1
|
Busquets A, Ferrer-Uris B, Durduran T, Bešlija F, Añón-Hidalgo M, Angulo-Barroso R. Study protocol to examine the effects of acute exercise on motor learning and brain activity in children with developmental coordination disorder (ExLe-Brain-DCD). PLoS One 2024; 19:e0302242. [PMID: 38722962 PMCID: PMC11081356 DOI: 10.1371/journal.pone.0302242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/25/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Developmental coordination disorder (DCD) is one of the most prevalent pediatric chronic conditions. Without proper intervention, significant delays in motor skill performance and learning may persist until adulthood. Moderate-to-vigorous physical exercise has been proven to improve motor learning (adaptation and consolidation) in children with or without disorders. However, the effect of a short bout of physical exercise on motor adaptation and consolidation in children with DCD has not been examined. Furthermore, the role of perceptual-motor integration and attention as mediators of learning has not been examined via neuroimaging in this population. OBJECTIVES Therefore, the primary aims of this project will be to compare children with and without DCD to (a) examine the effect of acute exercise on motor learning (adaptation and consolidation) while performing a rotational visuo-motor adaptation task (rVMA), and (b) explore cortical activation in the dorsolateral- and ventrolateral-prefrontal cortex areas while learning the rVMA task under rest or post-exercise conditions. METHODS One hundred twenty children will be recruited (60 DCD, 60 controls) and within-cohort randomly assigned to either exercise (13-minute shuttle run task) or rest prior to performing the rVMA task. Adaptation and consolidation will be evaluated via two error variables and three retention tests (1h, 24h and 7 days post adaptation). Cortical activation will be registered via functional near-infrared spectroscopy (fNIRS) during the baseline, adaptation, and consolidation. DISCUSSION We expect to find exercise benefits on motor learning and attention so that children with DCD profiles will be closer to those of children with typical development. The results of this project will provide further evidence to: (a) better characterize children with DCD for the design of educational materials, and (b) establish acute exercise as a potential intervention to improve motor learning and attention.
Collapse
Affiliation(s)
- Albert Busquets
- Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain
| | - Blai Ferrer-Uris
- Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain
| | - Turgut Durduran
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Faruk Bešlija
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Manuel Añón-Hidalgo
- Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain
| | - Rosa Angulo-Barroso
- Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain
- Kinesiology, California State University, Northridge, California, United States of America
| |
Collapse
|
2
|
Zhang T, Xu G, Huo C, Li W, Li Z, Li W. Cortical hemodynamic response and networks in children with cerebral palsy during upper limb bilateral motor training. JOURNAL OF BIOPHOTONICS 2023; 16:e202200326. [PMID: 36602536 DOI: 10.1002/jbio.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 05/17/2023]
Abstract
Understanding the characteristics of functional brain activity is important for motor rehabilitation of children with cerebral palsy (CP). Using the functional near-infrared spectroscopy (fNIRS) technology, the cortical response and networks of prefrontal (PFC) and motor cortices (MC) were analyzed for children with CP and typical development (CTD). Compared with CTD, the resting cortical response of dominant MC in children with CP increased, and the functional connectivity between cerebral areas decreased. In the motor state of children with CP, the coupling strength started from dominant MC increased compared with resting state, and the hemispherical autonomy index (HAI) of the dominant MC was higher than that in the CTD, which reflected the leading role of dominant MC in brain regulation during motor. The functional connectivity between bilateral MC was positively correlated with motor performance. This study provided effective indices for evaluating the motor function and real-time impact of motor on brain networks.
Collapse
Affiliation(s)
- Tengyu Zhang
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Congcong Huo
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenhao Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Rehabilitation Engineering, Beijing College of Social Administration, Beijing, China
| | - Zengyong Li
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Li
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
3
|
Poliakova E, Conrad AL, Schieltz KM, O'Brien MJ. Using fNIRS to evaluate ADHD medication effects on neuronal activity: A systematic literature review. FRONTIERS IN NEUROIMAGING 2023; 2:1083036. [PMID: 37033327 PMCID: PMC10078617 DOI: 10.3389/fnimg.2023.1083036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
Background Functional near infrared spectroscopy (fNIRS) is a relatively non-invasive and inexpensive functional neuroimaging technique that has shown promise as a method for understanding the differences in neuronal activity associated with various neurodevelopmental conditions, including ADHD. Additionally, fNIRS has been suggested as a possible tool to understand the impact of psychotropic medications on brain activity in individuals with ADHD, but this approach is still in its infancy. Objective The purpose of this systematic literature review was to synthesize the extant research literature on the use of fNIRS to assess the effects of ADHD medications on brain activity in children and adolescents with ADHD. Methods A literature search following Preferred Reporting Items for Systematic Literature Reviews and Meta-Analyses (PRISMA) guidelines was conducted for peer-reviewed articles related to ADHD, medication, and fNIRS in PsychInfo, Scopus, and PubMed electronic databases. Results The search yielded 23 published studies meeting inclusion criteria. There was a high degree of heterogeneity in terms of the research methodology and procedures, which is explained in part by the distinct goals and approaches of the studies reviewed. However, there was also relative consistency in outcomes among a select group of studies that demonstrated a similar research focus. Conclusion Although fNIRS has great potential to further our understanding of the effects of ADHD medications on the neuronal activity of children and adolescents with ADHD, the current research base is still relatively small and there are limitations and methodological inconsistencies that should be addressed in future studies.
Collapse
Affiliation(s)
- Eva Poliakova
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
| | - Amy L. Conrad
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Kelly M. Schieltz
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Matthew J. O'Brien
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Sato JR, Junior CEB, de Araújo ELM, de Souza Rodrigues J, Andrade SM. A guide for the use of fNIRS in microcephaly associated to congenital Zika virus infection. Sci Rep 2021; 11:19270. [PMID: 34588470 PMCID: PMC8481532 DOI: 10.1038/s41598-021-97450-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Congenital Zika Syndrome (CZS) is characterized by changes in cranial morphology associated with heterogeneous neurological manifestations and cognitive and behavioral impairments. In this syndrome, longitudinal neuroimaging could help clinicians to predict developmental trajectories of children and tailor treatment plans accordingly. However, regularly acquiring magnetic resonance imaging (MRI) has several shortcomings besides cost, particularly those associated with childrens' clinical presentation as sensitivity to environmental stimuli. The indirect monitoring of local neural activity by non-invasive functional near-infrared spectroscopy (fNIRS) technique can be a useful alternative for longitudinally accessing the brain function in children with CZS. In order to provide a common framework for advancing longitudinal neuroimaging assessment, we propose a principled guideline for fNIRS acquisition and analyses in children with neurodevelopmental disorders. Based on our experience on collecting fNIRS data in children with CZS we emphasize the methodological challenges, such as clinical characteristics of the sample, desensitization, movement artifacts and environment control, as well as suggestions for tackling such challenges. Finally, metrics based on fNIRS can be associated with established clinical metrics, thereby opening possibilities for exploring this tool as a long-term predictor when assessing the effectiveness of treatments aimed at children with severe neurodevelopmental disorders.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Claudinei Eduardo Biazoli Junior
- Center of Mathematics, Computing, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | - Elidianne Layanne Medeiros de Araújo
- Laboratory of Aging and Neuroscience Studies, Department of Physical Therapy, Health Sciences Center, Federal University of Paraíba, João Pessoa, PA, Brazil
| | | | - Suellen Marinho Andrade
- Laboratory of Aging and Neuroscience Studies, Department of Physical Therapy, Health Sciences Center, Federal University of Paraíba, João Pessoa, PA, Brazil.
| |
Collapse
|
5
|
Add-on Home-Centered Activity-Based Therapy vs Conventional Physiotherapy in Improving Walking Ability at 6-Months in Children With Diplegic Cerebral Palsy: A Randomized Controlled Trial. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2301-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Brown BL, Zalla RM, Shepard CT, Howard RM, Kopechek JA, Magnuson DSK, Whittemore SR. Dual-Viral Transduction Utilizing Highly Efficient Retrograde Lentivirus Improves Labeling of Long Propriospinal Neurons. Front Neuroanat 2021; 15:635921. [PMID: 33828464 PMCID: PMC8019739 DOI: 10.3389/fnana.2021.635921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
The nervous system coordinates pathways and circuits to process sensory information and govern motor behaviors. Mapping these pathways is important to further understand the connectivity throughout the nervous system and is vital for developing treatments for neuronal diseases and disorders. We targeted long ascending propriospinal neurons (LAPNs) in the rat spinal cord utilizing Fluoro-Ruby (FR) [10kD rhodamine dextran amine (RDA)], and two dual-viral systems. Dual-viral tracing utilizing a retrograde adeno-associated virus (retroAAV), which confers robust labeling in the brain, resulted in a small number of LAPNs being labeled, but dual-viral tracing using a highly efficient retrograde (HiRet) lentivirus provided robust labeling similar to FR. Additionally, dual-viral tracing with HiRet lentivirus and tracing with FR may preferentially label different subpopulations of LAPNs. These data demonstrate that dual-viral tracing in the spinal cord employing a HiRet lentivirus provides robust and specific labeling of LAPNs and emphasizes the need to empirically optimize viral systems to target specific neuronal population(s).
Collapse
Affiliation(s)
- Brandon L Brown
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Rachel M Zalla
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Courtney T Shepard
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Jonathan A Kopechek
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - David S K Magnuson
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Scott R Whittemore
- Interdisciplinary Program in Translational Neuroscience, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
7
|
Weyandt LL, Clarkin CM, Holding EZ, May SE, Marraccini ME, Gudmundsdottir BG, Shepard E, Thompson L. Neuroplasticity in children and adolescents in response to treatment intervention: A systematic review of the literature. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2020. [DOI: 10.1177/2514183x20974231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to conduct a systematic review of the literature, adhering to PRISMA guidelines, regarding evidence of neuroplasticity in children and adolescents in response to cognitive or sensory-motor interventions. Twenty-eight studies employing seven different types of neuroimaging techniques were included in the review. Findings revealed that significant variability existed across the 28 studies with regard to the clinical populations examined, type of interventions employed, neuroimaging methods, and the type of neuroimaging data included in the studies. Overall, results supported that experience-dependent interventions were associated with neuroplastic changes among children and adolescents in both neurotypical and clinical populations. However, it remains unclear whether these molecular neuroplastic changes, including the degree and direction of those differences, were the direct result of the intervention. Although the findings are encouraging, methodological limitations of the studies limit clinical utility of the results. Future studies are warranted that rigorously define the construct of neuroplasticity, establish consistent protocols across measurement techniques, and have adequate statistical power. Lastly, studies are needed to identify the functional and structural neuroplastic mechanisms that correspond with changes in cognition and behavior in child and adolescent samples.
Collapse
Affiliation(s)
- Lisa L Weyandt
- Department of Psychology, Director Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Christine M Clarkin
- Physical Therapy Department, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, Graduate School, University of Rhode Island, Kingston, RI, USA
| | - Emily Z Holding
- School of Education, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon E May
- Interdisciplinary Neuroscience Program, Graduate School, University of Rhode Island, Kingston, RI, USA
| | - Marisa E Marraccini
- School of Education, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Emily Shepard
- Department of Psychology, University of Rhode Island, Kingston, RI, USA
| | - Lauren Thompson
- Interdisciplinary Neuroscience Program, Graduate School, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
8
|
Tyagi O, Zhu Y, Johnson C, Mehta RK, Sasangohar F, Erraguntla M, Qaraqe K. Neural Signatures of Handgrip Fatigue in Type 1 Diabetic Men and Women. Front Hum Neurosci 2020; 14:564969. [PMID: 33240061 PMCID: PMC7680760 DOI: 10.3389/fnhum.2020.564969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023] Open
Abstract
Type 1 diabetes (T1D) is associated with reduced muscular strength and greater muscle fatigability. Along with changes in muscular mechanisms, T1D is also linked to structural changes in the brain. How the neurophysiological mechanisms underlying muscle fatigue is altered with T1D and sex related differences of these mechanisms are still not well investigated. The aim of this study was to determine the impact of T1D on the neural correlates of handgrip fatigue and examine sex and T1D related differences in neuromuscular performance parameters, neural activation and functional connectivity patterns between the motor regions of the brain. Forty-two adults, balanced by condition (healthy vs T1D) and sex (male vs female), and performed submaximal isometric handgrip contractions until voluntary exhaustion. Initial strength, endurance time, strength loss, force variability, and complexity measures were collected. Additionally, hemodynamic responses from motor-function related cortical regions, using functional near-infrared spectroscopy (fNIRS), were obtained. Overall, females exhibited lower initial strength (p < 0.0001), and greater strength loss (p = 0.023) than males. While initial strength was significantly lower in the T1D group (p = 0.012) compared to the healthy group, endurance times and strength loss were comparable between the two groups. Force complexity, measured as approximate entropy, was found to be lower throughout the experiment for the T1D group (p = 0.0378), indicating lower online motor adaptability. Although, T1D and healthy groups fatigued similarly, only the T1D group exhibited increased neural activation in the left (p = 0.095) and right (p = 0.072) supplementary motor areas (SMA) over time. A sex × condition × fatigue interaction effect (p = 0.044) showed that while increased activation was observed in both T1D females and healthy males from the Early to Middle phase, this was not observed in healthy females or T1D males. These findings demonstrate that T1D adults had lower adaptability to fatigue which they compensated for by increasing neural effort. This study highlights the importance of examining both neural and motor performance signatures when investigating the impact of chronic conditions on neuromuscular fatigue. Additionally, the findings have implications for developing intervention strategies for training, rehabilitation, and ergonomics considerations for individuals with chronic conditions.
Collapse
Affiliation(s)
- Oshin Tyagi
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Yibo Zhu
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Connor Johnson
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Ranjana K. Mehta
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Farzan Sasangohar
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Madhav Erraguntla
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Khalid Qaraqe
- Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
9
|
Hu Z, Liu G, Dong Q, Niu H. Applications of Resting-State fNIRS in the Developing Brain: A Review From the Connectome Perspective. Front Neurosci 2020; 14:476. [PMID: 32581671 PMCID: PMC7284109 DOI: 10.3389/fnins.2020.00476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Early brain development from infancy through childhood is closely related to the development of cognition and behavior in later life. Human brain connectome is a novel framework for describing topological organization of the developing brain. Resting-state functional near-infrared spectroscopy (fNIRS), with a natural scanning environment, low cost, and high portability, is considered as an emerging imaging technique and has shown valuable potential in exploring brain network architecture and its changes during the development. Here, we review the recent advances involving typical and atypical development of the brain connectome from neonates to children using resting-state fNIRS imaging. This review highlights that the combination of brain connectome and resting-state fNIRS imaging offers a promising framework for understanding human brain development.
Collapse
Affiliation(s)
- Zhishan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Guangfang Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Wang M, Hu Z, Liu L, Li H, Qian Q, Niu H. Disrupted functional brain connectivity networks in children with attention-deficit/hyperactivity disorder: evidence from resting-state functional near-infrared spectroscopy. NEUROPHOTONICS 2020; 7:015012. [PMID: 32206679 PMCID: PMC7064804 DOI: 10.1117/1.nph.7.1.015012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/20/2020] [Indexed: 05/19/2023]
Abstract
Significance: Attention-deficit/hyperactivity disorder (ADHD) is the most common psychological disease in childhood. Currently, widely used neuroimaging techniques require complete body confinement and motionlessness and thus are extremely hard for brain scanning of ADHD children. Aim: We present resting-state functional near-infrared spectroscopy (fNIRS) as an imaging technique to record spontaneous brain activity in children with ADHD. Approach: The brain functional connectivity was calculated, and the graph theoretical analysis was further applied to investigate alterations in the global and regional properties of the brain network in the patients. In addition, the relationship between brain network features and core symptoms was examined. Results: ADHD patients exhibited significant decreases in both functional connectivity and global network efficiency. Meanwhile, the nodal efficiency in children with ADHD was also found to be altered, e.g., increase in the visual and dorsal attention networks and decrease in somatomotor and default mode networks, compared to the healthy controls. More importantly, the disrupted functional connectivity and nodal efficiency significantly correlated with dimensional ADHD scores. Conclusions: We clearly demonstrate the feasibility and potential of fNIRS-based connectome technique in ADHD or other neurological diseases in the future.
Collapse
Affiliation(s)
- Mengjing Wang
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Zhishan Hu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders, Beijing, China
- Peking University, National Health Commission Key Laboratory of Mental Health, Beijing, China
| | - Haimei Li
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders, Beijing, China
- Peking University, National Health Commission Key Laboratory of Mental Health, Beijing, China
| | - Qiujin Qian
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders, Beijing, China
- Peking University, National Health Commission Key Laboratory of Mental Health, Beijing, China
| | - Haijing Niu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
- Beijing Normal University, Center of Social Welfare Studies, Beijing, China
| |
Collapse
|
11
|
Urquhart EL, Wanniarachchi HI, Wang X, Liu H, Fadel PJ, Alexandrakis G. Mapping cortical network effects of fatigue during a handgrip task by functional near-infrared spectroscopy in physically active and inactive subjects. NEUROPHOTONICS 2019; 6:045011. [PMID: 31853458 PMCID: PMC6904890 DOI: 10.1117/1.nph.6.4.045011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 05/29/2023]
Abstract
The temporal evolution of cortical activation and connectivity patterns during a fatiguing handgrip task were studied by functional near-infrared spectroscopy (fNIRS). Twenty-three young adults (18 to 35 years old) were recruited to use a handheld force sensor to perform intermittent handgrip contractions with their dominant hand at their personal maximum voluntary contraction force level for 3.5 s followed by 6.5 s of rest for 120 blocks. Subjects were divided into self-reported physically active and inactive groups, and their hemodynamic activity over the prefrontal and sensory-motor cortices (111 channels) was mapped while they performed this task. Using this fNIRS setup, a more detailed time sequence of cortical activation and connectivity patterns was observed compared to prior studies. A temporal evolution sequence of hemodynamic activation patterns was noted, which was different between the active and the inactive groups. Physically active subjects demonstrated delayed fatigue onset and significantly longer-lasting and more spatially extended functional connectivity (FC) patterns, compared to inactive subjects. The observed differences in activation and FC suggested differences in cortical network adaptation patterns as fatigue set in, which were dependent on subjects' physical activity. The findings of this study suggest that physical activity increases FC with regions involved in motor task control and correlates to extended fatigue onset and enhanced performance.
Collapse
Affiliation(s)
- Elizabeth L. Urquhart
- University of Texas at Arlington, Bioengineering Department, Arlington, Texas, United States
| | | | - Xinlong Wang
- University of Texas at Arlington, Bioengineering Department, Arlington, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Bioengineering Department, Arlington, Texas, United States
| | - Paul J. Fadel
- University of Texas at Arlington, Department of Kinesiology, Arlington, Texas, United States
| | - George Alexandrakis
- University of Texas at Arlington, Bioengineering Department, Arlington, Texas, United States
| |
Collapse
|
12
|
Hoare BJ, Wallen MA, Thorley MN, Jackman ML, Carey LM, Imms C. Constraint-induced movement therapy in children with unilateral cerebral palsy. Cochrane Database Syst Rev 2019; 4:CD004149. [PMID: 30932166 PMCID: PMC6442500 DOI: 10.1002/14651858.cd004149.pub3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Unilateral cerebral palsy (CP) is a condition that affects muscle control and function on one side of the body. Children with unilateral CP experience difficulties using their hands together secondary to disturbances that occur in the developing fetal or infant brain. Often, the more affected limb is disregarded. Constraint-induced movement therapy (CIMT) aims to increase use of the more affected upper limb and improve bimanual performance. CIMT is based on two principles: restraining the use of the less affected limb (for example, using a splint, mitt or sling) and intensive therapeutic practice of the more affected limb. OBJECTIVES To evaluate the effect of constraint-induced movement therapy (CIMT) in the treatment of the more affected upper limb in children with unilateral CP. SEARCH METHODS In March 2018 we searched CENTRAL, MEDLINE, Embase, CINAHL, PEDro, OTseeker, five other databases and three trials registers. We also ran citation searches, checked reference lists, contacted experts, handsearched key journals and searched using Google Scholar. SELECTION CRITERIA Randomised controlled trials (RCTs), cluster-RCTs or clinically controlled trials implemented with children with unilateral CP, aged between 0 and 19 years, where CIMT was compared with a different form of CIMT, or a low dose, high-dose or dose-matched alternative form of upper-limb intervention such as bimanual intervention. Primarily, outcomes were bimanual performance, unimanual capacity and manual ability. Secondary outcomes included measures of self-care, body function, participation and quality of life. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts to eliminate ineligible studies. Five review authors were paired to extract data and assess risk of bias in each included study. GRADE assessments were undertaken by two review authors. MAIN RESULTS We included 36 trials (1264 participants), published between 2004 and 2018. Sample sizes ranged from 11 to 105 (mean 35). Mean age was 5.96 years (standard deviation (SD) 1.82), range three months to 19.8 years; 53% male and 47% participants had left hemiplegia. Fifty-seven outcome measures were used across studies. Average length of CIMT programs was four weeks (range one to 10 weeks). Frequency of sessions ranged from twice weekly to seven days per week. Duration of intervention sessions ranged from 0.5 to eight hours per day. The mean total number of hours of CIMT provided was 137 hours (range 20 to 504 hours). The most common constraint devices were a mitt/glove or a sling (11 studies each).We judged the risk of bias as moderate to high across the studies. KEY RESULTS Primary outcomes at primary endpoint (immediately after intervention)CIMT versus low-dose comparison (e.g. occupational therapy)We found low-quality evidence that CIMT was more effective than a low-dose comparison for improving bimanual performance (mean difference (MD) 5.44 Assisting Hand Assessment (AHA) units, 95% confidence interval (CI) 2.37 to 8.51).CIMT was more effective than a low-dose comparison for improving unimanual capacity (Quality of upper extremity skills test (QUEST) - Dissociated movement MD 5.95, 95% CI 2.02 to 9.87; Grasps; MD 7.57, 95% CI 2.10 to 13.05; Weight bearing MD 5.92, 95% CI 2.21 to 9.6; Protective extension MD 12.54, 95% CI 8.60 to 16.47). Three studies reported adverse events, including frustration, constraint refusal and reversible skin irritations from casting.CIMT versus high-dose comparison (e.g. individualised occupational therapy, bimanual therapy)When compared with a high-dose comparison, CIMT was not more effective for improving bimanual performance (MD -0.39 AHA Units, 95% CI -3.14 to 2.36). There was no evidence that CIMT was more effective than a high-dose comparison for improving unimanual capacity in a single study using QUEST (Dissociated movement MD 0.49, 95% CI -10.71 to 11.69; Grasp MD -0.20, 95% CI -11.84 to 11.44). Two studies reported that some children experienced frustration participating in CIMT.CIMT versus dose-matched comparison (e.g. Hand Arm Bimanual Intensive Therapy, bimanual therapy, occupational therapy)There was no evidence of differences in bimanual performance between groups receiving CIMT or a dose-matched comparison (MD 0.80 AHA units, 95% CI -0.78 to 2.38).There was no evidence that CIMT was more effective than a dose-matched comparison for improving unimanual capacity (Box and Blocks Test MD 1.11, 95% CI -0.06 to 2.28; Melbourne Assessment MD 1.48, 95% CI -0.49 to 3.44; QUEST Dissociated movement MD 6.51, 95% CI -0.74 to 13.76; Grasp, MD 6.63, 95% CI -2.38 to 15.65; Weightbearing MD -2.31, 95% CI -8.02 to 3.40) except for the Protective extension domain (MD 6.86, 95% CI 0.14 to 13.58).There was no evidence of differences in manual ability between groups receiving CIMT or a dose-matched comparison (ABILHAND-Kids MD 0.74, 95% CI 0.31 to 1.18). From 15 studies, two children did not tolerate CIMT and three experienced difficulty. AUTHORS' CONCLUSIONS The quality of evidence for all conclusions was low to very low. For children with unilateral CP, there was some evidence that CIMT resulted in improved bimanual performance and unimanual capacity when compared to a low-dose comparison, but not when compared to a high-dose or dose-matched comparison. Based on the evidence available, CIMT appears to be safe for children with CP.
Collapse
Affiliation(s)
- Brian J Hoare
- Monash Children's HospitalVictorian Paediatric Rehabilitation Service246 Clayton RdClaytonVictoriaAustralia3168
| | - Margaret A Wallen
- Australian Catholic UniversitySchool of Allied Health, Faculty of Health SciencesNorth SydneyAustralia
| | - Megan N Thorley
- Royal Children's HospitalRehabilitationHerston RoadBrisbaneQueenslandAustralia4006
| | - Michelle L Jackman
- John Hunter Children's HospitalPaediatric Occupational TherapyLambton RoadNew LambtonNew South WalesAustralia2310
| | - Leeanne M Carey
- Florey Institute of Neuroscience and Mental Health, The University of MelbourneNeurorehabilitation and Recovery, Stroke DivisionMelbourneVictoriaAustralia3081
| | - Christine Imms
- Australian Catholic UniversityCentre for Disability & Development ResearchLevel 2, Daniel Mannix Building17 Young StreetMelbourneVictoriaAustralia3065
| | | |
Collapse
|
13
|
Yang M, Yang Z, Yuan T, Feng W, Wang P. A Systemic Review of Functional Near-Infrared Spectroscopy for Stroke: Current Application and Future Directions. Front Neurol 2019; 10:58. [PMID: 30804877 PMCID: PMC6371039 DOI: 10.3389/fneur.2019.00058] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/16/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Survivors of stroke often experience significant disability and impaired quality of life. The recovery of motor or cognitive function requires long periods. Neuroimaging could measure changes in the brain and monitor recovery process in order to offer timely treatment and assess the effects of therapy. A non-invasive neuroimaging technique near-infrared spectroscopy (NIRS) with its ambulatory, portable, low-cost nature without fixation of subjects has attracted extensive attention. Methods: We conducted a comprehensive literature review in order to review the use of NIRS in stroke or post-stroke patients in July 2018. NCBI Pubmed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. Results: Overall, we reviewed 66 papers. NIRS has a wide range of application, including in monitoring upper limb, lower limb recovery, motor learning, cortical function recovery, cerebral hemodynamic changes, cerebral oxygenation, as well as in therapeutic method, clinical researches, and evaluation of the risk for stroke. Conclusions: This study provides a preliminary evidence of the application of NIRS in stroke patients as a monitoring, therapeutic, and research tool. Further studies could give more emphasize on the combination of NIRS with other techniques and its utility in the prevention of stroke.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Tifei Yuan
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Pu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai, China
| |
Collapse
|
14
|
Holland H, Blazek K, Haynes MP, Dallman A. Improving postural symmetry: The effectiveness of the CATCH (Combined Approach to Treatment for Children with Hemiplegia) protocol. J Pediatr Rehabil Med 2019; 12:139-149. [PMID: 31227666 DOI: 10.3233/prm-180550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To evaluate postural symmetry in sitting and standing for children with hemiplegic cerebral palsy (hCP) following the Combined Approach to Treatment for Children with Hemiplegia (CATCH) protocol, an intervention combining Constraint Induced Movement Therapy, Bimanual Intensive Therapy and Neuro-Developmental Treatment. METHODS The study included 10 children with a diagnosis of hCP and 10 typically developing age-matched peers. Subjects participated in a CATCH camp for six hours daily for eight consecutive days. Postural symmetry measurements in quiet sitting and standing were obtained using a Boditrak pressure-mapping system at four time points: prior to start of camp (T1), first day of camp (T2), last day of camp (T3), and one month post-camp (T4). RESULTS Significant differences (p< 0.05) were found in quiet sitting when comparing postural symmetry pre-intervention and one-month post camp. In quiet standing, significant differences (p< 0.05) were found when pre-intervention was compared to one-month post-intervention. One month post-intervention, the intervention group showed no significant difference from the comparison group. CONCLUSIONS Children with hCP demonstrate improvement in postural symmetry in sitting and standing following participation in a CATCH camp. Following the intervention, children with hCP continued to improve postural symmetry and approach age-matched peers.
Collapse
Affiliation(s)
- Holly Holland
- Rehabilitation Therapies, University of North Carolina Health Care, Chapel Hill, NC, USA
| | - Kerry Blazek
- Rehabilitation Therapies, University of North Carolina Health Care, Chapel Hill, NC, USA
| | - Margo Prim Haynes
- NDT Pediatric Therapy, Adjunct Faculty UNC-CH in the Division of Physical Therapy, Rockingham, NC, USA
| | - Aaron Dallman
- Occupational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Cao J, Wang X, Liu H, Alexandrakis G. Directional changes in information flow between human brain cortical regions after application of anodal transcranial direct current stimulation (tDCS) over Broca's area. BIOMEDICAL OPTICS EXPRESS 2018; 9:5296-5317. [PMID: 30460129 PMCID: PMC6238934 DOI: 10.1364/boe.9.005296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 05/05/2023]
Abstract
Little work has been done on the information flow in functional brain imaging and none so far in fNIRS. In this work, alterations in the directionality of net information flow induced by a short-duration, low-current (2 min 40 s; 0.5 mA) and a longer-duration, high-current (8 min; 1 mA) anodal tDCS applied over the Broca's area of the dominant language hemisphere were studied by fNIRS. The tDCS-induced patterns of information flow, quantified by a novel directed phase transfer entropy (dPTE) analysis, were distinct for different hemodynamic frequency bands and were qualitatively similar between low and high-current tDCS. In the endothelial band (0.003-0.02 Hz), the stimulated Broca's area became the strongest hub of outgoing information flow, whereas in the neurogenic band (0.02-0.04 Hz) the contralateral homologous area became the strongest information outflow source. In the myogenic band (0.04-0.15 Hz), only global patterns were seen, independent of tDCS stimulation that were interpreted as Mayer waves. These findings showcase dPTE analysis in fNIRS as a novel, complementary tool for studying cortical activity reorganization after an intervention.
Collapse
|
16
|
Abstract
PURPOSES To present the history and aims of the STEP conferences; describe the interdependence of prevention, prediction, plasticity, and participation; reflect on where we stand today regarding those 4 Ps; and discuss how future neurorehabilitation should look for individuals with movement disorders. KEY POINTS Physical therapists have focused primarily on tertiary prevention, emphasizing primary/secondary prevention far less. Predicting optimal response to intervention is essential for primary prevention. Research examining neurorehabilitation effects mediated by brain plasticity is evolving from an emphasis on impairment outcomes toward examination of participation outcomes. CLINICAL PRACTICE RECOMMENDATIONS:: (1) Capitalize on primary and secondary prevention. (2) Administer simple, environmentally relevant predictive measures. (3) Partner with researchers to examine exercise-induced brain plasticity effects via neuroimaging. (4) Encourage physical activity to promote secondary prevention of lifestyle-related diseases and enhance participation. (5) Integrate psychological/social sciences with physiological sciences to move forward with advances in mindful health and patient-centered practices.
Collapse
|
17
|
Harris SR, Winstein CJ. The Past, Present, and Future of Neurorehabilitation: From NUSTEP Through IV STEP and Beyond. Pediatr Phys Ther 2017; 29 Suppl 3:S2-S9. [PMID: 28654472 DOI: 10.1097/pep.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSES To present the history and aims of the STEP conferences; describe the interdependence of prevention, prediction, plasticity, and participation; reflect on where we stand today regarding those 4 Ps; and discuss how future neurorehabilitation should look for individuals with movement disorders. KEY POINTS Physical therapists have focused primarily on tertiary prevention, emphasizing primary/secondary prevention far less. Predicting optimal response to intervention is essential for primary prevention. Research examining neurorehabilitation effects mediated by brain plasticity is evolving from an emphasis on impairment outcomes toward examination of participation outcomes. CLINICAL PRACTICE RECOMMENDATIONS:: (1) Capitalize on primary and secondary prevention. (2) Administer simple, environmentally relevant predictive measures. (3) Partner with researchers to examine exercise-induced brain plasticity effects via neuroimaging. (4) Encourage physical activity to promote secondary prevention of lifestyle-related diseases and enhance participation. (5) Integrate psychological/social sciences with physiological sciences to move forward with advances in mindful health and patient-centered practices.
Collapse
Affiliation(s)
- Susan R Harris
- Department of Physical Therapy (Dr Harris), Faculty of Medicine, University of British Columbia, Vancouver, Canada; and Division of Biokinesiology & Physical Therapy, and Department of Neurology, Keck School of Medicine (Dr Winstein), and Motor Behavior & Neurorehabilitation Laboratory, Ostrow School of Dentistry, University of Southern California, Los Angeles
| | | |
Collapse
|
18
|
Wriessnegger SC, Kirchmeyr D, Bauernfeind G, Müller-Putz GR. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study. Brain Cogn 2017; 117:108-116. [PMID: 28673464 DOI: 10.1016/j.bandc.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control.
Collapse
Affiliation(s)
- Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria.
| | - Daniela Kirchmeyr
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| | - Günther Bauernfeind
- Department of Otolaryngology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| |
Collapse
|
19
|
Kanitkar A, Szturm T, Parmar S, Gandhi DB, Rempel GR, Restall G, Sharma M, Narayan A, Pandian J, Naik N, Savadatti RR, Kamate MA. The Effectiveness of a Computer Game-Based Rehabilitation Platform for Children With Cerebral Palsy: Protocol for a Randomized Clinical Trial. JMIR Res Protoc 2017; 6:e93. [PMID: 28526673 PMCID: PMC5454217 DOI: 10.2196/resprot.6846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND It is difficult to engage young children with cerebral palsy (CP) in repetitive, tedious therapy. As such, there is a need for innovative approaches and tools to motivate these children. We developed the low-cost, computer game-based rehabilitation platform CGR that combines fine manipulation and gross movement exercises with attention and planning game activities appropriate for young children with CP. OBJECTIVE The objective of this study is to provide evidence of the therapeutic value of CGR to improve upper extremity (UE) motor function for children with CP. METHODS This randomized controlled, single-blind, clinical trial with an active control arm will be conducted at 4 sites. Children diagnosed with CP between the ages of 4 and 10 years old with moderate UE impairments and fine motor control abnormalities will be recruited. RESULTS We will test the difference between experimental and control groups using the Quality of Upper Extremity Skills Test (QUEST) and Peabody Developmental Motor Scales, Second Edition (PDMS-2) outcome measures. The parents of the children and the therapist experiences with the interventions and tools will be explored using semi-structured interviews using the qualitative description approach. CONCLUSIONS This research protocol, if effective, will provide evidence for the therapeutic value and feasibility of CGR in the pediatric rehabilitation of UE function. TRIAL REGISTRATION Clinicaltrials.gov NCT02728375; http:https://clinicaltrials.gov/ct2/show/NCT02728375 (Archived by WebCite at http://www.webcitation.org/6qDjvszvh).
Collapse
Affiliation(s)
- Anuprita Kanitkar
- Applied Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tony Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sanjay Parmar
- SDM College of Medical Sciences and Hospital, Rajiv Gandhi University of Health Sciences, Dharwad, India
| | - Dorcas Bc Gandhi
- Christian Medical College and Hospital, Department of Neurology, Baba Farid University of Health Sciences, Ludhiana, India
| | - Gina Ruth Rempel
- Max Rady College of Medicine, Rady Faculty of Health Sciences, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Gayle Restall
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Monika Sharma
- Christian Medical College and Hospital, Department of Pediatrics, Baba Farid University of Health Sciences, Ludhiana, India
| | - Amitesh Narayan
- Kasturba Medical College, Department of Physiotherapy, Manipal University, Mangalore, India
| | - Jeyaraj Pandian
- Christian Medical College and Hospital, Department of Neurology, Baba Farid University of Health Sciences, Ludhiana, India
| | - Nilashri Naik
- Department of Physiotherapy, Ushas School for Exceptional Children, Hubli, India
| | - Ravi R Savadatti
- SDM College of Physiotherapy, Rajiv Gandhi University of Health Sciences, Dharwad, India
| | | |
Collapse
|
20
|
Allah RASTIl Z, Shamsoddini A, Dalvand H, Labaf S. The Effect of Kinesio Taping on Handgrip and Active Range of Motion of Hand in Children with Cerebral Palsy. IRANIAN JOURNAL OF CHILD NEUROLOGY 2017; 11:43-51. [PMID: 29201123 PMCID: PMC5703628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/14/2016] [Accepted: 01/31/2017] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Kinesio taping is a relatively new technique, which uses in rehabilitation of neurologic diseases. The aim of this study was to investigate the effects of Kinesio taping on hand grip and active range of motion of hand in children with cerebral palsy (CP). MATERIALS AND METHODS In this experimental study with pre-test and three post-tests, 32 children with CP randomly were placed in experimental (n=17) and control group (n=15).Kinesio taping was applied on dorsum of forearm and hand. Evaluation was performed initially, two days after taping and two days after tape removal. Goniometer was used to evaluate active range of motion of wrist extension. In addition, vigorimeter was used to evaluate of grip strength. RESULTS In pre-test, there was no difference between groups but in post-tests; initially after application of taping with P<0.05, two days after application of taping with P<0.05 and follow-up (two days after removed taping) with P<0.05 were significant differences between trial and control group. CONCLUSION Kinesio taping in neurorehabilitation of children with CP can be a useful option to promote power or grip strength and active range of motion of wrist and thumb.
Collapse
Affiliation(s)
- Zabih Allah RASTIl
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shamsoddini
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Dalvand
- Department of Occupational Therapy, Arak University of Medical Sciences, Arak, Iran
| | - Sina Labaf
- Department of Occupational Therapist, Ebnesina Rehabilitation Clinic, Consulting Unit, Tehran, Iran
| |
Collapse
|
21
|
Shamsoddini A, Rasti Z, Kalantari M, Hollisaz MT, Sobhani V, Dalvand H, Bakhshandeh-Bali MK. The impact of Kinesio taping technique on children with cerebral palsy. IRANIAN JOURNAL OF NEUROLOGY 2016; 15:219-227. [PMID: 28435631 PMCID: PMC5392196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/03/2016] [Indexed: 11/12/2022]
Abstract
Cerebral palsy (CP) is the most common movement disorder in children that is associated with life-long disability and multiple impairments. The clinical manifestations of CP vary among children. CP is accompanied by a wide range of problems and has a broad spectrum. Children with CP demonstrate poor fine and dross motor function due to psychomotor disturbances. Early rehabilitation programs are essential for children with CP and should be appropriate for the age and functional condition of the patients. Kinesio taping (KT) technique is a relatively new technique applied in rehabilitation programs of CP. This article reviews the effects of KT techniques on improving motor skills in children with CP. In this study, we used keywords "cerebral palsy, Kinesio Tape, KT and Taping" in the national and international electronic databases between 1999 and 2016. Out of the 43 articles obtained, 21 studies met the inclusion criteria. There are several different applications about KT technique in children with CP. Review of the literature demonstrated that the impact of this technique on gross and fine motor function and dynamic activities is more effective than postural and static activities. Also this technique has more effectiveness in the child at higher developmental and motor stages. The majority of consistent findings showed that KT technique as part of a multimodal therapy program can be effective in the rehabilitation of children with CP to improve motor function and dynamic activities especially in higher developmental and motor stages.
Collapse
Affiliation(s)
- Alireza Shamsoddini
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zabihallah Rasti
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Minoo Kalantari
- Department of Occupational Therapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Hollisaz
- Department of Physical Medicine and Rehabilitation, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahid Sobhani
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Dalvand
- Department of Occupational Therapy, School of Rehabilitation, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Kazem Bakhshandeh-Bali
- Pediatric Neurology Center of Excellence, Department of Pediatric Neurology, Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Mihara M, Miyai I. Review of functional near-infrared spectroscopy in neurorehabilitation. NEUROPHOTONICS 2016; 3:031414. [PMID: 27429995 PMCID: PMC4940623 DOI: 10.1117/1.nph.3.3.031414] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/21/2016] [Indexed: 05/23/2023]
Abstract
We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain-computer interface and neurofeedback.
Collapse
Affiliation(s)
- Masahito Mihara
- Osaka University, Graduate School of Medicine, Department of Neurology, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Osaka University, Global Center for Medical Engineering and Informatics, Division of Clinical Neuroengineering, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ichiro Miyai
- Morinomiya Hospital, Neurorehabilitation Research Institute, 2-1-88 Morinomiya, Jyoto-ku, Osaka, Osaka 536-0025, Japan
| |
Collapse
|
23
|
Shierk A, Lake A, Haas T. Review of Therapeutic Interventions for the Upper Limb Classified by Manual Ability in Children with Cerebral Palsy. Semin Plast Surg 2016; 30:14-23. [PMID: 26869859 DOI: 10.1055/s-0035-1571256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this literature review was to assemble an inventory of intervention strategies utilized for children diagnosed with cerebral palsy (CP) based on the Manual Ability Classification System (MACS). The purpose of the inventory is to guide physicians and therapists in intervention selection aimed at improving upper limb function in children with CP. The following databases were searched: CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane Database of Systematic Reviews, ERIC (Educational Research Information Center), Google Scholar, OTSeeker (Occupational Therapy Systematic Evaluation of Evidence), OVID (Ovid Technologies, Inc.), and PubMed. Inclusion criteria were whether the study (1) identified MACS levels of participants, and (2) addressed the effectiveness of intervention on upper limb function. Overall, 74 articles met the inclusion criteria. The summarized data identified 10 categories of intervention. The majority of participants across studies were MACS level II. The most frequently cited interventions were constraint-induced movement therapy (CIMT), bimanual training, and virtual reality and computer-based training. Multiple interventions demonstrated effectiveness for upper limb improvement at each MACS level. However, there is a need for additional research for interventions appropriate for MACS levels IV and V. To fully develop an intervention inventory based on manual ability, future studies need to report MACS levels of participants, particularly for splinting and therapy interventions used in combination with surgery.
Collapse
Affiliation(s)
- Angela Shierk
- Occupational Therapy, Texas Scottish Rite Hospital for Children, Dallas, Texas
| | - Amy Lake
- Occupational Therapy, Texas Scottish Rite Hospital for Children, Dallas, Texas
| | - Tara Haas
- Physical Medicine and Rehabilitation, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
24
|
Friel KM, Kuo HC, Fuller J, Ferre CL, Brandão M, Carmel JB, Bleyenheuft Y, Gowatsky JL, Stanford AD, Rowny SB, Luber B, Bassi B, Murphy DLK, Lisanby SH, Gordon AM. Skilled Bimanual Training Drives Motor Cortex Plasticity in Children With Unilateral Cerebral Palsy. Neurorehabil Neural Repair 2016; 30:834-44. [PMID: 26867559 DOI: 10.1177/1545968315625838] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training versus unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9.5; 12 males) received therapy in a day camp setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n = 10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n = 10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor Test of Hand Function (JTTHF), and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation to map the representation of first dorsal interosseous and flexor carpi radialis muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; P < .05) and hand dexterity (JTTHF; P < .001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (P < .01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP.
Collapse
Affiliation(s)
- Kathleen M Friel
- Burke-Cornell Medical Research Institute, White Plains, NY, USA Teachers College, Columbia University, New York, NY, USA Weill Cornell Medical College, New York, NY, USA
| | | | - Jason Fuller
- Burke-Cornell Medical Research Institute, White Plains, NY, USA New York University, New York, NY, USA
| | | | - Marina Brandão
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jason B Carmel
- Burke-Cornell Medical Research Institute, White Plains, NY, USA Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | - Bruce Bassi
- Columbia University Medical Center, New York, NY, USA
| | | | - Sarah H Lisanby
- Division of Translational Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrew M Gordon
- Teachers College, Columbia University, New York, NY, USA Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
25
|
Motor Cortex Activity During Functional Motor Skills: An fNIRS Study. Brain Topogr 2015; 29:42-55. [PMID: 26243304 DOI: 10.1007/s10548-015-0443-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.
Collapse
|