1
|
Ren J, Li J, Chen S, Liu Y, Ta D. Unveiling the potential of ultrasound in brain imaging: Innovations, challenges, and prospects. ULTRASONICS 2025; 145:107465. [PMID: 39305556 DOI: 10.1016/j.ultras.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 09/08/2024] [Indexed: 11/12/2024]
Abstract
Within medical imaging, ultrasound serves as a crucial tool, particularly in the realms of brain imaging and disease diagnosis. It offers superior safety, speed, and wider applicability compared to Magnetic Resonance Imaging (MRI) and X-ray Computed Tomography (CT). Nonetheless, conventional transcranial ultrasound applications in adult brain imaging face challenges stemming from the significant acoustic impedance contrast between the skull bone and soft tissues. Recent strides in ultrasound technology encompass a spectrum of advancements spanning tissue structural imaging, blood flow imaging, functional imaging, and image enhancement techniques. Structural imaging methods include traditional transcranial ultrasound techniques and ultrasound elastography. Transcranial ultrasound assesses the structure and function of the skull and brain, while ultrasound elastography evaluates the elasticity of brain tissue. Blood flow imaging includes traditional transcranial Doppler (TCD), ultrafast Doppler (UfD), contrast-enhanced ultrasound (CEUS), and ultrasound localization microscopy (ULM), which can be used to evaluate the velocity, direction, and perfusion of cerebral blood flow. Functional ultrasound imaging (fUS) detects changes in cerebral blood flow to create images of brain activity. Image enhancement techniques include full waveform inversion (FWI) and phase aberration correction techniques, focusing on more accurate localization and analysis of brain structures, achieving more precise and reliable brain imaging results. These methods have been extensively studied in clinical animal models, neonates, and adults, showing significant potential in brain tissue structural imaging, cerebral hemodynamics monitoring, and brain disease diagnosis. They represent current hotspots and focal points of ultrasound medical research. This review provides a comprehensive summary of recent developments in brain imaging technologies and methods, discussing their advantages, limitations, and future trends, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiahao Ren
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jian Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shili Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yang Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China; International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University in Zhejiang, Shaoxing 312000, China.
| | - Dean Ta
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Gao S, Li X, Han B. Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders. Expert Opin Drug Deliv 2024:1-18. [PMID: 39688950 DOI: 10.1080/17425247.2024.2444364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment. AREAS COVERED This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024. EXPERT OPINION Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.
Collapse
Affiliation(s)
- Shizhu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - Xin Li
- Orthopedic Medical Center, 2nd hospital of Jilin University, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
3
|
Rastegar G, Kianpour B, Pathour T, Salman MM, Sirsi SR. Development of hemoglobin microbubbles for acoustic blood oxygen sensing: A study on PEGylation and gas core modification for in vivo applications. Acta Biomater 2024:S1742-7061(24)00734-7. [PMID: 39672316 DOI: 10.1016/j.actbio.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The creation of innovative ultrasound contrast agents (UCAs) with the ability to monitor oxygen levels in real-time holds immense potential for advancing early diagnosis of various medical conditions such as hypoxic/reperfusion injury. In this study, we propose the development of oxygen sensitive UCAs using microbubbles composed of hemoglobin (HbMBs), which can function as sensors for blood oxygen levels. Previously, we performed a study highlighting the initial proof-of-concept efficacy of air-filled HbMBs in detecting oxygenation changes in vitro, offering a promising tool for clinically detecting tissue hypoxia. Nevertheless, a significant drawback of this approach is the potential for immune reactions and toxicity when hemoglobin is outside its natural red blood cell environment. Moreover, in vitro, HbMBs had low stability, with more than 90% decrease in their concentration after 120 minutes. Therefore, careful consideration of the surface properties and the gas core of HbMBs is crucial. Here, we formulated PEGylated HbMBs (PHbMBs), and investigated their stability, immunogenicity, and their acoustic response in oxygenated and deoxygenated media in vitro. We optimized PEGylated HbMBs (PHbMBs), showing a 42% reduction in immunogenicity and significantly improved stability in vitro, while maintaining their oxygen-binding and acoustic response. In vivo, PHbMBs demonstrated similar contrast enhancement to that of non-PEGylated MBs, demonstrating that PEGylation does not decrease HbMBs' acoustic signaling. Finally, changing the gas core from air to PFB increased PHbMBs' mean circulation time more than 11-fold, without diminishing their responsiveness to oxygen. Overall, the proposed oxygen sensitive PHbMBs offer a promising avenue for real-time acoustic detection of blood oxygen levels, paving the way for potential clinical applications in monitoring critically ill patients. STATEMENT OF SIGNIFICANCE: This research explores the emergent field of Acoustic Oxygen Imaging in vivo using hemoglobin-based microbubbles. This innovative contrast agent approach involves imaging using crosslinked biomaterial comprised of the hemoglobin protein, aiming to transform the way we monitor blood oxygen levels with ultrasound. This work fundamentally addresses central concerns of improving bubble stability and circulation life for eventual clinical use, while minimizing toxicity. Importantly, we demonstrate that PEGylation of hemoglobin microbubbles enhances their stability, reduces immunogenicity, and maintains acoustic responsiveness. The incorporation of perfluorobutane into the bubble core increases the longevity of these microbubbles in circulation, while sustaining their oxygen sensitivity. Favorable in vivo results highlight the potential of this technology in real-time acoustic detection of blood oxygen levels.
Collapse
Affiliation(s)
- Ghazal Rastegar
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas
| | - Bahareh Kianpour
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas
| | - Teja Pathour
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas
| | - Mohammad Musa Salman
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas
| | - Shashank R Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas.
| |
Collapse
|
4
|
Buehler A, Brown EL, Nedoschill E, Eckstein M, Ludwig P, Wachter F, Mandelbaum H, Raming R, Oraiopoulou M, Paulus L, Rother U, Friedrich O, Neurath MF, Woelfle J, Waldner MJ, Knieling F, Bohndiek SE, Regensburger AP. In Vivo Assessment of Deep Vascular Patterns in Murine Colitis Using Optoacoustic Mesoscopic Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404618. [PMID: 39439243 PMCID: PMC11615813 DOI: 10.1002/advs.202404618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Indexed: 10/25/2024]
Abstract
The analysis of vascular morphology and functionality enables the assessment of disease activity and therapeutic effects in various pathologies. Raster-scanning optoacoustic mesoscopy (RSOM) is an imaging modality that enables the visualization of superficial vascular networks in vivo. In murine models of colitis, deep vascular networks in the colon wall can be visualized by transrectal absorber guide raster-scanning optoacoustic mesoscopy (TAG-RSOM). In order to accelerate the implementation of this technology in translational studies of inflammatory bowel disease, an image-processing pipeline for TAG-RSOM data has been developed. Using optoacoustic data from a murine model of chemically-induced colitis, different image segmentation methods are compared for visualization and quantification of deep vascular patterns in terms of vascular network length and complexity, blood volume, and vessel diameter. The presented image-processing pipeline for TAG-RSOM enables label-free in vivo assessment of changes in the vascular network in murine colitis with broad applications for inflammatory bowel disease research.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Emma L. Brown
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus Eckstein
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Petra Ludwig
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Felix Wachter
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Roman Raming
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | | | - Lars‐Philip Paulus
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Maximilian J. Waldner
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E. Bohndiek
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCB2 0RECambridgeUnited Kingdom
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
5
|
Mao Q, Feng Y, Tao C, Liu X. Ultrasound-assisted aberration correction of transcranial photoacoustic imaging based on angular spectrum theory. PHOTOACOUSTICS 2024; 40:100665. [PMID: 39649139 PMCID: PMC11624500 DOI: 10.1016/j.pacs.2024.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/10/2024]
Abstract
To correct the refraction aberration induced by the skull in photoacoustic imaging, a method for phase distortion compensation is proposed based on the angular spectrum theory with the aid of ultrasonic signals. This method first updates the speed of sound distribution by iteratively performing aberration correction in the ultrasonic reconstruction. Then the speed of sound distribution obtained with ultrasound-assisted serves as prior knowledge to address phase distortion compensation by adjusting the phase shift factor of the wavefront in different media. Finally, the aberration-corrected ultrasonic-photoacoustic dual-modality image can be obtained. Numerical simulations and phantom experiments confirm the effectiveness of this method. Specifically, in simulations, the position error of the proposed method is reduced from -13.61 % to 1.27 % in depth compared to the method based on the reconstruction with constant speed. Moreover, a real ex-vivo rabbit skull experiment illustrates the potential biological application of the proposed method in transcranial photoacoustic imaging.
Collapse
Affiliation(s)
- Qiuqin Mao
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingjie Feng
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chao Tao
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaojun Liu
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Li Y, Lin Y, Li B, Feng T, Li D, Li Y, Wu Y, Ta D. Enhancing Ischemic Stroke Evaluation by a Model-Based Photoacoustic Tomography Algorithm. JOURNAL OF BIOPHOTONICS 2024:e202400203. [PMID: 39438435 DOI: 10.1002/jbio.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Ischemic stroke (IS) is characterized by the sudden interruption of blood supply to the brain, resulting in neurological impairments and even mortality. Photoacoustic computed tomography (PACT) integrates the high contrast of optical imaging and the penetration of ultrasound imaging, enabling non-invasive IS evaluation. However, the image reconstruction quality significantly affects the oxyhemoglobin saturation (sO2) estimation. This study investigates a model-based with total variation minimized by augmented Lagrangian and alternating direction (MB-TVAL3) approach and compared it with the widely used back-projection (BP) and delay-and-sum (DAS) algorithms. Both simulations and in vivo experiments are conducted to validate the performance of the MB-TVAL3 algorithm, showing a higher sO2 estimation accuracy and sensitivity in detecting infarct area compared to BP and DAS. The findings of this study emphasize the impact of acoustic inverse problem on the accuracy of sO2 estimation and the proposed approach offers valuable support for IS evaluation and cerebrovascular diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yi Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Boyi Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ting Feng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Dan Li
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
7
|
Tang X, Zhou J, Liang S, Zhang J, Xiong J, Ma L, Chen SL. All-fiber miniature non-contact photoacoustic probe based on photoacoustic remote sensing microscopy for vascular imaging in vivo. OPTICS LETTERS 2024; 49:5531-5534. [PMID: 39352999 DOI: 10.1364/ol.539208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
Photoacoustic (PA) remote sensing (PARS) microscopy represents a significant advancement by eliminating the need for traditional acoustic coupling media in PA microscopy (PAM), thereby broadening its potential applications. However, current PARS microscopy setups predominantly rely on free-space optical components, which can be cumbersome to implement and limit the scope of imaging applications. In this study, we develop an all-fiber miniature non-contact PA probe based on PARS microscopy, utilizing a 532-nm excitation wavelength, and showcase its effectiveness in in vivo vascular imaging. Our approach integrates various fiber-optic components, including a wavelength division multiplexer, a mode field adaptor, a fiber lens, and an optical circulator, to streamline the implementation of the PARS microscopy system. Additionally, we have successfully developed a miniature PA probe with a diameter of 4 mm. The efficacy of our imaging setup is demonstrated through in vivo imaging of mouse brain vessels. By introducing this all-fiber miniature PA probe, our work may open up new opportunities for non-contact PAM applications.
Collapse
|
8
|
Yang X, Chai C, Chen YH, Sawan M. Optical Transmission in Single-Layer Brain Tissues under Different Optical Source Types: Modelling and Simulation. Bioengineering (Basel) 2024; 11:916. [PMID: 39329658 PMCID: PMC11428375 DOI: 10.3390/bioengineering11090916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The human brain is a complex organ controlling daily activity. Present technique models have mostly focused on multi-layer brain tissues, which lack understanding of the propagation characteristics of various single brain tissues. To better understand the influence of different optical source types on individual brain tissues, we constructed single-layer brain models and simulated optical propagation using the Monte Carlo method. Based on the optical simulation results, sixteen optical source types had different optical energy distributions, and the distribution in cerebrospinal fluid had obvious characteristics. Five brain tissues (scalp, skull, cerebrospinal fluid, gray matter, and blood vessel) had the same set of the first three optical source types with maximum depth, while white matter had a different set of the first three optical source types with maximum depth. Each brain tissue had different optical source types with the maximum and minimum full width at half maximum. The study on single-layer brain tissues under different optical source types lays the foundation for constructing complex brain models with multiple tissue layers. It provides a theoretical reference for optimizing the selection of optical source devices for brain imaging.
Collapse
Affiliation(s)
- Xi Yang
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China; (X.Y.); (C.C.)
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| | - Chengpeng Chai
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China; (X.Y.); (C.C.)
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| | - Yun-Hsuan Chen
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China; (X.Y.); (C.C.)
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China; (X.Y.); (C.C.)
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou 310024, China
| |
Collapse
|
9
|
Chai C, Yang X, Gao X, Shi J, Wang X, Song H, Chen YH, Sawan M. Enhancing photoacoustic imaging for lung diagnostics and BCI communication: simulation of cavity structures artifact generation and evaluation of noise reduction techniques. Front Bioeng Biotechnol 2024; 12:1452865. [PMID: 39318665 PMCID: PMC11419999 DOI: 10.3389/fbioe.2024.1452865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Pandemics like COVID-19 have highlighted the potential of Photoacoustic imaging (PAI) for Brain-Computer Interface (BCI) communication and lung diagnostics. However, PAI struggles with the clear imaging of blood vessels in areas like the lungs and brain due to their cavity structures. This paper presents a simulation model to analyze the generation and propagation mechanism within phantom tissues of PAI artifacts, focusing on the evaluation of both Anisotropic diffusion filtering (ADF) and Non-local mean (NLM) filtering, which significantly reduce noise and eliminate artifacts and signify a pivotal point for selecting artifact-removal algorithms under varying conditions of light distribution. Experimental validation demonstrated the efficacy of our technique, elucidating the effect of light source uniformity on artifact-removal performance. The NLM filtering simulation and ADF experimental validation increased the peak signal-to-noise ratio by 11.33% and 18.1%, respectively. The proposed technique adds a promising dimension for BCI and is an accurate imaging solution for diagnosing lung diseases.
Collapse
Affiliation(s)
- Chengpeng Chai
- CenBRAIN Neurotech., School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xi Yang
- CenBRAIN Neurotech., School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xurong Gao
- CenBRAIN Neurotech., School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Junhui Shi
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xiaojun Wang
- Cross-Strait Tsinghua Research Institute, Xiamen, China
| | - Hongfei Song
- Cross-Strait Tsinghua Research Institute, Xiamen, China
| | - Yun-Hsuan Chen
- CenBRAIN Neurotech., School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Neurotech., School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Wang Z, Yang F, Zhang W, Xiong K, Yang S. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. FUNDAMENTAL RESEARCH 2024; 4:1314-1330. [PMID: 39431136 PMCID: PMC11489505 DOI: 10.1016/j.fmre.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Multiscale visualization of human anatomical structures is revolutionizing clinical diagnosis and treatment. As one of the most promising clinical diagnostic techniques, photoacoustic imaging (PAI), or optoacoustic imaging, bridges the spatial-resolution gap between pure optical and ultrasonic imaging techniques, by the modes of optical illumination and acoustic detection. PAI can non-invasively capture multiple optical contrasts from the endogenous agents such as oxygenated/deoxygenated hemoglobin, lipid and melanin or a variety of exogenous specific biomarkers to reveal anatomy, function, and molecular for biological tissues in vivo, showing significant potential in clinical diagnostics. In 2001, the worldwide first clinical prototype of the photoacoustic system was used to screen breast cancer in vivo, which opened the prelude to photoacoustic clinical diagnostics. Over the past two decades, PAI has achieved monumental discoveries and applications in human imaging. Progress towards preclinical/clinical applications includes breast, skin, lymphatics, bowel, thyroid, ovarian, prostate, and brain imaging, etc., and there is no doubt that PAI is opening new avenues to realize early diagnosis and precise treatment of human diseases. In this review, the breakthrough researches and key applications of photoacoustic human imaging in vivo are emphatically summarized, which demonstrates the technical superiorities and emerging applications of photoacoustic human imaging in clinical diagnostics, providing clinical translational orientations for the photoacoustic community and clinicians. The perspectives on potential improvements of photoacoustic human imaging are finally highlighted.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Yao R, DiSpirito A, Jang H, McGarraugh CT, Nguyen VT, Shi L, Yao J. Virtual-point-based deconvolution for optical-resolution photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202400078. [PMID: 38934081 PMCID: PMC11330737 DOI: 10.1002/jbio.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) has been increasingly utilized for in vivo imaging of biological tissues, offering structural, functional, and molecular information. In OR-PAM, it is often necessary to make a trade-off between imaging depth, lateral resolution, field of view, and imaging speed. To improve the lateral resolution without sacrificing other performance metrics, we developed a virtual-point-based deconvolution algorithm for OR-PAM (VP-PAM). VP-PAM has achieved a resolution improvement ranging from 43% to 62.5% on a single-line target. In addition, it has outperformed Richardson-Lucy deconvolution with 15 iterations in both structural similarity index and peak signal-to-noise ratio on an OR-PAM image of mouse brain vasculature. When applied to an in vivo glass frog image obtained by a deep-penetrating OR-PAM system with compromised lateral resolution, VP-PAM yielded enhanced resolution and contrast with better-resolved microvessels.
Collapse
Affiliation(s)
- Rui Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Anthony DiSpirito
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Hongje Jang
- Department of Biomedical Engineering, University of California San Diego, La Jolla, California, USA
| | | | - Van Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Lingyan Shi
- Department of Biomedical Engineering, University of California San Diego, La Jolla, California, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
Kim J, Lee J, Choi S, Lee H, Yang J, Jeon H, Sung M, Kim WJ, Kim C. 3D Multiparametric Photoacoustic Computed Tomography of Primary and Metastatic Tumors in Living Mice. ACS NANO 2024; 18:18176-18190. [PMID: 38941553 PMCID: PMC11256897 DOI: 10.1021/acsnano.3c12551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Photoacoustic computed tomography (PACT), an emerging imaging modality in preclinical cancer research, can provide multiparametric 3D information about structures, physiological functions, and pharmacokinetics. Here, we demonstrate the use of high-definition 3D multiparametric PACT imaging of both primary and metastatic tumors in living mice to noninvasively monitor angiogenesis, carcinogenesis, hypoxia, and pharmacokinetics. The high-definition PACT system with a 1024-element hemispherical ultrasound transducer array provides an isotropic spatial resolution of 380 μm, an effective volumetric field-of-view of 12.8 mm × 12.8 mm × 12.8 mm without scanning, and an acquisition time of <30 s for a whole mouse body. Initially, we monitor the structural progression of the tumor microenvironment (e.g., angiogenesis and vessel tortuosity) after tumor cell inoculation. Then, we analyze the change in oxygen saturation of the tumor during carcinogenesis, verifying induced hypoxia in the tumor's core region. Finally, the whole-body pharmacokinetics are photoacoustically imaged after intravenous injection of micelle-loaded IR780 dye, and the in vivo PACT results are validated in vivo and ex vivo by fluorescence imaging. By employing the premium PACT system and applying multiparametric analyses to subcutaneous primary tumors and metastatic liver tumors, we demonstrate that this PACT system can provide multiparametric analyses for comprehensive cancer research.
Collapse
Affiliation(s)
- Jiwoong Kim
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jihye Lee
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seongwook Choi
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyori Lee
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jinge Yang
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyunseo Jeon
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minsik Sung
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Won Jong Kim
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chulhong Kim
- Department
of Electrical Engineering, Convergence IT Engineering, Mechanical
Engineering, and Medical Science and Engineering, Medical Device Innovation
Center, Pohang University of Science and
Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
13
|
Sweeney A, Xavierselvan M, Langley A, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595784. [PMID: 38854042 PMCID: PMC11160648 DOI: 10.1101/2024.05.27.595784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy and the third leading cause of cancer deaths in the U.S. Despite major innovations in imaging technologies, there are limited surrogate radiographic indicators to aid in therapy planning and monitoring. Amongst the various imaging techniques Ultrasound-guided photoacoustic imaging (US-PAI) is a promising modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO 2 ) contrast to monitor response to anti-angiogenic therapies. Adaptation of US-PAI to the clinical realm requires macroscopic configurations for adequate depth visualization, illuminating the need for surrogate radiographic markers, including the tumoral microvessel density (MVD). In this work, subcutaneous xenografts with PC cell lines AsPC-1 and MIA-PaCa-2 were used to investigate the effects of receptor tyrosine kinase inhibitor (sunitinib) treatment on MVD and StO 2 . Through histological correlation, we have shown that regions of high and low vascular density (HVD and LVD) can be identified through frequency domain filtering of macroscopic PA images which could not be garnered from purely global analysis. We utilized vascular regional analysis (VRA) of treatment-induced StO 2 and total hemoglobin (HbT) changes. VRA as a tool to monitor treatment response allowed us to identify potential timepoints of vascular remodeling, highlighting its ability to provide insights into the TME not only for sunitinib treatment but also other anti-angiogenic therapies.
Collapse
|
14
|
Zhang Y, Olick-Gibson J, Khadria A, Wang LV. Photoacoustic vector tomography for deep haemodynamic imaging. Nat Biomed Eng 2024; 8:701-711. [PMID: 38036619 PMCID: PMC11136879 DOI: 10.1038/s41551-023-01148-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Imaging deep haemodynamics non-invasively remains a quest. Although optical imaging techniques can be used to measure blood flow, they are generally limited to imaging within ∼1 mm below the skin's surface. Here we show that such optical diffusion limit can be broken through by leveraging the spatial heterogeneity of blood and its photoacoustic contrast. Specifically, successive single-shot wide-field photoacoustic images of blood vessels can be used to visualize the frame-to-frame propagation of blood and to estimate blood flow speed and direction pixel-wise. The method, which we named photoacoustic vector tomography (PAVT), allows for the quantification of haemodynamics in veins more than 5 mm deep, as we show for regions in the hands and arms of healthy volunteers. PAVT may offer advantages for the diagnosis and monitoring of vascular diseases and for the mapping of the function of the circulatory system.
Collapse
Affiliation(s)
- Yang Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joshua Olick-Gibson
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
15
|
Zheng X, Na S. A head-mounted photoacoustic fiberscope for hemodynamic imaging in mobile mice. LIGHT, SCIENCE & APPLICATIONS 2024; 13:107. [PMID: 38714667 PMCID: PMC11076611 DOI: 10.1038/s41377-024-01454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2024]
Abstract
A miniaturized photoacoustic fiberscope has been developed, featuring a lateral resolution of 9 microns and a lightweight design at 4.5 grams. Engineered to capture hemodynamic processes at single-blood-vessel resolution at a rate of 0.2 Hz, this device represents an advancement in head-mounted tools for exploring intricate brain activities in mobile animals.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shuai Na
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Fan Y, Liu S, Gao E, Guo R, Dong G, Li Y, Gao T, Tang X, Liao H. The LMIT: Light-mediated minimally-invasive theranostics in oncology. Theranostics 2024; 14:341-362. [PMID: 38164160 PMCID: PMC10750201 DOI: 10.7150/thno.87783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Minimally-invasive diagnosis and therapy have gradually become the trend and research hotspot of current medical applications. The integration of intraoperative diagnosis and treatment is a development important direction for real-time detection, minimally-invasive diagnosis and therapy to reduce mortality and improve the quality of life of patients, so called minimally-invasive theranostics (MIT). Light is an important theranostic tool for the treatment of cancerous tissues. Light-mediated minimally-invasive theranostics (LMIT) is a novel evolutionary technology that integrates diagnosis and therapeutics for the less invasive treatment of diseased tissues. Intelligent theranostics would promote precision surgery based on the optical characterization of cancerous tissues. Furthermore, MIT also requires the assistance of smart medical devices or robots. And, optical multimodality lay a solid foundation for intelligent MIT. In this review, we summarize the important state-of-the-arts of optical MIT or LMIT in oncology. Multimodal optical image-guided intelligent treatment is another focus. Intraoperative imaging and real-time analysis-guided optical treatment are also systemically discussed. Finally, the potential challenges and future perspectives of intelligent optical MIT are discussed.
Collapse
Affiliation(s)
- Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Shuai Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Enze Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Guozhao Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Yangxi Li
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China, 100081
| | - Hongen Liao
- Dept. of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
17
|
Ghavami M, Sobhani MR, Zemp R. Transparent Dual-Frequency CMUT Arrays for Photoacoustic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1621-1630. [PMID: 37938953 DOI: 10.1109/tuffc.2023.3331356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The opaque ultrasound transducers used in conventional photoacoustic imaging systems necessitate oblique light delivery, which gives rise to some disadvantages such as inefficient target illumination and bulky system size. This work proposes a transparent capacitive micromachined ultrasound transducer (CMUT) linear array with dual-band operation for through-illumination photoacoustic imaging. Fabricated using an adhesive wafer bonding method, the array consists of optically transparent conductors [indium tin oxide (ITO)] as both top and bottom electrodes, a transparent polymer [bisbenzocyclobutene (BCB)] as the sidewall and adhesive material, and largely transparent silicon nitride as the membrane. The fabricated device had a maximum optical transparency of 76.8% in the visible range. Furthermore, to simultaneously maintain higher spatial resolution and deeper imaging depth, this dual-frequency array consists of low- and high-frequency channels with 4.2- and 9.3-MHz center frequencies, respectively, which are configured in an interlaced architecture to minimize the grating lobes in the receive point spread function (PSF). With a wider bandwidth compared to the single-frequency case, the fabricated transparent dual-frequency CMUT array was used in through-illumination photoacoustic imaging of wire targets demonstrating an improved spatial resolution and imaging depth.
Collapse
|
18
|
Chang KW, Belekov E, Wang X, Wong KY, Oralkan Ö, Xu G. Photoacoustic imaging of visually evoked cortical and subcortical hemodynamic activity in mouse brain: feasibility study with piezoelectric and capacitive micromachined ultrasonic transducer (CMUT) arrays. BIOMEDICAL OPTICS EXPRESS 2023; 14:6283-6290. [PMID: 38420324 PMCID: PMC10898584 DOI: 10.1364/boe.503475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 03/02/2024]
Abstract
This study investigates the feasibility of capturing visually evoked hemodynamic responses in the mouse brain using photoacoustic tomography (PAT) and ultrasound (US) dual-modality imaging. A commercial piezoelectric transducer array and a capacitive micromachined ultrasonic transducer (CMUT) array were compared using a programmable PAT-US imaging system. The system resolution was measured by imaging phantoms. We also tested the ability of the system to capture visually evoked hemodynamic responses in the superior colliculus as well as the primary visual cortex in wild-type mice. Results show that the piezoelectric transducer array and the CMUT array exhibit comparable imaging performance, and both arrays can capture visually evoked hemodynamic responses in subcortical as well as cortical regions of the mouse brain.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ermek Belekov
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kwoon Y. Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Ömer Oralkan
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
19
|
Li H, Zhu Y, Luo N, Tian C. In vivo monitoring of hemodynamic changes in ischemic stroke using photoacoustic tomography. JOURNAL OF BIOPHOTONICS 2023; 16:e202300235. [PMID: 37556758 DOI: 10.1002/jbio.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Ischemic stroke occurs when a blood vessel supplying the brain is blocked, leading to decreased blood flow. Early diagnosis and treatment are crucial. However, existing clinical imaging methods have limitations, such as safety issues and low time resolution. To address these challenges, we propose using photoacoustic tomography (PAT) with a contrast agent, known for its high resolution and contrast capabilities. Our study involved imaging brain vasculature in three groups: normal, unilateral common carotid artery ligation (UCAL), and middle cerebral artery occlusion (MCAO). On the ischemic stroke side, we observed reduced blood vessel density and hemodynamic changes were evident after injecting indocyanine green for PAT. The photoacoustic intensity was notably lower in the ligated sides of the UCAL and MCAO groups, with statistically significant differences between the three groups. This work highlights PAT's potential as a powerful tool for early diagnosis and guidance in ischemic stroke cases.
Collapse
Affiliation(s)
- Heren Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Engineering Science, University of Science and Technology of China, Hefei, China
| | - Yunhao Zhu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Nianwu Luo
- School of Engineering Science, University of Science and Technology of China, Hefei, China
| | - Chao Tian
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Engineering Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Manwar R, Li X, Kratkiewicz K, Zhu D, Avanaki K. Adaptive coherent weighted averaging algorithm for enhancement of photoacoustic tomography images of brain. JOURNAL OF BIOPHOTONICS 2023; 16:e202300103. [PMID: 37468445 DOI: 10.1002/jbio.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
One common method to improve the low signal-to-noise ratio of the photoacoustic (PA) signal generated from weak absorbers or absorbers located in deep tissue is to acquire signal multiple times from the same region and perform averaging. However, pulse-to-pulse laser fluctuations together with differences in the beam profile of the pulses create undeterministic multiple scattering processes in the tissue. This phenomenon consequently induces a spatiotemporal displacement in the PA signal samples which in turn deteriorates the effectiveness of signal averaging. Here, we present an adaptive coherent weighted averaging algorithm to adjust the locations and values of PA signal samples for more efficient signal averaging. The proposed method is evaluated in a linear array-based PA imaging setup of ex vivo sheep brain.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xin Li
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Dongxiao Zhu
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Zhang J, Long X, Zhang G, Ma Z, Li W, Wang Y, Yang F, Lin R, Li C, Lam KH. Broadband transparent ultrasound transducer with polymethyl methacrylate as matching layer for in vivo photoacoustic microscopy. PHOTOACOUSTICS 2023; 33:100548. [PMID: 38021293 PMCID: PMC10658616 DOI: 10.1016/j.pacs.2023.100548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023]
Abstract
Photoacoustic imaging (PAI) uniquely combines optics and ultrasound, presenting a promising role in biomedical imaging as a non-invasive and label-free imaging technology. As the traditional opaque ultrasound (US) transducers could hinder the transportation of the excitation light and limit the performance of PAI system, piezoelectric transparent ultrasonic transducers (TUTs) with indium tin oxide (ITO) electrodes have been developed to allow light transmission through the transducer and illuminate the sample directly. Nevertheless, without having transparent matching materials with appropriate properties, the bandwidth of those TUTs was generally narrow. In this work, we propose to employ polymethyl methacrylate (PMMA) as the matching layer material to improve the bandwidth of lithium niobate (LN)-based TUTs. The effects of PMMA matching layer on the performance of TUTs have been systematically studied. With the optimized PMMA matching layer, the very wide bandwidth of > 50 % could be achieved for the TUTs even with different transducer frequencies, leading to the great enhancement of axial resolution when compared to the similar reported work. In addition, the imaging performance of the developed TUT prototype has been evaluated in a PAI system and demonstrated by both phantom and in vivo small animal imaging.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xing Long
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Guangjie Zhang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zhongtian Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Wenzhao Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yibing Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Fan Yang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Riqiang Lin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Changhui Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Kwok-Ho Lam
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
22
|
Kirchner T, Villringer C, Laufer J. Evaluation of ultrasound sensors for transcranial photoacoustic sensing and imaging. PHOTOACOUSTICS 2023; 33:100556. [PMID: 38021292 PMCID: PMC10658602 DOI: 10.1016/j.pacs.2023.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
Photoacoustic imaging through skull bone causes strong attenuation and distortion of the acoustic wavefront, which diminishes image contrast and resolution. As a result, transcranial photoacoustic measurements in humans have been challenging to demonstrate. In this study, we investigated the acoustic transmission through the human skull to design an ultrasound sensor suitable for transcranial PA imaging and sensing. We measured the frequency dependent losses of human cranial bones ex vivo, compared the performance of a range of piezoelectric and optical ultrasound sensors, and imaged skull phantoms using a PA tomograph based on a planar Fabry-Perot sensor. All transcranial photoacoustic measurements show the typical effects of frequency and thickness dependent attenuation and aberration associated with acoustic propagation through bone. The performance of plano-concave optical resonator ultrasound sensors was found to be highly suitable for transcranial photoacoustic measurements.
Collapse
Affiliation(s)
- Thomas Kirchner
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
| | - Claus Villringer
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
- Technische Hochschule Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Jan Laufer
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Saale), Germany
| |
Collapse
|
23
|
Zhu J, Huynh N, Ogunlade O, Ansari R, Lucka F, Cox B, Beard P. Mitigating the Limited View Problem in Photoacoustic Tomography for a Planar Detection Geometry by Regularized Iterative Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2603-2615. [PMID: 37115840 DOI: 10.1109/tmi.2023.3271390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The use of a planar detection geometry in photoacoustic tomography results in the so- called limited-view problem due to the finite extent of the acoustic detection aperture. When images are reconstructed using one-step reconstruction algorithms, image quality is compromised by the presence of streaking artefacts, reduced contrast, image distortion and reduced signal-to-noise ratio. To mitigate this, model-based iterative reconstruction approaches based on least squares minimisation with and without total variation regularization were evaluated using in-silico, experimental phantom, ex vivo and in vivo data. Compared to one-step reconstruction methods, it has been shown that iterative methods provide better image quality in terms of enhanced signal-to-artefact ratio, signal-to-noise ratio, amplitude accuracy and spatial fidelity. For the total variation approaches, the impact of the regularization parameter on image feature scale and amplitude distribution was evaluated. In addition, the extent to which the use of Bregman iterations can compensate for the systematic amplitude bias introduced by total variation was studied. This investigation is expected to inform the practical application of model-based iterative image reconstruction approaches for improving photoacoustic image quality when using finite aperture planar detection geometries.
Collapse
|
24
|
Lee M, Landers K, Chan J. Activity-Based Photoacoustic Probes for Detection of Disease Biomarkers beyond Oncology. ACS BIO & MED CHEM AU 2023; 3:223-232. [PMID: 37363076 PMCID: PMC10288495 DOI: 10.1021/acsbiomedchemau.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
The earliest activity-based photoacoustic (PA) probes were developed as diagnostic agents for cancer. Since this seminal work over a decade ago that specifically targeted matrix metalloproteinase-2, PA instrumentation, dye platforms, and probe designs have advanced considerably, allowing for the detection of an impressive list of cancer types. However, beyond imaging for oncology purposes, the ability to selectively visualize a given disease biomarker, which can range from aberrant enzymatic activity to the overproduction of reactive small molecules, is also being exploited to study a myriad of noncancerous disease states. In this review, we have assembled a collection of recent papers to highlight the design principles that enable activity-based sensing via PA imaging with respect to biomarker identification and strategies to trigger probe activation under specific conditions.
Collapse
Affiliation(s)
- Michael
C. Lee
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Kayla Landers
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| | - Jefferson Chan
- Department of Chemistry,
Beckman Institute for Advanced Science and Technology, and Cancer
Center at Illinois, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United
States
| |
Collapse
|
25
|
Park B, Oh D, Kim J, Kim C. Functional photoacoustic imaging: from nano- and micro- to macro-scale. NANO CONVERGENCE 2023; 10:29. [PMID: 37335405 PMCID: PMC10279631 DOI: 10.1186/s40580-023-00377-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Functional photoacoustic imaging is a promising biological imaging technique that offers such unique benefits as scalable resolution and imaging depth, as well as the ability to provide functional information. At nanoscale, photoacoustic imaging has provided super-resolution images of the surface light absorption characteristics of materials and of single organelles in cells. At the microscopic and macroscopic scales. photoacoustic imaging techniques have precisely measured and quantified various physiological parameters, such as oxygen saturation, vessel morphology, blood flow, and the metabolic rate of oxygen, in both human and animal subjects. This comprehensive review provides an overview of functional photoacoustic imaging across multiple scales, from nano to macro, and highlights recent advances in technology developments and applications. Finally, the review surveys the future prospects of functional photoacoustic imaging in the biomedical field.
Collapse
Affiliation(s)
- Byullee Park
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghyeon Oh
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
26
|
Gonzalez EA, Bell MAL. Photoacoustic Imaging and Characterization of Bone in Medicine: Overview, Applications, and Outlook. Annu Rev Biomed Eng 2023; 25:207-232. [PMID: 37000966 DOI: 10.1146/annurev-bioeng-081622-025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photoacoustic techniques have shown promise in identifying molecular changes in bone tissue and visualizing tissue microstructure. This capability represents significant advantages over gold standards (i.e., dual-energy X-ray absorptiometry) for bone evaluation without requiring ionizing radiation. Instead, photoacoustic imaging uses light to penetrate through bone, followed by acoustic pressure generation, resulting in highly sensitive optical absorption contrast in deep biological tissues. This review covers multiple bone-related photoacoustic imaging contributions to clinical applications, spanning bone cancer, joint pathologies, spinal disorders, osteoporosis, bone-related surgical guidance, consolidation monitoring, and transsphenoidal and transcranial imaging. We also present a summary of photoacoustic-based techniques for characterizing biomechanical properties of bone, including temperature, guided waves, spectral parameters, and spectroscopy. We conclude with a future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Eduardo A Gonzalez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muyinatu A Lediju Bell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA;
| |
Collapse
|
27
|
Lee H, Choi W, Kim C, Park B, Kim J. Review on ultrasound-guided photoacoustic imaging for complementary analyses of biological systems in vivo. Exp Biol Med (Maywood) 2023; 248:762-774. [PMID: 37452700 PMCID: PMC10468641 DOI: 10.1177/15353702231181341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Photoacoustic imaging has been developed as a new biomedical molecular imaging modality. Due to its similarity to conventional ultrasound imaging in terms of signal detection and image generation, dual-modal photoacoustic and ultrasound imaging has been applied to visualize physiological and morphological information in biological systems in vivo. By complementing each other, dual-modal photoacoustic and ultrasound imaging showed synergistic advances in photoacoustic imaging with the guidance of ultrasound images. In this review, we introduce our recent progresses in dual-modal photoacoustic and ultrasound imaging systems at various scales of study, from preclinical small animals to clinical humans. A summary of the works reveals various strategies for combining the structural information of ultrasound images with the molecular information of photoacoustic images.
Collapse
Affiliation(s)
- Haeni Lee
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonseok Choi
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
28
|
Zhang K, Chen FR, Wang L, Hu J. Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206044. [PMID: 36670072 DOI: 10.1002/smll.202206044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
For a long time, optical imaging of the deep brain with high resolution has been a challenge. Recently, with the advance in second near-infrared (NIR-II) bioimaging techniques and imaging contrast agents, NIR-II window bioimaging has attracted great attention to monitoring deeper biological or pathophysiological processes with high signal-to-noise ratio (SNR) and spatiotemporal resolution. Assisted with NIR-II bioimaging, the modulation of structure and function of brain is promising to be noninvasive and more precise. Herein, in this review, first the advantage of NIR-II light in brain imaging from the interaction between NIR-II and tissue is elaborated. Then, several specific NIR-II bioimaging technologies are introduced, including NIR-II fluorescence imaging, multiphoton fluorescence imaging, and photoacoustic imaging. Furthermore, the corresponding contrast agents are summarized. Next, the application of various NIR-II bioimaging technologies in visualizing the characteristics of cerebrovascular network and monitoring the changes of the pathology signals will be presented. After that, the modulation of brain structure and function based on NIR-II bioimaging will be discussed, including treatment of glioblastoma, guidance of cell transplantation, and neuromodulation. In the end, future perspectives that would help improve the clinical translation of NIR-II light are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
29
|
Chen F, Sun M, Chen R, Li C, Shi J. Absolute Grüneisen parameter measurement in deep tissue based on X-ray-induced acoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:1205-1215. [PMID: 36950240 PMCID: PMC10026575 DOI: 10.1364/boe.483490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The Grüneisen parameter is a primary parameter of the initial sound pressure signal in the photoacoustic effect, which can provide unique biological information and is related to the temperature change information of an object. The accurate measurement of this parameter is of great significance in biomedical research. Combining X-ray-induced acoustic tomography and conventional X-ray computed tomography, we proposed a method to obtain the absolute Grüneisen parameter. The theory development, numerical simulation, and biomedical application scenarios are discussed. The results reveal that our method not only can determine the Grüneisen parameter but can also obtain the body internal temperature distribution, presenting its potential in the diagnosis of a broad range of diseases.
Collapse
Affiliation(s)
- Feng Chen
- Zhejiang Lab, Hangzhou 311121, China
| | | | | | - Chiye Li
- Zhejiang Lab, Hangzhou 311121, China
| | | |
Collapse
|
30
|
Han S, Ninjbadgar T, Kang M, Kim C, Kim J. Recent Advances in Photoacoustic Agents for Theranostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:695. [PMID: 36839061 PMCID: PMC9964871 DOI: 10.3390/nano13040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Photoacoustic agents are widely used in various theranostic applications. By evaluating the biodistribution obtained from photoacoustic images, the effectiveness of theranostic agents in terms of their delivery efficiency and treatment responses can be analyzed. Through this study, we evaluate and summarize the recent advances in photoacoustic-guided phototherapy, particularly in photothermal and photodynamic therapy. This overview can guide the future directions for theranostic development. Because of the recent applications of photoacoustic imaging in clinical trials, theranostic agents with photoacoustic monitoring have the potential to be translated into the clinical world.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Tsedendamba Ninjbadgar
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Mijeong Kang
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
31
|
Menozzi L, del Águila Á, Vu T, Ma C, Yang W, Yao J. Three-dimensional non-invasive brain imaging of ischemic stroke by integrated photoacoustic, ultrasound and angiographic tomography (PAUSAT). PHOTOACOUSTICS 2023; 29:100444. [PMID: 36620854 PMCID: PMC9813577 DOI: 10.1016/j.pacs.2022.100444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
We present an ischemic stroke study using our newly-developed PAUSAT system that integrates photoacoustic computed tomography (PACT), high-frequency ultrasound imaging, and acoustic angiographic tomography. PAUSAT is capable of three-dimensional (3D) imaging of the brain morphology, blood perfusion, and blood oxygenation. Using PAUSAT, we studied the hemodynamic changes in the whole mouse brain induced by two common ischemic stroke models: the permanent middle cerebral artery occlusion (pMCAO) model and the photothrombotic (PT) model. We imaged the same mouse brains before and after stroke, and quantitatively compared the two stroke models. We observed clear hemodynamic changes after ischemic stroke, including reduced blood perfusion and oxygenation. Such changes were spatially heterogenous. We also quantified the tissue infarct volume in both stroke models. The PAUSAT measurements were validated by laser speckle imaging and histology. Our results have collectively demonstrated that PAUSAT can be a valuable tool for non-invasive longitudinal studies of neurological diseases at the whole-brain scale.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Ángela del Águila
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine, Durham 27710, NC, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University School of Medicine, Durham 27710, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham 27708, NC, USA
| |
Collapse
|
32
|
Huen I, Zhang R, Bi R, Li X, Moothanchery M, Olivo M. An Investigation of Signal Preprocessing for Photoacoustic Tomography. SENSORS (BASEL, SWITZERLAND) 2023; 23:510. [PMID: 36617107 PMCID: PMC9823775 DOI: 10.3390/s23010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Photoacoustic tomography (PAT) is increasingly being used for high-resolution biological imaging at depth. Signal-to-noise ratios and resolution are the main factors that determine image quality. Various reconstruction algorithms have been proposed and applied to reduce noise and enhance resolution, but the efficacy of signal preprocessing methods which also affect image quality, are seldom discussed. We, therefore, compared common preprocessing techniques, namely bandpass filters, wavelet denoising, empirical mode decomposition, and singular value decomposition. Each was compared with and without accounting for sensor directivity. The denoising performance was evaluated with the contrast-to-noise ratio (CNR), and the resolution was calculated as the full width at half maximum (FWHM) in both the lateral and axial directions. In the phantom experiment, counting in directivity was found to significantly reduce noise, outperforming other methods. Irrespective of directivity, the best performing methods for denoising were bandpass, unfiltered, SVD, wavelet, and EMD, in that order. Only bandpass filtering consistently yielded improvements. Significant improvements in the lateral resolution were observed using directivity in two out of three acquisitions. This study investigated the advantages and disadvantages of different preprocessing methods and may help to determine better practices in PAT reconstruction.
Collapse
|
33
|
Chua CJ, Pandey PK, Kelly KM, Xiang L. Feasibility of photoacoustic-guided ultrasound treatment for port wine stains. Lasers Surg Med 2023; 55:46-60. [PMID: 36208102 PMCID: PMC9892359 DOI: 10.1002/lsm.23609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Port wine birthmark, also known as port wine stain (PWS) is a skin discoloration characterized by red/purple patches caused by vascular malformation. PWS is typically treated by using lasers to destroy abnormal blood vessels. The laser heating facilitates selective photothermolysis of the vessels and attenuates quickly in the tissue due to high optical scattering. Therefore, residual abnormal capillaries deep in the tissue survive and often lead to the resurgence of PWS. Ultrasound (US) has also been proposed to treat PWS, however, it is nonselective with respect to the vasculature but penetrates deeper into the tissue. We aim to study the feasibility of a hybrid PWS treatment modality combining the advantages of both modalities. MATERIALS AND METHODS In this manuscript, we propose a photoacoustic (PA) guided US focusing methodology for PWS treatment which combines the optical contrast-based selectivity with US penetration to focus the US energy onto the vasculature. The PA signals collected by the transducers, when time-reversed, amplified, and transmitted, converge onto the PWS, thus minimally affecting the neighboring tissue. We performed two- and three-dimensional simulations that mimic realistic transducers and medium properties in this proof of concept study. RESULTS The time-reversed PA signals when transmitted from the transducers converged onto the vasculature, as expected, thus reducing the heating of the neighboring tissue. We observed that while the US focus is indeed affected due to experimental factors such as limited-view, large detector separation and finite detection bandwidth, and so forth, the US did focus completely or partially onto the vasculature demonstrating the feasibility of the proposed methodology. CONCLUSION The results demonstrate the potential of the proposed methodology for PWS treatment. This treatment method can destroy the deeper capillaries while minimally heating the neighboring tissue, thus reducing the chances of the resurgence of PWS and as well as cosmetic scarring.
Collapse
Affiliation(s)
- Chloe J Chua
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, CA, 92697, USA
| | - Kristen M Kelly
- Department of Dermatology, University of California, Irvine, CA 92697, USA
- Beckman Laser Institute, University of California, Irvine, CA 92612, USA
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
- Department of Radiological Sciences, University of California, Irvine, CA, 92697, USA
- Beckman Laser Institute, University of California, Irvine, CA 92612, USA
| |
Collapse
|
34
|
Menozzi L, Yang W, Feng W, Yao J. Sound out the impaired perfusion: Photoacoustic imaging in preclinical ischemic stroke. Front Neurosci 2022; 16:1055552. [PMID: 36532279 PMCID: PMC9751426 DOI: 10.3389/fnins.2022.1055552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Acoustically detecting the optical absorption contrast, photoacoustic imaging (PAI) is a highly versatile imaging modality that can provide anatomical, functional, molecular, and metabolic information of biological tissues. PAI is highly scalable and can probe the same biological process at various length scales ranging from single cells (microscopic) to the whole organ (macroscopic). Using hemoglobin as the endogenous contrast, PAI is capable of label-free imaging of blood vessels in the brain and mapping hemodynamic functions such as blood oxygenation and blood flow. These imaging merits make PAI a great tool for studying ischemic stroke, particularly for probing into hemodynamic changes and impaired cerebral blood perfusion as a consequence of stroke. In this narrative review, we aim to summarize the scientific progresses in the past decade by using PAI to monitor cerebral blood vessel impairment and restoration after ischemic stroke, mostly in the preclinical setting. We also outline and discuss the major technological barriers and challenges that need to be overcome so that PAI can play a more significant role in preclinical stroke research, and more importantly, accelerate its translation to be a useful clinical diagnosis and management tool for human strokes.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
35
|
Biswas D, Roy S, Vasudevan S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. MICROMACHINES 2022; 13:1900. [PMID: 36363921 PMCID: PMC9692656 DOI: 10.3390/mi13111900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The photoacoustic (PA) technique is a non-invasive, non-ionizing hybrid technique that exploits laser irradiation for sample excitation and acquires an ultrasound signal generated due to thermoelastic expansion of the sample. Being a hybrid technique, PA possesses the inherent advantages of conventional optical (high resolution) and ultrasonic (high depth of penetration in biological tissue) techniques and eliminates some of the major limitations of these conventional techniques. Hence, PA has been employed for different biomedical applications. In this review, we first discuss the basic physics of PA. Then, we discuss different aspects of PA techniques, which includes PA imaging and also PA frequency spectral analysis. The theory of PA signal generation, detection and analysis is also detailed in this work. Later, we also discuss the major biomedical application area of PA technique.
Collapse
Affiliation(s)
- Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Srivathsan Vasudevan
- Discipline of Electrical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol 453552, MP, India
| |
Collapse
|
36
|
Wu M, Xiao K, Liu X, Yang Y, Song G, Xiao G, Liu Q, Yuan J, Liu B. Organic Small Molecule Contrast Agent for Targeted Photoacoustic Imaging of Patient-Derived Brain Tumors. Adv Healthc Mater 2022; 11:e2201640. [PMID: 36050894 DOI: 10.1002/adhm.202201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Traditional glioblastoma (GBM) cell lines do not maintain the heterogeneity of the original tumor, cell interactions, and therapy response, thus limiting their investigation in GBM theranostics. Herein, a kind of GBM tumor-targeting nanoparticles (NPs) TCFNP@iRGD are designed and constructed, which are generated by photoacoustic (PA) contrast agent 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile (TCF)-OH through facile nanoprecipitation and decorated with an active targeting ligand iRGD. Their potential in GBM detection via PA imaging on glioma patient-derived cells intracranial xenograft models is evaluated for the first time. Excellent tumor-specific PA mapping performance of GBM is realized by TCFNP@iRGD, demonstrating its promising potential in the clinical diagnosis of GBM.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yudan Yang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Gousheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
37
|
Zare A, Shamshiripour P, Lotfi S, Shahin M, Rad VF, Moradi AR, Hajiahmadi F, Ahmadvand D. Clinical theranostics applications of photo-acoustic imaging as a future prospect for cancer. J Control Release 2022; 351:805-833. [DOI: 10.1016/j.jconrel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
|
38
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
39
|
Xu S, Yang X, Liu W, Jönsson J, Qian R, Konda PC, Zhou KC, Kreiß L, Wang H, Dai Q, Berrocal E, Horstmeyer R. Imaging Dynamics Beneath Turbid Media via Parallelized Single-Photon Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201885. [PMID: 35748188 PMCID: PMC9404405 DOI: 10.1002/advs.202201885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Indexed: 05/05/2023]
Abstract
Noninvasive optical imaging through dynamic scattering media has numerous important biomedical applications but still remains a challenging task. While standard diffuse imaging methods measure optical absorption or fluorescent emission, it is also well-established that the temporal correlation of scattered coherent light diffuses through tissue much like optical intensity. Few works to date, however, have aimed to experimentally measure and process such temporal correlation data to demonstrate deep-tissue video reconstruction of decorrelation dynamics. In this work, a single-photon avalanche diode array camera is utilized to simultaneously monitor the temporal dynamics of speckle fluctuations at the single-photon level from 12 different phantom tissue surface locations delivered via a customized fiber bundle array. Then a deep neural network is applied to convert the acquired single-photon measurements into video of scattering dynamics beneath rapidly decorrelating tissue phantoms. The ability to reconstruct images of transient (0.1-0.4 s) dynamic events occurring up to 8 mm beneath a decorrelating tissue phantom with millimeter-scale resolution is demonstrated, and it is highlighted how the model can flexibly extend to monitor flow speed within buried phantom vessels.
Collapse
Affiliation(s)
- Shiqi Xu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Xi Yang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Wenhui Liu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of AutomationTsinghua UniversityBeijing100084China
| | - Joakim Jönsson
- Division of Combustion PhysicsDepartment of PhysicsLund UniversityLund22100Sweden
| | - Ruobing Qian
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Kevin C. Zhou
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Lucas Kreiß
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Institute of Medical BiotechnologyFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)Erlangen91054Germany
| | - Haoqian Wang
- Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Qionghai Dai
- Department of AutomationTsinghua UniversityBeijing100084China
| | - Edouard Berrocal
- Division of Combustion PhysicsDepartment of PhysicsLund UniversityLund22100Sweden
| | - Roarke Horstmeyer
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNC27708USA
- Department of PhysicsDuke UniversityDurhamNC27708USA
| |
Collapse
|
40
|
Zhang Y, Wang L. Video-rate full-ring ultrasound and photoacoustic computed tomography with real-time sound speed optimization. BIOMEDICAL OPTICS EXPRESS 2022; 13:4398-4413. [PMID: 36032563 PMCID: PMC9408242 DOI: 10.1364/boe.464360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Full-ring dual-modal ultrasound and photoacoustic imaging provide complementary contrasts, high spatial resolution, full view angle and are more desirable in pre-clinical and clinical applications. However, two long-standing challenges exist in achieving high-quality video-rate dual-modal imaging. One is the increased data processing burden from the dense acquisition. Another one is the object-dependent speed of sound variation, which may cause blurry, splitting artifacts, and low imaging contrast. Here, we develop a video-rate full-ring ultrasound and photoacoustic computed tomography (VF-USPACT) with real-time optimization of the speed of sound. We improve the imaging speed by selective and parallel image reconstruction. We determine the optimal sound speed via co-registered ultrasound imaging. Equipped with a 256-channel ultrasound array, the dual-modal system can optimize the sound speed and reconstruct dual-modal images at 10 Hz in real-time. The optimized sound speed can effectively enhance the imaging quality under various sample sizes, types, or physiological states. In animal and human imaging, the system shows co-registered dual contrasts, high spatial resolution (140 µm), single-pulse photoacoustic imaging (< 50 µs), deep penetration (> 20 mm), full view, and adaptive sound speed correction. We believe VF-USPACT can advance many real-time biomedical imaging applications, such as vascular disease diagnosing, cancer screening, or neuroimaging.
Collapse
Affiliation(s)
- Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shen Zhen, 518057, China
| |
Collapse
|
41
|
Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han DW. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022; 10:biomedicines10061374. [PMID: 35740396 PMCID: PMC9219987 DOI: 10.3390/biomedicines10061374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic imaging using energy conversion from light to ultrasound waves has been developed as a powerful tool to investigate in vivo phenomena due to their complex characteristics. In photoacoustic imaging, endogenous chromophores such as oxygenated hemoglobin, deoxygenated hemoglobin, melanin, and lipid provide useful biomedical information at the molecular level. However, these intrinsic absorbers show strong absorbance only in visible or infrared optical windows and have limited light transmission, making them difficult to apply for clinical translation. Therefore, the development of novel exogenous contrast agents capable of increasing imaging depth while ensuring strong light absorption is required. We report here the application of carbon nanomaterials that exhibit unique physical, mechanical, and electrochemical properties as imaging probes in photoacoustic imaging. Classified into specific structures, carbon nanomaterials are synthesized with different substances according to the imaging purposes to modulate the absorption spectra and highly enhance photoacoustic signals. In addition, functional drugs can be loaded into the carbon nanomaterials composite, and effective in vivo monitoring and photothermal therapy can be performed with cell-specific targeting. Diverse applied cases suggest the high potential of carbon nanomaterial-based photoacoustic imaging in in vivo monitoring for clinical research.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Seung Jo Jeong
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| |
Collapse
|
42
|
Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel) 2022; 12:life12040588. [PMID: 35455079 PMCID: PMC9028050 DOI: 10.3390/life12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Photo-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution. The detection of acoustic waves produced by a pulsed laser source yields a high scaling range, from organ level photo-acoustic tomography to sub-cellular or even molecular imaging. This review discusses significant novel technical solutions utilising photo-acoustics and their applications in the fields of biomedicine and life sciences.
Collapse
|
43
|
Dong B, Yao J, Deán-Ben XL. Editorial: Advances in Photoacoustic Neuroimaging. Front Neurosci 2022; 16:859515. [PMID: 35321095 PMCID: PMC8934976 DOI: 10.3389/fnins.2022.859515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Biqin Dong
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- *Correspondence: Biqin Dong
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Manwar R, Islam MT, Ranjbaran SM, Avanaki K. Transfontanelle photoacoustic imaging: ultrasound transducer selection analysis. BIOMEDICAL OPTICS EXPRESS 2022; 13:676-693. [PMID: 35284180 PMCID: PMC8884197 DOI: 10.1364/boe.446087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/11/2023]
Abstract
Transfontanelle ultrasound imaging (TFUI) is the conventional approach for diagnosing brain injury in neonates. Despite being the first stage imaging modality, TFUI lacks accuracy in determining the injury at an early stage due to degraded sensitivity and specificity. Therefore, a modality like photoacoustic imaging that combines the advantages of both acoustic and optical imaging can overcome the existing TFUI limitations. Even though a variety of transducers have been used in TFUI, it is essential to identify the transducer specification that is optimal for transfontanelle imaging using the photoacoustic technique. In this study, we evaluated the performance of 6 commercially available ultrasound transducer arrays to identify the optimal characteristics for transfontanelle photoacoustic imaging. We focused on commercially available linear and phased array transducer probes with center frequencies ranging from 2.5MHz to 8.5MHz which covers the entire spectrum of the transducer arrays used for brain imaging. The probes were tested on both in vitro and ex vivo brain tissue, and their performance in terms of transducer resolution, size, penetration depth, sensitivity, signal to noise ratio, signal amplification and reconstructed image quality were evaluated. The analysis of selected transducers in these areas allowed us to determine the optimal transducer for transfontanelle imaging, based on vasculature depth and blood density in tissue using ex vivo sheep brain. The outcome of this evaluation identified the two most suitable ultrasound transducer probes for transfontanelle photoacoustic imaging.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, USA
- These authors have contributed equally
| | - Md Tarikul Islam
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, USA
| | - Seyed Mohsen Ranjbaran
- Department of Physics, University of Isfahan, Isfahan 81746-73441, Iran
- These authors have contributed equally
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
45
|
Li D, Wang G, Werner R, Xie H, Guan JS, Hilgetag CC. Single Image-Based Vignetting Correction for Improving the Consistency of Neural Activity Analysis in 2-Photon Functional Microscopy. Front Neuroinform 2022; 15:674439. [PMID: 35069164 PMCID: PMC8766855 DOI: 10.3389/fninf.2021.674439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
High-resolution functional 2-photon microscopy of neural activity is a cornerstone technique in current neuroscience, enabling, for instance, the image-based analysis of relations of the organization of local neuron populations and their temporal neural activity patterns. Interpreting local image intensity as a direct quantitative measure of neural activity presumes, however, a consistent within- and across-image relationship between the image intensity and neural activity, which may be subject to interference by illumination artifacts. In particular, the so-called vignetting artifact—the decrease of image intensity toward the edges of an image—is, at the moment, widely neglected in the context of functional microscopy analyses of neural activity, but potentially introduces a substantial center-periphery bias of derived functional measures. In the present report, we propose a straightforward protocol for single image-based vignetting correction. Using immediate-early gene-based 2-photon microscopic neural image data of the mouse brain, we show the necessity of correcting both image brightness and contrast to improve within- and across-image intensity consistency and demonstrate the plausibility of the resulting functional data.
Collapse
Affiliation(s)
- Dong Li
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Dong Li,
| | - Guangyu Wang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - René Werner
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong Xie
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ji-Song Guan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
46
|
Gao S, Tsumura R, Vang DP, Bisland K, Xu K, Tsunoi Y, Zhang HK. Acoustic-resolution photoacoustic microscope based on compact and low-cost delta configuration actuator. ULTRASONICS 2022; 118:106549. [PMID: 34474357 PMCID: PMC8530928 DOI: 10.1016/j.ultras.2021.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 05/02/2023]
Abstract
The state-of-the-art configurations for acoustic-resolution photoacoustic (PA) microscope (AR-PAM) are large in size and expensive, hindering their democratization. While previous research on AR-PAMs introduced a low-cost light source to reduce the cost, few studies have investigated the possibility of optimizing the sensor actuation, particularly for the AR-PAM. Additionally, there is an unmet need to evaluate the image quality deterioration associated with the actuation inaccuracy. A low-cost actuation device is introduced to reduce the system size and cost of the AR-PAM while maintaining the image quality by implementing the advanced beamformers. This work proposes an AR-RAM incorporating the delta configuration actuator adaptable from a low-cost off-the-shelf 3D printer as the sensor actuation device. The image degradation due to the data acquisition positioning inaccuracy is evaluated in the simulation. We further assess the mitigation of potential actuation precision uncertainty through advanced 3D synthetic aperture focusing algorithms represented by the Delay-and-Sum (DAS) with Coherence Factor (DAS+CF) and Delay-Multiply-and-Sum (DMAS) algorithms. The simulation study demonstrated the tolerance of image quality on actuation inaccuracy and the effect of compensating the actuator motion precision error through advanced reconstruction algorithms. With those algorithms, the image quality degradation was suppressed to within 25% with the presence of 0.2 mm motion inaccuracy. The experimental evaluation using phantoms and an ex-vivo sample presented the applicability of low-cost delta configuration actuators for AR-PAMs. The measured full width at half maximum of the 0.2 mm diameter pencil-lead phantom were 0.45 ± 0.06 mm, 0.31 ± 0.04 mm, and 0.35 ± 0.07 mm, by applying the DAS, DAS+CF, and DMAS algorithms, respectively. AR-PAMs with a compact and low-cost delta configuration provide high-quality PA imaging with better accessibility for biomedical applications. The research evaluated the image degradation contributed by the actuation inaccuracy and suggested that the advanced beamformers are capable of suppressing the actuation inaccuracy.
Collapse
Affiliation(s)
- Shang Gao
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Ryosuke Tsumura
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Doua P Vang
- Worcester Polytechnic Institute, Department of Electrical and Computer Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keion Bisland
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States
| | - Keshuai Xu
- Johns Hopkins University, Department of Computer Science, Baltimore 21218, United States
| | - Yasuyuki Tsunoi
- National Defense Medical College Research Institute, Division of Bioinformation and Therapeutic Systems, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Haichong K Zhang
- Worcester Polytechnic Institute, Department of Robotics Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Rd, Worcester 01609, United States; Worcester Polytechnic Institute, Department of Computer Science, 100 Institute Rd, Worcester 01609, United States.
| |
Collapse
|
47
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
48
|
Zhou Y, Ni J, Wen C, Lai P. Light on osteoarthritic joint: from bench to bed. Theranostics 2022; 12:542-557. [PMID: 34976200 PMCID: PMC8692899 DOI: 10.7150/thno.64340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the rapidly growing disability-associated conditions with population aging worldwide. There is a pressing need for precise diagnosis and timely intervention for OA in the early stage. Current clinical imaging modalities, including pain radiography, magnetic resonance imaging, ultrasound, and optical coherent tomography, are limited to provide structural changes when the damage has been established or advanced. It prompts further endeavors in search of novel functional and molecular imaging, which potentially enables early diagnosis and intervention of OA. A hybrid imaging modality based on photothermal effects, photoacoustic imaging, has drawn wide attention in recent years and has seen a variety of biomedical applications, due to its great performance in yielding high-contrast and high-resolution images from structure to function, from tissue down to molecular levels, from animals to human subjects. Photoacoustic imaging has witnessed gratifying potentials and preliminary effects in OA diagnosis. Regarding the treatment of OA, photothermal-triggered therapy has exhibited its attractions for enhanced therapeutic outcomes. In this narrative review, we will discuss photoacoustic imaging for the diagnosis and monitoring of OA at different stages. Structural, functional, and molecular parameter changes associated with OA joints captured by photoacoustics will be summarized, forming the diagnosis perspective of the review. Photothermal therapy applications related to OA will also be discussed herein. Lastly, relevant clinical applications and its potential solutions to extend photoacoustic imaging to deeper OA situations have been proposed. Although some aspects may not be covered, this mini review provides a better understanding of the diagnosis and treatment of OA with exciting innovations based on tissue photothermal effects. It may also inspire more explorations in the field towards earlier and better theranostics of OA.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, HKSAR
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Photonics Research Institute, The Hong Kong Polytechnic University, HKSAR
| |
Collapse
|
49
|
Liang S, Zhou J, Yang W, Chen SL. Cerebrovascular imaging in vivo by non-contact photoacoustic microscopy based on photoacoustic remote sensing with a laser diode for interrogation. OPTICS LETTERS 2022; 47:18-21. [PMID: 34951872 DOI: 10.1364/ol.446787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Photoacoustic microscopy (PAM) is a unique tool for biomedical applications because it can visualize optical absorption contrast in vivo. Recently, non-contact PAM based on non-interferometric photoacoustic remote sensing (PARS), termed PARS microscopy, has shown promise for selected imaging applications. A variety of superluminescent diodes (SLDs) have been employed in the PARS microscopy system as the interrogation light source. Here, we investigate the use of a low-cost laser diode (LD) as the interrogation light source in PARS microscopy, termed PARS-LD. A side-by-side comparison of PARS-LD and a PARS microscopy system using an SLD was conducted that showed comparable performance in terms of resolution and signal-to-noise ratio. More importantly, for the first time to our knowledge, in vivo PAM imaging of mouse brain vessels was conducted in a non-contact manner, and the results show that PARS-LD provides great performance.
Collapse
|
50
|
Sciortino VM, Tran A, Sun N, Cao R, Sun T, Sun YY, Yan P, Zhong F, Zhou Y, Kuan CY, Lee JM, Hu S. Longitudinal cortex-wide monitoring of cerebral hemodynamics and oxygen metabolism in awake mice using multi-parametric photoacoustic microscopy. J Cereb Blood Flow Metab 2021; 41:3187-3199. [PMID: 34304622 PMCID: PMC8669277 DOI: 10.1177/0271678x211034096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm2), light-weight (2 g), dual-transparency (i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases.
Collapse
Affiliation(s)
- Vincent M Sciortino
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Angela Tran
- Department of Biology, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Naidi Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Rui Cao
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Tao Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Yo Sun
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ping Yan
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yifeng Zhou
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Yi Kuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Song Hu
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|