1
|
Puyenbroeck EV, Saeys W. Cost-efficient training of hyperspectral deep learning models for the detection of contaminating grains in bulk oats by fluorescent tagging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125856. [PMID: 39923708 DOI: 10.1016/j.saa.2025.125856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Computer vision based on instance segmentation deep learning models offers great potential for automating many visual inspection tasks, such as the detection of contaminating grains in bulk oats, a nutrient rich grain which is well-tolerated by people suffering from gluten intolerance. Whereas distinguishing foreign objects is often relatively easy with the naked eye, it is much more difficult to distinguish highly similar products, e.g. different grain species or varieties. The subtle differences between such products may be captured by deep learning models combining the spectral and spatial features that are acquired with spectral cameras, measuring a spectral fingerprint for each pixel in an image. However, the training of supervised hyperspectral deep learning models requires large amounts of labelled data. As manual labelling is a tedious job and may induce labelling errors, we propose an alternative approach involving 'tagging' of the targets with fluorescent labels that make the targets 'light up' under UV illumination to efficiently generate ground truth segmentation masks. As these fluorescent labels are only visible in the UV range of the spectrum, the spectra in the SWIR range can still be used to discriminate grains from each other, making it a cost-efficient labeling technique for hyperspectral data, where labeled datasets are scarce. The primary objective of this study was to determine whether a hyperspectral deep learning segmentation model to detect uncoated spelt kernels in a bulk of oats could be trained more efficiently by coating the spelt kernels in the training images with a fluorescent paint. To this end, both a classical pixel classifier, as a benchmark model, and a deep learning segmentation model were trained on a bulk mixture of oats contaminated with coated spelt kernels and evaluated on bulk mixtures of oats and non-coated spelt kernels to assess their ability to generalize to uncoated samples. The deep learning model (RMSE = 1.34 %) outperformed the pixel classifier (RMSE = 1.91 %) in predicting the mass percentage of spelt without coating in a bulk mixture of oats, because it was more successful in segmenting the kernel edges. This indicates that the traditional pixel classification analysis could be bypassed in future research by efficiently generating the ground truth labels required for training hyperspectral deep learning models through the use of a fluorescent coating.
Collapse
Affiliation(s)
- Emma Van Puyenbroeck
- KU Leuven, Department of Biosystems, Mebios, Kasteelpark Arenberg 30, B-3001 Leuven, Belgium; Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium.
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, Mebios, Kasteelpark Arenberg 30, B-3001 Leuven, Belgium; Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Wang M, Li Y, Wang Z, Li H, Zuo C, Zhao J, Yang Y, Tu K, Lan W, Pan L. Exploring the optical response of water status and light propagation in bruised 'Korla' fragrant pear tissues based on low-field nuclear magnetic resonance coupled with Monte Carlo simulation. Food Chem 2025; 477:143504. [PMID: 39999556 DOI: 10.1016/j.foodchem.2025.143504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
In this study, the water distribution and migration of bruised 'Korla' pear flesh during storage, as well as their relationships with optical properties and light propagation, were comprehensively investigated based on the low-field nuclear magnetic resonance (LF-NMR) coupled with Monte Carlo simulations. The immobilized water clearly transferred to free water during pear tissues bruising. The optical absorption coefficient (μa) around 1480 nm was strongly correlated with the LF-NMR T2 relaxation time of bruised pear tissues by 2D-COS. The reduced scattering coefficient (μs') declined with increasing degrees of bruising. In absorption process of bruised pear tissues at 1482 nm, the photons transmission distance from light source increased from 10.76 mm to 15.39 mm. The support vector machines discriminant analysis (SVM-DA) model based on μs' in 900-1650 nm provided an accuracy of 95.4 %. These results provided fundamental supports to develop advanced optical models to evaluated the early bruised fruits.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China.
| | - Yiting Li
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Zhenjie Wang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Haitao Li
- Tianjin Physical and Chemical Analysis Center Co. LTD, 116 Chengdu Road, Heping District, Tianjin 300051, China
| | - Changzhou Zuo
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China.
| | - Jingyuan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Yucan Yang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China.
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572024, China.
| |
Collapse
|
3
|
Kelkar P, Caggioni M, Erk KA, Lindberg S. Tracking Water Transport with Short-Wave Infrared: Kinetic Phase Diagrams, Dissolution, and Drying. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4334-4344. [PMID: 39903905 DOI: 10.1021/acs.langmuir.4c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Short-wave infrared (SWIR) imaging has been extensively used in defense applications but remains underutilized in the study of soft materials and the broader consumer product industry. Water molecules absorb around ∼1450 nm, making moisture-rich objects appear black, whereas surfactants and other common molecules in consumer products do not absorb and provide a good contrast. This experimental study showcases the varied capabilities of SWIR imaging in tracking water transport in soft material systems by analyzing dissolution dynamics, tracking phase transitions (when combined with cross-polarized optical imaging), and monitoring drying kinetics in the surfactant and polymer solutions. The dynamic phase evolution to equilibria of a binary aqueous solution of a nonionic surfactant hexaethylene glycol monododecyl ether (C12E6) is presented. The influence of confined hydration in dynamic-diffusive interfacial transport capillaries was investigated by tracking the micellar to hexagonal phase transition concentration (C*). The effects of varying concentrations of an industrially relevant additive─monovalent common salt (NaCl) on the radial (2D) dissolution of lamellar-structured concentrated sodium lauryl ether sulfate (70 wt % SLE1S) pastes was studied. An equation was developed to estimate the radial dissolution coefficients based on total dissolution time and surfactant concentrations in the sample and solvent. Water loss was investigated by tracking the drying of aqueous poly(vinyl) alcohol films. In situ monitoring of drying kinetics is used to draw correlations between the solution viscosity and drying time. SWIR imaging has already revealed previously inaccessible insights into surfactant hydration and holds the potential to become a turnkey method in tracking water transport, enabling better quality control and product stability analysis.
Collapse
Affiliation(s)
- Parth Kelkar
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marco Caggioni
- Corporate Engineering, The Procter & Gamble Company, West Chester, Ohio 45069, United States
| | - Kendra A Erk
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seth Lindberg
- Corporate Engineering, The Procter & Gamble Company, West Chester, Ohio 45069, United States
| |
Collapse
|
4
|
Liu W, Han T, Chen W, Chen J, Ge Q, Sun D, Liu J, Xu K. Design Key Points of High-Performance Diffuse Reflectance Optical Sensors for Non-Invasive Blood Glucose Measurement. SENSORS (BASEL, SWITZERLAND) 2025; 25:998. [PMID: 40006227 PMCID: PMC11859709 DOI: 10.3390/s25040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Optical sensors serve as pivotal components in the realm of non-invasive blood glucose measurement (NBGM) devices, where their efficacy directly influences the detection of weak glucose signals. This research introduces three fundamental design key points tailored for diffuse reflectance optical sensors employed for NBGM: depth resolution, detection signal-to-noise ratio, and human-sensor interface coupling. Guided by these design key points, we presented feasible design proposals for near-infrared diffuse reflectance sensors operating in the range of 1000-1700 nm. As an example, a sensor composed of five-ring detectors with a ring-shaped mask were made and tested on human skin. The innovative sensor developed herein holds promising potential for NBGM.
Collapse
Affiliation(s)
- Wenbo Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
| | - Tongshuai Han
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
| | - Wenliang Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
| | - Jiayu Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
| | - Qing Ge
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
| | - Di Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
- Sunrise Technology Co., Ltd., Tianjin 300192, China
| | - Jin Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
| | - Kexin Xu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (W.L.); (T.H.); (W.C.); (J.C.); (Q.G.); (D.S.)
- Sunrise Technology Co., Ltd., Tianjin 300192, China
| |
Collapse
|
5
|
Vincely VD, Bayer CL. Photoacoustic imaging of rat kidney tissue oxygenation using second near-infrared wavelengths. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:026002. [PMID: 39968505 PMCID: PMC11833698 DOI: 10.1117/1.jbo.30.2.026002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Significance Conventionally, spectral photoacoustic imaging (sPAI) to assess tissue oxygenation (sO 2 ) uses optical wavelengths in the first near-infrared (NIR-I) window. This limits the maximum photoacoustic imaging depth due to the high spectral coloring of biological tissues and has been a major barrier to the clinical translation of the technique. Aim We demonstrate the second near-infrared (NIR-II) tissue optical window (950 to 1400 nm) for the assessment of blood and tissuesO 2 . Approach The NIR-II PA spectra of oxygenated and deoxygenated hemoglobin were first characterized using a phantom. Optimal wavelengths to minimize spectral coloring were identified. The resulting NIR-II PA imaging methods were then validated in vivo by measuring kidneysO 2 in adult female rats. Results sPAI of whole blood, in a phantom, and of blood in kidneys in vivo produced PA spectra proportional to wavelength-dependent optical absorption. Using the NIR-II wavelengths for spectral unmixing resulted in a ∼ 50 % decrease in the error of the estimated bloodsO 2 , compared with conventional NIR-I wavelengths. In vivo measurements of kidneysO 2 validated these findings, with a similar 50% reduction in error when using NIR-II wavelengths versus NIR-I wavelengths at larger illumination depths. Conclusions sPAI using NIR-II wavelengths improved the accuracy of tissuesO 2 measurements. This is likely due to reduced scattering, which reduces the attenuation and, therefore, the impact of spectral coloring in this wavelength range. Combined with the increased safe skin exposure fluence limits in this wavelength range, these results demonstrate the potential to use NIR-II wavelengths for quantitative sPAI ofsO 2 from deep heterogeneous tissues.
Collapse
Affiliation(s)
- Vinoin Devpaul Vincely
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| | - Carolyn L. Bayer
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Chen HM, Wang HC, Sung CC, Hsu YT, Sheen YJ. Validation of subpixel target detection and linear spectral unmixing techniques on short-wave infrared hyperspectral images of collagen phantoms. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:023518. [PMID: 40008292 PMCID: PMC11853843 DOI: 10.1117/1.jbo.30.2.023518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Significance We used three-dimensionally printed experimental molds and designed lard (lipid)-collagen mixed phantoms to simulate biological tissues to verify the practicality and accuracy of short-wave infrared (SWIR) hyperspectral imaging (HSI; 900 to 1700 nm), subpixel target detection (STD), and linear spectral unmixing (LSU). We provide a foundation for future development, validation, and reproducibility of hyperspectral image-processing techniques. Aim We aim to verify the use of SWIR HSI in bionic tissue phantoms. Second, we focus on the accuracy of STD and spectral unmixing techniques in hyperspectral image processing. Finally, the penetration ability of the technology and its applications at various depths and concentrations are explored. Approach All experiments were conducted using an SWIR (900 to 1700 nm) HSI sensor. Collagen phantoms of different thicknesses were created to test the penetration abilities. Lard (lipid) was embedded at different depths in the phantoms for STD, whereas LSU was performed on phantoms with varying collagen concentrations. The methods used included constrained energy minimization to detect the lard target and fully constrained least squares (FCLS) to estimate the abundance of collagen phantoms. Results SWIR HSI effectively penetrated the collagen phantoms. Specifically, STD techniques can accurately detect the presence of lard (lipids) at depths of 7 to 20 mm in the collagen phantoms. Even at a depth of 68 mm, the detection accuracy was 0.907. Moreover, in the LSU analysis, the FCLS method accurately estimated the abundance of collagen phantoms at different concentrations, with a correlation coefficient of 0.9917, indicating high accuracy across different concentrations. Conclusions This study demonstrated that SWIR HSI is highly accurate for deep target detection and LSU. This technology has great potential for use in future noninvasive biomedical diagnostic models. Collagen phantoms are valuable tools for validating HSI algorithms and provide a solid foundation for clinical applications.
Collapse
Affiliation(s)
- Hsian-Min Chen
- Taichung Veterans General Hospital, Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung, Taiwan
| | - Hsin-Che Wang
- Taichung Veterans General Hospital, Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung, Taiwan
| | - Chiu-Chin Sung
- Taichung Veterans General Hospital, Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung, Taiwan
| | - Yu-Ting Hsu
- Taichung Veterans General Hospital, Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung, Taiwan
- National Yang Ming Chiao Tung University, Institute of Biomedical Informatics, Taipei, Taiwan
| | - Yi-Jing Sheen
- Taichung Veterans General Hospital, Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung, Taiwan
- National Yang Ming Chiao Tung University, School of Medicine, Department of Medicine, Taipei, Taiwan
- National Chung Hsing University, Department of Post-Baccalaureate Medicine, Taichung, Taiwan
| |
Collapse
|
7
|
Kotwal A, Saragadam V, Bernstock JD, Sandoval A, Veeraraghavan A, Valdés PA. Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:023512. [PMID: 39544341 PMCID: PMC11559659 DOI: 10.1117/1.jbo.30.2.023512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024]
Abstract
Significance Accurate identification between pathologic (e.g., tumors) and healthy brain tissue is a critical need in neurosurgery. However, conventional surgical adjuncts have significant limitations toward achieving this goal (e.g., image guidance based on pre-operative imaging becomes inaccurate up to 3 cm as surgery proceeds). Hyperspectral imaging (HSI) has emerged as a potential powerful surgical adjunct to enable surgeons to accurately distinguish pathologic from normal tissues. Aim We review HSI techniques in neurosurgery; categorize, explain, and summarize their technical and clinical details; and present some promising directions for future work. Approach We performed a literature search on HSI methods in neurosurgery focusing on their hardware and implementation details; classification, estimation, and band selection methods; publicly available labeled and unlabeled data; image processing and augmented reality visualization systems; and clinical study conclusions. Results We present a detailed review of HSI results in neurosurgery with a discussion of over 25 imaging systems, 45 clinical studies, and 60 computational methods. We first provide a short overview of HSI and the main branches of neurosurgery. Then, we describe in detail the imaging systems, computational methods, and clinical results for HSI using reflectance or fluorescence. Clinical implementations of HSI yield promising results in estimating perfusion and mapping brain function, classifying tumors and healthy tissues (e.g., in fluorescence-guided tumor surgery, detecting infiltrating margins not visible with conventional systems), and detecting epileptogenic regions. Finally, we discuss the advantages and disadvantages of HSI approaches and interesting research directions as a means to encourage future development. Conclusions We describe a number of HSI applications across every major branch of neurosurgery. We believe these results demonstrate the potential of HSI as a powerful neurosurgical adjunct as more work continues to enable rapid acquisition with smaller footprints, greater spectral and spatial resolutions, and improved detection.
Collapse
Affiliation(s)
- Alankar Kotwal
- University of Texas Medical Branch, Department of Neurosurgery, Galveston, Texas, United States
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Vishwanath Saragadam
- University of California Riverside, Department of Electrical and Computer Engineering, Riverside, California, United States
| | - Joshua D. Bernstock
- Brigham and Women’s Hospital, Harvard Medical School, Department of Neurosurgery, Boston, Massachusetts, United States
- Massachusetts Institute of Technology, David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States
| | - Alfredo Sandoval
- University of Texas Medical Branch, Department of Neurosurgery, Galveston, Texas, United States
| | - Ashok Veeraraghavan
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Pablo A. Valdés
- University of Texas Medical Branch, Department of Neurosurgery, Galveston, Texas, United States
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| |
Collapse
|
8
|
Tian F, Liu Y, Chen M, Schriver KE, Roe AW. Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI. CELL REPORTS METHODS 2025; 5:100961. [PMID: 39874948 PMCID: PMC11840946 DOI: 10.1016/j.crmeth.2024.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025]
Abstract
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable. In addition, its magnetic resonance (MR) compatibility (INS-fMRI) permits systematic mapping of brain-wide circuits. In the MRI, we illustrate (1) the single-point activation of functionally specific networks, (2) shifting cortical networks activated via shifting points of stimulation, and (3) "moving dot" stimulation-evoked activation of higher-order motion-selective areas. We suggest that, by mimicking patterns of columnar activation normally activated by visual stimuli, a columnar VCP opens doors for the planned activation of feature-specific circuits and their associated visual percepts.
Collapse
Affiliation(s)
- Feiyan Tian
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yipeng Liu
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Meixuan Chen
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Kenneth Edward Schriver
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China.
| |
Collapse
|
9
|
Hwang J, Kim B, Jin C, Lee G, Jeong H, Lee H, Noh J, Lim SJ, Kim JY, Choi H. Shortwave Infrared Imaging of a Quantum Dot-Based Magnetic Guidewire Toward Non-Fluoroscopic Peripheral Vascular Interventions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404251. [PMID: 39175372 DOI: 10.1002/smll.202404251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Peripheral vascular interventions (PVIs) offer several benefits to patients with lower extremity arterial diseases, including reduced pain, simpler anesthesia, and shorter recovery time, compared to open surgery. However, to monitor the endovascular tools inside the body, PVIs are conducted under X-ray fluoroscopy, which poses serious long-term health risks to physicians and patients. Shortwave infrared (SWIR) imaging of quantum dots (QDs) has shown great potential in bioimaging due to the non-ionizing penetration of SWIR light through tissues. In this paper, a QD-based magnetic guidewire and its system is introduced that allows X-ray-free detection under SWIR imaging and precise steering via magnetic manipulation. The QD magnetic guidewire contains a flexible silicone tube encapsulating a QD polydimethylsiloxane (PDMS) composite, where HgCdSe/HgS/CdS/CdZnS/ZnS/SiO2 core/multi-shell QDs are dispersed in the PDMS matrix for SWIR imaging upon near-infrared excitation, as well as a permanent magnet for magnetic steering. The SWIR penetration of the QD magnetic guidewire is investigated within an artificial tissue model (1% Intralipid) and explore the potential for non-fluoroscopic PVIs within a vascular phantom model. The QD magnetic guidewire is biocompatible in its entirety, with excellent resistance to photobleaching and chemical alteration, which is a promising sign for its future clinical implementation.
Collapse
Affiliation(s)
- Junsun Hwang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Robotics and Mechatronics Engineering Research Center, DGIST, Daegu, 42988, Republic of Korea
- Institute of Mechanical Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Beomjoo Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Chaewon Jin
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Gyudong Lee
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Hwajun Jeong
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyunki Lee
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Intelligent Robotics, DGIST, Daegu, 42988, Republic of Korea
| | - Jonggu Noh
- Division of Intelligent Robotics, DGIST, Daegu, 42988, Republic of Korea
| | - Sung Jun Lim
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
- Department of Interdisciplinary Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
- Robotics and Mechatronics Engineering Research Center, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
10
|
Park SK, Cho JS, Won DH, Kim SS, Lim JH, Choi JH, Yun DY, Park KJ, Lee G. Quality Differences in Frozen Mackerel According to Thawing Method: Potential Classification via Hyperspectral Imaging. Foods 2024; 13:4005. [PMID: 39766948 PMCID: PMC11727025 DOI: 10.3390/foods13244005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Seafood quality preservation remains a critical focus in the food industry, particularly as the freeze-thaw process significantly impacts the freshness and safety of aquatic products. This study investigated quality changes in frozen mackerel subjected to two thawing methods, room temperature (RT) and running water (WT), and assessed the potential of hyperspectral imaging (HSI) for classifying these methods. After thawing, mackerel samples were stored at 5 °C for 21 days, with physicochemical, textural, and spectroscopic analyses tracking quality changes and supporting the development of a spectroscopic classification model. Compared with the WT method, the RT method delayed changes in key quality indicators, including pH, total volatile basic nitrogen (TVB-N), and total viable count (TVC), by 1-2 days, suggesting it may better preserve initial quality. Texture profile analysis showed similar trends, supporting the benefit of RT in maintaining quality. A major focus was on using HSI to assess quality and classify thawing methods. HSI achieved high classification accuracy (Rc2 = 0.9547) in distinguishing thawing methods up to three days post-thaw, with 1100, 1200, and 1400 nm wavelengths identified as key spectral markers. The HIS's ability to detect differences between thawing methods, even when conventional analyses showed minimal variation, highlights its potential as a powerful tool for quality assessment and process control in the seafood industry, enabling detection of subtle quality changes that traditional methods may miss.
Collapse
Affiliation(s)
- Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.-K.P.); (J.-S.C.); (J.-H.L.); (J.H.C.); (K.-J.P.)
| | - Jeong-Seok Cho
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.-K.P.); (J.-S.C.); (J.-H.L.); (J.H.C.); (K.-J.P.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-H.W.); (S.S.K.); (D.-Y.Y.)
| | - Dong-Hoon Won
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-H.W.); (S.S.K.); (D.-Y.Y.)
| | - Sang Seop Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-H.W.); (S.S.K.); (D.-Y.Y.)
| | - Jeong-Ho Lim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.-K.P.); (J.-S.C.); (J.-H.L.); (J.H.C.); (K.-J.P.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-H.W.); (S.S.K.); (D.-Y.Y.)
| | - Jeong Hee Choi
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.-K.P.); (J.-S.C.); (J.-H.L.); (J.H.C.); (K.-J.P.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-H.W.); (S.S.K.); (D.-Y.Y.)
| | - Dae-Yong Yun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-H.W.); (S.S.K.); (D.-Y.Y.)
| | - Kee-Jai Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.-K.P.); (J.-S.C.); (J.-H.L.); (J.H.C.); (K.-J.P.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-H.W.); (S.S.K.); (D.-Y.Y.)
| | - Gyuseok Lee
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea; (S.-K.P.); (J.-S.C.); (J.-H.L.); (J.H.C.); (K.-J.P.)
| |
Collapse
|
11
|
Schreuder J, Niknafs S, Williams P, Roura E, Hoffman LC, Cozzolino D. Non-destructive prediction of fertility and sex in chicken eggs using the short wave near-infrared region. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124716. [PMID: 38991617 DOI: 10.1016/j.saa.2024.124716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The objective of this study was to evaluate the ability of a handheld near-infrared device (900-1600 nm) to predict fertility and sex (male and female) traits in-ovo. The NIR reflectance spectra of the egg samples were collected on days 0, 7, 14 and 18 of incubation and the data was analysed using principal component analysis (PCA), linear discriminant analysis (LDA) and support vector machines classification (SVM). The overall classification rates for the prediction of fertile and infertile egg samples ranged from 73 % to 84 % and between 93 % to 95 % using LDA and SVM classification, respectively. The highest classification rate was obtained on day 7 of incubation. The classification between male and female embryos achieved lower classification rates, between 62 % and 68 % using LDA and SVM classification, respectively. Although the classification rates for in-ovo sexing obtained in this study are higher than those obtained by chance (50 %), the classification results are currently not sufficient for industrial in-ovo sexing of chicken eggs. These results demonstrated that short wavelengths in the NIR range may be useful to distinguish between fertile and infertile egg samples at days 7 and 14 during incubation.
Collapse
Affiliation(s)
- J Schreuder
- Stellenbosch University, Food Science Department, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - S Niknafs
- The University of Queensland, Centre for Animal Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St. Lucia, Brisbane, QLD 4072, Australia
| | - P Williams
- Stellenbosch University, Food Science Department, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - E Roura
- The University of Queensland, Centre for Animal Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St. Lucia, Brisbane, QLD 4072, Australia; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St. Lucia, Brisbane, QLD 4072, Australia
| | - L C Hoffman
- Stellenbosch University, Food Science Department, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St. Lucia, Brisbane, QLD 4072, Australia
| | - D Cozzolino
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Nunez J, Mironov S, Wan B, Hazime A, Clark A, Akarichi C, Abdelfattah K, Korlakunta S, Mandell S, Arnoldo B, Chan R, Goverman J, Huebinger R, Park C, Evers B, Carlson D, Berenfeld O, Levi B. Novel multi-spectral short-wave infrared imaging for assessment of human burn wound depth. Wound Repair Regen 2024; 32:979-991. [PMID: 39323286 PMCID: PMC11584362 DOI: 10.1111/wrr.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Burn depth determination is critical for patient care but is currently lacking accuracy. Recent animal studies showed that Short Wave Infrared (SWIR) imaging can distinguish between superficial and deep burns. This is a first human study correlating reflectance of multiple SWIR bands using a SWIR assessment tool (SWAT) with burn depth classifications by surgeons and histology. Burns and adjacent normal skin in 11 patients with thermal injuries were imaged with visual and narrow bands centred at 1200, 1650, 1940 and 2250 nm and biopsies were taken from select areas. Reflectance intensities for each band in 273 regions of interest (ROI) were divided by the normal skin reflectance and combined into three Reflectance Indices (RIs). In addition, burns in ROIs and biopsies were classified by five surgeons and three pathologists, respectively, as superficial partial, deep partial, or full thickness. Results show that for burn depth increase classified by the surgeons, reflectance increased at 1200 and 2250, decreased at 1940, and didn't change at 1650 nm. In contrast, all three RIs increase with burn depth and predict the deep and full depths ROIs representing operable regions (Area Under Curve >0.6507, p < 0.0001). Pathologists' classification matched surgeons' classification of burn category only in eight of 21 biopsies (38.1%), but reflectance at all bands and one RI for all deep partial and full thickness biopsies were larger than in non-biopsy normal and superficial partial thickness ROIs (p < 0.0118). In conclusion, multi-spectral imaging with a new SWAT is a promising approach for evaluation of burn wound depth.
Collapse
Affiliation(s)
- Johanna Nunez
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Sergey Mironov
- Department of Internal Medicine—CardiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Bingchun Wan
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Alaa Hazime
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Audra Clark
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chiaka Akarichi
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Kareem Abdelfattah
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Sneha Korlakunta
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Samuel Mandell
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Brett Arnoldo
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Rodney Chan
- Department of SurgerySan Antonio Military Medical CenterSan AntonioTexasUSA
| | - Jeremy Goverman
- Department of SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Ryan Huebinger
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Caroline Park
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bret Evers
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Deborah Carlson
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Omer Berenfeld
- Department of Internal Medicine—CardiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
13
|
Qi X, Lee C, Ursprung B, Skripka A, Schuck PJ, Chan EM, Cohen BE. Short-Wave Infrared Upconverting Nanoparticles. J Am Chem Soc 2024; 146:29292-29296. [PMID: 39432884 DOI: 10.1021/jacs.4c11181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Optical technologies enable real-time, noninvasive analysis of complex systems but are limited to discrete regions of the optical spectrum. While wavelengths in the short-wave infrared (SWIR) window (typically, 1700-3000 nm) should enable deep subsurface penetration and reduced photodamage, there are few luminescent probes that can be excited in this region. Here, we report the discovery of lanthanide-based upconverting nanoparticles (UCNPs) that efficiently convert 1740 or 1950 nm excitation to wavelengths compatible with conventional silicon detectors. Screening of Ln3+ ion combinations by differential rate equation modeling identifies Ho3+/Tm3+ or Tm3+ dopants with strong visible or NIR-I emission following SWIR excitation. Experimental upconverted photoluminescence excitation (U-PLE) spectra find that 10% Tm3+-doped NaYF4 core/shell UCNPs have the strongest 800 nm emission from SWIR wavelengths, while UCNPs with an added 2% or 10% Ho3+ show the strongest red emission when excited at 1740 or 1950 nm. Mechanistic modeling shows that addition of a low percentage of Ho3+ to Tm3+-doped UCNPs shifts their emission from 800 to 652 nm by acting as a hub of efficient SWIR energy acceptance and redistribution up to visible emission manifolds. Parallel experimental and computational analysis shows rate equation models are able to predict compositions for specific wavelengths of both excitation and emission. These SWIR-responsive probes open a new IR bioimaging window, and are responsive at wavelengths important for vision technologies.
Collapse
Affiliation(s)
- Xiao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Benedikt Ursprung
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Artiom Skripka
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bruce E Cohen
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Chen J, Li S, Zhou Q, Zhao X, Fan Z, Lo H, Nie L. Near-Infrared II Fluorescence Imaging Highlights Tumor Angiogenesis in Hepatocellular Carcinoma with a VEGFR-Targeted Probe. SMALL METHODS 2024:e2400904. [PMID: 39428866 DOI: 10.1002/smtd.202400904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is typically characterized by rich vascularity, with angiogenesis playing a crucial role in its growth and invasion. Molecular imaging of specific receptors in blood vessels is crucial in HCC diagnosis. In particular, in vivo imaging utilizing the second near-infrared (NIR-II) window offers improved tissue penetration, reduced light scattering, and lower autofluorescence. Despite the great potential of the NIR-II window, developing safe and effective probes to provide better imaging performance for HCC is urgently needed. In this study, NIR-II imaging integrated with a vascular endothelial growth factor receptor (VEGFR)-targeted probe generated by combining a VEGFR-targeted peptide with indocyanine green (ICG) is used to characterize HCC-related angiogenesis at a resolution of 56.0 µm. For the first time, liver metabolic curves and parameters of liver function reserve (LFR) are obtained by fitting NIR-II fluorescence signals with high spatiotemporal resolution, showing significant differences between HCC mice and controls. Moreover, unlike ICG, the targeting probe has a targeted effect on blood vessels in vivo. The tumor-to-normal (T/N) ratio in NIR-II imaging reaches up to 3.30 after post-injection of the targeting probe. The results indicate that the VEGFR-targeted probe is a powerful tool for NIR-II fluorescence imaging to enhance early diagnosis of HCC.
Collapse
Affiliation(s)
- Jiali Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shiying Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Qi Zhou
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xingyang Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hsuan Lo
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Liming Nie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
15
|
Damagatla V, Boetti NG, Di Sieno L, Bargigia I, Negretti F, Pugliese D, Janner D, Spinelli L, Farina A, Pifferi A. Use of bioresorbable fibers for short-wave infrared spectroscopy using time-domain diffuse optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:5041-5052. [PMID: 39296383 PMCID: PMC11407265 DOI: 10.1364/boe.531681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 09/21/2024]
Abstract
We demonstrate the usability of bioresorbable phosphate glass fibers for time-domain diffuse optical spectroscopy (TD-DOS) in the short-wave infrared (SWIR) region of 950-1600 nm, with the use of an InGaAs detector. Bioresorbable fibers for diffuse optics present an exciting prospect due to their ability to be left implanted while retrieving optical properties from deeper regions (few cm) for monitoring treatments. Extending TD-DOS to the SWIR region could be useful to better identify biomarkers such as water, lipids and collagen, given their increase in absorption in this range. We attempt to use the bioresorbable fibers to spectrally identify these biomarkers by measuring a series of biological samples known to contain them, such as porcine muscle, porcine fat and bone. We further validate our measurements by comparing the optical properties of high-scattering solid silicone phantoms retrieved with these bioresorbable fibers with those by a standard Si fiber.
Collapse
Affiliation(s)
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, Torino, Italy
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Ilaria Bargigia
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Fabio Negretti
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Diego Pugliese
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia and INSTM Research Unit, Torino, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy
| | - Davide Janner
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia and INSTM Research Unit, Torino, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Andrea Farina
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| |
Collapse
|
16
|
Wang C, Niu Y, Wang Y, Wu F, Zhang Q, Teng Y, Dong H, Mu Z. Multifunctional Near-Infrared Phosphors Cr 3+/Ni 2+ Codoped Mg 3Ga 2GeO 8 Based on Energy Transfer from Cr 3+ to Ni 2. Inorg Chem 2024; 63:14383-14391. [PMID: 39046094 DOI: 10.1021/acs.inorgchem.4c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Currently, near-infrared (NIR) light-emitting materials have been widely used in many fields, such as night vision, bioimaging, and nondestructive analysis. However, it is difficult to achieve multifunction in certain NIR light emitting phosphor. Herein, we propose a new near-infrared phosphor Mg3Ga2GeO8:Cr3+,Ni2+ that can be applied to at least three fields, i.e., identification of compounds, temperature sensing, anticounterfeiting, and other applications. The multifunctional material exhibited efficient broadband emission of 650-1650 nm under 420 nm excitation. The emission intensity of Ni2+ in Mg3Ga2GeO8:Cr3+,Ni2+ is enhanced by two times compared with that of Ni2+ in Mg3Ga2GeO8:Ni2+ due to the energy transfer process. Compared with phosphor single doped with Ni2+, Mg3Ga2GeO8:Cr3+,Ni2+ is more convincing in organic compound recognition because it is based on two emission bands: 600-1100 nm and 1100-1650 nm. As a temperature sensor, Mg3Ga2GeO8:Cr3+,Ni2+ is an ideal temperature-sensing material. This work not only provides a super broadband NIR emitting phosphor with multiple functions but also presents a practical approach for the development of high-efficiency and multifunctional NIR phosphors.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Materials and Energy, Guangdong University of Technology, Waihuan Xi Road, No.100, Guangzhou 510006, People's Republic of China
| | - Yaping Niu
- School of Materials and Energy, Guangdong University of Technology, Waihuan Xi Road, No.100, Guangzhou 510006, People's Republic of China
| | - Yun Wang
- School of Materials and Energy, Guangdong University of Technology, Waihuan Xi Road, No.100, Guangzhou 510006, People's Republic of China
| | - Fugen Wu
- The College of Information Engineering, Guangzhou Vocational University of Science and Technology, Guangcong Nine Road, Guangzhou 510550, China
| | - Qi Zhang
- The School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
- The School of Electronic Engineering, Beijing University of Posts and Telecommunications, Bejing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing 100876, China
| | - Yun Teng
- The School of Electronic Engineering, Beijing University of Posts and Telecommunications, Bejing 100876, China
- Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing 100876, China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Waihuan Xi Road, No.100, Guangzhou 510006, PR China
| | - Zhongfei Mu
- School of Materials and Energy, Guangdong University of Technology, Waihuan Xi Road, No.100, Guangzhou 510006, People's Republic of China
- The College of Information Engineering, Guangzhou Vocational University of Science and Technology, Guangcong Nine Road, Guangzhou 510550, China
- Experimental Teaching Department, Guangdong University of Technology, Waihuan Xi Road, No.100, Guangzhou 510006, PR China
| |
Collapse
|
17
|
Kim HH, Song IS, Cha RJ. Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4457. [PMID: 39065854 PMCID: PMC11280549 DOI: 10.3390/s24144457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES This review aims to explore recent advancements in optical imaging techniques for monitoring the viability of Deep Inferior Epigastric Perforator (DIEP) flap reconstruction. The objectives include highlighting the principles, applications, and clinical utility of optical imaging modalities such as near-infrared spectroscopy (NIRS), indocyanine green (ICG) fluorescence angiography, laser speckle contrast imaging (LSCI), hyperspectral imaging (HSI), dynamic infrared thermography (DIRT), and short-wave infrared thermography (SWIR) in assessing tissue perfusion and oxygenation. Additionally, this review aims to discuss the potential of these techniques in enhancing surgical outcomes by enabling timely intervention in cases of compromised flap perfusion. MATERIALS AND METHODS A comprehensive literature review was conducted to identify studies focusing on optical imaging techniques for monitoring DIEP flap viability. We searched PubMed, MEDLINE, and relevant databases, including Google Scholar, Web of Science, Scopus, PsycINFO, IEEE Xplore, and ProQuest Dissertations & Theses, among others, using specific keywords related to optical imaging, DIEP flap reconstruction, tissue perfusion, and surgical outcomes. This extensive search ensured we gathered comprehensive data for our analysis. Articles discussing the principles, applications, and clinical use of NIRS, ICG fluorescence angiography, LSCI, HSI, DIRT, and SWIR in DIEP flap monitoring were selected for inclusion. Data regarding the techniques' effectiveness, advantages, limitations, and potential impact on surgical decision-making were extracted and synthesized. RESULTS Optical imaging modalities, including NIRS, ICG fluorescence angiography, LSCI, HSI, DIRT, and SWIR offer a non- or minimal-invasive, real-time assessment of tissue perfusion and oxygenation in DIEP flap reconstruction. These techniques provide objective and quantitative data, enabling surgeons to monitor flap viability accurately. Studies have demonstrated the effectiveness of optical imaging in detecting compromised perfusion and facilitating timely intervention, thereby reducing the risk of flap complications such as partial or total loss. Furthermore, optical imaging modalities have shown promise in improving surgical outcomes by guiding intraoperative decision-making and optimizing patient care. CONCLUSIONS Recent advancements in optical imaging techniques present valuable tools for monitoring the viability of DIEP flap reconstruction. NIRS, ICG fluorescence angiography, LSCI, HSI, DIRT, and SWIR offer a non- or minimal-invasive, real-time assessment of tissue perfusion and oxygenation, enabling accurate evaluation of flap viability. These modalities have the potential to enhance surgical outcomes by facilitating timely intervention in cases of compromised perfusion, thereby reducing the risk of flap complications. Incorporating optical imaging into clinical practice can provide surgeons with objective and quantitative data, assisting in informed decision-making for optimal patient care in DIEP flap reconstruction surgeries.
Collapse
Affiliation(s)
- Hailey Hwiram Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (H.H.K.); (R.J.C.)
| | - In-Seok Song
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (H.H.K.); (R.J.C.)
- Department of Oral & Maxillofacial Surgery, Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Richard Jaepyeong Cha
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (H.H.K.); (R.J.C.)
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
18
|
Daikos O, Scherzer T. Monitoring of the Homogeneity of Primer Layers for Ink Jet Printing on Polyester Fabrics by Hyperspectral Imaging. Polymers (Basel) 2024; 16:1909. [PMID: 39000764 PMCID: PMC11244028 DOI: 10.3390/polym16131909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Untreated polyester films and fibers can be hardly printed or coated, in particular if aqueous inks or lacquers have to be applied. Therefore, an adequate primer layer has to be applied first. A cationic polymer formulation based on poly(dimethylamine-co-epichlorohydrin-co-ethylenediamine) (PDEHED) was used as primer layer for digital printing on polyester fabrics. Because of the exceedingly high requirements on the homogeneity of such layers, hyperspectral imaging was used for qualitative and quantitative monitoring of the distribution of the primer layer on the textiles. Multivariate data analysis methods based on the PLS algorithm were applied for quantification of the NIR reflection spectra using gravimetry as a reference method. Optimization of the calibration method resulted in various models with prediction errors of about 1.2 g/m2. The prediction performance of the models was proven in external validations using independent samples. Moreover, a special ink jet printing technology was tested for application of the aqueous primer formulation itself. Since possible clogging of jet nozzles in the print head might lead to inhomogeneity in the coatings such as missing tracks, the potential of hyperspectral imaging to detect such defects was investigated. It was demonstrated that simulated missing tracks can be clearly detected. Consequently, hyperspectral imaging has been proven to be a powerful analytical tool for in-line monitoring of the quality of printability improvement layers and similar systems.
Collapse
Affiliation(s)
- Olesya Daikos
- Leibniz Institute of Surface Engineering (IOM), Department of Materials Characterization and Analytics, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Tom Scherzer
- Leibniz Institute of Surface Engineering (IOM), Department of Materials Characterization and Analytics, Permoserstr. 15, D-04318 Leipzig, Germany
| |
Collapse
|
19
|
Xi Y, Schriver KE, Roe AW, Zhang X. Quantifying tissue temperature changes induced by infrared neural stimulation: numerical simulation and MR thermometry. BIOMEDICAL OPTICS EXPRESS 2024; 15:4111-4131. [PMID: 39022552 PMCID: PMC11249695 DOI: 10.1364/boe.530854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
Infrared neural stimulation (INS) delivered via short pulse trains is an innovative tool that has potential for us use for studying brain function and circuitry, brain machine interface, and clinical use. The prevailing mechanism for INS involves the conversion of light energy into thermal transients, leading to neuronal membrane depolarization. Due to the potential risks of thermal damage, it is crucial to ensure that the resulting local temperature increases are within non-damaging limits for brain tissues. Previous studies have estimated damage thresholds using histological methods and have modeled thermal effects based on peripheral nerves. However, additional quantitative measurements and modeling studies are needed for the central nervous system. Here, we performed 7 T MRI thermometry on ex vivo rat brains following the delivery of infrared pulse trains at five different intensities from 0.1-1.0 J/cm2 (each pulse train 1,875 nm, 25 us/pulse, 200 Hz, 0.5 s duration, delivered through 200 µm fiber). Additionally, we utilized the General BioHeat Transfer Model (GBHTM) to simulate local temperature changes in perfused brain tissues while delivering these laser energies to tissue (with optical parameters of human skin) via three different sizes of optical fibers at five energy intensities. The simulation results clearly demonstrate that a 0.5 second INS pulse train induces an increase followed by an immediate drop in temperature at stimulation offset. The delivery of multiple pulse trains with 2.5 s interstimulus interval (ISI) leads to rising temperatures that plateau. Both thermometry and modeling results show that, using parameters that are commonly used in biological applications (200 µm diameter fiber, 0.1-1.0 J/cm2), the final temperature increase at the end of the 60 sec stimuli duration does not exceed 1°C with stimulation values of 0.1-0.5 J/cm2 and does not exceed 2°C with stimulation values of up to 1.0 J/cm2. Thus, the maximum temperature rise is consistent with the thermal damage threshold reported in previous studies. This study provides a quantitative evaluation of the temperature changes induced by INS, suggesting that existing practices pose minimal major safety concerns for biological tissues.
Collapse
Affiliation(s)
- Yinghua Xi
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Kenneth E Schriver
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
- Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaotong Zhang
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
- Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Benavides-Lara J, Siegel AP, Tsoukas MM, Avanaki K. High-frequency photoacoustic and ultrasound imaging for skin evaluation: Pilot study for the assessment of a chemical burn. JOURNAL OF BIOPHOTONICS 2024; 17:e202300460. [PMID: 38719468 DOI: 10.1002/jbio.202300460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 07/13/2024]
Abstract
Skin architecture and its underlying vascular structure could be used to assess the health status of skin. A non-invasive, high resolution and deep imaging modality able to visualize skin subcutaneous layers and vasculature structures could be useful for determining and characterizing skin disease and trauma. In this study, a multispectral high-frequency, linear array-based photoacoustic/ultrasound (PAUS) probe is developed and implemented for the imaging of rat skin in vivo. The study seeks to demonstrate the probe capabilities for visualizing the skin and its underlying structures, and for monitoring changes in skin structure and composition during a 5-day course of a chemical burn. We analayze composition of lipids, water, oxy-hemoglobin, and deoxy-hemoglobin (for determination of oxygen saturation) in the skin tissue. The study successfully demonstrated the high-frequency PAUS imaging probe was able to provide 3D images of the rat skin architecture, underlying vasculature structures, and oxygen saturation, water, lipids and total hemoglobin.
Collapse
Affiliation(s)
- Juliana Benavides-Lara
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amanda P Siegel
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Maria M Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Wang L, Lin H, Zhu Y, Ge X, Li M, Liu J, Chen F, Zhang M, Cheng JX. Overtone photothermal microscopy for high-resolution and high-sensitivity vibrational imaging. Nat Commun 2024; 15:5374. [PMID: 38918400 PMCID: PMC11199576 DOI: 10.1038/s41467-024-49691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Photothermal microscopy is a highly sensitive pump-probe method for mapping nanostructures and molecules through the detection of local thermal gradients. While visible photothermal microscopy and mid-infrared photothermal microscopy techniques have been developed, they possess inherent limitations. These techniques either lack chemical specificity or encounter significant light attenuation caused by water absorption. Here, we present an overtone photothermal (OPT) microscopy technique that offers high chemical specificity, detection sensitivity, and spatial resolution by employing a visible probe for local heat detection in the C-H overtone region. We demonstrate its capability for high-fidelity chemical imaging of polymer nanostructures, depth-resolved intracellular chemical mapping of cancer cells, and imaging of multicellular C. elegans organisms and highly scattering brain tissues. By bridging the gap between visible and mid-infrared photothermal microscopy, OPT establishes a new modality for high-resolution and high-sensitivity chemical imaging. This advancement complements large-scale shortwave infrared imaging approaches, facilitating multiscale structural and chemical investigations of materials and biological metabolism.
Collapse
Affiliation(s)
- Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Haonan Lin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Jianing Liu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Fukai Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Liang Y, Zhou W, Su X, Li N, Chang F, Xie R, Yu H, Shi J, Li C, Hao H, Yang C, Wang G, Jiang D, Wu D, Niu Z, Zheng Y, Xu Y, Shi Y. InP-based GaAsSb/AlGaAsSb/T2SL barrier-type low-bias tunable dual-band NIR/eSWIR photodetectors. OPTICS EXPRESS 2024; 32:23822-23830. [PMID: 39538837 DOI: 10.1364/oe.528762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 11/16/2024]
Abstract
A bias-selectable near-infrared (NIR) and extended short wavelength infrared (eSWIR) dual-band bandgap engineered Ga0.51As0.49Sb/Al0.85Ga0.15AsSb/T2SL (In0.53Ga0.47 As/Ga0.51As0.49Sb) infrared photodetector, vertically stacked in a monolithic grown on InP substrate, is demonstrated. GaAsSb NIR sub-detector and T2SL eSWIR sub-detector are operated under small forward and reverse bias, respectively. The GaAsSb sub-detector functions within the NIR spectrum, with a 100% cutoff wavelength of 1.72 μm at 50 mV, achieving a peak responsivity of 0.560 A/W at 1.55 μm and a specific detectivity (D*) of 1.48 ×1011 c m⋅H z 1/2/W. At -250 mV, the T2SL eSWIR sub-detector functions in the eSWIR band, exhibiting a 100% cutoff wavelength of 2.6 μm. The peak responsivity is 0.273 A/W at 2.0 μm, with a specific detectivity of 6.11 ×109 c m⋅H z 1/2/W. The present work demonstrates the potential of the dual-band photodetector for multispectral SWIR applications.
Collapse
|
23
|
Tao R, Gröhl J, Hacker L, Pifferi A, Roblyer D, Bohndiek SE. Tutorial on methods for estimation of optical absorption and scattering properties of tissue. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:060801. [PMID: 38864093 PMCID: PMC11166171 DOI: 10.1117/1.jbo.29.6.060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Significance The estimation of tissue optical properties using diffuse optics has found a range of applications in disease detection, therapy monitoring, and general health care. Biomarkers derived from the estimated optical absorption and scattering coefficients can reflect the underlying progression of many biological processes in tissues. Aim Complex light-tissue interactions make it challenging to disentangle the absorption and scattering coefficients, so dedicated measurement systems are required. We aim to help readers understand the measurement principles and practical considerations needed when choosing between different estimation methods based on diffuse optics. Approach The estimation methods can be categorized as: steady state, time domain, time frequency domain (FD), spatial domain, and spatial FD. The experimental measurements are coupled with models of light-tissue interactions, which enable inverse solutions for the absorption and scattering coefficients from the measured tissue reflectance and/or transmittance. Results The estimation of tissue optical properties has been applied to characterize a variety of ex vivo and in vivo tissues, as well as tissue-mimicking phantoms. Choosing a specific estimation method for a certain application has to trade-off its advantages and limitations. Conclusion Optical absorption and scattering property estimation is an increasingly important and accessible approach for medical diagnosis and health monitoring.
Collapse
Affiliation(s)
- Ran Tao
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Janek Gröhl
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Lina Hacker
- University of Oxford, Department of Oncology, Oxford, United Kingdom
| | | | - Darren Roblyer
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
24
|
Meng H, Gao Y, Wang X, Li X, Wang L, Zhao X, Sun B. Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection. LIGHT, SCIENCE & APPLICATIONS 2024; 13:121. [PMID: 38802359 PMCID: PMC11130170 DOI: 10.1038/s41377-024-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Near-infrared (NIR) hyperspectral imaging is a powerful technique that enables the capture of three-dimensional (3D) spectra-spatial information within the NIR spectral range, offering a wide array of applications. However, the high cost associated with InGaAs focal plane array (FPA) has impeded the widespread adoption of NIR hyperspectral imaging. Addressing this challenge, in this study, we adopt an alternative approach-single-pixel detection for NIR hyperspectral imaging. Our investigation reveals that single-pixel detection outperforms conventional FPA, delivering a superior signal-to-noise ratio (SNR) for both spectral and imaging reconstruction. To implement this strategy, we leverage self-assembled colloidal quantum dots (CQDs) and a digital micromirror device (DMD) for NIR spectral and spatial information multiplexing, complemented by single-pixel detection for simultaneous spectral and image reconstruction. Our experimental results demonstrate successful NIR hyperspectral imaging with a detection window about 600 nm and an average spectral resolution of 8.6 nm with a pixel resolution of 128 × 128. The resulting spectral and spatial data align well with reference instruments, which validates the effectiveness of our approach. By circumventing the need for expensive and bulky FPA and wavelength selection components, our solution shows promise in advancing affordable and accessible NIR hyperspectral imaging technologies, thereby expanding the range of potential applications.
Collapse
Affiliation(s)
- Heyan Meng
- School of Information Sciences and Engineering, Shandong University, Qingdao, China
| | - Yuan Gao
- School of Information Sciences and Engineering, Shandong University, Qingdao, China.
- Center for Optics Research and Engineering (CORE), Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao, China.
| | - Xuhong Wang
- Center for Optics Research and Engineering (CORE), Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao, China
| | - Xianye Li
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, China
| | - Lili Wang
- Center for Optics Research and Engineering (CORE), Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao, China
| | - Xian Zhao
- Center for Optics Research and Engineering (CORE), Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao, China
| | - Baoqing Sun
- School of Information Sciences and Engineering, Shandong University, Qingdao, China.
- Center for Optics Research and Engineering (CORE), Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Shandong University, Qingdao, China.
| |
Collapse
|
25
|
Jasiewicz J, Piekarczyk J, Stępień Ł, Tkaczuk C, Sosnowska D, Urbaniak M, Ratajkiewicz H. Multidimensional discriminant analysis of species, strains and culture age of closely related entomopathogenic fungi using reflectance spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124135. [PMID: 38508072 DOI: 10.1016/j.saa.2024.124135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
The diversity of fungal strains is influenced by genetic and environmental factors, growth conditions and mycelium age, and the spectral features of fungal mycelia are associated with their biochemical, physiological, and structural traits. This study investigates whether intraspecific differences can be detected in two closely related entomopathogenic species, namely Cordyceps farinosa and Cordyceps fumosorosea, using ultraviolet A to shortwave infrared (UVA-SWIR) reflectance spectra. Phylogenetic analysis of all strains revealed a high degree of uniformity among the populations of both species. The characteristics resulting from variation in the species, as well as those resulting from the age of the cultures were determined. We cultured fungi on PDA medium and measured the reflectance of mycelia in the 350-2500 nm range after 10 and 17 days. We subjected the measurements to quadratic discriminant analysis (QDA) to identify the minimum number of bands containing meaningful information. We found that when the age of the fungal culture was known, species represented by a group of different strains could be distinguished with no more than 3-4 wavelengths, compared to 7-8 wavelengths when the age of the culture was unknown. At least 6-8 bands were required to distinguish cultures of a known species among different age groups. Distinguishing all strains within a species was more demanding: at least 10 bands were required for C. fumosorosea and 21 bands for C. farinosa. In conclusion, fungal differentiation using point reflectance spectroscopy gives reliable results when intraspecific and age variations are taken into account.
Collapse
Affiliation(s)
- Jarosław Jasiewicz
- Adam Mickiewicz University in Poznań, Institute of Geoecology and Geoinformation, ul. Krygowskiego 10, 60-680 Poznań, Poland
| | - Jan Piekarczyk
- Adam Mickiewicz University in Poznań, Institute of Physical Geography and Environmental Planning, ul. Krygowskiego 10, 60-680 Poznań, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479 Poznań, Poland
| | - Cezary Tkaczuk
- Institute of Agriculture and Horticulture, University in Siedlce, ul. Prusa 14, 08-110 Siedlce, Poland
| | - Danuta Sosnowska
- Institute of Plant Protection - National Research Institute, Department of Biological Control Methods and Organic Farming, ul. Władysława Węgorka 20, Poznań 60-318, Poland
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479 Poznań, Poland
| | - Henryk Ratajkiewicz
- Poznan University of Life Sciences, Department of Entomology and Environmental Protection, ul. Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
26
|
Pokorný J, Aubrecht J, Kamrádek M, Švejkarová B, Vařák P, Grábner M, Peterka P. Depressed-cladding thulium-doped fiber for applications below 1800 nm. OPTICS EXPRESS 2024; 32:17966-17976. [PMID: 38858964 DOI: 10.1364/oe.523168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 06/12/2024]
Abstract
We present a thulium-doped silica fiber, featuring a depressed cladding, for applications at wavelengths below 1800 nm. The depressed cladding is used as a distributed filter suppressing amplified spontaneous emission at longer wavelengths, which helps promote emission at shorter wavelengths. We describe the fiber design process that was carried out by using a combination of numerical methods. The fiber was prepared in-house by a combination of the standard modified chemical vapor deposition method and nanoparticle doping. We demonstrate the effectiveness and tunability of ASE filtering, which is influenced by fiber bend radius and its variation.
Collapse
|
27
|
Kelkar PU, Erk KA, Lindberg S. Dynamic diffusive interfacial transport (D-DIT): A novel quantitative swelling technique for developing binary phase diagrams of aqueous surfactant systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:035102. [PMID: 38426902 DOI: 10.1063/5.0182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
Current methods to develop surfactant phase diagrams are time-intensive and fail to capture the kinetics of phase evolution. Here, the design and performance of a quantitative swelling technique to study the dynamic phase behavior of surfactants are described. The instrument combines cross-polarized optical and short-wave infrared imaging to enable high-resolution, high-throughput, and in situ identification of phases and water compositions. Data across the entire composition spectrum for the dynamics and phase evolution of a binary aqueous non-ionic surfactant solution at two isotherms are presented. This instrument provides pathways to develop non-equilibrium phase diagrams of surfactant systems-critical to predicting the outcomes of formulation and processing. It can be applied to study time-dependent material relationships across a diverse range of materials and processes, including the dissolution of surfactant droplets and the drying of aqueous polymer films.
Collapse
Affiliation(s)
- Parth U Kelkar
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Kendra A Erk
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Seth Lindberg
- Corporate Engineering, The Procter & Gamble Company, West Chester, Ohio 45069, USA
| |
Collapse
|
28
|
Li CL, Fisher CJ, Komolibus K, Lu H, Burke R, Visentin A, Andersson-Engels S. Extended-wavelength diffuse reflectance spectroscopy dataset of animal tissues for bone-related biomedical applications. Sci Data 2024; 11:136. [PMID: 38278822 PMCID: PMC10817894 DOI: 10.1038/s41597-024-02972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Diffuse reflectance spectroscopy (DRS) has been extensively studied in both preclinical and clinical settings for multiple applications, notably as a minimally invasive diagnostic tool for tissue identification and disease delineation. In this study, extended-wavelength DRS (EWDRS) measurements of ex vivo tissues ranging from ultraviolet through visible to the short-wave infrared region (355-1919 nm) are presented in two datasets. The first dataset contains labelled EWDRS measurements collected from bone cement samples and ovine specimens including 10 tissue types commonly encountered in orthopedic surgeries for data curation purposes. The other dataset includes labelled EWDRS measurements of primarily bone structures at different depths during stepwise drilling into intact porcine skulls until plunging into the cranial cavity. The raw data with code for pre-processing and calibration is publicly available for reuse on figshare. The datasets can be utilized not only for exploratory purposes in machine learning model construction, but also for knowledge discovery in the orthopedic domain to identify important features for surgical guidance, extract physiological parameters and provide diagnostic insights.
Collapse
Affiliation(s)
- Celina L Li
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland.
| | - Carl J Fisher
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
| | - Katarzyna Komolibus
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
| | - Huihui Lu
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
| | - Ray Burke
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
| | - Andrea Visentin
- Insight Centre for Data Analytics, School of Computer Science and Information Technology, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland.
- Department of Physics, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Ghaderi M, Mireei SA, Masoumi A, Sedghi M, Nazeri M. Fertility detection of unincubated chicken eggs by hyperspectral transmission imaging in the Vis-SWNIR region. Sci Rep 2024; 14:1289. [PMID: 38218951 PMCID: PMC10787758 DOI: 10.1038/s41598-024-51874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024] Open
Abstract
Detection of infertile eggs prior to incubation can lead to an increase in the hatchability rate and prevent the wastage of billions of non-fertile eggs ended up by failed incubation. In this study, the feasibility of a line-scan hyperspectral imaging system in the visible and short-wavelength near-infrared region was assessed for early detection of non-fertile eggs on day 0 before incubation. A total of 227 white-shell eggs including 131 fertile and 96 infertile eggs were collected from a flock with similar conditions in terms of hen age, feeding, and management. Hyperspectral images of eggs were captured on day 0 before incubation in a transmittance mode of illumination and then the eggs were incubated in a commercial incubator. The edge detection method was used to segment the egg, including both the white and yolk, from the background, and the image spectral information was extracted from the egg region. After applying various pretreatment methods, different classifiers including soft independent modeling of class analogy (SIMCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and artificial neural networks (ANN) classifiers were utilized to extract the predictive models. Following the acceptable results of SIMCA analysis accomplished by 1st derivative pretreatment (accuracy of 86.67%), the discrimination power plot was used to select the most informative wavebands. The results showed that by using fewer variables in effective wavebands better performance (precision and accuracy of 92.59% and 93.33%, respectively) could be obtained in comparison with the ANN classifier based on the whole spectral data (precision and accuracy of 89.29% and 91.11%, respectively). This study revealed the potential application of hyperspectral transmittance imaging in the Vis-SWNIR region to discern the fertile and infertile eggs before starting the incubation process.
Collapse
Affiliation(s)
- Mahdi Ghaderi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seyed Ahmad Mireei
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Aminollah Masoumi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Sedghi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Majid Nazeri
- Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, 87317-53153, Iran
| |
Collapse
|
30
|
Zeng S, Zhang Z, Cheng X, Cai X, Cao M, Guo W. Prediction of soluble solids content using near-infrared spectra and optical properties of intact apple and pulp applying PLSR and CNN. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123402. [PMID: 37738767 DOI: 10.1016/j.saa.2023.123402] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Soluble solids content (SSC) is one of the most important internal quality attributes of fruit and could be predicted using near-infrared (NIR) spectra and optical properties. Partial least squares regression (PLSR) is a conventional regression method in SSC prediction. In recent years, deep learning methods represented by convolutional neural network (CNN) was suggested to be implied in spectral analysis. However, researchers are inevitably facing problems with regard to the selection of spectral pretreatment methods and the evaluation of the performance of the chosen regression. This study employed PLSR and CNN regression to predict SSC of apple based on the collected diffuse reflectance spectra of intact apple, total reflectance and total transmittance spectra of apple pulp, and the calculated optical property spectra, i.e., absorption coefficient and reduced scattering coefficient spectra of apple pulp. Five different spectral pretreatment methods were exerted on these spectra. Results showed that at a given regression (PLSR or CNN), the built models based on the diffuse reflectance spectra of intact apple had the best SSC prediction, and the built models based on pulp's reduced scattering coefficient spectra had the poorest prediction performance. The best prediction performance was achieved by PLSR models using Savitzky-Golay with multiple scattering correction (Rp = 0.96, RMSEP = 0.54 %) and CNN regressions using Savitzky-Golay with standard normal variational transformation (Rp = 0.95, RMSEP = 0.59 %), respectively. Additionally, when the unknown original spectra were used for modeling, CNN had a better performance compared to PLSR, indicating the outstanding preponderance of CNN in spectral analysis. This study provides an effective reference for the selection of chemometric method based on NIR spectra.
Collapse
Affiliation(s)
- Shuochong Zeng
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zongyi Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Cheng
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Cai
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Cao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
31
|
Suzuki S, Shu R, Shiomi D, Naota T. Temperature-Dependent Modulation of Short-Wave-Infrared Light Transparency Based on Associated Structures of a Liquescent Nickel(III) Complex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305668. [PMID: 37670219 DOI: 10.1002/smll.202305668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Indexed: 09/07/2023]
Abstract
A liquescent bis(malononitriledithiolato)nickel(III) complex with a bis(methoxyethyl)imidazolium cation, 1[Ni(mnt)2 ], exhibits three-stage thermochromic modulation of transparency/absorption in the short-wave-infrared (SWIR) region (1000-2500 nm), driven by associated structural changes. Upon heating, the electronic spectra of 1[Ni(mnt)2 ] in the SWIR region shift to shorter wavelengths accompanying with the solid-liquid phase transition at 76 °C. Further heating to over 109 °C induces a second transition of the electronic spectra, characterized by a blue-shift of the SWIR absorption in the liquid phase. The results of temperature-dependent electronic spectra and magnetic susceptibility indicated that the thermochromic changes can be attributed to the two-step dissociation of the associated structures of [Ni(mnt)2 ]- , occurring during the solid-liquid phase transition and the shift of dimer-monomer equilibrium in the liquid state. These changes can be visualized using an SWIR imaging camera under appropriate SWIR lights.
Collapse
Affiliation(s)
- Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Ruifeng Shu
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Daisuke Shiomi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Osaka, 558-8585, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
32
|
Salimi M, Roshanfar M, Tabatabaei N, Mosadegh B. Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine. J Pers Med 2023; 14:33. [PMID: 38248734 PMCID: PMC10817559 DOI: 10.3390/jpm14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Personalized medicine transforms healthcare by adapting interventions to individuals' unique genetic, molecular, and clinical profiles. To maximize diagnostic and/or therapeutic efficacy, personalized medicine requires advanced imaging devices and sensors for accurate assessment and monitoring of individual patient conditions or responses to therapeutics. In the field of biomedical optics, short-wave infrared (SWIR) techniques offer an array of capabilities that hold promise to significantly enhance diagnostics, imaging, and therapeutic interventions. SWIR techniques provide in vivo information, which was previously inaccessible, by making use of its capacity to penetrate biological tissues with reduced attenuation and enable researchers and clinicians to delve deeper into anatomical structures, physiological processes, and molecular interactions. Combining SWIR techniques with machine learning (ML), which is a powerful tool for analyzing information, holds the potential to provide unprecedented accuracy for disease detection, precision in treatment guidance, and correlations of complex biological features, opening the way for the data-driven personalized medicine field. Despite numerous biomedical demonstrations that utilize cutting-edge SWIR techniques, the clinical potential of this approach has remained significantly underexplored. This paper demonstrates how the synergy between SWIR imaging and ML is reshaping biomedical research and clinical applications. As the paper showcases the growing significance of SWIR imaging techniques that are empowered by ML, it calls for continued collaboration between researchers, engineers, and clinicians to boost the translation of this technology into clinics, ultimately bridging the gap between cutting-edge technology and its potential for personalized medicine.
Collapse
Affiliation(s)
| | - Majid Roshanfar
- Department of Mechanical Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Nima Tabatabaei
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
33
|
Sheen YJ, Wang HC, Chen HM. An observation of short-wave near-infrared hyperspectral imaging in tracking of invisible post-traumatic subcutaneous lesions. JOURNAL OF BIOPHOTONICS 2023; 16:e202300116. [PMID: 37679867 DOI: 10.1002/jbio.202300116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Post-traumatic soft tissue damage could persist for an extended period, and the non-traumatic side could be affected by indirect consequences. Hyperspectral imaging soft abundance scorer can identify these concealed and asymptomatic lesions.
Collapse
Affiliation(s)
- Yi-Jing Sheen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Che Wang
- Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsian-Min Chen
- Center for Quantitative Imaging in Medicine (CQUIM), Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
34
|
Li CL, Fisher CJ, Komolibus K, Grygoryev K, Lu H, Burke R, Visentin A, Andersson-Engels S. Frameworks of wavelength selection in diffuse reflectance spectroscopy for tissue differentiation in orthopedic surgery. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:121207. [PMID: 37674977 PMCID: PMC10479945 DOI: 10.1117/1.jbo.28.12.121207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Significance Wavelength selection from a large diffuse reflectance spectroscopy (DRS) dataset enables removal of spectral multicollinearity and thus leads to improved understanding of the feature domain. Feature selection (FS) frameworks are essential to discover the optimal wavelengths for tissue differentiation in DRS-based measurements, which can facilitate the development of compact multispectral optical systems with suitable illumination wavelengths for clinical translation. Aim The aim was to develop an FS methodology to determine wavelengths with optimal discriminative power for orthopedic applications, while providing the frameworks for adaptation to other clinical scenarios. Approach An ensemble framework for FS was developed, validated, and compared with frameworks incorporating conventional algorithms, including principal component analysis (PCA), linear discriminant analysis (LDA), and backward interval partial least squares (biPLS). Results Via the one-versus-rest binary classification approach, a feature subset of 10 wavelengths was selected from each framework yielding comparable balanced accuracy scores (PCA: 94.8 ± 3.47 % , LDA: 98.2 ± 2.02 % , biPLS: 95.8 ± 3.04 % , and ensemble: 95.8 ± 3.16 % ) to those of using all features (100%) for cortical bone versus the rest class labels. One hundred percent balanced accuracy scores were generated for bone cement versus the rest. Different feature subsets achieving similar outcomes could be identified due to spectral multicollinearity. Conclusions Wavelength selection frameworks provide a means to explore domain knowledge and discover important contributors to classification in spectroscopy. The ensemble framework generated a model with improved interpretability and preserved physical interpretation, which serves as the basis to determine illumination wavelengths in optical instrumentation design.
Collapse
Affiliation(s)
- Celina L. Li
- University College Cork, Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
| | - Carl J. Fisher
- University College Cork, Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
| | - Katarzyna Komolibus
- University College Cork, Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
| | - Konstantin Grygoryev
- University College Cork, Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
| | - Huihui Lu
- University College Cork, Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
| | - Ray Burke
- University College Cork, Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
| | - Andrea Visentin
- University College Cork, School of Computer Science and Information Technology, Insight Centre for Data Analytics, Cork, Ireland
| | - Stefan Andersson-Engels
- University College Cork, Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
35
|
Cheng JX, Ni H, Yuan Y, Li M, Zhu Y, Ge X, Yin J, Dessai CP, Wang L. Millimeter-deep micron-resolution vibrational imaging by shortwave infrared photothermal microscopy. RESEARCH SQUARE 2023:rs.3.rs-3449548. [PMID: 37886499 PMCID: PMC10602175 DOI: 10.21203/rs.3.rs-3449548/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Deep-tissue chemical imaging plays a vital role in biological and medical applications. Here, we present a shortwave infrared photothermal (SWIP) microscope for millimeter-deep vibrational imaging with sub-micron lateral resolution and nanoparticle detection sensitivity. By pumping the overtone transition of carbon-hydrogen bonds and probing the subsequent photothermal lens with shortwave infrared light, SWIP can obtain chemical contrast from polymer particles located millimeter-deep in a highly scattering phantom. By fast digitization of the optically probed signal, the amplitude of the photothermal signal is shown to be 63 times larger than that of the photoacoustic signal, thus enabling highly sensitive detection of nanoscale objects. SWIP can resolve the intracellular lipids across an intact tumor spheroid and the layered structure in millimeter-thick liver, skin, brain, and breast tissues. Together, SWIP microscopy fills a gap in vibrational imaging with sub-cellular resolution and millimeter-level penetration, which heralds broad potential for life science and clinical applications.
Collapse
|
36
|
Graham MT, Sharma A, Padovano WM, Suresh V, Chiu A, Thon SM, Tuffaha S, Bell MAL. Optical absorption spectra and corresponding in vivo photoacoustic visualization of exposed peripheral nerves. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:097001. [PMID: 37671115 PMCID: PMC10475953 DOI: 10.1117/1.jbo.28.9.097001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Significance Multispectral photoacoustic imaging has the potential to identify lipid-rich, myelinated nerve tissue in an interventional or surgical setting (e.g., to guide intraoperative decisions when exposing a nerve during reconstructive surgery by limiting operations to nerves needing repair, with no impact to healthy or regenerating nerves). Lipids have two optical absorption peaks within the NIR-II and NIR-III windows (i.e., 1000 to 1350 nm and 1550 to 1870 nm wavelength ranges, respectively) which can be exploited to obtain photoacoustic images. However, nerve visualization within the NIR-III window is more desirable due to higher lipid absorption peaks and a corresponding valley in the optical absorption of water. Aim We present the first known optical absorption characterizations, photoacoustic spectral demonstrations, and histological validations to support in vivo photoacoustic nerve imaging in the NIR-III window. Approach Four in vivo swine peripheral nerves were excised, and the optical absorption spectra of these fresh ex vivo nerves were characterized at wavelengths spanning 800 to 1880 nm, to provide the first known nerve optical absorbance spectra and to enable photoacoustic amplitude spectra characterization with the most optimal wavelength range. Prior to excision, the latter two of the four nerves were surrounded by aqueous, lipid-free, agarose blocks (i.e., 3% w/v agarose) to enhance acoustic coupling during in vivo multispectral photoacoustic imaging using the optimal NIR-III wavelengths (i.e., 1630 to 1850 nm) identified in the ex vivo studies. Results There was a verified characteristic lipid absorption peak at 1725 nm for each ex vivo nerve. Results additionally suggest that the 1630 to 1850 nm wavelength range can successfully visualize and differentiate lipid-rich nerves from surrounding water-containing and lipid-deficient tissues and materials. Conclusions Photoacoustic imaging using the optimal wavelengths identified and demonstrated for nerves holds promise for detection of myelination in exposed and isolated nerve tissue during a nerve repair surgery, with possible future implications for other surgeries and other optics-based technologies.
Collapse
Affiliation(s)
- Michelle T. Graham
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Arunima Sharma
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - William M. Padovano
- Johns Hopkins School of Medicine, Department of Plastic and Reconstructive Surgery, Baltimore, Maryland, United States
| | - Visakha Suresh
- Johns Hopkins School of Medicine, Department of Plastic and Reconstructive Surgery, Baltimore, Maryland, United States
| | - Arlene Chiu
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Susanna M. Thon
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Sami Tuffaha
- Johns Hopkins School of Medicine, Department of Plastic and Reconstructive Surgery, Baltimore, Maryland, United States
| | - Muyinatu A. Lediju Bell
- Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States
| |
Collapse
|
37
|
Waterhouse DJ, Privitera L, Anderson J, Stoyanov D, Giuliani S. Enhancing intraoperative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:094804. [PMID: 36993142 PMCID: PMC10042297 DOI: 10.1117/1.jbo.28.9.094804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
SIGNIFICANCE Fluorescence-guided surgery (FGS) provides specific real-time visualization of tumors, but intensity-based measurement of fluorescence is prone to errors. Multispectral imaging (MSI) in the short-wave infrared (SWIR) has the potential to improve tumor delineation by enabling machine-learning classification of pixels based on their spectral characteristics. AIM Determine whether MSI can be applied to FGS and combined with machine learning to provide a robust method for tumor visualization. APPROACH A multispectral SWIR fluorescence imaging device capable of collecting data from six spectral filters was constructed and deployed on neuroblastoma (NB) subcutaneous xenografts ( n = 6 ) after the injection of a NB-specific NIR-I fluorescent probe (Dinutuximab-IRDye800). We constructed image cubes representing fluorescence collected from ∼ 850 to 1450 nm and compared the performance of seven learning-based methods for pixel-by-pixel classification, including linear discriminant analysis, k -nearest neighbor classification, and a neural network. RESULTS The spectra of tumor and non-tumor tissue were subtly different and conserved between individuals. In classification, a combine principal component analysis and k -nearest-neighbor approach with area under curve normalization performed best, achieving 97.5% per-pixel classification accuracy (97.1%, 93.5%, and 99.2% for tumor, non-tumor tissue and background, respectively). CONCLUSIONS The development of dozens of new imaging agents provides a timely opportunity for multispectral SWIR imaging to revolutionize next-generation FGS.
Collapse
Affiliation(s)
- Dale J. Waterhouse
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Laura Privitera
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Cancer Section, Developmental Biology and Cancer Programme, London, United Kingdom
| | - John Anderson
- UCL Great Ormond Street Institute of Child Health, Cancer Section, Developmental Biology and Cancer Programme, London, United Kingdom
| | - Danail Stoyanov
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Stefano Giuliani
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Cancer Section, Developmental Biology and Cancer Programme, London, United Kingdom
- Great Ormond Street Hospital for Children NHS Trust, Department of Specialist Neonatal and Paediatric Surgery, London, United Kingdom
| |
Collapse
|
38
|
Lopez L, Druon F, Georges P, Balembois F. LED-pumped Er:Cr:YSGG light sources. OPTICS EXPRESS 2023; 31:27604-27611. [PMID: 37710832 DOI: 10.1364/oe.496359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
For, what we believe is, the first time, an Er:Cr:YSGG crystal is pumped by LEDs through a Ce:YAG luminescent concentrator. We demonstrate both laser emission at 2.79 µm and strong spontaneous emission at 1.6 µm. The luminescent concentrator delivers 1.5 ms pulses at 10 Hz in the visible (550-650 nm) to the Er:Cr:YSGG crystal, in a transverse pumping configuration. The Er:Cr:YSGG laser produces up to 6.8 mJ at 2.79 µm in a biconcave cavity. The Er:Cr:YSGG also stands out as a bright broadband incoherent source around 1.6 µm with a unique combination of peak power (351 mW) and brightness (1.4 W/sr/cm2).
Collapse
|
39
|
Kenney HM, Dieudonne G, Yee S, Maki JH, Wood RW, Schwarz EM, Ritchlin CT, Rahimi H. Near-Infrared Imaging of Indocyanine Green Identifies Novel Routes of Lymphatic Drainage from Metacarpophalangeal Joints in Healthy Human Hands. Lymphat Res Biol 2023; 21:388-395. [PMID: 36809077 PMCID: PMC10460689 DOI: 10.1089/lrb.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Background: Collecting lymphatic vessel (CLV) dysfunction has been implicated in various diseases, including rheumatoid arthritis (RA). RA patients with active hand arthritis exhibit significantly reduced lymphatic clearance of the web spaces adjacent to the metacarpophalangeal (MCP) joints and a reduction in total and basilic-associated CLVs on the dorsal surface of the hand by near-infrared (NIR) imaging of indocyanine green (ICG). In this pilot study, we assessed direct lymphatic drainage from MCP joints and aimed to visualize the total lymphatic anatomy using novel dual-agent relaxation contrast magnetic resonance lymphography (DARC-MRL) in the upper extremity of healthy human subjects. Methods and Results: Two healthy male subjects >18 years old participated in the study. We performed NIR imaging along with conventional- or DARC-MRL following intradermal web space and intra-articular MCP joint injections. ICG (NIR) or gadolinium (Gd) (MRL) was administered to visualize the CLV anatomy of the upper extremity. Web space draining CLVs were associated with the cephalic side of the antecubital fossa, while MCP draining CLVs were localized to the basilic side of the forearm by near-infrared indocyanine green imaging. The DARC-MRL methods used in this study did not adequately nullify the contrast in the blood vessels, and limited Gd-filled CLVs were identified. Conclusion: MCP joints predominantly drain into basilic CLVs in the forearm, which may explain the reduction in basilic-associated CLVs in the hands of RA patients. Current DARC-MRL techniques show limited identification of healthy lymphatic structures, and further refinement in this technique is necessary. Clinical trial registration number: NCT04046146.
Collapse
Affiliation(s)
- H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Gregory Dieudonne
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Seonghwan Yee
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Jeffrey H. Maki
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Ronald W. Wood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, Pediatric Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Pediatric Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Pediatric Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Homaira Rahimi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, Pediatric Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
40
|
Schnermann MJ, Lavis LD. Rejuvenating old fluorophores with new chemistry. Curr Opin Chem Biol 2023; 75:102335. [PMID: 37269674 PMCID: PMC10524207 DOI: 10.1016/j.cbpa.2023.102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
The field of organic chemistry began with 19th century scientists identifying and then expanding upon synthetic dye molecules for textiles. In the 20th century, dye chemistry continued with the aim of developing photographic sensitizers and laser dyes. Now, in the 21st century, the rapid evolution of biological imaging techniques provides a new driving force for dye chemistry. Of the extant collection of synthetic fluorescent dyes for biological imaging, two classes reign supreme: rhodamines and cyanines. Here, we provide an overview of recent examples where modern chemistry is used to build these old-but-venerable classes of optically responsive molecules. These new synthetic methods access new fluorophores, which then enable sophisticated imaging experiments leading to new biological insights.
Collapse
Affiliation(s)
- Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 376, Frederick, MD 20850, USA.
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| |
Collapse
|
41
|
Colas V, Amouroux M, Perrin-Mozet C, Daul C, Blondel W. Photometric and Monte-Carlo modeling unified approach for the calculation of spatially-resolved correction coefficients linking simulated and experimental diffuse reflectance spectra. OPTICS EXPRESS 2023; 31:25954-25969. [PMID: 37710468 DOI: 10.1364/oe.491921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 09/16/2023]
Abstract
The estimation of skin optical properties by means of inverse problem solving from spatially resolved diffuse reflectance (SR-DR) spectra is one way to exploit the acquired clinical signals. This method requires the comparison between the experimental spectra collected with a medical device, and spectra generated by the photons transport numerical simulations. This comparison is usually limited to spectral shape due to the absence of intensity standardization of the experimental DR spectra. This study proposes to theoretically (using photometric calculation) and experimentally (from experimental spectra acquired on optical phantom) establish a corrective factor to obtain common intensity unit for experimental and simulated signals.
Collapse
|
42
|
Setchfield K, Gorman A, Simpson AHRW, Somekh MG, Wright AJ. Relevance and utility of the in-vivo and ex-vivo optical properties of the skin reported in the literature: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:3555-3583. [PMID: 37497524 PMCID: PMC10368038 DOI: 10.1364/boe.493588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Imaging non-invasively into the human body is currently limited by cost (MRI and CT scan), image resolution (ultrasound), exposure to ionising radiation (CT scan and X-ray), and the requirement for exogenous contrast agents (CT scan and PET scan). Optical imaging has the potential to overcome all these issues but is currently limited by imaging depth due to the scattering and absorption properties of human tissue. Skin is the first barrier encountered by light when imaging non-invasively, and therefore a clear understanding of the way that light interacts with skin is required for progress on optical medical imaging to be made. Here we present a thorough review of the optical properties of human skin measured in-vivo and compare these to the previously collated ex-vivo measurements. Both in-vivo and ex-vivo published data show high inter- and intra-publication variability making definitive answers regarding optical properties at given wavelengths challenging. Overall, variability is highest for ex-vivo absorption measurements with differences of up to 77-fold compared with 9.6-fold for the in-vivo absorption case. The impact of this variation on optical penetration depth and transport mean free path is presented and potential causes of these inconsistencies are discussed. We propose a set of experimental controls and reporting requirements for future measurements. We conclude that a robust in-vivo dataset, measured across a broad spectrum of wavelengths, is required for the development of future technologies that significantly increase the depth of optical imaging.
Collapse
Affiliation(s)
- Kerry Setchfield
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
| | | | - A Hamish R W Simpson
- Department of Orthopaedics, Division of Clinical and Surgical Sciences, University of Edinburgh, EH8 9YL, UK
| | - Michael G Somekh
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
| | - Amanda J Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
| |
Collapse
|
43
|
Abstract
Over the last half century, the autofluorescence of the metabolic cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) has been quantified in a variety of cell types and disease states. With the spread of nonlinear optical microscopy techniques in biomedical research, NADH and FAD imaging has offered an attractive solution to noninvasively monitor cell and tissue status and elucidate dynamic changes in cell or tissue metabolism. Various tools and methods to measure the temporal, spectral, and spatial properties of NADH and FAD autofluorescence have been developed. Specifically, an optical redox ratio of cofactor fluorescence intensities and NADH fluorescence lifetime parameters have been used in numerous applications, but significant work remains to mature this technology for understanding dynamic changes in metabolism. This article describes the current understanding of our optical sensitivity to different metabolic pathways and highlights current challenges in the field. Recent progress in addressing these challenges and acquiring more quantitative information in faster and more metabolically relevant formats is also discussed.
Collapse
Affiliation(s)
- Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering and the Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
44
|
Gray M, Birkenfeld JS, Butterworth I. Noninvasive Monitoring to Detect Dehydration: Are We There Yet? Annu Rev Biomed Eng 2023; 25:23-49. [PMID: 36854261 DOI: 10.1146/annurev-bioeng-062117-121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The need for hydration monitoring is significant, especially for the very young and elderly populations who are more vulnerable to becoming dehydrated and suffering from the effects that dehydration brings. This need has been among the drivers of considerable effort in the academic and commercial sectors to provide a means for monitoring hydration status, with a special interest in doing so outside the hospital or clinical setting. This review of emerging technologies provides an overview of many technology approaches that, on a theoretical basis, have sensitivity to water and are feasible as a routine measurement. We review the evidence of technical validation and of their use in humans. Finally, we highlight the essential need for these technologies to be rigorously evaluated for their diagnostic potential, as a necessary step to meet the need for hydration monitoring outside of the clinical environment.
Collapse
Affiliation(s)
- Martha Gray
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- MIT linQ, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Judith S Birkenfeld
- MIT linQ, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Instituto de Óptica "Daza de Valdés," Consejo Superior de Investigaciones Científicas, Madrid, Spain;
| | - Ian Butterworth
- MIT linQ, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Leuko Labs Inc., Boston, Massachusetts, USA
| |
Collapse
|
45
|
Haugen EJ, Throckmorton GA, Walter AB, Mahadevan-Jansen A, Baba JS. Measurement of rat and human tissue optical properties for improving the optical detection and visualization of peripheral nerves. BIOMEDICAL OPTICS EXPRESS 2023; 14:2839-2856. [PMID: 37342709 PMCID: PMC10278628 DOI: 10.1364/boe.488761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 06/23/2023]
Abstract
Peripheral nerve damage frequently occurs in challenging surgical cases resulting in high costs and morbidity. Various optical techniques have proven effective in detecting and visually enhancing nerves, demonstrating their translational potential for assisting in nerve-sparing medical procedures. However, there is limited data characterizing the optical properties of nerves in comparison to surrounding tissues, thus limiting the optimization of optical nerve detection systems. To address this gap, the absorption and scattering properties of rat and human nerve, muscle, fat, and tendon were determined from 352-2500 nm. The optical properties highlighted an ideal region in the shortwave infrared for detecting embedded nerves, which remains a significant challenge for optical approaches. A 1000-1700 nm hyperspectral diffuse reflectance imaging system was used to confirm these results and identify optimal wavelengths for nerve imaging contrast in an in vivo rat model. Optimal nerve visualization contrast was achieved using 1190/1100 nm ratiometric imaging and was sustained for nerves embedded under ≥600 µm of fat and muscle. Overall, the results provide valuable insights for optimizing the optical contrast of nerves, including those embedded in tissue, which could lead to improved surgical guidance and nerve-sparing outcomes.
Collapse
Affiliation(s)
- Ezekiel J. Haugen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Graham A. Throckmorton
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alec B. Walter
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin S. Baba
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Yaya Scientific, LLC, Nashville, TN, USA
| |
Collapse
|
46
|
Yue L, Tongshuai H, Wenbo L, Qing G, Jin L. Spectral analysis of multiple scattering factors of turbid media for glucose measurement using near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:065005. [PMID: 37334208 PMCID: PMC10272419 DOI: 10.1117/1.jbo.28.6.065005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Significance Near-infrared (NIR) diffuse reflectance spectroscopy has been widely used for non-invasive glucose measurement in humans, as glucose can induce a significant and detectable optical signal change in tissue. However, the scattering-dominated glucose spectrum in the range of 1000 to 1700 nm is easily confused with many other scattering factors, such as particle density, particle size, and tissue refractive index. Aim Our aim is to identify the subtle distinctions between glucose and these factors through theoretical analysis and experimental verification, in order to employ suitable methods for eliminating these interferences, thus increasing the accuracy of non-invasive glucose measurement. Approach We present a theoretical analysis of the spectra of 1000 to 1700 nm for glucose and some scattering factors, which is then verified by an experiment on a 3% Intralipid solution. Results We found that both the theoretical and experimental results show that the effective attenuation coefficient of glucose has distinct spectral characteristics, which are distinct from the spectra caused by particle density and refractive index, particularly in the range of 1400 to 1700 nm. Conclusions Our findings can offer a theoretical foundation for eliminating these interferences in non-invasive glucose measurement, aiding mathematical methods to model appropriately and enhance the accuracy of glucose prediction.
Collapse
Affiliation(s)
- Lu Yue
- Tianjin University, State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin, China
| | - Han Tongshuai
- Tianjin University, State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin, China
| | - Liu Wenbo
- Tianjin University, State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin, China
| | - Ge Qing
- Tianjin University, State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin, China
| | - Liu Jin
- Tianjin University, State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin, China
| |
Collapse
|
47
|
Park E, Lee YJ, Kim C, Eom TJ. Azimuth mapping of fibrous tissue in linear dichroism-sensitive photoacoustic microscopy. PHOTOACOUSTICS 2023; 31:100510. [PMID: 37228578 PMCID: PMC10203768 DOI: 10.1016/j.pacs.2023.100510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Photoacoustic imaging (PAI) has emerged as a molecular-selective imaging technology based on optical absorption contrast. Dichroism-sensitive photoacoustic (DS-PA) imaging has been reported, where the absorption coefficient has a vector characteristic, featuring dimensions of contrast in polarization and wavelength. Herein, we present a DS-PA microscopy (DS-PAM) system that implements optical anisotropy contrast and molecular selectivity. Moreover, we propose mathematical solutions to fully derive dichroic properties. A wavelength for the PAI of collagenous tissue was used, and the proposed algorithms were validated using linear dichroic materials. We successfully mapped dichroic information in fibrous tissue imaging based on the degree of anisotropy and axis orientation, and also deduced mechanical assessment from the tissue arrangement. The proposed DS-PAM system and algorithms have great potential in various diagnostic fields using polarimetry, such as musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Eunwoo Park
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, the Republic of Korea
| | - Yong-Jae Lee
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
| | - Chulhong Kim
- Department of Convergence IT Engineering, Electrical Engineering, Mechanical Engineering, Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, the Republic of Korea
| | - Tae Joong Eom
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, the Republic of Korea
- Department of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
48
|
Dong X, Zhang B, Sun X, Jia Y, Chen F. 1.8-µm laser operation based on femtosecond-laser direct written Tm:YVO 4 cladding waveguides. OPTICS EXPRESS 2023; 31:16560-16569. [PMID: 37157732 DOI: 10.1364/oe.487296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this work, we have demonstrated tunable 1.8-µm laser operation based on a Tm:YVO4 cladding waveguide fabricated by means of femtosecond laser direct writing. Benefiting from the good optical confinement of the fabricated waveguide, efficient thulium laser operation, with a maximum slope efficiency of 36%, a minimum lasing threshold of 176.8 mW, and a tunable output wavelength from 1804 to 1830nm, has been achieved in a compact package via adjusting and optimizing the pump and resonant conditions of the waveguide laser design. The lasing performance using output couplers with different reflectivity has been well studied in detail. In particular, due to the good optical confinement and relatively high optical gain of the waveguide design, efficient lasing can be obtained even without using any cavity mirrors, thereby opening up new possibilities for compact and integrated mid-infrared laser sources.
Collapse
|
49
|
Rooimans T, Damen M, Markesteijn CMA, Schuurmans CCL, de Zoete NHC, van Hasselt PM, Hennink WE, van Nostrum CF, Hermes M, Besseling R, Vromans H. Development of a compounded propofol nanoemulsion using multiple non-invasive process analytical technologies. Int J Pharm 2023; 640:122960. [PMID: 37061210 PMCID: PMC10101488 DOI: 10.1016/j.ijpharm.2023.122960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Propofol is the preferred anaesthetic for induction and maintenance of sedation in critically ill mechanically ventilated COVID-19 patients. However, during the outbreak of the COVID-19 pandemic, regular supply chains could not keep up with the sudden increase in global demand, causing drug shortages. Propofol is formulated as an oil-in-water emulsion which is administered intravenously. This study explores the extemporaneous preparation of a propofol emulsion without specialized manufacturing equipment to temporally alleviate such shortages. A commercially available lipid emulsion (IVLE, SMOFlipid 20%), intended for parenteral nutrition, was used to create a propofol loaded nanoemulsion via addition of liquid propofol drug substance and subsequent mixing. Critical quality attributes such as mean droplet size and the volume-weighted percentage of large-diameter (>5µm) droplets were studied. The evolution of droplet size and propofol distribution was monitored in situ and non-destructively, maintaining sterility, using Spatially Resolved Dynamic Light Scattering and Near Infrared Spectroscopy, respectively. Using response surface methodology, an optimum was found for a 4% w/v propofol formulation with a ∼15 minute mixing time in a flask shaker at a 40° shaking angle. This study shows that extemporaneous compounding is a viable option for emergency supply of propofol drug product during global drug shortages.
Collapse
Affiliation(s)
- T Rooimans
- Research and Development Department, Tiofarma BV, Oud-Beijerland, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - M Damen
- InProcess-LSP, Oss, the Netherlands
| | - C M A Markesteijn
- Research and Development Department, Tiofarma BV, Oud-Beijerland, the Netherlands
| | | | - N H C de Zoete
- Research and Development Department, Tiofarma BV, Oud-Beijerland, the Netherlands
| | - P M van Hasselt
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - W E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - C F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - M Hermes
- InProcess-LSP, Oss, the Netherlands
| | | | - H Vromans
- Research and Development Department, Tiofarma BV, Oud-Beijerland, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
50
|
Golovynskyi S, Golovynska I, Roganova O, Golovynskyi A, Qu J, Ohulchanskyy TY. Hyperspectral imaging of lipids in biological tissues using near-infrared and shortwave infrared transmission mode: A pilot study. JOURNAL OF BIOPHOTONICS 2023:e202300018. [PMID: 37021842 DOI: 10.1002/jbio.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Label-free hyperspectral imaging (HSI) of lipids was demonstrated in the near-infrared (NIR) and shortwave infrared (SWIR) regions (950-1800 nm) using porcine tissue. HSI was performed in the transmission light-pass configuration, using a NIR-SWIR camera coupled with a liquid crystal tunable filter. The transmittance spectra of the regions of interest (ROIs), which correspond to the lipid and muscle areas in the specimen, were utilized for the spectrum unmixing. The transmittance spectra in ROIs were compared with those recorded by a spectrophotometer using samples of adipose and muscle. The lipid optical absorption bands at 1210 and 1730 nm were first used for the unmixing and mapping. Then, we performed the continuous multiband unmixing over the entire available spectral range, thereby, considering a combination of characteristic absorption bands of lipids, proteins, and water. The enhanced protocol demonstrates the ability to visualize small adipose inclusions of 1-10 μm size.
Collapse
Affiliation(s)
- Sergii Golovynskyi
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Iuliia Golovynska
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Olena Roganova
- V.M. Glushkov Institute of Cybernetics, National Academy of Sciences, Kyiv, Ukraine
| | - Andrii Golovynskyi
- V.M. Glushkov Institute of Cybernetics, National Academy of Sciences, Kyiv, Ukraine
| | - Junle Qu
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Tymish Y Ohulchanskyy
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|