1
|
Hu X, Duan Z, Yang Y, Tan Y, Zhou R, Xiao J, Zeng J, Wang J. High-quality color image restoration from a disturbed graded-index imaging system by deep neural networks. OPTICS EXPRESS 2023; 31:20616-20628. [PMID: 37381181 DOI: 10.1364/oe.485664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 06/30/2023]
Abstract
Imaging transmission plays an important role in endoscopic clinical diagnosis involved in modern medical treatment. However, image distortion due to various reasons has been a major obstacle to state-of-art endoscopic development. Here, as a preliminary study we demonstrate ultra-efficient recovery of exemplary 2D color images transmitted by a disturbed graded-index (GRIN) imaging system through the deep neural networks (DNNs). Indeed, the GRIN imaging system can preserve analog images through the GRIN waveguides with high quality, while the DNNs serve as an efficient tool for imaging distortion correction. Combining GRIN imaging systems and DNNs can greatly reduce the training process and achieve ideal imaging transmission. We consider imaging distortion under different realistic conditions and use both pix2pix and U-net type DNNs to restore the images, indicating the suitable network in each condition. This method can automatically cleanse the distorted images with superior robustness and accuracy, which can potentially be used in minimally invasive medical applications.
Collapse
|
2
|
Liang H, Li TJ, Luo J, Zhao J, Wang J, Wu D, Luo ZC, Shen Y. Optical focusing inside scattering media with iterative time-reversed ultrasonically encoded near-infrared light. OPTICS EXPRESS 2023; 31:18365-18378. [PMID: 37381549 DOI: 10.1364/oe.491462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/03/2023] [Indexed: 06/30/2023]
Abstract
Focusing light inside scattering media is a long-sought goal in optics. Time-reversed ultrasonically encoded (TRUE) focusing, which combines the advantages of biological transparency of the ultrasound and the high efficiency of digital optical phase conjugation (DOPC) based wavefront shaping, has been proposed to tackle this problem. By invoking repeated acousto-optic interactions, iterative TRUE (iTRUE) focusing can further break the resolution barrier imposed by the acoustic diffraction limit, showing great potential for deep-tissue biomedical applications. However, stringent requirements on system alignment prohibit the practical use of iTRUE focusing, especially for biomedical applications at the near-infrared spectral window. In this work, we fill this blank by developing an alignment protocol that is suitable for iTRUE focusing with a near-infrared light source. This protocol mainly contains three steps, including rough alignment with manual adjustment, fine-tuning with a high-precision motorized stage, and digital compensation through Zernike polynomials. Using this protocol, an optical focus with a peak-to-background ratio (PBR) of up to 70% of the theoretical value can be achieved. By using a 5-MHz ultrasonic transducer, we demonstrated the first iTRUE focusing using near-infrared light at 1053 nm, enabling the formation of an optical focus inside a scattering medium composed of stacked scattering films and a mirror. Quantitatively, the size of the focus decreased from roughly 1 mm to 160 µm within a few consecutive iterations and a PBR up to 70 was finally achieved. We anticipate that the capability of focusing near-infrared light inside scattering media, along with the reported alignment protocol, can be beneficial to a variety of applications in biomedical optics.
Collapse
|
3
|
Luo J, Liu Y, Wu D, Xu X, Shao L, Feng Y, Pan J, Zhao J, Shen Y, Li Z. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. SCIENCE ADVANCES 2022; 8:eadd9158. [PMID: 36525498 DOI: 10.1126/sciadv.add9158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Focusing light deep inside live scattering tissue promises to revolutionize biophotonics by enabling deep tissue noninvasive optical imaging, manipulation, and therapy. By combining with guide stars, wavefront shaping is emerging as a powerful tool to make scattering media optically transparent. However, for in vivo biomedical applications, the speeds of existing techniques are still too slow to accommodate the fast speckle decorrelation of live tissue. To address this key bottleneck, we develop a quaternary phase encoding scheme to enable single-exposure time-reversed ultrasonically encode optical focusing with full-phase modulations. Specifically, we focus light inside dynamic scattering media with an average mode time down to 29 ns, which indicates that more than 104 effective spatial modes can be controlled within 1 millisecond. With this technique, we demonstrate in vivo light focusing in between a highly opaque adult zebrafish of 5.1 millimeters in thickness and a ground glass diffuser. Our work presents an important step toward in vivo deep tissue applications of wavefront shaping.
Collapse
Affiliation(s)
- Jiawei Luo
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Daixuan Wu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lijie Shao
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuanhua Feng
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhao
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
4
|
Liu L, Liang W, Qu Y, He Q, Shao R, Ding C, Yang J. Anti-scattering light focusing with full-polarization digital optical phase conjugation based on digital micromirror devices. OPTICS EXPRESS 2022; 30:31614-31622. [PMID: 36242240 DOI: 10.1364/oe.467444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The high resolution of optical imaging and optogenetic stimulation in the deep tissue requires focusing light against strong scattering with high contrast. Digital optical phase conjugation (DOPC) has emerged recently as a promising solution for this requirement, because of its short latency. A digital micromirror device (DMD) in the implementation of DOPC enables a large number of modulation modes and a high speed of modulation both of which are important when dealing with a highly dynamic scattering medium. Here, we propose full-polarization DOPC (fpDOPC) in which two DMDs simultaneously modulate the two orthogonally polarized components of the optical field, respectively, to mitigate the effect of depolarization caused by strong scattering. We designed a simple system to overcome the difficulty of alignment encountered when modulating two polarized components independently. Our simulation and experiment showed that fpDOPC could generate a high-contrast focal spot, even though the polarization of light had been highly randomized by scattering. In comparison with the conventional method of modulating the polarization along a particular direction, fpDOPC can improve the peak to background ratio of the focal spot by a factor of two. This new technique has good potential in applications such as high-contrast light focusing in vivo.
Collapse
|
5
|
Hacker L, Wabnitz H, Pifferi A, Pfefer TJ, Pogue BW, Bohndiek SE. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat Biomed Eng 2022; 6:541-558. [PMID: 35624150 DOI: 10.1038/s41551-022-00890-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.
Collapse
Affiliation(s)
- Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK. .,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
Wang J, Liang H, Luo J, Ye B, Shen Y. Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode. OPTICS EXPRESS 2021; 29:30961-30977. [PMID: 34614811 DOI: 10.1364/oe.438736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Time-reversed ultrasonically-encoded (TRUE) optical focusing is a promising technique to realize deep-tissue optical focusing by employing ultrasonic guide stars. However, the sizes of the ultrasound-induced optical focus are determined by the wavelengths of the ultrasound, which are typically tens of microns. To satisfy the need for high-resolution imaging and manipulation, iterative TRUE (iTRUE) was proposed to break this limit by triggering repeated interactions between light and ultrasound and compressing the optical focus. However, even for the best result reported to date, the resolutions along the ultrasound axial and lateral direction were merely improved by only 2-fold to 3-fold. This observation leads to doubt whether iTRUE can be effective in reducing the size of the optical focus. In this work, we address this issue by developing a physical model to investigate iTRUE in a reflection mode numerically. Our numerical results show that, under the influence of shot noises, iTRUE can reduce the optical focus to a single speckle within a finite number of iterations. This model also allows numerical investigations of iTRUE in detail. Quantitatively, based on the parameters set, we show that the optical focus can be reduced to a size of 1.6 µm and a peak-to-background ratio over 104 can be realized. It is also shown that iTRUE cannot significantly advance the focusing depth. We anticipate that this work can serve as useful guidance for optimizing iTRUE system for future biomedical applications, including deep-tissue optical imaging, laser surgery, and optogenetics.
Collapse
|
8
|
Zhang R, Du J, He Y, Yuan D, Luo J, Wu D, Ye B, Luo ZC, Shen Y. Characterization of the spectral memory effect of scattering media. OPTICS EXPRESS 2021; 29:26944-26954. [PMID: 34615118 DOI: 10.1364/oe.434331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The optical memory effect is an interesting phenomenon exploited for deep-tissue optical imaging. Besides the widely studied memory effects in the spatial domain to accelerate point scanning speed, the spectral memory effect is also important in multispectral wavefront shaping. Although being theoretically analyzed for decades, quantitative studies of spectral memory effect on a variety of scattering media including biological tissue were rarely reported. In practice, quantifying the range of the spectral memory effect is essential in efficiently shaping broadband light, as it determines the optimum spectral resolution in realizing spatiotemporal focus through scattering media. In this work, we analyze the spectral memory effect based on a diffusion model. An explicit analytical expression involves the illumination wavelength, the diffusion constant, and the sample thickness is derived, which is consistent with the one in the literature. We experimentally quantified the range of spectral correlation for two types of biological tissue, tissue-mimicking phantoms with different concentrations, and diffusers. Specifically, for tissue-mimicking phantoms with calibrated scattering parameters, we show that a correction factor of more than 20 should be inserted, indicating that the range of spectral correlation is much larger than one would expect. This finding is particularly beneficial to multispectral wavefront shaping, as stringent requirements on the spectral resolution could be alleviated by at least one order of magnitude.
Collapse
|
9
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
10
|
Feng Q, Yang F, Xu X, Zhang B, Ding Y, Liu Q. Multi-objective optimization genetic algorithm for multi-point light focusing in wavefront shaping. OPTICS EXPRESS 2019; 27:36459-36473. [PMID: 31873425 DOI: 10.1364/oe.27.036459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
We introduce a new multi-objective genetic algorithm for wavefront shaping and realize controllable multi-point light focusing through scattering medium. Different from previous single-objective optimization genetic algorithms, our algorithm named Non-dominated Sorting Genetic Algorithm II based on hybrid optimization scheme (NSGA2-H) can make all focus points have uniform intensity while ensuring that their enhancement is as high as possible. We demonstrate the characteristics of NSGA2-H through simulations and experiments in amplitude optimization, analyze its optimization mechanisms and show its powerful optical control capability in uniform intensity focusing and even in customizable intensity focusing. This research will be expected to further promote future practical applications based on multi-point focusing of wavefront shaping, especially in optical trapping and optogenetics.
Collapse
|
11
|
Li J, Wei H, Li Y. Beam drift reduction by straightness measurement based on a digital optical phase conjugation. APPLIED OPTICS 2019; 58:7636-7642. [PMID: 31674420 DOI: 10.1364/ao.58.007636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
One of the greatest challenges of long distance measurement is the beam drift caused by the air refractive index gradient. It has been established in many researches that optical phase conjugation (OPC) can be used to compensate for the beam bending. However, this method is limited to responding speed, phase conjugate reflectivity, flexibility, and specific source and medium. To reduce beam drift, instead of OPC, this study applies a digital OPC (DOPC) method, which is also creatively applied to collimation and flatness measurements. The main devices in the wavefront correction unit are the spatial light modulator and the Shack-Hartmann wavefront sensor. For the straightness measurement unit, the collimation and flatness of the optical rail are measured through the prism system and a position-sensing detector. After wavefront compensation, the root mean square is decreased from 0.0029λ to 0.0005λ. The beam drift is decreased from 1.22 mm to 0.70 mm in the x direction and from 2.49 mm to 1.55 mm in the y direction. The experimental data indicate that the straightness measurement system based on DOPC can effectively decrease the beam drift.
Collapse
|
12
|
Osnabrugge G, Amitonova LV, Vellekoop IM. Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback. OPTICS EXPRESS 2019; 27:11673-11688. [PMID: 31053010 DOI: 10.1364/oe.27.011673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Scattering prevents light from being focused in turbid media. The effect of scattering can be negated through wavefront shaping techniques when a localized form of feedback is available. Even in the absence of such a localized reporter, wavefront shaping can blindly form a single diffraction-limited focus when the feedback response is nonlinear. We developed and experimentally validated a model that accurately describes the statistics of this blind focusing process. We show that maximizing the nonlinear feedback signal only results in the formation of a focus when a limited number of reporters are contributing to the signal. Using our model, we can calculate the minimal requirements for the number of controlled spatial light modulator segments and the order of nonlinearity to blindly focus light through strongly scattering media.
Collapse
|
13
|
Gataric M, Gordon GSD, Renna F, Ramos AGCP, Alcolea MP, Bohndiek SE. Reconstruction of Optical Vector-Fields With Applications in Endoscopic Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:955-967. [PMID: 30334753 PMCID: PMC6456146 DOI: 10.1109/tmi.2018.2875875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 05/03/2023]
Abstract
We introduce a framework for the reconstruction of the amplitude, phase, and polarization of an optical vector-field using measurements acquired by an imaging device characterized by an integral transform with an unknown spatially variant kernel. By incorporating effective regularization terms, this new approach is able to recover an optical vector-field with respect to an arbitrary representation system, which may be different from the one used for device calibration. In particular, it enables the recovery of an optical vector-field with respect to a Fourier basis, which is shown to yield indicative features of increased scattering associated with tissue abnormalities. We demonstrate the effectiveness of our approach using synthetic holographic images and biological tissue samples in an experimental setting, where the measurements of an optical vector-field are acquired by a multicore fiber endoscope, and observe that indeed the recovered Fourier coefficients are useful in distinguishing healthy tissues from tumors in early stages of oesophageal cancer.
Collapse
|
14
|
Yu Z, Xia M, Li H, Zhong T, Zhao F, Deng H, Li Z, Li D, Wang D, Lai P. Implementation of digital optical phase conjugation with embedded calibration and phase rectification. Sci Rep 2019; 9:1537. [PMID: 30733574 PMCID: PMC6367509 DOI: 10.1038/s41598-018-38326-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022] Open
Abstract
Focused and controllable optical delivery beyond the optical diffusion limit in biological tissue has been desired for long yet considered challenging. Digital optical phase conjugation (DOPC) has been proven promising to tackle this challenge. Its broad applications, however, have been hindered by the system’s complexity and rigorous requirements, such as the optical beam quality, the pixel match between the wavefront sensor and wavefront modulator, as well as the flatness of the modulator’s active region. In this paper, we present a plain yet reliable DOPC setup with an embedded four-phase, non-iterative approach that can rapidly compensate for the wavefront modulator’s surface curvature, together with a non-phase-shifting in-line holography method for optical phase conjugation in the absence of an electro-optic modulator (EOM). In experiment, with the proposed setup the peak-to-background ratio (PBR) of optical focusing through a standard ground glass in experiment can be improved from 460 up to 23,000, while the full width at half maximum (FWHM) of the focal spot can be reduced from 50 down to 10 μm. The focusing efficiency, as measured by the value of PBR, reaches nearly 56.5% of the theoretical value. Such a plain yet efficient implementation, if further engineered, may potentially boost DOPC suitable for broader applications.
Collapse
Affiliation(s)
- Zhipeng Yu
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, Hong Kong.,Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Meiyun Xia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Huanhao Li
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, Hong Kong.,Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Tianting Zhong
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, Hong Kong.,Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Fangyuan Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Hao Deng
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zihao Li
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Deyu Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Daifa Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Puxiang Lai
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, Hong Kong. .,Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen, 518057, China.
| |
Collapse
|
15
|
Hemphill AS, Shen Y, Hwang J, Wang LV. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-11. [PMID: 30156064 PMCID: PMC6444113 DOI: 10.1117/1.jbo.24.3.031004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/06/2018] [Indexed: 05/23/2023]
Abstract
Digital optical phase conjugation (DOPC) enables many optical applications by permitting focusing of light through scattering media. However, DOPC systems require precise alignment of all optical components, particularly of the spatial light modulator (SLM) and camera, in order to accurately record the wavefront and perform playback through the use of time-reversal symmetry. We present a digital compensation technique to optimize the alignment of the SLM in five degrees of freedom, permitting focusing through thick scattering media with a thickness of 5 mm and transport scattering coefficient of 2.5 mm - 1 while simultaneously improving focal quality, as quantified by the peak-to-background ratio, by several orders of magnitude over an unoptimized alignment.
Collapse
Affiliation(s)
- Ashton S. Hemphill
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Yuecheng Shen
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| | - Jeeseong Hwang
- National Institute of Standards and Technology, Quantum Electromagnetics Division, Boulder, Colorado, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
16
|
Zhang CJ, Wang CX, Gao ZY, Ke C, Fu LM, Zhang Z, Wang Y, Zhang JP. Wide field of view, real time bioimaging apparatus for noninvasive analysis of nanocarrier pharmacokinetics in living model animals. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:085105. [PMID: 30184676 DOI: 10.1063/1.5026852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Understanding nanocarrier pharmacokinetics is crucial for the emerging nanopharmacy, which highly demands noninvasive and real-time visualization of the in vivo dynamics of nanocarriers. To this end, we have developed a 2-photon excitation and time-resolved (TPE-TR) bioimaging apparatus for the analysis of the spatial distribution and temporal evolution of nanocarriers in living model animals. The specific polymeric nanocarrier, Eu@pmma-maa doped with Eu-complexes luminescing in long persistence at ∼615 nm upon near-infrared 2-photon excitation, allows the complete rejection of tissue autofluorescence by selective luminescence detection. This together with a unique beam shaping scheme for homogeneous line excitation, a delicate timing strategy for single-shot line scanning, and an equal optical path design for in-plane scan endows the TPE-TR apparatus with the following prominent features: an imaging depth of ∼10 mm, a field of view (FOV) of 32 × 32 mm2 along with a horizontal resolution of ∼60 μm, a sub-10 s frame time, and negligible laser heating effect. In addition, a combination of the in-plane line scan with the 3D scan of a model animal offers the convenience for examining an interested FOV with a millimeter vertical resolution. Application of TPE-TR bioimaging to a living mouse reveals rich information on the dynamics of nanocarriers including the spatial distribution and temporal evolution and the kinetics of domains of interest. The noninvasive TPE-TR bioimaging instrumentation with a wide FOV and a large imaging depth will find applications in the pharmaceutical development of nanocarriers and relevant research fields.
Collapse
Affiliation(s)
- Chao-Jie Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Chuan-Xi Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhi-Yue Gao
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Can Ke
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhuo Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
17
|
Toda S, Kato Y, Kudo N, Shimizu K. Effects of digital phase-conjugate light intensity on time-reversal imaging through animal tissue. BIOMEDICAL OPTICS EXPRESS 2018; 9:1570-1581. [PMID: 29675302 PMCID: PMC5905906 DOI: 10.1364/boe.9.001570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.
Collapse
Affiliation(s)
- Sogo Toda
- Graduate School of Information Science and Technology, Hokkaido University, North 14 West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Yuji Kato
- Graduate School of Information Science and Technology, Hokkaido University, North 14 West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Nobuki Kudo
- Graduate School of Information Science and Technology, Hokkaido University, North 14 West 9, Kita-ku, Sapporo, 060-0814, Japan
| | - Koichi Shimizu
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
18
|
Yu Z, Huangfu J, Zhao F, Xia M, Wu X, Niu X, Li D, Lai P, Wang D. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media. Sci Rep 2018; 8:2927. [PMID: 29440682 PMCID: PMC5811554 DOI: 10.1038/s41598-018-21258-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Manipulating and focusing light deep inside biological tissue and tissue-like complex media has been desired for long yet considered challenging. One feasible strategy is through optical wavefront engineering, where the optical scattering-induced phase distortions are time reversed or pre-compensated so that photons travel along different optical paths interfere constructively at the targeted position within a scattering medium. To define the targeted position, an internal guidestar is needed to guide or provide a feedback for wavefront engineering. It could be injected or embedded probes such as fluorescence or nonlinear microspheres, ultrasonic modulation, as well as absorption perturbation. Here we propose to use a magnetically controlled optical absorbing microsphere as the internal guidestar. Using a digital optical phase conjugation system, we obtained sharp optical focusing within scattering media through time-reversing the scattered light perturbed by the magnetic microsphere. Since the object is magnetically controlled, dynamic optical focusing is allowed with a relatively large field-of-view by scanning the magnetic field externally. Moreover, the magnetic microsphere can be packaged with an organic membrane, using biological or chemical means to serve as a carrier. Therefore, the technique may find particular applications for enhanced targeted drug delivery, and imaging and photoablation of angiogenic vessels in tumours.
Collapse
Affiliation(s)
- Zhipeng Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Jiangtao Huangfu
- Laboratory of Applied Research on Electromagnetics (ARE), Zhejiang University, Hangzhou, 310027, China
| | - Fangyuan Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Meiyun Xia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Xi Wu
- Laboratory of Applied Research on Electromagnetics (ARE), Zhejiang University, Hangzhou, 310027, China
| | - Xufeng Niu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Deyu Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, China.
| | - Daifa Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China.
| |
Collapse
|
19
|
Liu Y, Shen Y, Ruan H, Brodie FL, Wong TTW, Yang C, Wang LV. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-4. [PMID: 29322749 PMCID: PMC5762002 DOI: 10.1117/1.jbo.23.1.010501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.
Collapse
Affiliation(s)
- Yan Liu
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Yuecheng Shen
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Haowen Ruan
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Frank L. Brodie
- University of California, San Francisco, Department of Ophthalmology, San Francisco, California, United States
| | - Terence T. W. Wong
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| |
Collapse
|
20
|
Wavefront Shaping and Its Application to Enhance Photoacoustic Imaging. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since its introduction to the field in mid-1990s, photoacoustic imaging has become a fast-developing biomedical imaging modality with many promising potentials. By converting absorbed diffused light energy into not-so-diffused ultrasonic waves, the reconstruction of the ultrasonic waves from the targeted area in photoacoustic imaging leads to a high-contrast sensing of optical absorption with ultrasonic resolution in deep tissue, overcoming the optical diffusion limit from the signal detection perspective. The generation of photoacoustic signals, however, is still throttled by the attenuation of photon flux due to the strong diffusion effect of light in tissue. Recently, optical wavefront shaping has demonstrated that multiply scattered light could be manipulated so as to refocus inside a complex medium, opening up new hope to tackle the fundamental limitation. In this paper, the principle and recent development of photoacoustic imaging and optical wavefront shaping are briefly introduced. Then we describe how photoacoustic signals can be used as a guide star for in-tissue optical focusing, and how such focusing can be exploited for further enhancing photoacoustic imaging in terms of sensitivity and penetration depth. Finally, the existing challenges and further directions towards in vivo applications are discussed.
Collapse
|
21
|
Ruan H, Brake J, Robinson JE, Liu Y, Jang M, Xiao C, Zhou C, Gradinaru V, Yang C. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. SCIENCE ADVANCES 2017; 3:eaao5520. [PMID: 29226248 PMCID: PMC5722648 DOI: 10.1126/sciadv.aao5520] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/08/2017] [Indexed: 05/22/2023]
Abstract
Noninvasive light focusing deep inside living biological tissue has long been a goal in biomedical optics. However, the optical scattering of biological tissue prevents conventional optical systems from tightly focusing visible light beyond several hundred micrometers. The recently developed wavefront shaping technique time-reversed ultrasonically encoded (TRUE) focusing enables noninvasive light delivery to targeted locations beyond the optical diffusion limit. However, until now, TRUE focusing has only been demonstrated inside nonliving tissue samples. We present the first example of TRUE focusing in 2-mm-thick living brain tissue and demonstrate its application for optogenetic modulation of neural activity in 800-μm-thick acute mouse brain slices at a wavelength of 532 nm. We found that TRUE focusing enabled precise control of neuron firing and increased the spatial resolution of neuronal excitation fourfold when compared to conventional lens focusing. This work is an important step in the application of TRUE focusing for practical biomedical uses.
Collapse
Affiliation(s)
- Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Joshua Brake
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - J. Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yan Liu
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mooseok Jang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chunyi Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Hemphill AS, Shen Y, Liu Y, Wang LV. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. APPLIED PHYSICS LETTERS 2017; 111:221109. [PMID: 29249832 PMCID: PMC5709093 DOI: 10.1063/1.5009113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 05/28/2023]
Abstract
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Collapse
Affiliation(s)
| | - Yuecheng Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
23
|
Hemphill AS, Shen Y, Liu Y, Wang LV. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. APPLIED PHYSICS LETTERS 2017. [PMID: 29249832 DOI: 10.1063/1.4994311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Collapse
Affiliation(s)
| | - Yuecheng Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
24
|
Ruan H, Haber T, Liu Y, Brake J, Kim J, Berlin JM, Yang C. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. OPTICA 2017; 4:1337-1343. [PMID: 29623290 PMCID: PMC5881932 DOI: 10.1364/optica.4.001337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Optical scattering has traditionally limited the ability to focus light inside scattering media such as biological tissue. Recently developed wavefront shaping techniques promise to overcome this limit by tailoring an optical wavefront to constructively interfere at a target location deep inside scattering media. To find such a wavefront solution, a "guide-star" mechanism is required to identify the target location. However, developing guidestars of practical usefulness is challenging, especially in biological tissue, which hinders the translation of wavefront shaping techniques. Here, we demonstrate a guidestar mechanism that relies on magnetic modulation of small particles. This guidestar method features an optical modulation efficiency of 29% and enables micrometer-scale focusing inside biological tissue with a peak intensity-to-background ratio (PBR) of 140; both numbers are one order of magnitude higher than those achieved with the ultrasound guidestar, a popular guidestar method. We also demonstrate that light can be focused on cells labeled with magnetic particles, and to different target locations by magnetically controlling the position of a particle. Since magnetic fields have a large penetration depth even through bone structures like the skull, this optical focusing method holds great promise for deep-tissue applications such as optogenetic modulation of neurons, targeted light-based therapy, and imaging.
Collapse
Affiliation(s)
- Haowen Ruan
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Corresponding author:
| | - Tom Haber
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California 91010, USA
| | - Yan Liu
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Joshua Brake
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jinho Kim
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jacob M. Berlin
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California 91010, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
25
|
Yang J, Shen Y, Liu Y, Hemphill AS, Wang LV. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. APPLIED PHYSICS LETTERS 2017; 111:201108. [PMID: 29203931 PMCID: PMC5690666 DOI: 10.1063/1.5005831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/27/2017] [Indexed: 05/13/2023]
Abstract
Optical scattering prevents light from being focused through thick biological tissue at depths greater than ∼1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.
Collapse
Affiliation(s)
| | | | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St Louis, Campus Box 1097, One Brookings Drive, St Louis, Missouri 63130, USA
| | - Ashton S Hemphill
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St Louis, Campus Box 1097, One Brookings Drive, St Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
26
|
Xu J, Ruan H, Liu Y, Zhou H, Yang C. Focusing light through scattering media by transmission matrix inversion. OPTICS EXPRESS 2017; 25:27234-27246. [PMID: 29092201 PMCID: PMC5941990 DOI: 10.1364/oe.25.027234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Focusing light through scattering media has broad applications in optical imaging, manipulation and therapy. The contrast of the focus can be quantified by peak-to-background intensity ratio (PBR). Here, we theoretically and numerically show that by using a transmission matrix inversion method to achieve focusing, within a limited field of view and under a low noise condition in transmission matrix measurements, the PBR of the focus can be higher than that achieved by conventional methods such as optical phase conjugation or feedback-based wavefront shaping. Experimentally, using a phase-modulation spatial light modulator, we increase the PBR by 66% over that achieved by conventional methods based on phase conjugation. In addition, we demonstrate that, within a limited field of view and under a low noise condition in transmission matrix measurements, our matrix inversion method enables light focusing to multiple foci with greater fidelity than those of conventional methods.
Collapse
|
27
|
Jang M, Yang C, Vellekoop I. Optical Phase Conjugation with Less Than a Photon per Degree of Freedom. PHYSICAL REVIEW LETTERS 2017; 118:093902. [PMID: 28306287 PMCID: PMC5508849 DOI: 10.1103/physrevlett.118.093902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 05/19/2023]
Abstract
We demonstrate experimentally that optical phase conjugation can be used to focus light through strongly scattering media even when far less than a photon per optical degree of freedom is detected. We found that the best achievable intensity contrast is equal to the total number of detected photons, as long as the resolution of the system is high enough. Our results demonstrate that phase conjugation can be used even when the photon budget is extremely low, such as in high-speed focusing through dynamic media or imaging deep inside tissue.
Collapse
Affiliation(s)
- M. Jang
- Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - C. Yang
- Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - I.M. Vellekoop
- Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
28
|
Liu Y, Ma C, Shen Y, Shi J, Wang LV. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. OPTICA 2017; 4:280-288. [PMID: 28815194 PMCID: PMC5555171 DOI: 10.1364/optica.4.000280] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Wavefront shaping based on digital optical phase conjugation (DOPC) focuses light through or inside scattering media, but the low speed of DOPC prevents it from being applied to thick, living biological tissue. Although a fast DOPC approach was recently developed, the reported single-shot wavefront measurement method does not work when the goal is to focus light inside, instead of through, highly scattering media. Here, using a ferroelectric liquid crystal based spatial light modulator, we develop a simpler but faster DOPC system that focuses light not only through, but also inside scattering media. By controlling 2.6 × 105 optical degrees of freedom, our system focused light through 3 mm thick moving chicken tissue, with a system latency of 3.0 ms. Using ultrasound-guided DOPC, along with a binary wavefront measurement method, our system focused light inside a scattering medium comprising moving tissue with a latency of 6.0 ms, which is one to two orders of magnitude shorter than those of previous digital wavefront shaping systems. Since the demonstrated speed approaches tissue decorrelation rates, this work is an important step toward in vivo deep-tissue non-invasive optical imaging, manipulation, and therapy.
Collapse
Affiliation(s)
- Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Cheng Ma
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Yuecheng Shen
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Junhui Shi
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
29
|
Shen Y, Liu Y, Ma C, Wang LV. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media. OPTICA 2017; 4:97-102. [PMID: 28670607 PMCID: PMC5493046 DOI: 10.1364/optica.4.000097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optical time-reversal techniques are being actively developed to focus light through or inside opaque scattering media. When applied to biological tissue, these techniques promise to revolutionize biophotonics by enabling deep-tissue non-invasive optical imaging, optogenetics, optical tweezing, and phototherapy. In all previous optical time-reversal experiments, the scattered light field was well-sampled during wavefront measurement and wavefront reconstruction, following the Nyquist sampling criterion. Here, we overturn this conventional practice by demonstrating that even when the scattered field is under-sampled, light can still be focused through or inside scattering media. Even more surprisingly, we show both theoretically and experimentally that the focus achieved by under-sampling can be one order of magnitude brighter than that achieved under the well-sampling conditions used in previous works, where 3×3 to 5×5 pixels were used to sample one speckle grain on average. Moreover, sub-Nyquist sampling improves the signal-to-noise ratio and the collection efficiency of the scattered light. We anticipate that this newly explored under-sampling scheme will transform the understanding of optical time reversal and boost the performance of optical imaging, manipulation, and communication through opaque scattering media.
Collapse
Affiliation(s)
- Yuecheng Shen
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| | - Cheng Ma
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| | - Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, USA, 63130
| |
Collapse
|
30
|
Fernandes DA, Fernandes DD, Li Y, Wang Y, Zhang Z, Rousseau D, Gradinaru CC, Kolios MC. Synthesis of Stable Multifunctional Perfluorocarbon Nanoemulsions for Cancer Therapy and Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10870-10880. [PMID: 27564412 DOI: 10.1021/acs.langmuir.6b01867] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanotechnology provides a promising platform for drug-delivery in medicine. Nanostructured materials can be designed with desired superparamagnetic or fluorescent properties in conjunction with biochemically functionalized moieties (i.e., antibodies, peptides, and small molecules) to actively bind to target sites. These multifunctional properties make them suitable agents for multimodal imaging, diagnosis, and therapy. Perfluorohexane nanoemulsions (PFH-NEs) are novel drug-delivery vehicles and contrast agents for ultrasound and photoacoustic imaging of cancer in vivo, offering higher spatial resolution and deeper penetration of tissue when compared to conventional optical techniques. Compared to other theranostic agents, our PFH-NEs are one of the smallest of their kind (<100 nm), exhibit minimal aggregation, long-term stability at physiological conditions, and provide a noninvasive cancer imaging and therapy alternative for patients. Here, we show, using high-resolution imaging and correlative techniques, that our PFH-NEs, when in tandem with silica-coated gold nanoparticles (scAuNPs), can be used as a drug-loaded therapeutic via endocytosis and as a multimodal imaging agent for photoacoustic, ultrasound, and fluorescence imaging of tumor growth.
Collapse
Affiliation(s)
| | - Dennis D Fernandes
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | - Yuchong Li
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | | - Zhenfu Zhang
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | | - Claudiu C Gradinaru
- Department of Physics, University of Toronto , 60 St George Streeet, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | |
Collapse
|