CVR (%/mmHg) was quantified via linear regression of CBF versus EtCO2 or via a general linear model (GLM) that was used to minimize the influence of systemic and extracerebral signal contributions. Results Strong agreement ( CCC ≥ 0.69 ; R ≥ 0.76 ) among CVR paradigms was demonstrated when utilizing a GLM to regress out systemic/extracerebral signal contributions. Linear regression alone showed poor agreement across paradigms ( CCC ≤ 0.35 ; R ≤ 0.45 ). Conclusions More tolerable experimental paradigms coupled with regression of systemic/extracerebral signal contributions may offer a viable alternative to HC for assessing CVR.
Collapse
Affiliation(s)
- Kyle R. Cowdrick
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Tara Urner
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Eashani Sathialingam
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Zhou Fang
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Ayesha Quadri
- Children’s Healthcare of Atlanta and Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Katherine Turrentine
- Children’s Healthcare of Atlanta and Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Seung Yup Lee
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Kennesaw State University, Department of Electrical and Computer Engineering, Marietta, Georgia, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta and Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Children’s Research Scholar, Atlanta, Georgia, United States
| |
Collapse
|
22
|
Nourhashemi M, Mahmoudzadeh M, Heberle C, Wallois F. Preictal neuronal and vascular activity precedes the onset of childhood absence seizure: direct current potential shifts and their correlation with hemodynamic activity. NEUROPHOTONICS 2023; 10:025005. [PMID: 37114185 PMCID: PMC10128878 DOI: 10.1117/1.nph.10.2.025005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
SIGNIFICANCE AIMS The neurovascular mechanisms underlying the initiation of absence seizures and their dynamics are still not well understood. The objective of this study was to better noninvasively characterize the dynamics of the neuronal and vascular network at the transition from the interictal state to the ictal state of absence seizures and back to the interictal state using a combined electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and diffuse correlation spectroscopy (DCS) approach. The second objective was to develop hypotheses about the neuronal and vascular mechanisms that propel the networks to the 3-Hz spikes and wave discharges (SWDs) observed during absence seizures. APPROACHES We evaluated the simultaneous changes in electrical (neuronal) and optical dynamics [hemodynamic, with changes in (Hb) and cerebral blood flow] of 8 pediatric patients experiencing 25 typical childhood absence seizures during the transition from the interictal state to the absence seizure by simultaneously performing EEG, fNIRS, and DCS. RESULTS Starting from ∼ 20 s before the onset of the SWD, we observed a transient direct current potential shift that correlated with alterations in functional fNIRS and DCS measurements of the cerebral hemodynamics detecting the preictal changes. DISCUSSION Our noninvasive multimodal approach highlights the dynamic interactions between the neuronal and vascular compartments that take place in the neuronal network near the time of the onset of absence seizures in a very specific cerebral hemodynamic environment. These noninvasive approaches contribute to a better understanding of the electrical hemodynamic environment prior to seizure onset. Whether this may ultimately be relevant for diagnostic and therapeutic approaches requires further evaluation.
Collapse
Affiliation(s)
- Mina Nourhashemi
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
| | - Mahdi Mahmoudzadeh
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| | - Claire Heberle
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| |
Collapse
|
23
|
Yang J, Ruesch A, Kainerstorfer JM. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:015002. [PMID: 36699625 PMCID: PMC9868286 DOI: 10.1117/1.nph.10.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Cerebrovascular impedance (CVI) is related to cerebral autoregulation (CA), which is the mechanism of the brain to maintain near-constant cerebral blood flow (CBF) despite changes in cerebral perfusion pressure (CPP). Changes in blood vessel impedance enable the stabilization of blood flow. Due to the interplay between CVI and CA, assessment of CVI may enable quantification of CA and may serve as a biomarker for cerebral health. AIM We developed a method to quantify CVI based on a combination of diffuse correlation spectroscopy (DCS) and continuous wave (CW) near-infrared spectroscopy (NIRS). Data on healthy human volunteers were used to validate the method. APPROACH A combined high-speed DCS-NIRS system was developed, allowing for simultaneous, noninvasive blood flow, and volume measurements in the same tissue compartment. Blood volume was used as a surrogate measurement for blood pressure and CVI was calculated as the spectral ratio of blood volume and blood flow changes. This technique was validated on six healthy human volunteers undergoing postural changes to elicit CVI changes. RESULTS Averaged across the six subjects, a decrease in CVI was found for a head of bed (HOB) tilting of - 40 deg . These impedance changes were reversed when returning to the horizontal (0 deg) HOB baseline. CONCLUSIONS We developed a combined DCS-NIRS system, which measures CBF and volume changes, which we demonstrate can be used to measure CVI. Using CVI as a metric of CA may be beneficial for assessing cerebral health, especially in patients where CPP is altered.
Collapse
Affiliation(s)
- Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Alexander Ruesch
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
24
|
Cohen DJF, Li NC, Ioussoufovitch S, Diop M. Fast estimation of adult cerebral blood content and oxygenation with hyperspectral time-resolved near-infrared spectroscopy. Front Neurosci 2023; 17:1020151. [PMID: 36875650 PMCID: PMC9978211 DOI: 10.3389/fnins.2023.1020151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) can measure tissue blood content and oxygenation; however, its use for adult neuromonitoring is challenging due to significant contamination from their thick extracerebral layers (ECL; primarily scalp and skull). This report presents a fast method for accurate estimation of adult cerebral blood content and oxygenation from hyperspectral time resolved NIRS (trNIRS) data. A two-phase fitting method, based on a two-layer head model (ECL and brain), was developed. Phase 1 uses spectral constraints to accurately estimate the baseline blood content and oxygenation in both layers, which are then used by Phase 2 to correct for the ECL contamination of the late-arriving photons. The method was validated with in silico data from Monte-Carlo simulations of hyperspectral trNIRS in a realistic model of the adult head obtained from a high-resolution MRI. Phase 1 recovered cerebral blood oxygenation and total hemoglobin with an accuracy of 2.7 ± 2.5 and 2.8 ± 1.8%, respectively, with unknown ECL thickness, and 1.5 ± 1.4 and 1.7 ± 1.1% when the ECL thickness was known. Phase 2 recovered these parameters with an accuracy of 1.5 ± 1.5 and 3.1 ± 0.9%, respectively. Future work will include further validation in tissue-mimicking phantoms with various top layer thicknesses and in a pig model of the adult head before human applications.
Collapse
Affiliation(s)
| | - Natalie C Li
- School of Biomedical Engineering, Western University, London, ON, Canada
| | | | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada.,School of Biomedical Engineering, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
25
|
Carp SA, Robinson MB, Franceschini MA. Diffuse correlation spectroscopy: current status and future outlook. NEUROPHOTONICS 2023; 10:013509. [PMID: 36704720 PMCID: PMC9871606 DOI: 10.1117/1.nph.10.1.013509] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Diffuse correlation spectroscopy (DCS) has emerged as a versatile, noninvasive method for deep tissue perfusion assessment using near-infrared light. A broad class of applications is being pursued in neuromonitoring and beyond. However, technical limitations of the technology as originally implemented remain as barriers to wider adoption. A wide variety of approaches to improve measurement performance and reduce cost are being explored; these include interferometric methods, camera-based multispeckle detection, and long path photon selection for improved depth sensitivity. We review here the current status of DCS technology and summarize future development directions and the challenges that remain on the path to widespread adoption.
Collapse
Affiliation(s)
- Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Martinos Research Group, Charlestown, Massachusetts, United States
| | - Mitchell B. Robinson
- Massachusetts General Hospital, Harvard Medical School, Optics at Martinos Research Group, Charlestown, Massachusetts, United States
| | - Maria A. Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Martinos Research Group, Charlestown, Massachusetts, United States
| |
Collapse
|
26
|
Côté-Corriveau G, Simard MN, Beaulieu O, Chowdhury RA, Gagnon MM, Gagnon M, Ledjiar O, Bernard C, Nuyt AM, Dehaes M, Luu TM. Associations between neurological examination at term-equivalent age and cerebral hemodynamics and oxygen metabolism in infants born preterm. Front Neurosci 2023; 17:1105638. [PMID: 36937667 PMCID: PMC10017489 DOI: 10.3389/fnins.2023.1105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background Infants born at 29-36 weeks gestational age (GA) are at risk of experiencing neurodevelopmental challenges. We hypothesize that cerebral hemodynamics and oxygen metabolism measured by bedside optical brain monitoring are potential biomarkers of brain development and are associated with neurological examination at term-equivalent age (TEA). Methods Preterm infants (N = 133) born 29-36 weeks GA and admitted in the neonatal intensive care unit were enrolled in this prospective cohort study. Combined frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) were used from birth to TEA to measure cerebral hemoglobin oxygen saturation and an index of microvascular cerebral blood flow (CBF i ) along with peripheral arterial oxygen saturation (SpO2). In combination with hemoglobin concentration in the blood, these parameters were used to derive cerebral oxygen extraction fraction (OEF) and an index of cerebral oxygen metabolism (CMRO2i ). The Amiel-Tison and Gosselin Neurological Assessment was performed at TEA. Linear regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and GA at birth. Logistic regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and neurological examination at TEA. Results Steeper increases in CBF i (p < 0.0001) and CMRO2i (p = 0.0003) were associated with higher GA at birth. Changes in OEF, CBF i , and CMRO2i from birth to TEA were not associated with neurological examination at TEA. Conclusion In this population, cerebral FDNIRS-DCS parameters were not associated with neurological examination at TEA. Larger increases in CBF i and CMRO2i from birth to TEA were associated with higher GA. Non-invasive bedside FDNIRS-DCS monitoring provides cerebral hemodynamic and metabolic parameters that may complement neurological examination to assess brain development in preterm infants.
Collapse
Affiliation(s)
- Gabriel Côté-Corriveau
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
| | - Marie-Noëlle Simard
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- School of Rehabilitation, University of Montreal, Montreal, QC, Canada
| | - Olivia Beaulieu
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Rasheda Arman Chowdhury
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada
| | - Marie-Michèle Gagnon
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Mélanie Gagnon
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Omar Ledjiar
- Unité de Recherche Clinique Appliquée, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Catherine Bernard
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Anne Monique Nuyt
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
| | - Mathieu Dehaes
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, QC, Canada
- *Correspondence: Mathieu Dehaes,
| | - Thuy Mai Luu
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
- Thuy Mai Luu,
| |
Collapse
|
27
|
Tagliabue S, Lindner C, da Prat IC, Sanchez-Guerrero A, Serra I, Kacprzak M, Maruccia F, Silva OM, Weigel UM, de Nadal M, Poca MA, Durduran T. Comparison of cerebral metabolic rate of oxygen, blood flow, and bispectral index under general anesthesia. NEUROPHOTONICS 2023; 10:015006. [PMID: 36911206 PMCID: PMC9993084 DOI: 10.1117/1.nph.10.1.015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Significance The optical measurement of cerebral oxygen metabolism was evaluated. Aim Compare optically derived cerebral signals to the electroencephalographic bispectral index (BIS) sensors to monitor propofol-induced anesthesia during surgery. Approach Relative cerebral metabolic rate of oxygen (rCMRO 2 ) and blood flow (rCBF) were measured by time-resolved and diffuse correlation spectroscopies. Changes were tested against the relative BIS (rBIS) ones. The synchronism in the changes was also assessed by the R-Pearson correlation. Results In 23 measurements, optically derived signals showed significant changes in agreement with rBIS: during propofol induction, rBIS decreased by 67% [interquartile ranges (IQR) 62% to 71%],rCMRO 2 by 33% (IQR 18% to 46%), and rCBF by 28% (IQR 10% to 37%). During recovery, a significant increase was observed for rBIS (48%, IQR 38% to 55%),rCMRO 2 (29%, IQR 17% to 39%), and rCBF (30%, IQR 10% to 44%). The significance and direction of the changes subject-by-subject were tested: the coupling between the rBIS,rCMRO 2 , and rCBF was witnessed in the majority of the cases (14/18 and 12/18 for rCBF and 19/21 and 13/18 forrCMRO 2 in the initial and final part, respectively). These changes were also correlated in time ( R > 0.69 to R = 1 , p - values < 0.05 ). Conclusions Optics can reliably monitorrCMRO 2 in such conditions.
Collapse
Affiliation(s)
- Susanna Tagliabue
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claus Lindner
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Angela Sanchez-Guerrero
- Vall d’Hebron University Hospital Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
| | - Isabel Serra
- Centre de Recerca Matemàtica, Bellaterra, Spain
- Barcelona Supercomputing Center—Centre Nacional de Supercomputació, Spain
| | - Michał Kacprzak
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
| | - Federica Maruccia
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Vall d’Hebron University Hospital Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
| | - Olga Martinez Silva
- Vall d’Hebron University Hospital, Department of Anesthesiology, Barcelona, Spain
| | - Udo M. Weigel
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- HemoPhotonics S.L., Mediterranean Technology Park, Barcelona, Spain
| | - Miriam de Nadal
- Vall d’Hebron University Hospital, Department of Anesthesiology, Barcelona, Spain
- Universidad Autònoma de Barcelona, Plaça Cívica, Barcelona, Spain
| | - Maria A. Poca
- Vall d’Hebron University Hospital Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
- Universidad Autònoma de Barcelona, Plaça Cívica, Barcelona, Spain
- Vall d’Hebron University Hospital, Department of Neurosurgery, Barcelona, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
28
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Gomez A, Sainbhi AS, Froese L, Batson C, Slack T, Stein KY, Cordingley DM, Mathieu F, Zeiler FA. The Quantitative Associations Between Near Infrared Spectroscopic Cerebrovascular Metrics and Cerebral Blood Flow: A Scoping Review of the Human and Animal Literature. Front Physiol 2022; 13:934731. [PMID: 35910568 PMCID: PMC9335366 DOI: 10.3389/fphys.2022.934731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral blood flow (CBF) is an important physiologic parameter that is vital for proper cerebral function and recovery. Current widely accepted methods of measuring CBF are cumbersome, invasive, or have poor spatial or temporal resolution. Near infrared spectroscopy (NIRS) based measures of cerebrovascular physiology may provide a means of non-invasively, topographically, and continuously measuring CBF. We performed a systematically conducted scoping review of the available literature examining the quantitative relationship between NIRS-based cerebrovascular metrics and CBF. We found that continuous-wave NIRS (CW-NIRS) was the most examined modality with dynamic contrast enhanced NIRS (DCE-NIRS) being the next most common. Fewer studies assessed diffuse correlation spectroscopy (DCS) and frequency resolved NIRS (FR-NIRS). We did not find studies examining the relationship between time-resolved NIRS (TR-NIRS) based metrics and CBF. Studies were most frequently conducted in humans and animal studies mostly utilized large animal models. The identified studies almost exclusively used a Pearson correlation analysis. Much of the literature supported a positive linear relationship between changes in CW-NIRS based metrics, particularly regional cerebral oxygen saturation (rSO2), and changes in CBF. Linear relationships were also identified between other NIRS based modalities and CBF, however, further validation is needed.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, MA, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Lertsakdadet BS, Kennedy GT, Stone R, Kowalczewski C, Kowalczewski AC, Natesan S, Christy RJ, Durkin AJ, Choi B. Assessing multimodal optical imaging of perfusion in burn wounds. Burns 2022; 48:799-807. [PMID: 34696954 DOI: 10.1016/j.burns.2021.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/04/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022]
Abstract
A critical need exists for early, accurate diagnosis of burn wound severity to help identify the course of treatment and outcome of the wound. Laser speckle imaging (LSI) is a promising blood perfusion imaging approach, but it does not account for changes in tissue optical properties that can occur with burn wounds, which are highly dynamic environments. Here, we studied optical property dynamics following burn injury and debridement and the associated impact on interpretation of LSI measurements of skin perfusion. We used spatial frequency domain imaging (SFDI) measurements of tissue optical properties to study the impact of burn-induced changes in these properties on LSI measurements. An established preclinical porcine model of burn injury was used (n = 8). SFDI and LSI data were collected from burn wounds of varying severity. SFDI measurements demonstrate that optical properties change in response to burn injury in a porcine model. We then apply theoretical modeling to demonstrate that the measured range of optical property changes can affect the interpretation of LSI measurements of blood flow, but this effect is minimal for most of the measured data. Collectively, our results indicate that, even with a dynamic burn wound environment, blood-flow measurements with LSI can serve as an appropriate strategy for accurate assessment of burn severity.
Collapse
Affiliation(s)
- Ben S Lertsakdadet
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| | - Gordon T Kennedy
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA.
| | - Randolph Stone
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Christine Kowalczewski
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Andrew C Kowalczewski
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Shanmugasundaram Natesan
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Robert J Christy
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Anthony J Durkin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA; Department of Surgery, University of California, Irvine, CA, 92697, USA; Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
31
|
Advances in Neuroimaging and Monitoring to Defend Cerebral Perfusion in Noncardiac Surgery. Anesthesiology 2022; 136:1015-1038. [PMID: 35482943 DOI: 10.1097/aln.0000000000004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncardiac surgery conveys a substantial risk of secondary organ dysfunction and injury. Neurocognitive dysfunction and covert stroke are emerging as major forms of perioperative organ dysfunction, but a better understanding of perioperative neurobiology is required to identify effective treatment strategies. The likelihood and severity of perioperative brain injury may be increased by intraoperative hemodynamic dysfunction, tissue hypoperfusion, and a failure to recognize complications early in their development. Advances in neuroimaging and monitoring techniques, including optical, sonographic, and magnetic resonance, have progressed beyond structural imaging and now enable noninvasive assessment of cerebral perfusion, vascular reserve, metabolism, and neurologic function at the bedside. Translation of these imaging methods into the perioperative setting has highlighted several potential avenues to optimize tissue perfusion and deliver neuroprotection. This review introduces the methods, metrics, and evidence underlying emerging optical and magnetic resonance neuroimaging methods and discusses their potential experimental and clinical utility in the setting of noncardiac surgery.
Collapse
|
32
|
Johnson TW, Dar IA, Donohue KL, Xu YY, Santiago E, Selioutski O, Marinescu MA, Maddox RK, Wu TT, Schifitto G, Gosev I, Choe R, Khan IR. Cerebral Blood Flow Hemispheric Asymmetry in Comatose Adults Receiving Extracorporeal Membrane Oxygenation. Front Neurosci 2022; 16:858404. [PMID: 35478849 PMCID: PMC9036108 DOI: 10.3389/fnins.2022.858404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Peripheral veno-arterial extracorporeal membrane oxygenation (ECMO) artificially oxygenates and circulates blood retrograde from the femoral artery, potentially exposing the brain to asymmetric perfusion. Though ECMO patients frequently experience brain injury, neurologic exams and imaging are difficult to obtain. Diffuse correlation spectroscopy (DCS) non-invasively measures relative cerebral blood flow (rBF) at the bedside using an optical probe on each side of the forehead. In this study we observed interhemispheric rBF differences in response to mean arterial pressure (MAP) changes in adult ECMO recipients. We recruited 13 subjects aged 21–78 years (7 with cardiac arrest, 4 with acute heart failure, and 2 with acute respiratory distress syndrome). They were dichotomized via Glasgow Coma Scale Motor score (GCS-M) into comatose (GCS-M ≤ 4; n = 4) and non-comatose (GCS-M > 4; n = 9) groups. Comatose patients had greater interhemispheric rBF asymmetry (ASYMrBF) vs. non-comatose patients over a range of MAP values (29 vs. 11%, p = 0.009). ASYMrBF in comatose patients resolved near a MAP range of 70–80 mmHg, while rBF remained symmetric through a wider MAP range in non-comatose patients. Correlations between post-oxygenator pCO2 or pH vs. ASYMrBF were significantly different between comatose and non-comatose groups. Our findings indicate that comatose patients are more likely to have asymmetric cerebral perfusion.
Collapse
Affiliation(s)
- Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Kelly L. Donohue
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yama Y. Xu
- School of Arts and Sciences, University of Rochester, Rochester, NY, United States
| | - Esmeralda Santiago
- School of Arts and Sciences, University of Rochester, Rochester, NY, United States
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Igor Gosev
- Division of Cardiac Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Imad R. Khan,
| |
Collapse
|
33
|
Mavroudis CD, Ko T, Volk LE, Smood B, Morgan RW, Lynch JM, Davarajan M, Boorady TW, Licht DJ, Gaynor JW, Mascio CE, Kilbaugh TJ. Does supply meet demand? A comparison of perfusion strategies on cerebral metabolism in a neonatal swine model. J Thorac Cardiovasc Surg 2022; 163:e47-e58. [PMID: 33485668 PMCID: PMC8862716 DOI: 10.1016/j.jtcvs.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We aimed to determine the effects of selective antegrade cerebral perfusion compared with other perfusion strategies on indices of cerebral blood flow, oxygenation, cellular stress, and mitochondrial function. METHODS One-week-old piglets (n = 41) were assigned to 5 treatment groups. Thirty-eight were placed on cardiopulmonary bypass. Of these, 30 were cooled to 18°C and underwent deep hypothermic circulatory arrest (n = 10), underwent selective antegrade cerebral perfusion at 10 mL/kg/min (n = 10), or remained on continuous cardiopulmonary bypass (deep hypothermic cardiopulmonary bypass, n = 10) for 40 minutes. Other subjects remained on normothermic cardiopulmonary bypass (n = 8) or underwent sham surgery (n = 3). Novel, noninvasive optical measurements recorded cerebral blood flow, cerebral tissue oxyhemoglobin concentration, oxygen extraction fraction, total hemoglobin concentration, and cerebral metabolic rate of oxygen. Invasive measurements of cerebral microdialysis and cerebral blood flow were recorded. Cerebral mitochondrial respiration and reactive oxygen species generation were assessed after the piglets were killed. RESULTS During hypothermia, deep hypothermic circulatory arrest piglets experienced increases in oxygen extraction fraction (P < .001), indicating inadequate matching of oxygen supply and demand. Deep hypothermic cardiopulmonary bypass had higher cerebral blood flow (P = .046), oxyhemoglobin concentration (P = .019), and total hemoglobin concentration (P = .070) than selective antegrade cerebral perfusion, indicating greater oxygen delivery. Deep hypothermic circulatory arrest demonstrated worse mitochondrial function (P < .05), increased reactive oxygen species generation (P < .01), and increased markers of cellular stress (P < .01). Reactive oxygen species generation was increased in deep hypothermic cardiopulmonary bypass compared with selective antegrade cerebral perfusion (P < .05), but without significant microdialysis evidence of cerebral cellular stress. CONCLUSIONS Selective antegrade cerebral perfusion meets cerebral metabolic demand and mitigates cerebral mitochondrial reactive oxygen species generation. Excess oxygen delivery during deep hypothermia may have deleterious effects on cerebral mitochondria that may contribute to adverse neurologic outcomes. We describe noninvasive measurements that may help guide perfusion strategies.
Collapse
Affiliation(s)
- Constantine D. Mavroudis
- Division of Cardiothoracic Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa;,Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pa
| | - Tiffany Ko
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Lindsay E. Volk
- Division of Cardiothoracic Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Benjamin Smood
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pa
| | - Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Jennifer M. Lynch
- Department of Anesthesiology, Hospital of the University of Pennsylvania, Philadelphia, Pa
| | - Mahima Davarajan
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Timothy W. Boorady
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - Daniel J. Licht
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pa
| | - J. William Gaynor
- Division of Cardiothoracic Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa;,Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pa
| | - Christopher E. Mascio
- Division of Cardiothoracic Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pa;,Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pa
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
34
|
Lynch JM, Mavroudis CD, Ko TS, Jacobwitz M, Busch DR, Xiao R, Nicolson SC, Montenegro LM, Gaynor JW, Yodh AG, Licht DJ. Association of Ongoing Cerebral Oxygen Extraction During Deep Hypothermic Circulatory Arrest With Postoperative Brain Injury. Semin Thorac Cardiovasc Surg 2022; 34:1275-1284. [PMID: 34508811 PMCID: PMC8901799 DOI: 10.1053/j.semtcvs.2021.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Cardiac surgery utilizing circulatory arrest is most commonly performed under deep hypothermia (∼18°C) to suppress tissue oxygen demand and provide neuroprotection during operative circulatory arrest. Studies investigating the effects of deep hypothermic circulatory arrest (DHCA) on neurodevelopmental outcomes of patients with congenital heart disease give conflicting results. Here, we address these issues by quantifying changes in cerebral oxygen saturation, blood flow, and oxygen metabolism in neonates during DHCA and investigating the association of these changes with postoperative brain injury. Neonates with critical congenital heart disease undergoing DHCA were recruited for continuous intraoperative monitoring of cerebral oxygen saturation (ScO2) and an index of cerebral blood flow (CBFi) using 2 noninvasive optical techniques, diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS). Pre- and postoperative brain magnetic resonance imaging (MRI) was performed to detect white matter injury (WMI). Fifteen neonates were studied, and 11/15 underwent brain MRI. During DHCA, ScO2 decreased exponentially in time with a median decay rate of -0.04 min-1. This decay rate was highly variable between subjects. Subjects who had larger decreases in ScO2 during DHCA were more likely to have postoperative WMI (P = 0.02). Cerebral oxygen extraction persists during DHCA and varies widely from patient-to-patient. Patients with a higher degree of oxygen extraction during DHCA were more likely to show new WMI in postoperative MRI. These findings suggest cerebral oxygen extraction should be monitored during DHCA to identify patients at risk for hypoxic-ischemic injury, and that current commercial cerebral oximeters may underestimate cerebral oxygen extraction.
Collapse
Affiliation(s)
- Jennifer M. Lynch
- The Children’s Hospital of Philadelphia, Department of Anesthesiology and Critical Care Medicine, Philadelphia, Pennsylvania 19104
| | - Constantine D. Mavroudis
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Surgery, Philadelphia, Pennsylvania 19104
| | - Tiffany S. Ko
- The Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania 19104
| | - Marin Jacobwitz
- The Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania 19104
| | - David R. Busch
- Departments of Anesthesiology and Pain Management and Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rui Xiao
- University of Pennsylvania, Department of Biostatistics and Epidemiology, Philadelphia, Pennsylvania 19104
| | - Susan C. Nicolson
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesia, Philadelphia, Pennsylvania 19104
| | - Lisa M. Montenegro
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesia, Philadelphia, Pennsylvania 19104
| | - J. William Gaynor
- The Children’s Hospital of Philadelphia, Division of Cardiothoracic Surgery, Philadelphia, Pennsylvania 19104
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania 19104
| | - Daniel J. Licht
- The Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
Samaei S, Colombo L, Borycki D, Pagliazzi M, Durduran T, Sawosz P, Wojtkiewicz S, Contini D, Torricelli A, Pifferi A, Liebert A. Performance assessment of laser sources for time-domain diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5351-5367. [PMID: 34692187 PMCID: PMC8515963 DOI: 10.1364/boe.432363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging optical technique that enables noninvasive measurement of microvascular blood flow with photon path-length resolution. In TD-DCS, a picosecond pulsed laser with a long coherence length, adequate illumination power, and narrow instrument response function (IRF) is required, and satisfying all these features is challenging. To this purpose, in this study we characterized the performance of three different laser sources for TD-DCS. First, the sources were evaluated based on their emission spectrum and IRF. Then, we compared the signal-to-noise ratio and the sensitivity to velocity changes of scattering particles in a series of phantom measurements. We also compared the results for in vivo measurements, performing an arterial occlusion protocol on the forearm of three adult subjects. Overall, each laser has the potential to be successfully used both for laboratory and clinical applications. However, we found that the effects caused by the IRF are more significant than the effect of a limited temporal coherence.
Collapse
Affiliation(s)
- Saeed Samaei
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland
| | - Marco Pagliazzi
- ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
| | - Turgut Durduran
- ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| |
Collapse
|
36
|
Zhao M, Huang C, Mazdeyasna S, Yu G. Extraction of tissue optical property and blood flow from speckle contrast diffuse correlation tomography (scDCT) measurements. BIOMEDICAL OPTICS EXPRESS 2021; 12:5894-5908. [PMID: 34692223 PMCID: PMC8515985 DOI: 10.1364/boe.429890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Measurement of blood flow in tissue provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter. A limitation with the continuous-wave scDCT measurement of blood flow is the assumption of constant and homogenous tissue absorption coefficient (μ a ). The present study took the advantage of rapid, high-density, noncontact scDCT measurements of both light intensities and diffuse speckle contrast at multiple source-detector distances and developed two-step fitting algorithms for extracting both μ a and αDB. The new algorithms were tested in tissue-simulating phantoms with known optical properties and human forearms. Measurement results were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable to relevant study results (up to 25% errors). Knowledge of μ a not only improved the accuracy in calculating αDB but also provided the potential for quantifying tissue blood oxygenation via spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow and oxygenation distributions in deep tissues.
Collapse
|
37
|
Li Z, Ge Q, Feng J, Jia K, Zhao J. Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture. BIOMEDICAL OPTICS EXPRESS 2021; 12:4131-4146. [PMID: 34457404 PMCID: PMC8367234 DOI: 10.1364/boe.423777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 05/30/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a noninvasive technique that derives blood flow information from measurements of the temporal intensity fluctuations of multiply scattered light. Blood flow index (BFI) and especially its variation was demonstrated to be approximately proportional to absolute blood flow. We investigated and assessed the utility of a long short-term memory (LSTM) architecture for quantification of BFI in DCS. Phantom and in vivo experiments were established to measure normalized intensity autocorrelation function data. Improved accuracy and faster computational time were gained by the proposed LSTM architecture. The results support the notion of using proposed LSTM architecture for quantification of BFI in DCS. This approach would be especially useful for continuous real-time monitoring of blood flow.
Collapse
Affiliation(s)
- Zhe Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
- Zhe Li and Qisi Ge contributed equally to this work
| | - Qisi Ge
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
- Zhe Li and Qisi Ge contributed equally to this work
| | - Jinchao Feng
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
| | - Kebin Jia
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
38
|
Zavriyev AI, Kaya K, Farzam P, Farzam PY, Sunwoo J, Jassar AS, Sundt TM, Carp SA, Franceschini MA, Qu JZ. The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests. JTCVS Tech 2021; 7:161-177. [PMID: 34318236 PMCID: PMC8311503 DOI: 10.1016/j.xjtc.2021.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Real-time noninvasive monitoring of cerebral blood flow (CBF) during surgery is key to reducing mortality rates associated with adult cardiac surgeries requiring hypothermic circulatory arrest (HCA). We explored a method to monitor cerebral blood flow during different brain protection techniques using diffuse correlation spectroscopy (DCS), a noninvasive optical technique which, combined with frequency-domain near-infrared spectroscopy (FDNIRS), also provides a measure of oxygen metabolism. METHODS We used DCS in combination with FDNIRS to simultaneously measure hemoglobin oxygen saturation (SO2), an index of cerebral blood flow (CBFi), and an index of cerebral metabolic rate of oxygen (CMRO2i) in 12 patients undergoing cardiac surgery with HCA. RESULTS Our measurements revealed that a negligible amount of blood is delivered to the cerebral cortex during HCA with retrograde cerebral perfusion, indistinguishable from HCA-only cases (median CBFi drops of 93% and 95%, respectively) with consequent similar decreases in SO2 (mean decrease of 0.6 ± 0.1% and 0.9 ± 0.2% per minute, respectively); CBFi and SO2 are mostly maintained with antegrade cerebral perfusion; the relationship of CMRO2i to temperature is given by CMRO2i = 0.052e0.079T. CONCLUSIONS FDNIRS-DCS is able to detect changes in CBFi, SO2, and CMRO2i with intervention and can become a valuable tool for optimizing cerebral protection during HCA.
Collapse
Key Words
- ACP, antegrade cerebral perfusion
- CBFi, cerebral blood flow (index)
- CMRO2i, cerebral metabolic rate of oxygen (index)
- CPB, cardiopulmonary bypass
- DCS, diffuse correlation spectroscopy
- EEG, electroencephalography
- FDNIRS, frequency-domain near-infrared spectroscopy
- HCA, hypothermic circulatory arrest
- NIRS, near-infrared spectroscopy
- RCP, retrograde cerebral perfusion
- SO2, hemoglobin oxygen saturation
- TCD, transcranial Doppler ultrasound
- antegrade cerebral perfusion
- brain imaging
- cerebral blood flow
- diffuse correlation spectroscopy
- hypothermic circulatory arrest
- near-infrared spectroscopy
- rSO2, regional oxygen saturation
- retrograde cerebral perfusion
Collapse
Affiliation(s)
- Alexander I. Zavriyev
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kutlu Kaya
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parisa Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parya Y. Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - John Sunwoo
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Arminder S. Jassar
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Thoralf M. Sundt
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Stefan A. Carp
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Maria Angela Franceschini
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jason Z. Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
39
|
Bartlett MF, Jordan SM, Hueber DM, Nelson MD. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow. J Appl Physiol (1985) 2021; 130:1183-1195. [PMID: 33571054 DOI: 10.1152/japplphysiol.00857.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Near-infrared diffuse correlation spectroscopy (DCS) is increasingly used to study relative changes in skeletal muscle blood flow. However, most diffuse correlation spectrometers assume that tissue optical properties-such as absorption (μa) and reduced scattering (μ's) coefficients-remain constant during physiological provocations, which is untrue for skeletal muscle. Here, we interrogate how changes in tissue μa and μ's affect DCS calculations of blood flow index (BFI). We recalculated BFI using raw autocorrelation curves and μa/μ's values recorded during a reactive hyperemia protocol in 16 healthy young individuals. First, we show that incorrectly assuming baseline μa and μ's substantially affects peak BFI and BFI slope when expressed in absolute terms (cm2/s, P < 0.01), but these differences are abolished when expressed in relative terms (% baseline). Next, to evaluate the impact of physiologic changes in μa and μ's, we compared peak BFI and BFI slope when μa and μ's were held constant throughout the reactive hyperemia protocol versus integrated from a 3-s rolling average. Regardless of approach, group means for peak BFI and BFI slope did not differ. Group means for peak BFI and BFI slope were also similar following ad absurdum analyses, where we simulated supraphysiologic changes in μa/μ's. In both cases, however, we identified individual cases where peak BFI and BFI slope were indeed affected, with this result being driven by relative changes in μa over μ's. Overall, these results provide support for past reports in which μa/μ's were held constant but also advocate for real-time incorporation of μa and μ's moving forward.NEW & NOTEWORTHY We investigated how changes in tissue optical properties affect near-infrared diffuse correlation spectroscopy (NIR-DCS)-derived indices of skeletal muscle blood flow (BFI) during physiological provocation. Although accounting for changes in tissue optical properties has little impact on BFI on a group level, individual BFI calculations are indeed impacted by changes in tissue optical properties. NIR-DCS calculations of BFI should therefore account for real-time, physiologically induced changes in tissue optical properties whenever possible.
Collapse
Affiliation(s)
- Miles F Bartlett
- Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Scott M Jordan
- College of Information and Computer Sciences, The University of Massachusetts Amherst, Amherst, Massachusetts
| | | | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
40
|
Non-invasive diffuse optical neuromonitoring during cardiopulmonary resuscitation predicts return of spontaneous circulation. Sci Rep 2021; 11:3828. [PMID: 33589662 PMCID: PMC7884428 DOI: 10.1038/s41598-021-83270-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Neurologic injury is a leading cause of morbidity and mortality following pediatric cardiac arrest. In this study, we assess the feasibility of quantitative, non-invasive, frequency-domain diffuse optical spectroscopy (FD-DOS) neuromonitoring during cardiopulmonary resuscitation (CPR), and its predictive utility for return of spontaneous circulation (ROSC) in an established pediatric swine model of cardiac arrest. Cerebral tissue optical properties, oxy- and deoxy-hemoglobin concentration ([HbO2], [Hb]), oxygen saturation (StO2) and total hemoglobin concentration (THC) were measured by a FD-DOS probe placed on the forehead in 1-month-old swine (8–11 kg; n = 52) during seven minutes of asphyxiation followed by twenty minutes of CPR. ROSC prediction and time-dependent performance of prediction throughout early CPR (< 10 min), were assessed by the weighted Youden index (Jw, w = 0.1) with tenfold cross-validation. FD-DOS CPR data was successfully acquired in 48/52 animals; 37/48 achieved ROSC. Changes in scattering coefficient (785 nm), [HbO2], StO2 and THC from baseline were significantly different in ROSC versus No-ROSC subjects (p < 0.01) after 10 min of CPR. Change in [HbO2] of + 1.3 µmol/L from 1-min of CPR achieved the highest weighted Youden index (0.96) for ROSC prediction. We demonstrate feasibility of quantitative, non-invasive FD-DOS neuromonitoring, and stable, specific, early ROSC prediction from the third minute of CPR.
Collapse
|
41
|
Arnal-Real C, Mahmoudzadeh M, Manoochehri M, Nourhashemi M, Wallois F. What Triggers the Interictal Epileptic Spike? A Multimodal Multiscale Analysis of the Dynamic of Synaptic and Non-synaptic Neuronal and Vascular Compartments Using Electrical and Optical Measurements. Front Neurol 2021; 12:596926. [PMID: 33643187 PMCID: PMC7907164 DOI: 10.3389/fneur.2021.596926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Interictal spikes (IISs) may result from a disturbance of the intimate functional balance between various neuronal (synaptic and non-synaptic), vascular, and metabolic compartments. To better characterize the complex interactions within these compartments at different scales we developed a simultaneous multimodal-multiscale approach and measure their activity around the time of the IIS. We performed such measurements in an epileptic rat model (n = 43). We thus evaluated (1) synaptic dynamics by combining electrocorticography and multiunit activity recording in the time and time-frequency domain, (2) non-synaptic dynamics by recording modifications in light scattering induced by changes in the membrane configuration related to cell activity using the fast optical signal, and (3) vascular dynamics using functional near-infrared spectroscopy and, independently but simultaneously to the electrocorticography, the changes in cerebral blood flow using diffuse correlation spectroscopy. The first observed alterations in the measured signals occurred in the hemodynamic compartments a few seconds before the peak of the IIS. These hemodynamic changes were followed by changes in coherence and then synchronization between the deep and superficial neural networks in the 1 s preceding the IIS peaks. Finally, changes in light scattering before the epileptic spikes suggest a change in membrane configuration before the IIS. Our multimodal, multiscale approach highlights the complexity of (1) interactions between the various neuronal, vascular, and extracellular compartments, (2) neural interactions between various layers, (3) the synaptic mechanisms (coherence and synchronization), and (4) non-synaptic mechanisms that take place in the neuronal network around the time of the IISs in a very specific cerebral hemodynamic environment.
Collapse
Affiliation(s)
- Cristian Arnal-Real
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mahdi Mahmoudzadeh
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mana Manoochehri
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mina Nourhashemi
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Fabrice Wallois
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
42
|
Neonatal NIRS monitoring: recommendations for data capture and review of analytics. J Perinatol 2021; 41:675-688. [PMID: 33589724 PMCID: PMC7883881 DOI: 10.1038/s41372-021-00946-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023]
Abstract
Brain injury is one of the most consequential problems facing neonates, with many preterm and term infants at risk for cerebral hypoxia and ischemia. To develop effective neuroprotective strategies, the mechanistic basis for brain injury must be understood. The fragile state of neonates presents unique research challenges; invasive measures of cerebral blood flow and oxygenation assessment exceed tolerable risk profiles. Near-infrared spectroscopy (NIRS) can safely and non-invasively estimate cerebral oxygenation, a correlate of cerebral perfusion, offering insight into brain injury-related mechanisms. Unfortunately, lack of standardization in device application, recording methods, and error/artifact correction have left the field fractured. In this article, we provide a framework for neonatal NIRS research. Our goal is to provide a rational basis for NIRS data capture and processing that may result in better comparability between studies. It is also intended to serve as a primer for new NIRS researchers and assist with investigation initiation.
Collapse
|
43
|
Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of Optical Neuromonitoring in Neonatal Encephalopathy-Current State and Recent Advances. Front Pediatr 2021; 9:653676. [PMID: 33898363 PMCID: PMC8062863 DOI: 10.3389/fped.2021.653676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain.
Collapse
Affiliation(s)
- Kelly Harvey-Jones
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Nicola J Robertson
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom.,Edinburgh Neuroscience & Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
44
|
Liu X, Gu Y, Huang C, Zhao M, Cheng Y, Jawdeh EGA, Bada HS, Chen L, Yu G. Simultaneous measurements of tissue blood flow and oxygenation using a wearable fiber-free optical sensor. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200314RR. [PMID: 33515216 PMCID: PMC7846117 DOI: 10.1117/1.jbo.26.1.012705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE There is an essential need to develop wearable multimodality technologies that can continuously measure both blood flow and oxygenation in deep tissues to investigate and manage various vascular/cellular diseases. AIM To develop a wearable dual-wavelength diffuse speckle contrast flow oximetry (DSCFO) for simultaneous measurements of blood flow and oxygenation variations in deep tissues. APPROACH A wearable fiber-free DSCFO probe was fabricated using 3D printing to confine two small near-infrared laser diodes and a tiny CMOS camera in positions for DSCFO measurements. The spatial diffuse speckle contrast and light intensity measurements at the two different wavelengths enable quantification of tissue blood flow and oxygenation, respectively. The DSCFO was first calibrated using tissue phantoms and then tested in adult forearms during artery cuff occlusion. RESULTS Phantom tests determined the largest effective source-detector distance (15 mm) and optimal camera exposure time (10 ms) and verified the accuracy of DSCFO in measuring absorption coefficient variations. The DSCFO detected substantial changes in forearm blood flow and oxygenation resulting from the artery occlusion, which meet physiological expectations and are consistent with previous study results. CONCLUSIONS The wearable DSCFO may be used for continuous and simultaneous monitoring of blood flow and oxygenation variations in freely behaving subjects.
Collapse
Affiliation(s)
- Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Yutong Gu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Chong Huang
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Mingjun Zhao
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Yanda Cheng
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Elie G. Abu Jawdeh
- University of Kentucky, Department of Pediatrics, College of Medicine, Lexington, Kentucky, United States
| | - Henrietta S. Bada
- University of Kentucky, Department of Pediatrics, College of Medicine, Lexington, Kentucky, United States
| | - Lei Chen
- University of Kentucky, Department of Physiology, Spinal Cord and Brain Injury Research Center, Lexington, Kentucky, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
- Address all correspondence to Guoqiang Yu,
| |
Collapse
|
45
|
Abu Jawdeh EG, Huang C, Mazdeyasna S, Chen L, Chen L, Bada HS, Yu G. Noncontact optical imaging of brain hemodynamics in preterm infants: a preliminary study. Phys Med Biol 2020; 65:245009. [PMID: 33113516 DOI: 10.1088/1361-6560/abc5a7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extremely preterm infants' hemodynamic instability places them at high risk of brain injury. Currently there is no reliable bedside method to continuously monitor cerebral hemodynamics in the neonatal intensive care unit (NICU). This paper reports a feasibility study to adapt and test an innovative speckle contrast diffuse correlation tomography (scDCT) device for noncontact, high-density, 3D imaging of cerebral blood flow (CBF) in preterm infants. The scDCT scans a focused point near-infrared illumination to multiple source positions for deep tissue penetration, and controls an electron multiplying charge-coupled-device camera with thousands of pixels to achieve a high-density sampling. The optimized scDCT for use in preterm infants was first evaluated against an established diffuse correlation spectroscopy in an infant-head-simulating phantom with known properties. The observed significant correlation between the two measurements verified the capability of scDCT for transcranial brain imaging. The insignificant influence of transparent incubator wall on scDCT measurements was then confirmed by comparing adult forearm blood flow responses to artery cuff occlusions measured inside and outside the incubator. Finally, the scDCT device was moved to the NICU to image CBF variations in two preterm infants. Infant #1 with no major organ deficits showed little CBF fluctuation over the first 3 weeks of life. Infant #2 showed a significant CBF increase after the 2 h pharmacotherapy for patent ductus arteriosus closure. While these CBF variations meet physiological expectations, the fact that no significant changes are noted with peripheral monitoring of blood oxygen saturation suggests necessity of direct cerebral monitoring. This feasibility study with timely technology development is an important and necessary step towards larger clinical studies with more subjects to further validate it for continuous monitoring and instant management of cerebral pathologies and interventions in the NICU.
Collapse
Affiliation(s)
- Elie G Abu Jawdeh
- Deparment of Pediatrics/Neonatology, College of Medicine, University of Kentucky, Lexington, KY, United States of America. Contributed equally as co-first authors
| | | | | | | | | | | | | |
Collapse
|
46
|
Rajaram A, Milej D, Suwalski M, Yip LCM, Guo LR, Chu MWA, Chui J, Diop M, Murkin JM, St. Lawrence K. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. BIOMEDICAL OPTICS EXPRESS 2020; 11:5967-5981. [PMID: 33149999 PMCID: PMC7587277 DOI: 10.1364/boe.404101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury - i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) - a direct marker of cellular energy metabolism - and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (-0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Linrui R. Guo
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Michael W. A. Chu
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Jason Chui
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - John M. Murkin
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| |
Collapse
|
47
|
Giovannella M, Andresen B, Andersen JB, El-Mahdaoui S, Contini D, Spinelli L, Torricelli A, Greisen G, Durduran T, Weigel UM, Law I. Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets. J Cereb Blood Flow Metab 2020; 40:2055-2065. [PMID: 31665953 PMCID: PMC7786848 DOI: 10.1177/0271678x19883751] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 11/15/2022]
Abstract
Diffuse correlation spectroscopy (DCS) can non-invasively and continuously asses regional cerebral blood flow (rCBF) at the cot-side by measuring a blood flow index (BFI) in non-traditional units of cm2/s. We have validated DCS against positron emission tomography using 15O-labeled water (15O-water PET) in a piglet model allowing us to derive a conversion formula for BFI to rCBF in conventional units (ml/100g/min). Neonatal piglets were continuously monitored by the BabyLux device integrating DCS and time resolved near infrared spectroscopy (TRS) while acquiring 15O-water PET scans at baseline, after injection of acetazolamide and during induced hypoxic episodes. BFI by DCS was highly correlated with rCBF (R = 0.94, p < 0.001) by PET. A scaling factor of 0.89 (limits of agreement for individual measurement: 0.56, 1.39)×109× (ml/100g/min)/(cm2/s) was used to derive baseline rCBF from baseline BFI measurements of another group of piglets and of healthy newborn infants showing an agreement with expected values. These results pave the way towards non-invasive, cot-side absolute CBF measurements by DCS on neonates.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Bjørn Andresen
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Julie B Andersen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital -Rigshospitalet, Copenhagen, Denmark
| | - Sahla El-Mahdaoui
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Davide Contini
- Politecnico di Milano-Dipartimento di Fisica, Milan, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano-Dipartimento di Fisica, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Gorm Greisen
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Udo M Weigel
- HemoPhotonics S.L., Castelldefels (Barcelona), Spain
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital -Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
48
|
Fisher JAN, Gumenchuk I, Rogovin OS, Yodh AG, Busch DR. Asymmetric, dynamic adaptation in prefrontal cortex during dichotic listening tasks. NEUROPHOTONICS 2020; 7:045008. [PMID: 33163546 PMCID: PMC7641958 DOI: 10.1117/1.nph.7.4.045008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 05/25/2023]
Abstract
Significance: Speech processing tasks can be used to assess the integrity and health of many functional and structural aspects of the brain. Despite the potential merits of such behavioral tests as clinical assessment tools, however, the underlying neural substrates remain relatively unclear. Aim: We aimed to obtain a more in-depth portrait of hemispheric asymmetry during dichotic listening tasks at the level of the prefrontal cortex, where prior studies have reported inconsistent results. Approach: To avoid central confounds that limited previous studies, we used diffuse correlation spectroscopy to optically monitor cerebral blood flow (CBF) in the dorsolateral prefrontal cortex during dichotic listening tasks in human subjects. Results: We found that dichotic listening tasks elicited hemispheric asymmetries in both amplitude as well as kinetics. When listening task blocks were repeated, there was an accommodative reduction in the response amplitude of the left, but not the right hemisphere. Conclusions: These heretofore unobserved trends depict a more nuanced portrait of the functional asymmetry that has been observed previously. To our knowledge, these results additionally represent the first direct measurements of CBF during a speech processing task recommended by the American Speech-Language-Hearing Association for diagnosing auditory processing disorders.
Collapse
Affiliation(s)
- Jonathan A. N. Fisher
- New York Medical College, Department of Physiology, Valhalla, New York, United States
| | - Iryna Gumenchuk
- New York Medical College, Department of Physiology, Valhalla, New York, United States
| | - Ora S. Rogovin
- New York Medical College, Department of Physiology, Valhalla, New York, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - David R. Busch
- University of Texas Southwestern Medical Center, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas, United States
| |
Collapse
|
49
|
Mavroudis CD, Ko TS, Morgan RW, Volk LE, Landis WP, Smood B, Xiao R, Hefti M, Boorady TW, Marquez A, Karlsson M, Licht DJ, Nadkarni VM, Berg RA, Sutton RM, Kilbaugh TJ. Epinephrine's effects on cerebrovascular and systemic hemodynamics during cardiopulmonary resuscitation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:583. [PMID: 32993753 PMCID: PMC7522922 DOI: 10.1186/s13054-020-03297-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first. METHODS One-month-old piglets (n = 20) underwent asphyxia for 7 min, ventricular fibrillation, and CPR for 10-20 min. Epinephrine (20 mcg/kg) was administered at 2, 6, 10, 14, and 18 min of CPR. Invasive (laser Doppler, brain tissue oxygen tension [PbtO2]) and noninvasive (diffuse correlation spectroscopy and diffuse optical spectroscopy) measurements of CBF and cerebral tissue oxygenation were simultaneously recorded. Effects of subsequent epinephrine doses were compared to the first. RESULTS With the first epinephrine dose during CPR, CBF and cerebral tissue oxygenation increased by > 10%, as measured by each of the invasive and noninvasive measures (p < 0.001). The effects of epinephrine on CBF and cerebral tissue oxygenation decreased with subsequent doses. By the fifth dose of epinephrine, there were no demonstrable increases in CBF of cerebral tissue oxygenation. Invasive and noninvasive CBF measurements were highly correlated during asphyxia (slope effect 1.3, p < 0.001) and CPR (slope effect 0.20, p < 0.001). CONCLUSIONS This model suggests that epinephrine increases CBF and cerebral tissue oxygenation, but that effects wane following the third dose. Noninvasive measurements of neurological health parameters hold promise for developing and directing resuscitation strategies.
Collapse
Affiliation(s)
- Constantine D Mavroudis
- Division of Cardiothoracic Surgery, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Division of Cardiovascular Surgery, The University of Pennsylvania, Philadelphia, PA, USA.
| | - Tiffany S Ko
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lindsay E Volk
- Division of Cardiothoracic Surgery, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - William P Landis
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Smood
- Division of Cardiovascular Surgery, The University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Pediatrics, Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy W Boorady
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexandra Marquez
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Daniel J Licht
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
50
|
Carp SA, Tamborini D, Mazumder D, Wu KC(T, Robinson MR, Stephens KA, Shatrovoy O, Lue N, Ozana N, Blackwell MH, Franceschini MA. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200140RR. [PMID: 32996299 PMCID: PMC7522668 DOI: 10.1117/1.jbo.25.9.097003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Diffuse correlation spectroscopy (DCS) is an established optical modality that enables noninvasive measurements of blood flow in deep tissue by quantifying the temporal light intensity fluctuations generated by dynamic scattering of moving red blood cells. Compared with near-infrared spectroscopy, DCS is hampered by a limited signal-to-noise ratio (SNR) due to the need to use small detection apertures to preserve speckle contrast. However, DCS is a dynamic light scattering technique and does not rely on hemoglobin contrast; thus, there are significant SNR advantages to using longer wavelengths (>1000 nm) for the DCS measurement due to a variety of biophysical and regulatory factors. AIM We offer a quantitative assessment of the benefits and challenges of operating DCS at 1064 nm versus the typical 765 to 850 nm wavelength through simulations and experimental demonstrations. APPROACH We evaluate the photon budget, depth sensitivity, and SNR for detecting blood flow changes using numerical simulations. We discuss continuous wave (CW) and time-domain (TD) DCS hardware considerations for 1064 nm operation. We report proof-of-concept measurements in tissue-like phantoms and healthy adult volunteers. RESULTS DCS at 1064 nm offers higher intrinsic sensitivity to deep tissue compared with DCS measurements at the typically used wavelength range (765 to 850 nm) due to increased photon counts and a slower autocorrelation decay. These advantages are explored using simulations and are demonstrated using phantom and in vivo measurements. We show the first high-speed (cardiac pulsation-resolved), high-SNR measurements at large source-detector separation (3 cm) for CW-DCS and late temporal gates (1 ns) for TD-DCS. CONCLUSIONS DCS at 1064 nm offers a leap forward in the ability to monitor deep tissue blood flow and could be especially useful in increasing the reliability of cerebral blood flow monitoring in adults.
Collapse
Affiliation(s)
- Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Stefan A. Carp, E-mail:
| | - Davide Tamborini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Dibbyan Mazumder
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kuan-Cheng (Tony) Wu
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mitchell R. Robinson
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- MIT, Health Sciences and Technology Program, Cambridge, Massachusetts, United States
| | - Kimberly A. Stephens
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Oleg Shatrovoy
- MIT Lincoln Laboratory, Lexington, Massachusetts, United States
| | - Niyom Lue
- MIT Lincoln Laboratory, Lexington, Massachusetts, United States
| | - Nisan Ozana
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | | | - Maria A. Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|