1
|
Martins ML, Morya E, Araújo de Lima LK, de Vasconcelos IC, Balen SA, da Silva Machado DG, da Rosa MRD. Cortical tinnitus evaluation using functional near-infrared spectroscopy. Brain Res 2025; 1855:149561. [PMID: 40064434 DOI: 10.1016/j.brainres.2025.149561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
Functional near-infrared spectroscopy (fNIRS) estimates the cortical hemodynamic response induced by sound stimuli. fNIRS can be used to understand the symptomatology of tinnitus and consequently provide effective ways of evaluating and treating the symptom. OBJECTIVE Compare the changes in the oxy-hemoglobin and deoxy-hemoglobin concentration of individuals with and without tinnitus using auditory stimulation by fNIRS. METHODS A tinnitus group (n = 23) and a control group (n = 23) were evaluated by an auditory task for assessing sound-evoked auditory cortex activity. The fNIRS was composed of 20 channels arranged into 4x2 arrays over the frontal, temporal and parietal cortices. Then, a passive listening block-paradigm design was adopted with reoccurring blocks of tasks with 15 s interspersed with randomized silence periods between 15-25 s. RESULTS There was a significant difference in the condition (type of sound), region of interest (ROI) and channel. As well as significant interaction in group and condition, and group and channel. The Tinnitus Frequency decreased HbO levels, while other sounds (white noise - WN and 1KHZ) increased HbO levels. All conditions differed from each other, except 1KHz with Baseline (silence) in the control group. Regarding the channels, the frontal channels (1, 3, and 11) differed in the tinnitus group, while in the control group a difference was observed in the channels of the frontal, temporal and parietal regions. CONCLUSION The type of sound presented, and brain region influenced the variations in HbO levels, but there was no difference between tinnitus and control participants. The tinnitus loudness, annoyance, and severity showed a weak correlation with variations in HbO levels.
Collapse
Affiliation(s)
- Mariana Lopes Martins
- Department of Speech-Language Pathology, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil.
| | - Edgard Morya
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Macaiba 59280-000, Brazil
| | | | - Isabelle Costa de Vasconcelos
- Laboratory of Technological Innovation in Health, Department of Speech-Language Pathology and Audiology, Graduate Program in Speech, Language and Hearing Sciences, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal 59012-300, Brazil
| | - Sheila Andreoli Balen
- Laboratory of Technological Innovation in Health, Department of Speech-Language Pathology and Audiology, Graduate Program in Speech, Language and Hearing Sciences, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal 59012-300, Brazil
| | | | | |
Collapse
|
2
|
Yang L, Wang Z. Applications and advances of combined fMRI-fNIRs techniques in brain functional research. Front Neurol 2025; 16:1542075. [PMID: 40170894 PMCID: PMC11958174 DOI: 10.3389/fneur.2025.1542075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the intricate functions of the human brain requires multimodal approaches that integrate complementary neuroimaging techniques. This review systematically examines the integration of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRs) in brain functional research, addressing their synergistic potential, methodological advancements, clinical and neuroscientific applications, and persistent challenges. We conducted a comprehensive literature review of 63 studies (from PubMed and Web of Science up to September 2024) using keyword combinations such as fMRI, fNIRs, and multimodal imaging. Our analysis reveals three key findings: (1) Methodological Synergy: Combining fMRI's high spatial resolution with fNIRs's superior temporal resolution and portability enables robust spatiotemporal mapping of neural activity, validated across motor, cognitive, and clinical tasks. Additionally, this study examines experimental paradigms and data processing techniques essential for effective multimodal neuroimaging. (2) Applications: The review categorizes integration methodologies into synchronous and asynchronous detection modes, highlighting their respective applications in spatial localization, validation of efficacy, and mechanism discovery. Synchronous and asynchronous integration modes have advanced research in neurological disorders (e.g., stroke, Alzheimer's), social cognition, and neuroplasticity, while novel hyperscanning paradigms extend applications to naturalistic, interactive settings. (3) Challenges: Hardware incompatibilities (e.g., electromagnetic interference in MRI environments), experimental limitations (e.g., restricted motion paradigms), and data fusion complexities hinder widespread adoption. The future direction emphasizes hardware innovation (such as fNIR probe compatible with MRI), standardized protocol and data integration driven by machine learning, etc. to solve the depth limitation of fNIR and infer subcortical activities. This synthesis underscores the transformative potential of fMRI-fNIRs integration in bridging spatial and temporal gaps in neuroimaging, while enhancing diagnostic and therapeutic strategies and paving the way for future innovations in brain research.
Collapse
Affiliation(s)
- Lirui Yang
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, Interdiscipline of Medicine and Engineering, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zehua Wang
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, Interdiscipline of Medicine and Engineering, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Center for Medical Device Evaluation, NMPA, Beijing, China
| |
Collapse
|
3
|
Kamikawa K, Yamamuro K, Mizui R, Kashida N, Ishida R, Okada T, Iwata N, Makinodan M. Reduced prefrontal hemodynamic responses measured using near-infrared spectroscopy in adults with autism spectrum disorder. Front Psychiatry 2025; 15:1507890. [PMID: 39834576 PMCID: PMC11743530 DOI: 10.3389/fpsyt.2024.1507890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Aim Functional neuroimaging studies have suggested that prefrontal cortex dysfunction occurs in individuals with autism spectrum disorder (ASD). Near-infrared spectroscopy (NIRS) is a noninvasive optical tool used to investigate oxygenation and hemodynamic responses in the cerebral cortex by measuring changes in oxygenated hemoglobin. Previous studies using NIRS have suggested that male children with ASD exhibit reduced hemodynamic responses in the dorsolateral prefrontal cortex; however, only a few studies examined this response in adults with ASD. Methods We examined the characteristics of prefrontal hemodynamic responses in 114 adults with ASD and 84 typically developing controls. Relative concentrations of oxygenated hemoglobin were measured with frontal probes every 0.1 s during the Stroop color-word task, using 24-channel NIRS. Results Our findings demonstrated that the oxygenated hemoglobin changes in the ASD group were significantly smaller than those in the control group at channels 19, 20, 23, and 24- located over the orbitofrontal cortex and frontal pole (p <0.05 for all three channels). The differences in oxygenated hemoglobin changes at Ch 20 were significantly correlated with the Autism-Spectrum Quotient Japanese version (AQ-J) total score and attention switching score, which is a symptom cluster of AQ-J (p = 0.043 and p = 0.009, respectively). Conclusion Adults with ASD have reduced prefrontal hemodynamic responses as measured using near-infrared spectroscopy and the reduced activity of the frontal pole in particular is related to reduced attentional function.
Collapse
Affiliation(s)
- Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Center for Health Control, Nara Medical University School of Medicine, Kashihara, Japan
| | - Ryo Mizui
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Natsuko Kashida
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Transformative Psychiatry and Synergistic Research, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Takashi Okada
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Transformative Psychiatry and Synergistic Research, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
4
|
Jalalvandi M, Sharini H, Shafaghi L, Alam NR. Deciphering brain activation during wrist movements: comparative fMRI and fNIRS analysis of active, passive, and imagery states. Exp Brain Res 2024; 243:36. [PMID: 39739121 DOI: 10.1007/s00221-024-06977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques. Data were collected from 10 right-handed volunteers performing a motor task using fMRI and fNIRS. fMRI utilized a 3T scanner and a 20-channel head coil, while fNIRS recorded data with a 48-channel device at 765 nm and 855 nm. Analysis focused on key motor and sensory cortices using NIRS-SPM and SPM12, applying a significance threshold of p < 0.05 and a minimum cluster size of 10 voxels for group analysis. Super-threshold voxels were identified with FWE thresholding in SPM12. For activation map extraction we focused on the primary motor cortex, primary somatosensory cortex, somatosensory association cortex, premotor cortex, and supplementary motor cortex. Both fMRI and fNIRS detected activation in the primary motor cortex (M1). The primary somatosensory cortex was found to influence movement direction coding, with smaller activation sizes for upward movements. Combining fNIRS with fMRI provided clearer differentiation of brain activation patterns for wrist movements in various directions and conditions (p < 0.05). This study highlights variations in left motor cortex activity across different movement states. fNIRS proved effective in detecting brain function and showed strong correlation with fMRI results, suggesting it as a viable alternative for those unable to undergo fMRI.
Collapse
Affiliation(s)
- Maziar Jalalvandi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Sharini
- Department of Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Riyahi Alam
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Concordia University, PERFORM Preventive Medicine and Personal Health Care Center, Montreal, Quebec, Canada.
- PERFORM Center, Concordia University, 3 Rue Harbridge, Dollard Des Ormeaux (D.D.O.), Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Gezginer I, Chen Z, Yoshihara HAI, Deán-Ben XL, Zerbi V, Razansky D. Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain. Nat Commun 2024; 15:10791. [PMID: 39737925 PMCID: PMC11685406 DOI: 10.1038/s41467-024-54947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice. The unique blood oxygenation readings and high spatio-temporal resolution at depths provided by functional optoacoustic (fOA) imaging offer an effective means for elucidating the connection between BOLD and hemoglobin responses. Seed-based and independent component analyses reveal spatially overlapping bilateral correlations between the fMRI-BOLD readings and the multiple hemodynamic components measured with fOA but also subtle discrepancies, particularly in anti-correlations. Notably, total hemoglobin and oxygenated hemoglobin components are found to exhibit stronger correlation with BOLD than deoxygenated hemoglobin, challenging conventional assumptions on the BOLD signal origin.
Collapse
Affiliation(s)
- Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Hikari A I Yoshihara
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Henderson TA. Can infrared light really be doing what we claim it is doing? Infrared light penetration principles, practices, and limitations. Front Neurol 2024; 15:1398894. [PMID: 39263274 PMCID: PMC11388112 DOI: 10.3389/fneur.2024.1398894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 09/13/2024] Open
Abstract
Near infrared (NIR) light has been shown to provide beneficial treatment of traumatic brain injury (TBI) and other neurological problems. This concept has spawned a plethora of commercial entities and practitioners utilizing panels of light emitting diodes (LEDs) and promising to treat patients with TBI and other disorders, who are desperate for some treatment for their untreatable conditions. Unfortunately, an LED intended to deliver photonic energy to the human brain does not necessarily do what an LED pointed at a mouse brain does. There is a problem of scale. Extensive prior research has shown that infrared light from a 0.5-watt LED will not penetrate the scalp and skull of a human. Both the properties of NIR light and the manner in which it interacts with tissue are examined. Based on these principles, the shortcomings of current approaches to treating neurological disorders with NIR light are explored. Claims of clinical benefit from low-level LED-based devices are explored and the proof of concept challenged. To date, that proof is thin with marginal benefits which are largely transient. Extensive research has shown fluence at the level of the target tissue which falls within the range of 0.9 J/cm2 to 15 J/cm2 is most effective in activating the biological processes at the cellular level which underlie direct photobiomodulation. If low-level infrared light from LED devices is not penetrating the scalp and skull, then these devices certainly are not delivering that level of fluence to the neurons of the subjacent brain. Alternative mechanisms, such as remote photobiomodulation, which may underlie the small and transient benefits for TBI symptoms reported for low-power LED-based NIR studies are presented. Actionable recommendations for the field are offered.
Collapse
Affiliation(s)
- Theodore A Henderson
- Neuro-Luminance, Inc., Denver, CO, United States
- Neuro-Laser Foundation, Denver, CO, United States
- Dr. Theodore Henderson, Inc., Denver, CO, United States
- The Synaptic Space, Inc., Denver, CO, United States
- The International Society of Applied Neuroimaging (ISAN), Toronto, ON, Canada
| |
Collapse
|
7
|
Klein F. Optimizing spatial specificity and signal quality in fNIRS: an overview of potential challenges and possible options for improving the reliability of real-time applications. FRONTIERS IN NEUROERGONOMICS 2024; 5:1286586. [PMID: 38903906 PMCID: PMC11188482 DOI: 10.3389/fnrgo.2024.1286586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
The optical brain imaging method functional near-infrared spectroscopy (fNIRS) is a promising tool for real-time applications such as neurofeedback and brain-computer interfaces. Its combination of spatial specificity and mobility makes it particularly attractive for clinical use, both at the bedside and in patients' homes. Despite these advantages, optimizing fNIRS for real-time use requires careful attention to two key aspects: ensuring good spatial specificity and maintaining high signal quality. While fNIRS detects superficial cortical brain regions, consistently and reliably targeting specific regions of interest can be challenging, particularly in studies that require repeated measurements. Variations in cap placement coupled with limited anatomical information may further reduce this accuracy. Furthermore, it is important to maintain good signal quality in real-time contexts to ensure that they reflect the true underlying brain activity. However, fNIRS signals are susceptible to contamination by cerebral and extracerebral systemic noise as well as motion artifacts. Insufficient real-time preprocessing can therefore cause the system to run on noise instead of brain activity. The aim of this review article is to help advance the progress of fNIRS-based real-time applications. It highlights the potential challenges in improving spatial specificity and signal quality, discusses possible options to overcome these challenges, and addresses further considerations relevant to real-time applications. By addressing these topics, the article aims to help improve the planning and execution of future real-time studies, thereby increasing their reliability and repeatability.
Collapse
Affiliation(s)
- Franziska Klein
- Biomedical Devices and Systems Group, R&D Division Health, OFFIS - Institute for Information Technology, Oldenburg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Zinos A, Wagner JC, Beardsley SA, Chen WL, Conant L, Malloy M, Heffernan J, Quirk B, Prost R, Maheshwari M, Sugar J, Whelan HT. Spatial correspondence of cortical activity measured with whole head fNIRS and fMRI: Toward clinical use within subject. Neuroimage 2024; 290:120569. [PMID: 38461959 DOI: 10.1016/j.neuroimage.2024.120569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.
Collapse
Affiliation(s)
- Anthony Zinos
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie C Wagner
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Wei-Liang Chen
- Center for Neuroscience Research, Children's National Medical Center, George Washington University, Washington DC, USA
| | - Lisa Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marsha Malloy
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Children's Wisconsin, Milwaukee, WI, USA
| | - Joseph Heffernan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brendan Quirk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Prost
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mohit Maheshwari
- Department of Radiology, Children's Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Sugar
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harry T Whelan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Fukumoto T, Amitani H, Nishi R, Wada M, Oishi N, Asakawa A. Correlation between trait emotional intelligence and prefrontal activation during a verbal fluency task: A functional near-infrared spectroscopy study. Medicine (Baltimore) 2023; 102:e34418. [PMID: 37478224 PMCID: PMC10662857 DOI: 10.1097/md.0000000000034418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
Stress is inevitable in humans and stress changes our physical and mental states. Stress has been studied epidemiologically, biologically, and psychologically. First defined in 1990, emotional intelligence (EI) affects psychological stress management. In contrast, the prefrontal cortex (PFC) is suggested to play a vital role in stress management. Human PFC activity can be inferred from the balance of oxygenated and deoxygenated hemoglobin in cerebral blood flow, which can be measured and calculated using functional near-infrared spectroscopy (fNIRS). An important cognitive activation task to activate the PFC is the verbal fluency task (VFT). Therefore, if the PFC is activated by the VFT and monitored by fNIRS, and the activity correlates with EI, fNIRS can be used to measure EI. In this study, Psychological tests using the self-rating depression scale, state-trait anxiety inventory (STAI), and trait emotional intelligence questionnaire-short form (TEIQue-SF) were conducted to evaluate the correlation with VFT performance. Relative oxygenated and deoxygenated hemoglobin concentrations were measured using an fNIRS device, and their correlation with VFT performance was tested. Spearman correlation coefficient was used to determine correlations. Results were as follows. Although VFT performance did not correlate with the oxygenated hemoglobin concentration ([Oxy-Hb]) changes, [Oxy-Hb] was elevated in all channels. VFT performance was significantly negatively correlated with the Zung self-rating depression scale (ρ = 0.063, P = .759), trait anxiety or anxiety level as a personal characteristic of STAI (ρ = 0.243, P = .232), and state anxiety or anxiety about an event of STAI (ρ = -0.138, P = .500), whereas no correlation was found with the TEIQue-SF (ρ = 0.303, P = .132). Healthy individuals PFC activity is not severely affected by their mental state and cognitive activation successfully activates the PFC, supporting the hypothesis that EI is correlated with frontal cortical activation during the VFT in a nonclinical population. EI may play a vital role in reducing stress associated with depression and anxiety in our social lives. Although we failed to show a statistical correlation between TEIQue-SF and [Oxy-Hb] due to a sample size shortage, our preliminary study was the first to attempt to show the PFC activity of EI through a hemodynamic response. Future research may elucidate the role of EI in reducing psychological stress in social life.
Collapse
Affiliation(s)
- Takamasa Fukumoto
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryusei Nishi
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Midori Wada
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
10
|
Tetsuka M, Sakurada T, Matsumoto M, Nakajima T, Morita M, Fujimoto S, Kawai K. Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke. Front Syst Neurosci 2023; 17:1130272. [PMID: 37388942 PMCID: PMC10300420 DOI: 10.3389/fnsys.2023.1130272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient's clinical background such as Fugl-Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.
Collapse
Affiliation(s)
- Masayuki Tetsuka
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Sakurada
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Faculty of Science and Technology, Seikei University, Tokyo, Japan
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Mayuko Matsumoto
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
| | - Mitsuya Morita
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Bonnal J, Ozsancak C, Monnet F, Valery A, Prieur F, Auzou P. Neural Substrates for Hand and Shoulder Movement in Healthy Adults: A Functional near Infrared Spectroscopy Study. Brain Topogr 2023:10.1007/s10548-023-00972-x. [PMID: 37202647 DOI: 10.1007/s10548-023-00972-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological conditions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France.
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France.
- CIAMS, Université d'Orléans, 45067, Orléans, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fanny Monnet
- Institut Denis Poisson, Bâtiment de mathématiques, Université d'Orléans, CNRS, Université de Tours, Institut Universitaire de France, Rue de Chartres, 45067, Orléans cedex 2, B.P. 6759, France
| | - Antoine Valery
- Département d'Informations Médicales, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, 91405, Orsay Cedex, France
- CIAMS, Université d'Orléans, 45067, Orléans, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| |
Collapse
|
12
|
Ikegami M, Sorama M. Differential Neural Correlates in the Prefrontal Cortex during a Delay Discounting Task in Healthy Adults: An fNIRS Study. Brain Sci 2023; 13:brainsci13050758. [PMID: 37239230 DOI: 10.3390/brainsci13050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
The phenomenon of future rewards being devalued as a function of delay is referred to as delay discounting (DD). It is considered a measure of impulsivity, and steep DD characterizes psychiatric problems such as addictive disorders and attention deficit/hyperactivity disorder. This preliminarily study examined prefrontal hemodynamic activity using functional near-infrared spectroscopy (fNIRS) in healthy young adults performing a DD task. Prefrontal activity during a DD task with hypothetical monetary rewards was measured in 20 participants. A discounting rate (k-value) in the DD task was determined on the basis of a hyperbolic function. To validate the k-value, a DD questionnaire and the Barratt impulsiveness scale (BIS) were administered after fNIRS. The DD task induced a significant increase in oxygenated hemoglobin (oxy-Hb) concentration bilaterally in the frontal pole and dorsolateral prefrontal cortex (PFC) compared with a control task. Significant positive correlations were detected between left PFC activity and discounting parameters. Right frontal pole activity, however, showed significantly negative correlation with motor impulsivity as a BIS subscore. These results suggest that left and right PFCs have differential contributions when performing the DD task. The present findings suggest the idea that fNIRS measurement of prefrontal hemodynamic activity can be useful for understanding the neural mechanisms underlying DD and is applicable for assessing PFC function among psychiatric patients with impulsivity-related problems.
Collapse
Affiliation(s)
- Masanaga Ikegami
- Department of Psychology, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Michiko Sorama
- Department of Psychology, Kyoto Notre Dame University, Kyoto 606-0847, Japan
| |
Collapse
|
13
|
Shatzer HE, Russo FA. Brightening the Study of Listening Effort with Functional Near-Infrared Spectroscopy: A Scoping Review. Semin Hear 2023; 44:188-210. [PMID: 37122884 PMCID: PMC10147513 DOI: 10.1055/s-0043-1766105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Listening effort is a long-standing area of interest in auditory cognitive neuroscience. Prior research has used multiple techniques to shed light on the neurophysiological mechanisms underlying listening during challenging conditions. Functional near-infrared spectroscopy (fNIRS) is growing in popularity as a tool for cognitive neuroscience research, and its recent advances offer many potential advantages over other neuroimaging modalities for research related to listening effort. This review introduces the basic science of fNIRS and its uses for auditory cognitive neuroscience. We also discuss its application in recently published studies on listening effort and consider future opportunities for studying effortful listening with fNIRS. After reading this article, the learner will know how fNIRS works and summarize its uses for listening effort research. The learner will also be able to apply this knowledge toward generation of future research in this area.
Collapse
Affiliation(s)
- Hannah E. Shatzer
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Frank A. Russo
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
14
|
Yamamuro K. Near-infrared spectroscopy in child and adolescent neurodevelopmental disorders. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e59. [PMID: 38868653 PMCID: PMC11114441 DOI: 10.1002/pcn5.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 06/14/2024]
Abstract
Near-infrared spectroscopy (NIRS) is a noninvasive optical technique that uses the near-infrared spectrum for functional neuroimaging by measuring oxygenation and hemodynamic changes in the cerebral cortex. The advantages of NIRS include its portability and ease of application, which allows for testing with the subject in natural positions, such as sitting or standing. Since 1994, NIRS has been increasingly used to conduct functional activation studies on different psychiatric disorders, most prominently schizophrenia, depression, bipolar disorder, and neurodevelopmental disorders. However, limited information on its use among child and adolescent patients is available. We herein review recent findings obtained using NIRS measurements of the brain during cognitive tasks in neurodevelopmental disorders, such as autism spectrum disorder, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, and Tourette's disorder. This will facilitate evaluations of the causation and treatment of prefrontal cortex dysfunctions.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of PsychiatryNara Medical University School of MedicineKashiharaJapan
| |
Collapse
|
15
|
Zohdi H, Natale L, Scholkmann F, Wolf U. Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning. Brain Sci 2022; 12:1449. [PMID: 36358375 PMCID: PMC9688708 DOI: 10.3390/brainsci12111449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 10/18/2023] Open
Abstract
There is large intersubject variability in cerebrovascular hemodynamic and systemic physiological responses induced by a verbal fluency task (VFT) under colored light exposure (CLE). We hypothesized that machine learning would enable us to classify the response patterns and provide new insights into the common response patterns between subjects. In total, 32 healthy subjects (15 men and 17 women, age: 25.5 ± 4.3 years) were exposed to two different light colors (red vs. blue) in a randomized cross-over study design for 9 min while performing a VFT. We used the systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach to measure cerebrovascular hemodynamics and oxygenation at the prefrontal cortex (PFC) and visual cortex (VC) concurrently with systemic physiological parameters. We found that subjects were suitably classified by unsupervised machine learning into different groups according to the changes in the following parameters: end-tidal carbon dioxide, arterial oxygen saturation, skin conductance, oxygenated hemoglobin in the VC, and deoxygenated hemoglobin in the PFC. With hard clustering methods, three and five different groups of subjects were found for the blue and red light exposure, respectively. Our results highlight the fact that humans show specific reactivity types to the CLE-VFT experimental paradigm.
Collapse
Affiliation(s)
- Hamoon Zohdi
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | - Luciano Natale
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
- Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ursula Wolf
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
16
|
Sakurada T, Horiuchi A, Komeda T. Sensorimotor Activities and Their Functional Connectivity Elicited by Robot-Assisted Passive Movements of Lower Limbs. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Robot-assisted body movements are a useful approach for the rehabilitation of motor dysfunction. Various robots based on end-effector or exoskeleton type have been proposed. However, the effect of these robots on brain activity during assistive lower limb movements remains unclear. In this study, we evaluated brain activity results among robot-assisted passive movements, voluntary active movements, and kinesthetic motor imagery. We measured and compared the brain activities of 21 young, healthy individuals during three experimental conditions associated with lower limb movements (active, passive, and imagery conditions) using functional near-infrared spectroscopy (fNIRS). Our results showed that although different brain areas with significant activity were observed among the conditions, the temporal patterns of the activity in each recording channel and the spatial patterns of functional connectivity showed high similarity between robot-assisted passive movements and voluntary active movements. Conversely, the robot-assisted passive movements did not show any similarity to motor imagery. Overall, these findings suggest that the robotic assistive approach is useful for activating not only afferent processes associated with sensory feedback processing but also motor control-related efferent processes.
Collapse
|
17
|
Scholkmann F, Tachtsidis I, Wolf M, Wolf U. Systemic physiology augmented functional near-infrared spectroscopy: a powerful approach to study the embodied human brain. NEUROPHOTONICS 2022; 9:030801. [PMID: 35832785 PMCID: PMC9272976 DOI: 10.1117/1.nph.9.3.030801] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 05/15/2023]
Abstract
In this Outlook paper, we explain why an accurate physiological interpretation of functional near-infrared spectroscopy (fNIRS) neuroimaging signals is facilitated when systemic physiological activity (e.g., cardiorespiratory and autonomic activity) is measured simultaneously by employing systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). The rationale for SPA-fNIRS is twofold: (i) SPA-fNIRS enables a more complete interpretation and understanding of the fNIRS signals measured at the head since they contain components originating from neurovascular coupling and from systemic physiological sources. The systemic physiology signals measured with SPA-fNIRS can be used for regressing out physiological confounding components in fNIRS signals. Misinterpretations can thus be minimized. (ii) SPA-fNIRS enables to study the embodied brain by linking the brain with the physiological state of the entire body, allowing novel insights into their complex interplay. We envisage the SPA-fNIRS approach will become increasingly important in the future.
Collapse
Affiliation(s)
- Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, Zurich, Switzerland
| | - Ilias Tachtsidis
- University College London, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Martin Wolf
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, Zurich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| |
Collapse
|
18
|
Kawai N, Nakata R. Do older adults mistake the accelerator for the brake pedal?: Older adults employ greater prefrontal cortical activity during a bipedal/bimanual response-position selection task. Behav Brain Res 2022; 432:113976. [PMID: 35753529 DOI: 10.1016/j.bbr.2022.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Successful aging depends upon maintaining executive functions, which enable flexible response coordination. Although flexible responses are required for both hands and feet, as in driving, few studies have examined executive functions and brain activity in older adults, in terms of foot responses. In this study, younger (mean age = 20.8) and older participants (mean age = 68.7) performed a newly developed bimanual/bipedal response-position selection compatibility task while we measured their brain activity using functional near-infrared spectroscopy. Participants had to press either a left or right button using either their left or right foot (or hand), as directed by a two-dimensional cue signal. They executed either a straight or diagonal press response that mimicked stepping on the accelerator or brake pedal in a car. Foot responses produced more errors, longer reaction times, and greater brain activation than hand responses. Greater brain activation in the left dorsolateral prefrontal cortex (BA 46) was observed in incongruent (i.e., diagonal) than in congruent (straight) trials for foot responses, but not for hand responses, suggesting that participants had difficulty executing a diagonal foot response (as braking in a car), but not a diagonal hand response. Older participants exhibited greater brain activation across the PFC than younger participants, indicating that older adults activate additional brain circuits to compensate for declining executive functions. We discuss potential relationships between declining executive functions of older adults and the frequent automobile accidents (i.e., missteps) in which they are involved.
Collapse
Affiliation(s)
- Nobuyuki Kawai
- Department of Cognitive and Psychological Sciences, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, JAPAN, 464-8601; Academy of Emerging Science, Chubu University, Kasugai-city, Aichi, JAPAN.
| | - Ryuzaburo Nakata
- Department of Cognitive and Psychological Sciences, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, JAPAN, 464-8601
| |
Collapse
|
19
|
Klein F, Debener S, Witt K, Kranczioch C. fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery. Sci Rep 2022; 12:3570. [PMID: 35246563 PMCID: PMC8897516 DOI: 10.1038/s41598-022-06519-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Compared to functional magnetic resonance imaging (fMRI), functional near infrared spectroscopy (fNIRS) has several advantages that make it particularly interesting for neurofeedback (NFB). A pre-requisite for NFB applications is that with fNIRS, signals from the brain region of interest can be measured. This study focused on the supplementary motor area (SMA). Healthy older participants (N = 16) completed separate continuous-wave (CW-) fNIRS and (f)MRI sessions. Data were collected for executed and imagined hand movements (motor imagery, MI), and for MI of whole body movements. Individual anatomical data were used to (i) define the regions of interest for fMRI analysis, to (ii) extract the fMRI BOLD response from the cortical regions corresponding to the fNIRS channels, and (iii) to select fNIRS channels. Concentration changes in oxygenated ([Formula: see text]) and deoxygenated ([Formula: see text]) hemoglobin were considered in the analyses. Results revealed subtle differences between the different MI tasks, indicating that for whole body MI movements as well as for MI of hand movements [Formula: see text] is the more specific signal. Selection of the fNIRS channel set based on individual anatomy did not improve the results. Overall, the study indicates that in terms of spatial specificity and task sensitivity SMA activation can be reliably measured with CW-fNIRS.
Collapse
Affiliation(s)
- Franziska Klein
- Neurocognition and Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karsten Witt
- Neurology, Department of Human Medicine, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Cornelia Kranczioch
- Neurocognition and Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
- Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
20
|
Sakurada T, Matsumoto M, Yamamoto SI. Individual Sensory Modality Dominance as an Influential Factor in the Prefrontal Neurofeedback Training for Spatial Processing: A Functional Near-Infrared Spectroscopy Study. Front Syst Neurosci 2022; 16:774475. [PMID: 35221936 PMCID: PMC8866872 DOI: 10.3389/fnsys.2022.774475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Neurofeedback is a neuromodulation technique used to improve brain function by self-regulating brain activity. However, the efficacy of neurofeedback training varies widely between individuals, and some participants fail to self-regulate brain activity. To overcome intersubject variation in neurofeedback training efficacy, it is critical to identify the factors that influence this type of neuromodulation. In this study, we considered that individual differences in cognitive ability may influence neurofeedback training efficacy and aimed to clarify the effect of individual working memory (WM) abilities, as characterized by sensory modality dominance, on neurofeedback training efficacy in healthy young adults. In particular, we focused on the abilities of individuals to retain internal (tactile or somatosensory) or external (visual) body information in their WM. Forty participants performed functional near-infrared spectroscopy-based neurofeedback training aimed at producing efficient and lower-level activity in the bilateral dorsolateral prefrontal cortex and frontopolar cortex. We carried out a randomized, sham-controlled, double-blind study that compared WM ability before and after neurofeedback training. Individual WM ability was quantified using a target searching task that required the participants to retain spatial information presented as vibrotactile or visual stimuli. Participants who received feedback information based on their own prefrontal activity showed gradually decreasing activity in the right prefrontal area during the neurofeedback training and demonstrated superior WM ability during the target searching task with vibrotactile stimuli compared with the participants who performed dummy neurofeedback training. In comparison, left prefrontal activity was not influenced by the neurofeedback training. Furthermore, the efficacy of neurofeedback training (i.e., lower right prefrontal activity and better searching task performance) was higher in participants who exhibited tactile dominance rather than visual dominance in their WM. These findings indicate that sensory modality dominance in WM may be an influential neurophysiological factor in determining the efficacy of neurofeedback training. These results may be useful in the development of neurofeedback training protocols tailored to individual needs.
Collapse
Affiliation(s)
- Takeshi Sakurada
- Department of Robotics, College of Science and Engineering, Ritsumeikan University, Shiga, Japan
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- *Correspondence: Takeshi Sakurada,
| | - Mayuko Matsumoto
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Shin-ichiroh Yamamoto
- Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
21
|
Ventrolateral prefrontal hemodynamic responses in autism spectrum disorder with and without depression. PLoS One 2021; 16:e0256780. [PMID: 34449833 PMCID: PMC8396790 DOI: 10.1371/journal.pone.0256780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/14/2021] [Indexed: 11/25/2022] Open
Abstract
In clinical settings, autism spectrum disorder (ASD) with comorbid depression is often difficult to diagnose, and should be considered in treatment. However, to our knowledge, no functional imaging study has examined the difference between ASD adolescents with and without comorbid depression. We aimed to compare the characteristics and prefrontal brain function of ASD with and without depression in order to identify a biological marker that can be used to detect the difference. Twenty-eight drug-naïve adolescents with ASD (14 ASD with and 14 ASD without depression) and 14 age- and gender-matched adolescents with typical development were evaluated using several variables. These included intelligence quotient, autism quotient, depression severity using the Beck Depression Inventory 2nd edition (BDI-II), and level of social functioning using the Social Adaptation Self-evaluation Scale (SASS). In addition, frontotemporal hemodynamic responses during a verbal fluency task (VFT) were measured using functional near-infrared spectroscopy (fNIRS). The ASD group, including both of the ASD with and ASD without depression groups, showed smaller hemodynamic responses than the typical development group in portions of the left dorsolateral prefrontal cortex (DLPFC), bilateral ventrolateral prefrontal cortex (VLPFC) and anterior part of the temporal cortex (aTC) during the VFT. Moreover, the smaller hemodynamic responses in the right VLPFC during the VFT in the ASD group were associated with the worse BDI-II and SASS scores. Furthermore, the ASD with depression group showed smaller hemodynamic responses in the right VLPFC during the VFT than the ASD without depression group in a direct comparison. Adolescents with ASD showed reduced activation in broad frontotemporal regions during a cognitive task compared with those with typical development. More specifically, the right VLPFC activation reflected the level of self-estimated depression and social functioning in the ASD subjects, and could be used to discriminate between ASD adolescents with and without depression.
Collapse
|
22
|
Shader MJ, Luke R, Gouailhardou N, McKay CM. The use of broad vs restricted regions of interest in functional near-infrared spectroscopy for measuring cortical activation to auditory-only and visual-only speech. Hear Res 2021; 406:108256. [PMID: 34051607 DOI: 10.1016/j.heares.2021.108256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
As an alternative to fMRI, functional near-infrared spectroscopy (fNIRS) is a relatively new tool for observing cortical activation. However, spatial resolution is reduced compared to fMRI and often the exact locations of fNIRS optodes and specific anatomical information is not known. The aim of this study was to explore the location and range of specific regions of interest that are sensitive to detecting cortical activation using fNIRS in response to auditory- and visual-only connected speech. Two approaches to a priori region-of-interest selection were explored. First, broad regions corresponding to the auditory cortex and occipital lobe were analysed. Next, the fNIRS Optode Location Decider (fOLD) tool was used to divide the auditory and visual regions into two subregions corresponding to distinct anatomical structures. The Auditory-A and -B regions corresponded to Heschl's gyrus and planum temporale, respectively. The Visual-A region corresponded to the superior occipital gyrus and the cuneus, and the Visual-B region corresponded to the middle occipital gyrus. The experimental stimulus consisted of a connected speech signal segmented into 12.5-sec blocks and was presented in either an auditory-only or visual-only condition. Group-level results for eight normal-hearing adult participants averaged over the broad regions of interest revealed significant auditory-evoked activation for both the left and right broad auditory regions of interest. No significant activity was observed for any other broad region of interest in response to any stimulus condition. When divided into subregions, there was a significant positive auditory-evoked response in the left and right Auditory-A regions, suggesting activation near the primary auditory cortex in response to auditory-only speech. There was a significant positive visual-evoked response in the Visual-B region, suggesting middle occipital gyrus activation in response to visual-only speech. In the Visual-A region, however, there was a significant negative visual-evoked response. This result suggests a significant decrease in oxygenated hemoglobin in the superior occipital gyrus as well as the cuneus in response to visual-only speech. Distinct response characteristics, either positive or negative, in adjacent subregions within the temporal and occipital lobes were fairly consistent on the individual level. Results suggest that temporal regions near Heschl's gyrus may be the most advantageous location in adults for identifying hemodynamic responses to complex auditory speech signals using fNIRS. In the occipital lobe, regions corresponding to the facial processing pathway may prove advantageous for measuring positive responses to visual speech using fNIRS.
Collapse
Affiliation(s)
- Maureen J Shader
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | - Robert Luke
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie Hearing, Macquarie University, 16 University Avenue, New South Wales 2109, Australia
| | | | - Colette M McKay
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| |
Collapse
|
23
|
Baskak B, Kir Y, Sedes N, Kuşman A, Türk EG, Baran Z, Gönüllü I, Artar M, Munir K. Attachment Style Predicts Cortical Activity in Temporoparietal Junction (TPJ): An fNIRS Study Using a Theory of Mind (ToM) Task in Healthy University Students. J PSYCHOPHYSIOL 2021; 34:99-109. [PMID: 33840879 DOI: 10.1027/0269-8803/a000240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Results of the behavioral studies suggest that attachment styles may have an enduring effect upon theory of mind (ToM). However biological underpinnings of this relationship are unclear. Here, we compared securely and insecurely attached first grade university students (N = 56) in terms of cortical activity measured by 52 channel Functional Near Infrared Spectroscopy (fNIRS) during the Reading the Mind from the Eyes Test (RMET). The control condition involved gender identification via the same stimuli. We found that the ToM condition evoked higher activity than the control condition particularly in the right hemisphere. We observed higher activity during the ToM condition relative to the control condition in the secure group (SG), whereas the overall cortical activity evoked by the two conditions was indistinguishable in the insecure group (ISG). Higher activity was observed in channels corresponding to right superior temporal and adjacent parietal cortices in the SG relative to the ISG during the ToM condition. Dismissive attachment scores were negatively correlated with activity in channels that correspond to right superior temporal cortex. These results suggest that attachment styles do have an effect on representation of ToM in terms of cortical activity in late adolescence. Particularly, dismissive attachment is represented by lower activity in the right superior temporal cortex during ToM, which might be related to weaker social need and habitual unwillingness for closeness among this group of adolescents.
Collapse
Affiliation(s)
- Bora Baskak
- Department of Psychiatry, Ankara University Brain Research Center, School of Medicine, Ankara University, Turkey
| | - Yagmur Kir
- Department of Psychiatry, Ankara University Brain Research Center, School of Medicine, Ankara University, Turkey
| | - Nilay Sedes
- Department of Psychiatry, Yenimahalle State Hospital, Turkey
| | - Adnan Kuşman
- Department of Psychiatry, Ankara University Brain Research Center, School of Medicine, Ankara University, Turkey
| | | | - Zeynel Baran
- Department of Psychology, Experimental Psychology, Hacettepe University, Turkey
| | - Ipek Gönüllü
- Department of Medical Education and Informatics, School of Medicine, Ankara University, Turkey
| | - Müge Artar
- Faculty of Educational Sciences, Ankara University, Turkey
| | - Kerim Munir
- Developmental Medicine Center, Boston Children's Hospital, MA, USA
| |
Collapse
|
24
|
Sayar-Akaslan D, Baskak B, Kir Y, Kusman A, Yalcinkaya B, Çakmak IB, Munir K. Cortical activity measured by functional near infrared spectroscopy during a theory of mind task in subjects with schizophrenia, bipolar disorder and healthy controls. J Affect Disord 2021; 282:329-339. [PMID: 33421860 DOI: 10.1016/j.jad.2020.12.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Theory of Mind (ToM) deficits interfere in social cognitive functioning in schizophrenia (SCZ) and are increasingly recognized to do so in bipolar disorder (BD), however their clinical and neurobiological correlates remain unclear. This study represents the first direct comparison of subjects with SCZ (N = 26), BD (N = 26) and healthy controls (N = 33) in cortical activity during the Reading the Mind in the Eyes Task (RMET) using functional Near Infrared Spectroscopy (fNIRS) with the control condition (CC) involving gender identification via the same stimuli. The three groups were compared with a comprehensive ToM battery and assessed in terms of the relationship of ToM performance with clinical symptoms, insight and functioning. The controls scored higher than the SCZ and BD groups in ToM assessments, with SCZ group showing the worse performance in terms of meta-representation and empathy. The SCZ group ToM scores inversely correlated with negative symptom severity and positively correlated with insight; BD group ToM scores negatively correlated with subclinical mania symptoms and projected functioning. Cortical activity was higher during the ToM condition compared to the CC in the pre-motor and supplementary-motor cortices, middle and superior temporal gyri, and the primary somatosensory cortex. Group x Condition interaction was detected whereby activity was higher during the ToM condition among controls with no detected difference between SCZ and BD groups. The results suggest that ToM is represented similarly in cortical activity in SCZ and BD compared to healthy controls pointing to possible neurobiological convergence of SCZ and BD in underlying impairments of social cognition.
Collapse
Affiliation(s)
- Damla Sayar-Akaslan
- Ankara University, Faculty of Medicine, Department of Psychiatry, Ankara University Brain Research Center (AUBAUM), Ankara, Turkey
| | - Bora Baskak
- Ankara University, Faculty of Medicine, Department of Psychiatry, Ankara University Brain Research Center (AUBAUM), Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, NÖROM, Ankara, Turkey.
| | - Yagmur Kir
- Ankara University, Faculty of Medicine, Department of Psychiatry, Ankara University Brain Research Center (AUBAUM), Ankara, Turkey
| | - Adnan Kusman
- Ankara University, Faculty of Medicine, Department of Psychiatry, Ankara University Brain Research Center (AUBAUM), Ankara, Turkey
| | - Busra Yalcinkaya
- Ankara University, Faculty of Medicine, Department of Psychiatry, Ankara University Brain Research Center (AUBAUM), Ankara, Turkey
| | - Işık Batuhan Çakmak
- University of Health Sciences, Ankara City Hospital, Department of Psychiatry, Turkey
| | - Kerim Munir
- Harvard Medical School, Developmental Medicine Center, Boston Children's Hospital, Boston, USA
| |
Collapse
|
25
|
Contribution of Somatosensory and Parietal Association Areas in Improving Standing Postural Stability Through Standing Plantar Perception Training in Community-Dwelling Older Adults. J Aging Phys Act 2021; 29:761-770. [PMID: 33567405 DOI: 10.1123/japa.2020-0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 11/18/2022]
Abstract
Although standing plantar perception training (SPPT) may improve standing postural stability, the underlying neural mechanisms remain unclear. The authors investigated the relationship between regional cortical responses to SPPT using a balance pad and training outcomes in 32 older participants (mean ± SD:72.2 ± 6.0, range:60-87). Regional cortical activity was measured in the bilateral supplementary motor area, primary sensorimotor area, and parietal association area using near-infrared spectroscopy. Postural sway changes were compared before and after SPPT. Changes in two-point plantar discrimination and regional cortical activity during SPPT, associated with standing postural stability improvements, were examined using multiple regression and indicated improved standing postural stability after SPPT (p < .0001). Changes in right parietal association area activity were associated with standing postural stability improvements while barefoot. Overall, the results suggest that right parietal association area activation during SPPT plays a crucial role in regulating standing postural stability and may help develop strategies to prevent older adults from falling.
Collapse
|
26
|
Derbie AY, Chau B, Lam B, Fang YH, Ting KH, Wong CYH, Tao J, Chen LD, Chan CCH. Cortical Hemodynamic Response Associated with Spatial Coding: A Near-Infrared Spectroscopy Study. Brain Topogr 2021; 34:207-220. [PMID: 33484379 DOI: 10.1007/s10548-021-00821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Allocentric and egocentric are two types of spatial coding. Previous studies reported the dorsal attention network's involvement in both types. To eliminate possible paradigm-specific confounds in the results, this study employed fine-grained cue-to-target paradigm to dissociate allocentric (aSC) and egocentric (eSC) spatial coding. Twenty-two participants completed a custom visuospatial task, and changes in the concentration of oxygenated hemoglobin (O2-Hb) were recorded using functional near-infrared spectroscopy (fNIRS). The least absolute shrinkage and selection operator-regularized principal component (LASSO-RPC) algorithm was used to identify cortical sites that predicted the aSC and eSC conditions' reaction times. Significant changes in O2-Hb concentration in the right inferior parietal lobule (IPL) and post-central gyrus regions were common in both aSC and eSC. Results of inter-channel correlations further substantiate cortical activities in both conditions were predominantly over the right parieto-frontal areas. Together with right superior frontal gyrus areas be the reaction time neural correlates, the results suggest top-down attention and response-mapping processes are common to both spatial coding types. Changes unique to aSC were in clusters over the right intraparietal sulcus, right temporo-parietal junction, and left IPL. With the left pre-central gyrus region, be the reaction time neural correlate, aSC is likely to involve more orienting attention, updating of spatial information, and object-based response selection and inhibition than eSC. Future studies will use other visuospatial task designs for testing the robustness of the findings on spatial coding processes.
Collapse
Affiliation(s)
- Abiot Y Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bolton Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Bess Lam
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yun-Hua Fang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kin-Hung Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Clive Y H Wong
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-Dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Kir Y, Sayar-Akaslan D, Agtas-Ertan E, Kusman A, Baskak N, Baran Z, Munir K, Baskak B. Cortical activity during social acceptance and rejection task in social anxiety disorder: A controlled functional near infrared spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110012. [PMID: 32553940 DOI: 10.1016/j.pnpbp.2020.110012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The cognitive and emotional vulnerability of individuals with social anxiety disorder (SAD) and their response to repeated experiences of social rejection and social acceptance are important factors for the emergence and maintenance of symptoms of the disorder. Functional neuroimaging studies of SAD reveal hyperactivity in regions involved in the fear circuit such as amygdala, insula, anterior cingulate, and prefrontal cortices (PFC) in response to human faces with negative emotions. Observation of brain activity, however, involving studies of responses to standardized human interaction of social acceptance and social rejection have been lacking. METHODS We compared a group of index subjects with SAD (N = 22, mean age:26.3 ± 5.4, female/male: 7/15) (SADG) with a group of healthy controls (CG) (N = 21, mean age:28.7 ± 4.5, female/male: 14/7) in measures of cortical activity during standardized experiences of human interaction involving social acceptance (SA) and social rejection (SR) video-simulated handshaking tasks performed by real actors. In a third, control condition (CC), the subjects were expected to press a switch button in an equivalent space. Subjects with a concurrent mood episode were excluded and the severity of subclinical depressive symptoms was controlled. 52-channel functional near-infrared spectroscopy (fNIRS) was used to measure cortical activity. RESULTS Activity was higher in the SAD subjects compared to healthy controls, in particular in channels that project to middle and superior temporal gyri (STG), frontal eye fields (FEF) and dorsolateral prefrontal cortex (DLPFC) in terms of both SA and SR conditions. Cortical activity during the CC was not different between the groups. Only in the SAD-group, activity in the pre-motor and supplementary motor cortices, inferior and middle temporal gyri and fronto-polar area was higher during the rejection condition than the other two conditions. Anxiety scores were correlated with activity in STG, DLPFC, FEF and premotor cortex, while avoidance scores were correlated with activity in STG and FEF. CONCLUSIONS SA and SR are represented differently in terms of cortical activity in SAD subjects compared to healthy controls. Higher activity in both social conditions in SAD subjects compared to controls may imply biological sensitivity to these experiences and may underscore the importance of increased cortical activity during social interaction experiences as a putative mediator of vulnerability to SAD. Higher cortical activity in the SADG may possibly indicate stronger need for inhibitory control mechanisms and higher recruitment of theory of mind functions during social stress. Higher activity during the SR compared to the SA condition in the SAD subjects may also suggest distinct processing of social cues, whether they involve acceptance or rejection.
Collapse
Affiliation(s)
- Yagmur Kir
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Damla Sayar-Akaslan
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Ece Agtas-Ertan
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Adnan Kusman
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Nilay Baskak
- Yenimahalle Hospital, Department of Psychiatry, Ankara, Turkey
| | - Zeynel Baran
- Hacettepe University, Department of Psychology, Ankara, Turkey
| | - Kerim Munir
- Harvard Medical School, Developmental Medicine Center, Boston Children's Hospital, Boston, USA
| | - Bora Baskak
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.
| |
Collapse
|
28
|
Yücel MA, Lühmann AV, Scholkmann F, Gervain J, Dan I, Ayaz H, Boas D, Cooper RJ, Culver J, Elwell CE, Eggebrecht A, Franceschini MA, Grova C, Homae F, Lesage F, Obrig H, Tachtsidis I, Tak S, Tong Y, Torricelli A, Wabnitz H, Wolf M. Best practices for fNIRS publications. NEUROPHOTONICS 2021; 8:012101. [PMID: 33442557 PMCID: PMC7793571 DOI: 10.1117/1.nph.8.1.012101] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 05/09/2023]
Abstract
The application of functional near-infrared spectroscopy (fNIRS) in the neurosciences has been expanding over the last 40 years. Today, it is addressing a wide range of applications within different populations and utilizes a great variety of experimental paradigms. With the rapid growth and the diversification of research methods, some inconsistencies are appearing in the way in which methods are presented, which can make the interpretation and replication of studies unnecessarily challenging. The Society for Functional Near-Infrared Spectroscopy has thus been motivated to organize a representative (but not exhaustive) group of leaders in the field to build a consensus on the best practices for describing the methods utilized in fNIRS studies. Our paper has been designed to provide guidelines to help enhance the reliability, repeatability, and traceability of reported fNIRS studies and encourage best practices throughout the community. A checklist is provided to guide authors in the preparation of their manuscripts and to assist reviewers when evaluating fNIRS papers.
Collapse
Affiliation(s)
- Meryem A. Yücel
- Boston University, Neurophotonics Center, Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Alexander v. Lühmann
- Boston University, Neurophotonics Center, Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Felix Scholkmann
- University Hospital Zurich, University of Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Neonatology Research, Zurich, Switzerland
- University of Bern, Institute for Complementary and Integrative Medicine, Bern, Switzerland
| | - Judit Gervain
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Università di Padova, Department of Social and Developmental Psychology, Padua, Italy
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Applied Cognitive Neuroscience Laboratory, Tokyo, Japan
| | - Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychology, Philadelphia, Pennsylvania, United States
- Drexel University, Drexel Solutions Institute, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Family and Community Health, Philadelphia, Pennsylvania, United States
- Children’s Hospital of Philadelphia, Center for Injury Research and Prevention, Philadelphia, Pennsylvania, United States
| | - David Boas
- Boston University, Neurophotonics Center, Biomedical Engineering, Boston, Massachusetts, United States
| | - Robert J. Cooper
- University College London, DOT-HUB, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Joseph Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Clare E. Elwell
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Adam Eggebrecht
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Maria A. Franceschini
- Massachusetts General Hospital, Harvard Medical School, MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Christophe Grova
- Concordia University, Department of Physics and PERFORM Centre, Multimodal Functional Imaging Lab, Montreal, Québec, Canada
- McGill University, Biomedical Engineering Department, Multimodal Functional Imaging Lab, Montreal, Québec, Canada
| | - Fumitaka Homae
- Tokyo Metropolitan University, Department of Language Sciences, Tokyo, Japan
| | - Frédéric Lesage
- Polytechnique Montréal, Department Electrical Engineering, Montreal, Canada
| | - Hellmuth Obrig
- University Hospital Leipzig, Max-Planck-Institute for Human Cognitive and Brain Sciences and Clinic for Cognitive Neurology, Leipzig, Germany
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Sungho Tak
- Korea Basic Science Institute, Research Center for Bioconvergence Analysis, Ochang, Cheongju, Republic of Korea
| | - Yunjie Tong
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| | | | - Martin Wolf
- University Hospital Zurich, University of Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Neonatology Research, Zurich, Switzerland
| |
Collapse
|
29
|
Yanagi M, Shirakawa O. Application of Near-Infrared Spectroscopy for Understanding Spontaneous Brain Activity During Resting State in Schizophrenia: A Mini Review. Front Psychiatry 2021; 12:704506. [PMID: 34475831 PMCID: PMC8407079 DOI: 10.3389/fpsyt.2021.704506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Spontaneous brain activity occurs at rest, as represented by the default mode network. A resting paradigm is suitable for investigating brain function of patients with psychiatric diseases who may have difficulties adhering to goal-oriented tasks. Evidence accumulated in neuroimaging studies using functional magnetic resonance imaging has shown that the resting cerebral blood flow is impaired in psychiatric diseases. Near-infrared spectroscopy (NIRS), a simple neuroimaging modality, is an optimal tool for the resting paradigm, because it can offer a comfortable environment for measurement. Recent NIRS studies have demonstrated some promising data of altered resting activity in the prefrontal cortex of patients with schizophrenia, which may be exploited to develop further applications of NIRS in clinical psychiatry. Based on these findings, we emphasize the benefits of NIRS for assessing the prefrontal pathophysiology during the resting state and some methodological issues to be noted while analyzing cerebral blood flow using NIRS; moreover, we focus on interpreting these changes based on the complex nature of the spontaneous brain activity during resting state.
Collapse
Affiliation(s)
- Masaya Yanagi
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
30
|
Kır Y, Baskak B, Kuşman A, Sayar-Akaslan D, Özdemir F, Sedes-Baskak N, Süzen HS, Baran Z. The relationship between plasma levels of clozapine and N-desmethyclozapine as well as M1 receptor polymorphism with cognitive functioning and associated cortical activity in schizophrenia. Psychiatry Res Neuroimaging 2020; 303:111128. [PMID: 32593951 DOI: 10.1016/j.pscychresns.2020.111128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022]
Abstract
Studies that examined the effect of clozapine on cognitive functions in schizophrenia provided contradictory results. N-desmethylclozapine (NDMC) is the major metabolite of clozapine and have procognitive effects via agonistic activity in the M1 cholinergic receptors. The rs2067477 polymorphism in the M1 receptors may play role in cognitive profile in schizophrenia. We investigated the association of plasma clozapine (PClz), NDMC (PNdmc) levels and the rs2067477 polymorphism with cognitive functions and cortical activity measured by functional near infrared spectroscopy during the N-Back task in subjects with schizophrenia (N = 50) who are under antipsychotic monotherapy with clozapine. We found that PClz and PNdmc levels were negatively, PNdmc/PClz ratio was positively correlated with immediate recall score in the Rey Auditory Verbal Learning Test. PNdmc/PClz ratio was positively correlated with cortical activity during the N-back task. M1 wild-type group (CC: wild-type) produced higher cortical activity than M1 non wild-type group (CA: heterozygote / AA: mutant) in cortical regions associated with working memory (WM). These results suggest that individual differences in clozapine's effect on short term episodic memory may be associated with PClz and PNdmc. Higher activity in the M1 wild-type group may indicate inefficient use of cortical resources and/or excessive use of certain cognitive strategies during WM performance.
Collapse
Affiliation(s)
- Yağmur Kır
- Ankara University, Brain Research Center, Ankara, Turkey
| | - Bora Baskak
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey.
| | - Adnan Kuşman
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Damla Sayar-Akaslan
- Ankara University, Department of Psychiatry, Brain Research Center, Ankara, Turkey
| | - Fezile Özdemir
- Ankara University, Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Nilay Sedes-Baskak
- Yildirim Beyazit University, Yenimahalle Training and Research Hospital, Department of Psychiatry, Ankara, Turkey
| | | | - Zeynel Baran
- Hacettepe University, Department of Psychology, Ankara, Turkey
| |
Collapse
|
31
|
Okura Y, Rikimaru T. Cold Stimuli on the Cheeks Activate the Left Ventrolateral Prefrontal Cortex and Enhance Cognitive Performance. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00192-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Neurocognitive development of flanker and Stroop interference control: A near-infrared spectroscopy study. Brain Cogn 2020; 143:105585. [DOI: 10.1016/j.bandc.2020.105585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
|
33
|
Kiriyama T, Tanemura R, Nakamura Y, Takemoto C, Hashimoto M, Utsumi H. Reduced Temporal Activation During a Verbal Fluency Task is Associated with Poor Motor Speed in Patients with Major Depressive Disorder. Psychiatry Investig 2020; 17:804-813. [PMID: 32791821 PMCID: PMC7449840 DOI: 10.30773/pi.2020.0045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Substantial research has revealed cognitive function impairments in patients with major depressive disorder (MDD). However, the relationship between MDD cognitive function impairment and brain activity is yet to be elucidated. This study aimed to reveal this relationship using near-infrared spectroscopy (NIRS) to extensively measure frontotemporal cortex function. METHODS We recruited 18 inpatients with MDD and 22 healthy controls. Regional oxygenated hemoglobin changes (oxy-Hb) were measured during a verbal fluency task and its relationship to cognitive function was assessed. Cognitive function was assessed using the Japanese version of the Brief Assessment of Cognition in Schizophrenia. RESULTS Compared to healthy controls, patients with MDD displayed poorer motor speed, attention and speed of information processing, and executive function. In the bilateral prefrontal and temporal surface regions, regional oxy-Hb changes were significantly lower in patients with MDD than in healthy individuals. Moreover, we observed a correlation between reduced activation in the left temporal region and poor motor speed in patients with MDD. CONCLUSION We suggest that reduced activation in the left temporal region in patients with MDD could be a biomarker of poor motor speed. Additionally, NIRS may be useful as a noninvasive, clinical measurement tool for assessing motor speed in these patients.
Collapse
Affiliation(s)
- Tomohiko Kiriyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Rumi Tanemura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | | | - Chiaki Takemoto
- Department of Psychiatry, Arima Hospital, Nishinomiya, Japan
| | | | - Hirohiko Utsumi
- Department of Psychiatry, Arima Hospital, Nishinomiya, Japan
| |
Collapse
|
34
|
Ota T, Iida J, Okazaki K, Ishida R, Takahashi M, Okamura K, Yamamuro K, Kishimoto N, Kimoto S, Yasuda Y, Hashimoto R, Makinodan M, Kishimoto T. Delayed prefrontal hemodynamic response associated with suicide risk in autism spectrum disorder. Psychiatry Res 2020; 289:112971. [PMID: 32408192 DOI: 10.1016/j.psychres.2020.112971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Adults diagnosed with Autism spectrum disorder (ASD) are at high risk of experiencing suicidality compared with other clinical groups. Recently, near-infrared spectroscopy (NIRS) studies have investigated the association between frontotemporal functional abnormalities and suicidality in patients with mood disorders. However, whether these prefrontal hemodynamic responses are associated with suicide vulnerability in individuals with ASD remains unclear. Here, we used 24-channel NIRS to examine the characteristics of prefrontal hemodynamic responses during a verbal fluency task in 20 adults with ASD and in age-, sex-, and intelligence quotient-matched healthy controls. In addition, we used Spearman's correlation analysis to identify the relationship between the time-course of prefrontal hemodynamic activation and the current suicide risk in patients with ASD. We found no significant differences between the verbal fluency task-induced prefrontal hemodynamic responses in the ASD vs. control group. However, we found a significant positive correlation between the current suicide risk score and the time-course of prefrontal hemodynamic activation in the ASD group. Thus, the 24-channel NIRS system appears to be useful in assessing suicide risk in individuals with ASD.
Collapse
Affiliation(s)
- Toyosaku Ota
- Department of Psychiatry, Nara Medical University, Kashihara, Japan.
| | - Junzo Iida
- Faculty of Nursing, Nara Medical University, Kashihara, Japan
| | - Kosuke Okazaki
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Nara Medical University, Kashihara, Japan; Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
35
|
Narita N, Ishii T, Iwaki S, Kamiya K, Okubo M, Uchida T, Kantake I, Shibutani K. Prefrontal Consolidation and Compensation as a Function of Wearing Denture in Partially Edentulous Elderly Patients. Front Aging Neurosci 2020; 11:375. [PMID: 32082135 PMCID: PMC7005254 DOI: 10.3389/fnagi.2019.00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background The cognitive effects of wearing a denture are not well understood. This study was conducted to clarify the effects of denture use on prefrontal and chewing muscle activities, occlusal state, and subjective chewing ability in partially edentulous elderly individuals. Methods A total of 16 partially edentulous patients were enrolled. Chewing-related prefrontal cortex and jaw muscle activities were simultaneously examined using a functional near-infrared spectroscopy (fNIRS) device and electromyography, under the conditions of unwearing, and wearing a denture. Occlusal state and masticatory score were also determined under both conditions. Using multiple linear regression analysis, associations between prefrontal and chewing activities with wearing were examined using change rates. Results Chewing rhythmicity was maintained under both conditions. As compared with unwearing, the wearing condition was associated with improved prefrontal cortex and chewing muscle activities, occlusal state in regard to force and area, and masticatory score. Also, prefrontal activities were positively associated with burst duration and peak amplitude in masseter (Mm) and temporal muscle activities, as well as masticatory scores. In contrast, prefrontal activities were negatively associated with occlusal force. Conclusion Wearing a denture induced a positive association between burst duration and peak amplitude in Mm and temporal muscle activities and prefrontal activity, which may indicate a parallel consolidation of prefrontal cortex and rhythmical chewing activities, as well as masticatory scores. On the other hand, denture use induced a negative association of occlusal force with prefrontal activities, which might suggest that prefrontal compensative associations for the physiocognitive acquisition depended on biomechanical efficacy gained by wearing a denture.
Collapse
Affiliation(s)
- Noriyuki Narita
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Tomohiro Ishii
- Department of Removable Prosthodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Sunao Iwaki
- Automotive Human Factors Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazunobu Kamiya
- Department of Removable Prosthodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Masakazu Okubo
- Department of Removable Prosthodontics, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | | | - Ikuo Kantake
- Dental Support Co. Ltd., Chiba, Japan.,Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Koh Shibutani
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| |
Collapse
|
36
|
Right-lateralized frontal activation underlies successful updating of verbal working memory in adolescents with high-functioning autism spectrum disorder. Biol Psychol 2019; 148:107743. [DOI: 10.1016/j.biopsycho.2019.107743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022]
|
37
|
Uratani M, Ota T, Iida J, Okazaki K, Yamamuro K, Nakanishi Y, Kishimoto N, Kishimoto T. Reduced prefrontal hemodynamic response in pediatric autism spectrum disorder measured with near-infrared spectroscopy. Child Adolesc Psychiatry Ment Health 2019; 13:29. [PMID: 31297147 PMCID: PMC6599245 DOI: 10.1186/s13034-019-0289-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 06/22/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Functional neuroimaging studies suggest that prefrontal cortex dysfunction is present in people with autism spectrum disorder (ASD). Near-infrared spectroscopy is a noninvasive optical tool for examining oxygenation and hemodynamic changes in the cerebral cortex by measuring changes in oxygenated hemoglobin. METHODS Twelve drug-naïve male participants, aged 7-15 years and diagnosed with ASD according to DSM-5 criteria, and 12 age- and intelligence quotient (IQ)-matched healthy control males participated in the present study after giving informed consent. Relative concentrations of oxyhemoglobin were measured with frontal probes every 0.1 s during the Stroop color-word task, using 24-channel near-infrared spectroscopy. RESULTS Oxyhemoglobin changes during the Stroop color-word task in the ASD group were significantly smaller than those in the control group at channels 12 and 13, located over the dorsolateral prefrontal cortex (FDR-corrected P: 0.0021-0.0063). CONCLUSION The results suggest that male children with ASD have reduced prefrontal hemodynamic responses, measured with near-infrared spectroscopy.
Collapse
Affiliation(s)
| | - Toyosaku Ota
- 0000 0004 0372 782Xgrid.410814.8Department of Psychiatry, Nara Medical University, 840 Shijyo-cho, Kashihara, Nara 634-8522 Japan
| | - Junzo Iida
- 0000 0004 0372 782Xgrid.410814.8Faculty of Nursing, Nara Medical University, Kashihara, Japan
| | - Kosuke Okazaki
- 0000 0004 0372 782Xgrid.410814.8Department of Psychiatry, Nara Medical University, 840 Shijyo-cho, Kashihara, Nara 634-8522 Japan
| | - Kazuhiko Yamamuro
- 0000 0004 0372 782Xgrid.410814.8Department of Psychiatry, Nara Medical University, 840 Shijyo-cho, Kashihara, Nara 634-8522 Japan
| | - Yoko Nakanishi
- 0000 0004 0372 782Xgrid.410814.8Department of Psychiatry, Nara Medical University, 840 Shijyo-cho, Kashihara, Nara 634-8522 Japan
| | - Naoko Kishimoto
- 0000 0004 0372 782Xgrid.410814.8Department of Psychiatry, Nara Medical University, 840 Shijyo-cho, Kashihara, Nara 634-8522 Japan
| | - Toshifumi Kishimoto
- 0000 0004 0372 782Xgrid.410814.8Department of Psychiatry, Nara Medical University, 840 Shijyo-cho, Kashihara, Nara 634-8522 Japan
| |
Collapse
|
38
|
Alici YH, Özgüven HD, Kale E, Yenihayat I, Baskak B. Prefrontal Activity Measured by Functional Near Infrared Spectroscopy During Divergent and Convergent Thinking in Bipolar Disorder. ACTA ACUST UNITED AC 2019; 56:86-91. [PMID: 31223238 DOI: 10.29399/npa.23203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
Introduction Biographical research as well as some controlled studies point out to a relationship between bipolar disorder (BD) and creativity. Neurobiological underpinnings of this relationship are unclear. Although there is no consensus on the definition of creativity, Alternative uses Test (AuT) and Remote Association Test (RAT) are frequently used to measure convergent and divergent creativity. We aimed to examine prefrontal cortex (PFC) activity with functional near-infrared spectroscopy (fNIRS) during the RAT and AuT tests in subjects with BD. Methods We measured PFC activity in subjects with remitted BD (N=31) and healthy control subjects (N=27) with fNIRS during divergent and convergent thinking tasks (AuT and RAT respectively). We were particularly interested in the antero-posterior dissociation of the activity within the PFC according to the two task domains. Results We found that the index subjects displayed lower performance than healthy controls during the AuT and the RAT. AuT and RAT were associated with different activities in the two groups. Anterior PFC (aPFC) activity was higher than posterior PFC (pPFC) activity during the RAT in the index group, and during the AuT in the control group. aPFC activity was negatively correlated with the RAT performance in the index group. Conclusion Higher activity in the aPFC may be the functional neuro-anatomical correlate of low convergent creativity performance in BD.
Collapse
Affiliation(s)
| | | | - Emre Kale
- Brain Research Center, Ankara University School of Medicine, Ankara, Turkey
| | - Isıl Yenihayat
- Department of Psychiatry, Ankara University School of Medicine, Ankara, Turkey
| | - Bora Baskak
- Department of Psychiatry, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
39
|
Pu S, Nakagome K, Satake T, Ohtachi H, Itakura M, Yamanashi T, Miura A, Yokoyama K, Matsumura H, Iwata M, Nagata I, Kaneko K. Comparison of prefrontal hemodynamic responses and cognitive deficits between adult patients with autism spectrum disorder and schizophrenia. Schizophr Res 2019; 206:420-427. [PMID: 30316555 DOI: 10.1016/j.schres.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/16/2018] [Accepted: 10/06/2018] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) and schizophrenia share many phenotypic characteristics, but their association with prefrontal function have not been directly compared. The aim of this study is to compare cognitive profiles and their association with the prefrontal function between the two groups. We explored prefrontal dysfunction among adult individuals with ASD (n = 32), schizophrenia (n = 87), and healthy controls (HCs; n = 50). We assessed cognitive function in all participants using the Brief Assessment of Cognition in Schizophrenia (BACS). The BACS data of patients with schizophrenia were entered into hierarchical cluster analyses to assign subjects to a specific subgroup based on individual profiles. Using near-infrared spectroscopy, we measured hemodynamic responses in the fronto-temporal regions during a working memory task. Among the patients with schizophrenia, we defined 4 neurocognitive subgroups, including a global impairment, a mild impairment, and 2 selective impairment groups. Compared to the HCs, the ASD and schizophrenia groups had much weaker hemodynamic responses in the left DLPFC, left frontopolar cortex (FPC), and left inferior frontal gyrus. The ASD group showed a similar level of cognitive impairment with the mild level subgroup of schizophrenia. Additionally, the two groups shared reduced activity in the left DLPFC and left FPC during the task compared to HCs. Moreover, the BACS composite scores correlated positively with hemodynamic responses in a broad area involving fronto-temporal regions in the total patient sample. This research indicates considerable similarity in the left PFC dysfunction and its association with cognitive deficits between the disorders. These findings may guide future studies that investigate pathophysiological similarities between ASD and schizophrenia.
Collapse
Affiliation(s)
- Shenghong Pu
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan.
| | | | - Takahiro Satake
- Tottori Prefectural Rehabilitation Center for Children with Disabilities, Yonago, Tottori, Japan
| | - Hiroaki Ohtachi
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masashi Itakura
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takehiko Yamanashi
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Akihiko Miura
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Katsutoshi Yokoyama
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Hiroshi Matsumura
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masaaki Iwata
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Izumi Nagata
- National Hospital Organization, Tottori Medical Center, Tottori-shi, Tottori, Japan
| | - Koichi Kaneko
- Division of Neuropsychiatry, Department of Brain and Neuroscience, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
40
|
Sakurada T, Goto A, Tetsuka M, Nakajima T, Morita M, Yamamoto SI, Hirai M, Kawai K. Prefrontal activity predicts individual differences in optimal attentional strategy for preventing motor performance decline: a functional near-infrared spectroscopy study. NEUROPHOTONICS 2019; 6:025012. [PMID: 31259197 PMCID: PMC6563944 DOI: 10.1117/1.nph.6.2.025012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Directing attention to movement outcomes (external focus; EF), not body movements (internal focus; IF), is a better cognitive strategy for motor performance. However, EF is not effective in some healthy individuals or stroke patients. We aimed to identify the neurological basis reflecting the individual optimal attentional strategy using functional near-infrared spectroscopy. Sixty-four participants (23 healthy young, 23 healthy elderly, and 18 acute stroke) performed a reaching movement task under IF and EF conditions. Of these, 13 healthy young participants, 11 healthy elderly participants, and 6 stroke patients showed better motor performance under EF conditions (EF-dominant), whereas the others showed IF-dominance. We then measured prefrontal activity during rhythmic hand movements under both attentional conditions. IF-dominant participants showed significantly higher left prefrontal activity than EF-dominant participants under IF condition. In addition, receiver operating characteristic analysis supported that the higher activity in the left frontopolar and dorsolateral prefrontal cortices could detect IF-dominance as an individual's optimal attentional strategy for preventing motor performance decline. Taken together, these results suggest that prefrontal activity during motor tasks reflects an individual's ability to process internal body information, thereby conferring IF-dominance. These findings could be applied for the development of individually optimized rehabilitation programs.
Collapse
Affiliation(s)
- Takeshi Sakurada
- Jichi Medical University, Center for Development of Advanced Medical Technology, Functional Brain Science Laboratory, Shimotsuke, Tochigi, Japan
- Jichi Medical University, Department of Neurosurgery, Shimotsuke, Tochigi, Japan
| | - Aya Goto
- Jichi Medical University, Center for Development of Advanced Medical Technology, Functional Brain Science Laboratory, Shimotsuke, Tochigi, Japan
- Shibaura Institute of Technology, College of Systems Engineering and Science, Minuma, Saitama, Japan
| | - Masayuki Tetsuka
- Jichi Medical University, Department of Neurosurgery, Shimotsuke, Tochigi, Japan
| | - Takeshi Nakajima
- Jichi Medical University, Department of Neurosurgery, Shimotsuke, Tochigi, Japan
- Jichi Medical University Hospital, Rehabilitation Center, Shimotsuke, Tochigi, Japan
| | - Mitsuya Morita
- Jichi Medical University Hospital, Rehabilitation Center, Shimotsuke, Tochigi, Japan
- Jichi Medical University, Division of Neurology, Department of Internal Medicine, Shimotsuke, Tochigi, Japan
| | - Shin-ichiroh Yamamoto
- Shibaura Institute of Technology, College of Systems Engineering and Science, Minuma, Saitama, Japan
| | - Masahiro Hirai
- Jichi Medical University, Center for Development of Advanced Medical Technology, Functional Brain Science Laboratory, Shimotsuke, Tochigi, Japan
| | - Kensuke Kawai
- Jichi Medical University, Department of Neurosurgery, Shimotsuke, Tochigi, Japan
| |
Collapse
|
41
|
Yeung MK, Lee TL, Chan AS. Frontal lobe dysfunction underlies the differential word retrieval impairment in adolescents with high-functioning autism. Autism Res 2019; 12:600-613. [PMID: 30758144 DOI: 10.1002/aur.2082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 11/11/2022]
Abstract
There is substantial evidence of word retrieval impairment as indicated by poor performance on the category fluency test in autism spectrum disorder (ASD). However, little is known about the neural mechanisms underlying this impairment. Functional neuroimaging studies have shown that the lateral frontal cortex plays a key role in flexible word retrieval. Thus, we examined whether individuals with ASD exhibited altered frontal processing during the category fluency test using functional near-infrared spectroscopy (fNIRS). Twenty-two adolescents with high-functioning ASD (20 males) and 22 typically developing (TD) adolescents (16 males) aged 11-18 years were recruited. All underwent a category fluency paradigm, which required production of animal or means of transportation words for 1 min each although their frontal hemodynamic changes were recorded with fNIRS. We found that adolescents with ASD produced fewer animal but not transportation words (group-by-category interaction: P = 0.003), suggesting differential word retrieval impairment. In addition, unlike TD adolescents who exhibited activation primarily in lateral frontal regions during word production, adolescents with ASD had comparable activation across lateral and medial frontal regions. More importantly, this lack of lateral-medial distinction of activation, which was associated with poor word retrieval, differed significantly between groups only in the animal category (group-by-category interaction: P = 0.018). Thus, our findings implicate frontal lobe dysfunction in the impairment of differential word retrieval in adolescents with ASD. The relatively greater involvement of the medial frontopolar cortex might reflect the use of nonspecialized brain regions to compensate for the category-dependent difficulties with word retrieval in ASD. Autism Res 2019, 12: 600-613. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Using an optical imaging tool, we found that adolescents with autism had difficulties with producing semantically related words and exhibited frontal lobe dysfunction. Nonetheless, poor word production and altered brain processing was only seen when these adolescents were asked to produce words from a category of living things but not nonliving things (i.e., animals but not means of transportation). Category-dependent word retrieval problems and frontal lobe dysfunction might be two features of this disorder.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Tsz L Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.,Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
42
|
Zhang Z, Wang Y, Zhang Q, Zhao W, Chen X, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang Y, Li D, Wu H, Dong Q, Chen C, Li J. The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls. Schizophr Res 2019; 204:193-200. [PMID: 30268820 DOI: 10.1016/j.schres.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
CACNA1C gene polymorphism rs2007044 has been reported to be associated with schizophrenia, but its underlying brain mechanism is not clear. First, we conducted an exploratory functional magnetic resonance imaging (fMRI) study using an N-BACK task and a Stroop task in 194 subjects (55 schizophrenia patients and 139 healthy controls). Our whole brain analysis found that the risk allele was associated with reduced activation of the left inferior frontal gyrus (IFG) during the Stroop task (cluster size = 390 voxels, P < 0.05 TFCE-FWE corrected; peak MNI coordinates: x = -57, y = -6, z = 30). We also conducted a functional near-infrared spectroscopy (fNIRS) study using the same Stroop task in an independent sample of 126 healthy controls to validate the fMRI finding. Our repeated-measures ANCOVA on the six channels (20, 27, 33, 34, 40 and 46) within the left IFG also found significant result. The polymorphism rs2007044 showed significant effect on the oxy-Hb data (F = 5.072, P = 0.026) and showed significant interaction effect with channels on the deoxy-Hb data (F = 2.841, P = 0.015). Taken together, results of this study suggested that rs2007044 could affect the activation of the left IFG, which was a possible brain mechanism underlying the association between CACNA1C gene polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Zhifang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Yanyan Wang
- Department of Psychiatry, HePing Hospital of Chang Zhou, Jiangsu 213003, China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China; School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiongying Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Min Chen
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | | | - Yutao Xiang
- Beijing Anding Hospital, Beijing 100088, PR China; Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Hongjie Wu
- Shengli Hospital of Shengli Petroleum Administration Bureau, Dongying 257022, Shandong Province, PR China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, United States
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China.
| |
Collapse
|
43
|
Basura GJ, Hu X, Juan JS, Tessier A, Kovelman I. Human central auditory plasticity: A review of functional near-infrared spectroscopy (fNIRS) to measure cochlear implant performance and tinnitus perception. Laryngoscope Investig Otolaryngol 2018; 3:463-472. [PMID: 30599031 PMCID: PMC6302720 DOI: 10.1002/lio2.185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Functional near-infrared spectroscopy (fNIRS) is an emerging noninvasive technology used to study cerebral cortex activity. Being virtually silent and compatible with cochlear implants has helped establish fNIRS as an important tool when investigating auditory cortex as well as cortices involved with hearing and language processing in adults and during child development. With respect to this review article, more recently, fNIRS has also been used to investigate central auditory plasticity following hearing loss and tinnitus or phantom sound perception. METHODS Here, we review the currently available literature reporting the use of fNIRS in human studies with cochlear implants and tinnitus to measure human central auditory cortical circuits. We also provide the reader with detailed reviews of the technology and traditional recording paradigms/methods used in these auditory-based studies. RESULTS The purpose of this review article is to summarize theoretical advancements in our understanding of the neurocognitive mechanisms underlying auditory processes and their plasticity through fNIRS research of human auditory performance with cochlear implantation and plasticity that may contribute to the central percepts of tinnitus. CONCLUSION fNIRS is an emerging noninvasive brain imaging technology that has wide reaching application that can be applied to human studies involving cochlear implants and tinnitus. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Gregory J. Basura
- Center for Human Growth and DevelopmentUniversity of MichiganAnn ArborMichiganU.S.A
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research InstituteUniversity of MichiganAnn ArborMichiganU.S.A
| | - Xiao‐Su Hu
- Center for Human Growth and DevelopmentUniversity of MichiganAnn ArborMichiganU.S.A
| | - Juan San Juan
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research InstituteUniversity of MichiganAnn ArborMichiganU.S.A
| | | | - Ioulia Kovelman
- Center for Human Growth and DevelopmentUniversity of MichiganAnn ArborMichiganU.S.A
| |
Collapse
|
44
|
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018; 7:E466. [PMID: 30469482 PMCID: PMC6306799 DOI: 10.3390/jcm7120466] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
For cognitive processes to function well, it is essential that the brain is optimally supplied with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation and hemodynamics can be modified with physical activity. To better understand the relationship between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the human brain. However, currently there is no clear standardized procedure regarding the application, data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is applied in the field of exercise⁻cognition science. Therefore, this review aims to summarize the current methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic responses during cognitive testing (i) prior and after different physical activities interventions, and (ii) in cross-sectional studies accounting for the physical fitness level of their participants. Based on the review of the methodology of 35 as relevant considered publications, we outline recommendations for future fNIRS studies in the field of exercise⁻cognition science.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg 79117, Germany.
- Bernstein Center Freiburg, University of Freiburg, Freiburg 79104, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39118, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg 39120, Germany.
| |
Collapse
|
45
|
Harrison SJ, Hough M, Schmid K, Groff BR, Stergiou N. When Coordinating Finger Tapping to a Variable Beat the Variability Scaling Structure of the Movement and the Cortical BOLD Signal are Both Entrained to the Auditory Stimuli. Neuroscience 2018; 392:203-218. [PMID: 29958941 PMCID: PMC8091912 DOI: 10.1016/j.neuroscience.2018.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/13/2023]
Abstract
Rhythmic actions are characterizable as a repeating invariant pattern of movement together with variability taking the form of cycle-to-cycle fluctuations. Variability in behavioral measures is atypically random, and often exhibits serial temporal dependencies and statistical self-similarity in the scaling of variability magnitudes across timescales. Self-similar (i.e. fractal) variability scaling is evident in measures of both brain and behavior. Variability scaling structure can be quantified via the scaling exponent (α) from detrended fluctuation analysis (DFA). Here we study the task of coordinating thumb-finger tapping to the beats of constructed auditory stimuli. We test the hypothesis that variability scaling evident in tap-to-tap intervals as well as in the fluctuations of cortical hemodynamics will become entrained to (i.e. drawn toward) manipulated changes in the variability scaling of a stimulus's beat-to-beat intervals. Consistent with this hypothesis, manipulated changes of the exponent α of the experimental stimuli produced corresponding changes in the exponent α of both tap-to-tap intervals and cortical hemodynamics. The changes in hemodynamics were observed in both motor and sensorimotor cortical areas in the contralateral hemisphere. These results were observed only for the longer timescales of the detrended fluctuation analysis used to measure the exponent α. These findings suggest that complex auditory stimuli engage both brain and behavior at the level of variability scaling structures.
Collapse
Affiliation(s)
- Steven J Harrison
- Department of Kinesiology, University of Connecticut, United States.
| | - Michael Hough
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Kendra Schmid
- Department of Biostatistics, University of Nebraska Medical Center, United States
| | - Boman R Groff
- Department of Biomechanics, University of Nebraska at Omaha, United States
| | - Nicholas Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, United States
| |
Collapse
|
46
|
Witmer JS, Aeschlimann EA, Metz AJ, Troche SJ, Rammsayer TH. Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes. Part II: A Replication Study in Children on Sensitivity and Mental-Ability-Induced Differences in Functional Activation. Brain Sci 2018; 8:E152. [PMID: 30103538 PMCID: PMC6119993 DOI: 10.3390/brainsci8080152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/21/2023] Open
Abstract
In a previous study in young adults, we showed that hemodynamic changes as measured by functional near-infrared spectroscopy (fNIRS) were sensitive for identifying visuospatial working memory (WM)-related functional brain activation in the prefrontal cortex. This functional activation, however, could not be verified for participants with far-above-average mental ability, suggesting different cognitive processes adopted by this group. The present study was designed to confirm these findings in 11- to 13-year-old children by applying the same study design, experimental task, fNIRS setup, and statistical approach. We successfully replicated the earlier findings on sensitivity of fNIRS with regard to visuospatial WM-specific task demands in our children sample. Likewise, mental-ability-induced differences in functional activation were even more pronounced in the children compared with in the young adults. By testing a children sample, we were able to not only replicate our previous findings based on adult participants but also generalize the validity of these findings to children. This latter aspect seems to be of particular significance considering the relatively large number of fNIRS studies on WM performance in children.
Collapse
Affiliation(s)
- Joëlle S Witmer
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Eva A Aeschlimann
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Andreas J Metz
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Stefan J Troche
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | | |
Collapse
|
47
|
Yamamuro K, Kimoto S, Iida J, Kishimoto N, Tanaka S, Toritsuka M, Ikawa D, Yamashita Y, Ota T, Makinodan M, Yoshino H, Kishimoto T. Distinct patterns of blood oxygenation in the prefrontal cortex in clinical phenotypes of schizophrenia and bipolar disorder. J Affect Disord 2018. [PMID: 29522943 DOI: 10.1016/j.jad.2018.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Schizophrenia (SZ) and bipolar disorder (BD) are characterized by different clinical symptoms, and have previously been considered as categorically separate. However, several lines of evidence controversially suggest that these two disorders may run on a continuum. While it is therefore important to evaluate the subtle differences between SZ and BD, few studies have investigated the difference of brain functioning between the two by focusing on the common symptoms of cognitive functioning and impulsivity, rather than positive/negative and mood symptoms. Recent developments in near-infrared spectroscopy (NIRS) technology have enabled noninvasive assessment of brain function in people with psychiatric disorders. METHODS Near-infrared spectroscopy (NIRS) using 24-channels was conducted during the verbal fluency task (VFT) and Stroop color-word task (SCWT) in 38 patients diagnosed with SZ, 34 patients with BD, and 26 age- and sex-matched healthy controls. RESULTS Oxyhemoglobin changes in the prefrontal cortex (PFC) were significantly lower particularly in the SZ compared to control group during the VFT. On the other hand, these were significantly lower particularly in the BD and SZ group to control group during the SCWT. Regression analysis showed that hemodynamic changes were significantly correlated with verbal memory and impulsivity in both disorders. CONCLUSION These findings suggest that different hemodynamic responses in the prefrontal cortex might reflect cognitive functioning and impulsivity, providing a greater insight into SZ and BD pathophysiology.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Junzo Iida
- Faculty of Nursing, Nara Medical University School of Medicine, Kashihara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Shohei Tanaka
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Yasunori Yamashita
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toyosaku Ota
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
48
|
Baskak B. The Place of Functional Near Infrared Spectroscopy in Psychiatry. ACTA ACUST UNITED AC 2018; 55:103-104. [PMID: 30057448 DOI: 10.29399/npa.23249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Bora Baskak
- Psychiatry Department, Ankara University School of Medicine; Brain Research Center of Ankara University, Ankara, Turkey
| |
Collapse
|
49
|
Ueda S, Ota T, Iida J, Yamamuro K, Yoshino H, Kishimoto N, Kishimoto T. Reduced prefrontal hemodynamic response in adult attention-deficit hyperactivity disorder as measured by near-infrared spectroscopy. Psychiatry Clin Neurosci 2018; 72:380-390. [PMID: 29405508 DOI: 10.1111/pcn.12643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/26/2017] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
Abstract
AIM Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. In pediatric attention-deficit hyperactivity disorder (ADHD), reduced prefrontal hemodynamic responses have been observed with NIRS repeatedly. However, there are few studies of adult ADHD by multi-channel NIRS. Therefore, in this study, we used multi-channel NIRS to examine the characteristics of prefrontal hemodynamic responses during the Stroop Color-Word Task (SCWT) in adult ADHD patients and in age- and sex-matched control subjects. METHODS Twelve treatment-naïve adults with ADHD and 12 age- and sex-matched healthy control subjects participated in the present study after giving consent. We used 24-channel NIRS to measure the oxygenated hemoglobin (oxy-Hb) changes at the frontal lobes of participants during the SCWT. We compared the oxy-Hb changes between adults with ADHD and control subjects by t-tests with Bonferroni correction. RESULTS During the SCWT, the oxy-Hb changes observed in the ADHD group were significantly smaller than those in the control group in channels 11, 16, 18, 21, 22, 23, and 24, corresponding to the prefrontal cortex. At channels 16, 21, 23, and 24 of the ADHD group, there were negative correlations between the symptomatic severity and the oxy-Hb changes. CONCLUSION The present study suggests that adults with ADHD have reduced prefrontal hemodynamic response as measured by NIRS.
Collapse
Affiliation(s)
- Shotaro Ueda
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Toyosaku Ota
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Junzo Iida
- Faculty of Nursing, Nara Medical University, Kashihara, Japan
| | | | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
50
|
Yeung MK, Lee TL, Cheung WK, Chan AS. Frontal Underactivation During Working Memory Processing in Adults With Acute Partial Sleep Deprivation: A Near-Infrared Spectroscopy Study. Front Psychol 2018; 9:742. [PMID: 29867694 PMCID: PMC5964163 DOI: 10.3389/fpsyg.2018.00742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Individuals with partial sleep deprivation may have working memory (WM) impairment, but the underlying neural mechanism of this phenomenon is relatively unknown. The present study examined neural processing during WM performance in individuals with and without partial sleep deprivation using near-infrared spectroscopy (NIRS). Forty college students (10 males) were equally split into Sufficient Sleep (SS) and Insufficient Sleep (IS) groups based on self-reports of previous night's sleep duration. Participants in the SS group obtained the recommended amounts of sleep according to various sleep organizations (i.e., >7.0 h), whereas those in the IS group obtained amounts of sleep no greater than the lower limit of the recommendation (i.e., ≤7.0 h). All participants underwent an n-back paradigm with a WM load (i.e., 3-back) and a control condition (i.e., 0-back) while their prefrontal hemodynamics were recorded by NIRS. The IS and SS groups performed the tasks comparably well. However, unlike the SS group, which exhibited bilateral frontal activation indicated by increased oxyhemoglobin concentration and decreased deoxyhemoglobin concentration during WM processing (i.e., 3-back > 0-back), the IS group did not exhibit such activation. In addition, levels of WM-related frontal activation, especially those on the left side, correlated with sleep duration the night before, even when habitual sleep duration was controlled for. The findings suggest the presence of frontal lobe dysfunction in the absence of evident WM difficulties in individuals with acute partial sleep deprivation. They also highlight the importance of a good night's sleep to brain health.
Collapse
Affiliation(s)
- Michael K Yeung
- Neuropsychology Laboratory, Department of Psychology, Chinese University of Hong Kong, Hong Kong, China
| | - Tsz L Lee
- Neuropsychology Laboratory, Department of Psychology, Chinese University of Hong Kong, Hong Kong, China
| | - Winnie K Cheung
- Neuropsychology Laboratory, Department of Psychology, Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, Chinese University of Hong Kong, Hong Kong, China.,Chanwuyi Research Center for Neuropsychological Well-Being, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|