1
|
Exosomal Mir-3613-3p derived from oxygen-glucose deprivation-treated brain microvascular endothelial cell promotes microglial M1 polarization. Cell Mol Biol Lett 2023; 28:18. [PMID: 36870962 PMCID: PMC9985860 DOI: 10.1186/s11658-023-00432-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Brain microvascular endothelial cell (BMEC) injury can affect neuronal survival by modulating immune responses through the microenvironment. Exosomes are important vehicles of transport between cells. However, the regulation of the subtypes of microglia by BMECs through the exosome transport of microRNAs (miRNAs) has not been established. METHODS In this study, exosomes from normal and oxygen-glucose deprivation (OGD)-cultured BMECs were collected, and differentially expressed miRNAs were analyzed. BMEC proliferation, migration, and tube formation were analyzed using MTS, transwell, and tube formation assays. M1 and M2 microglia and apoptosis were analyzed using flow cytometry. miRNA expression was analyzed using real-time polymerase chain reaction (RT-qPCR), and IL-1β, iNOS, IL-6, IL-10, and RC3H1 protein concentrations were analyzed using western blotting. RESULTS We found that miR-3613-3p was enriched in BMEC exosome by miRNA GeneChip assay and RT-qPCR analysis. miR-3613-3p knockdown enhanced cell survival, migration, and angiogenesis in the OGD-treated BMECs. In addition, BMECs secrete miR-3613-3p to transfer into microglia via exosomes, and miR-3613-3p binds to the RC3H1 3' untranslated region (UTR) to reduce RC3H1 protein levels in microglia. Exosomal miR-3613-3p promotes microglial M1 polarization by inhibiting RC3H1 protein levels. BMEC exosomal miR-3613-3p reduces neuronal survival by regulating microglial M1 polarization. CONCLUSIONS miR-3613-3p knockdown enhances BMEC functions under OGD conditions. Interfering with miR-3613-3p expression in BMSCs reduced the enrichment of miR-3613-3p in exosomes and enhanced M2 polarization of microglia, which contributed to reduced neuronal apoptosis.
Collapse
|
2
|
Ackermann M. [On the way to the virtual microscope: synchrotron-radiation-based three-dimensional imaging in pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2022; 43:15-20. [PMID: 36378286 PMCID: PMC9665030 DOI: 10.1007/s00292-022-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Maximilian Ackermann
- Institut für Pathologie und Molekularpathologie, Helios Universitätsklinikum Wuppertal, Universität Witten-Herdecke, Heusnerstr. 40, 42283, Wuppertal, Deutschland. .,Institut für Funktionelle und Klinische Anatomie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Deutschland.
| |
Collapse
|
3
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
4
|
Inocencio IM, Tran NT, Nakamura S, Khor SJ, Wiersma M, Stoecker K, Maksimenko A, Polglase GR, Walker DW, Pearson JT, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in preterm lambs and 7-10-day old lambs born at term: Direct synchrotron microangiography assessment. J Cereb Blood Flow Metab 2022; 42:315-328. [PMID: 34551607 PMCID: PMC9122524 DOI: 10.1177/0271678x211045848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurovascular coupling has been well-defined in the adult brain, but variable and inconsistent responses have been observed in the neonatal brain. The mechanisms that underlie functional haemodynamic responses in the developing brain are unknown. Synchrotron radiation (SR) microangiography enables in vivo high-resolution imaging of the cerebral vasculature. We exploited SR microangiography to investigate the microvascular changes underlying the cerebral haemodynamic response in preterm (n = 7) and 7-10-day old term lambs (n = 4), following median nerve stimulation of 1.8, 4.8 and 7.8 sec durations.Increasing durations of somatosensory stimulation significantly increased the number of cortical microvessels of ≤200 µm diameter in 7-10-day old term lambs (p < 0.05) but not preterm lambs where, in contrast, stimulation increased the diameter of cerebral microvessels with a baseline diameter of ≤200 µm. Preterm lambs demonstrated positive functional responses with increased oxyhaemoglobin measured by near infrared spectroscopy, while 7-10-day old term lambs demonstrated both positive and negative responses. Our findings suggest the vascular mechanisms underlying the functional haemodynamic response differ between the preterm and 7-10-day old term brain. The preterm brain depends on vasodilatation of microvessels without recruitment of additional vessels, suggesting a limited capacity to mount higher cerebral haemodynamic responses when faced with prolonged or stronger neural stimulation.
Collapse
Affiliation(s)
- Ishmael M Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,*Co-first authors who contributed equally to this work
| | - Nhi T Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia.,*Co-first authors who contributed equally to this work
| | - Shinji Nakamura
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Song J Khor
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - Katja Stoecker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - Anton Maksimenko
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Melbourne, Australia
| | - Graeme R Polglase
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Centre, Osaka, Japan.,Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| |
Collapse
|
5
|
Inocencio IM, Tran NT, Nakamura S, Khor SJ, Wiersma M, Stoecker K, Polglase GR, Pearson JT, Wong FY. Increased peak end-expiratory pressure in ventilated preterm lambs changes cerebral microvascular perfusion: direct synchrotron microangiography assessment. J Appl Physiol (1985) 2020; 129:1075-1084. [PMID: 32909920 DOI: 10.1152/japplphysiol.00652.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Positive end-expiratory pressure (PEEP) improves oxygenation in mechanically ventilated preterm neonates by preventing lung collapse. However, high PEEP may alter cerebral blood flow secondarily to the increased intrathoracic pressure, predisposing to brain injury. The precise effects of high PEEP on cerebral hemodynamics in the preterm brain are unknown. We aimed to assess the effect of PEEP on microvessels in the preterm brain by using synchrotron radiation (SR) microangiography, which enables in vivo real-time high-resolution imaging of the cerebral vasculature. Preterm lambs (0.8 gestation, n = 4) were delivered via caesarean section, anesthetized, and ventilated. SR microangiography of the right cerebral hemisphere was performed with iodine contrast administered into the right carotid artery during PEEP ventilation of 5 and 10 cmH2O. Carotid blood flow was measured using an ultrasonic flow probe placed around the left carotid artery. An increase of PEEP from 5 to 10 cmH2O increased the diameter of small cerebral vessels (<150 µm) but decreased the diameter of larger cerebral vessels (>500 µm) in all four lambs. Additionally, the higher PEEP increased the cerebral contrast transit time in three of the four lambs. Carotid blood flow increased in two lambs, which also had increased carbon dioxide levels during PEEP 10. Our results suggest that PEEP of 10 cmH2O alters the preterm cerebral hemodynamics, with prolonged cerebral blood flow transit and engorgement of small cerebral microvessels likely due to the increased intrathoracic pressure. These microvascular changes are generally not reflected in global assessment of cerebral blood flow or oxygenation.NEW & NOTEWORTHY An increase of positive end-expiratory pressure (PEEP) from 5 to 10 cmH2O increased the diameter of small cerebral vessels (<150 µm) but decreased the diameter of larger cerebral vessels (>500 µm). This suggests increased intrathoracic pressure due to high PEEP can drive microvessel engorgement in the preterm brain, which may play a role in cerebrovascular injury.
Collapse
Affiliation(s)
- Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Nhi Thao Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Shinji Nakamura
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Song J Khor
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Katja Stoecker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Centre, Osaka, Japan.,Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Monash Newborn, Monash Medical Centre, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Synchrotron Radiation-Based Three-Dimensional Visualization of Angioarchitectural Remodeling in Hippocampus of Epileptic Rats. Neurosci Bull 2019; 36:333-345. [PMID: 31823302 DOI: 10.1007/s12264-019-00450-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.
Collapse
|
7
|
Li HL, Ding H, Yin XZ, Chen ZH, Tang B, Sun JY, Hu XH, Lv X, Kang ST, Fan YS, Wu T, Zhao SF, Xiao B, Zhang MQ. Comparison of high-resolution synchrotron-radiation-based phase-contrast imaging and absorption-contrast imaging for evaluating microstructure of vascular networks in rat brain: from 2D to 3D views. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2024-2032. [PMID: 31721747 DOI: 10.1107/s1600577519011688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Conventional imaging methods such as magnetic resonance imaging, computed tomography and digital subtraction angiography have limited temporospatial resolutions and shortcomings like invasive angiography, potential allergy to contrast agents, and image deformation, that restrict their application in high-resolution visualization of the structure of microvessels. In this study, through comparing synchrotron radiation (SR) absorption-contrast imaging to absorption phase-contrast imaging, it was found that SR-based phase-contrast imaging could provide more detailed ultra-high-pixel images of microvascular networks than absorption phase-contrast imaging. Simultaneously, SR-based phase-contrast imaging was used to perform high-quality, multi-dimensional and multi-scale imaging of rat brain angioarchitecture. With the aid of image post-processing, high-pixel-size two-dimensional virtual slices can be obtained without sectioning. The distribution of blood supply is in accordance with the results of traditional tissue staining. Three-dimensional anatomical maps of cerebral angioarchitecture can also be acquired. Functional partitions of regions of interest are reproduced in the reconstructed rat cerebral vascular networks. Imaging analysis of the same sample can also be displayed simultaneously in two- and three-dimensional views, which provides abundant anatomical information together with parenchyma and vessels. In conclusion, SR-based phase-contrast imaging holds great promise for visualizing microstructure of microvascular networks in two- and three-dimensional perspectives during the development of neurovascular diseases.
Collapse
Affiliation(s)
- Hong Lei Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xian Zhen Yin
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuo Hui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jing Yan Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xin Hang Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xinyi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shun Tong Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yi Shu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Tong Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Song Feng Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Meng Qi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
8
|
Shi S, Zhang H, Yin X, Wang Z, Tang B, Luo Y, Ding H, Chen Z, Cao Y, Wang T, Xiao B, Zhang M. 3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1742-1750. [PMID: 31490166 DOI: 10.1107/s160057751900674x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.
Collapse
Affiliation(s)
- Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tiantian Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
9
|
Cao Y, Zhang M, Ding H, Chen Z, Tang B, Wu T, Xiao B, Duan C, Ni S, Jiang L, Luo Z, Li C, Zhao J, Liao S, Yin X, Fu Y, Xiao T, Lu H, Hu J. Synchrotron radiation micro-tomography for high-resolution neurovascular network morphology investigation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:607-618. [PMID: 31074423 DOI: 10.1107/s1600577519003060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
There has been increasing interest in using high-resolution micro-tomography to investigate the morphology of neurovascular networks in the central nervous system, which remain difficult to characterize due to their microscopic size as well as their delicate and complex 3D structure. Synchrotron radiation X-ray imaging, which has emerged as a cutting-edge imaging technology with a high spatial resolution, provides a novel platform for the non-destructive imaging of microvasculature networks at a sub-micrometre scale. When coupled with computed tomography, this technique allows the characterization of the 3D morphology of vasculature. The current review focuses on recent progress in developing synchrotron radiation methodology and its application in probing neurovascular networks, especially the pathological changes associated with vascular abnormalities in various model systems. Furthermore, this tool represents a powerful imaging modality that improves our understanding of the complex biological interactions between vascular function and neuronal activity in both physiological and pathological states.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jinyun Zhao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Yalan Fu
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
10
|
Gu S, Xue J, Xi Y, Tang R, Jin W, Chen JJ, Zhang X, Shao ZM, Wu J. Evaluating the effect of Avastin on breast cancer angiogenesis using synchrotron radiation. Quant Imaging Med Surg 2019; 9:418-426. [PMID: 31032189 DOI: 10.21037/qims.2019.03.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The visualization of microvasculature is an essential step in understanding the mechanisms underlying early vessel disorders involved in breast cancer and for developing effective therapeutic strategies. However, generating detailed and reproducible data using immunohistochemistry analysis of breast cancer angiogenesis has been difficult. Methods To analyze the diversification of angiogenesis in the development of tumor growth and evaluate the anti-vascular effects of Avastin (bevacizumab), we used new X-ray microangiography and third-generation synchrotron radiation-based micro-computed tomography (SR micro-CT) technology. With these techniques, we were able to investigate the structures and density of microvessels in xenograft mouse models (n=24). Barium sulfate nanoparticles were injected into the left cardiac ventricle of the mice to allow the visualization of blood vessels. Results Three-dimensional structures of microvessels were displayed with a high spatial image resolution of 20-30 µm. The density of angiogenesis and the incidence of lung metastasis were significantly reduced in xenograft mouse models of breast cancer treated with Avastin compared with control groups. Also, the density of smaller vessels (diameter <50 µm) was significantly decreased in the Avastin-treated mice, while the density of larger vessels (diameter >100 µm) was not significantly changed. Conclusions Avastin inhibited tumor growth and lung metastasis by reducing microvessels. Additionally, synchrotron radiation (SR) techniques are useful as an additional tool for more precise quantification of angiogenesis.
Collapse
Affiliation(s)
- Shengmei Gu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingyan Xue
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Xi
- School of Biomedical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wei Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-Jian Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Collaborative Innovation Center for Cancer Medicine, Shanghai 200032, China
| |
Collapse
|
11
|
Zhou PT, Wang LP, Qu MJ, Shen H, Zheng HR, Deng LD, Ma YY, Wang YY, Wang YT, Tang YH, Tian HL, Zhang ZJ, Yang GY. Dl-3-N-butylphthalide promotes angiogenesis and upregulates sonic hedgehog expression after cerebral ischemia in rats. CNS Neurosci Ther 2019; 25:748-758. [PMID: 30784219 PMCID: PMC6515698 DOI: 10.1111/cns.13104] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dl-3-N-butylphthalide (NBP), a small molecule drug used clinically in the acute phase of ischemic stroke, has been shown to improve functional recovery and promote angiogenesis and collateral vessel circulation after experimental cerebral ischemia. However, the underlying molecular mechanism is unknown. AIMS To explore the potential molecular mechanism of angiogenesis induced by NBP after cerebral ischemia. RESULTS NBP treatment attenuated body weight loss, reduced brain infarct volume, and improved neurobehavioral outcomes during focal ischemia compared to the control rats (P < 0.05). NBP increased the number of CD31+ microvessels, the number of CD31+ /BrdU+ proliferating endothelial cells, and the functional vascular density (P < 0.05). Further study demonstrated that NBP also promoted the expression of vascular endothelial growth factor and angiopoietin-1 (P < 0.05), which was accompanied by upregulated sonic hedgehog expression in astrocytes in vivo and in vitro. CONCLUSION NBP treatment promoted the expression of vascular endothelial growth factor and angiopoietin-1, induced angiogenesis, and improved neurobehavioral recovery. These effects were associated with increased sonic hedgehog expression after NBP treatment. Our results broadened the clinical application of NBP to include the later phase of ischemia.
Collapse
Affiliation(s)
- Pan-Ting Zhou
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Jie Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hui Shen
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Ran Zheng
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Dong Deng
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Yuan Ma
- Department of Neurology, School of Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yong-Ting Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Jun Zhang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Luo Y, Yin X, Shi S, Ren X, Zhang H, Wang Z, Cao Y, Tang M, Xiao B, Zhang M. Non-destructive 3D Microtomography of Cerebral Angioarchitecture Changes Following Ischemic Stroke in Rats Using Synchrotron Radiation. Front Neuroanat 2019; 13:5. [PMID: 30766481 PMCID: PMC6365468 DOI: 10.3389/fnana.2019.00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 01/29/2023] Open
Abstract
A better understanding of functional changes in the cerebral microvasculature following ischemic injury is essential to elucidate the pathogenesis of stroke. Up to now, the simultaneous depiction and stereological analysis of 3D micro-architectural changes of brain vasculature with network disorders remains a technical challenge. We aimed to explore the three dimensional (3D) microstructural changes of microvasculature in the rat brain on 4, 6 hours, 3 and 18 days post-ischemia using synchrotron radiation micro-computed tomography (SRμCT) with a per pixel size of 5.2 μm. The plasticity of angioarchitecture was distinctly visualized. Quantitative assessments of time-related trends after focal ischemia, including number of branches, number of nodes, and frequency distribution of vessel diameter, reached a peak at 6 h and significantly decreased at 3 days and initiated to form cavities. The detected pathological changes were also proven by histological tests. We depicted a novel methodology for the 3D analysis of vascular repair in ischemic injury, both qualitatively and quantitatively. Cerebral angioarchitecture sustained 3D remodeling and modification during the healing process. The results might provide a deeper insight into the compensatory mechanisms of microvasculature after injury, suggesting that SRμCT is able to provide a potential new platform for deepening imaging pathological changes in complicated angioarchitecture and evaluating potential therapeutic targets for stroke.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopaedics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Dynamic Detection of Thrombolysis in Embolic Stroke Rats by Synchrotron Radiation Angiography. Transl Stroke Res 2019; 10:695-704. [PMID: 30680639 DOI: 10.1007/s12975-019-0687-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
A rodent model of embolic middle cerebral artery occlusion is used to mimic cerebral embolism in clinical patients. Thrombolytic therapy is the effective treatment for this ischemic injury. However, it is difficult to detect thrombolysis dynamically in living animals. Synchrotron radiation angiography may provide a novel approach to directly monitor the thrombolytic process and assess collateral circulation after embolic stroke. Thirty-six adult Sprague-Dawley rats underwent the embolic stroke model procedure and were then treated with tissue plasminogen activator. The angiographic images were obtained in vivo by synchrotron radiation angiography. Synchrotron radiation angiography confirmed the successful establishment of occlusion and detected the thrombolysis process after the thrombolytic treatment. The time of thrombolytic recanalization was unstable during embolic stroke. The infarct volume increased as the recanalization time was delayed from 2 to 6 h (p < 0.05). The collateral circulation of the internal carotid artery to the ophthalmic artery, the olfactory artery to the ophthalmic artery, and the posterior cerebral artery to the middle cerebral artery opened after embolic stroke and manifested different opening rates (59%, 24%, and 75%, respectively) in the rats. The opening of the collateral circulation from the posterior cerebral artery to the middle cerebral artery alleviated infarction in rats with successful thrombolysis (p < 0.05). The cerebral vessels of the circle of Willis narrowed after thrombolysis (p < 0.05). Synchrotron radiation angiography provided a unique tool to dynamically detect and assess the thrombolysis process and the collateral circulation during thrombolytic therapy.
Collapse
|
14
|
Wang L, Mu Z, Lin X, Geng J, Xiao TQ, Zhang Z, Wang Y, Guan Y, Yang GY. Simultaneous Imaging of Cerebrovascular Structure and Function in Hypertensive Rats Using Synchrotron Radiation Angiography. Front Aging Neurosci 2017; 9:359. [PMID: 29163140 PMCID: PMC5673661 DOI: 10.3389/fnagi.2017.00359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
Hypertension has a profound influence on the structure and function of blood vessels. Cerebral vessels undergo both structural and functional changes in hypertensive animals. However, dynamic changes of cerebrovasculature and the factors involved in this process are largely unknown. In this study, we explored the dynamic changes of vascular structure in hypertensive rats using novel synchrotron radiation angiography. Twenty-four spontaneously hypertensive rats (SHR) and 24 Sprague–Dawley (SD) rats underwent synchrotron radiation (SR) angiography. Each group had 8 animals. We studied the cerebral vascular changes in SHR over a time period of 3–12-month and performed quantitative analysis. No vascular morphology differences between SHR and SD rats were observed in the early stage of hypertension. The number of twisted blood vessels in the front brain significantly increased at the 9- and 12-month observation time-points in the SHR compared to the SD rats (p < 0.01). The vessel density of the cortex and the striatum in SHR was consistently higher than that in SD rats at time points of 3-, 9-, and 12-month (p < 0.001). Vascular elasticity decreased both in SHR and SD rats with aging. There were statistically significant differences in the relative vascular elasticity of extracranial/intracranial internal carotid artery, middle cerebral artery, posterior cerebral artery and anterior cerebral artery between SHR and SD rats at 12-month (p < 0.01). We concluded that the dynamic vascular alterations detected by SR angiography provided novel imaging data for the study of hypertension in vivo. The longer the course of hypertension was, the more obvious the vascular differences between the SHR and the SD rats became.
Collapse
Affiliation(s)
- Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihao Mu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojie Lin
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jieli Geng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ti Qiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai, China
| | - Zhijun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongjing Guan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Zeller-Plumhoff B, Roose T, Clough GF, Schneider P. Image-based modelling of skeletal muscle oxygenation. J R Soc Interface 2017; 14:rsif.2016.0992. [PMID: 28202595 DOI: 10.1098/rsif.2016.0992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.
Collapse
Affiliation(s)
- B Zeller-Plumhoff
- Helmholtz-Zentrum für Material- und Küstenforschung, Geesthacht, Germany .,Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - T Roose
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - G F Clough
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Schneider
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
Lu Y, Tang G, Lin H, Lin X, Jiang L, Yang GY, Wang Y. A biosafety evaluation of synchrotron radiation X-ray to skin and bone marrow: single dose irradiation study of rats and macaques. Int J Radiat Biol 2017; 93:637-645. [PMID: 28112006 DOI: 10.1080/09553002.2017.1286049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Very limited experimental data is available regarding the safe dosages related to synchrotron radiation (SR) procedures. We used young rats and macaques to address bone marrow and skin tolerance to various doses of synchrotron radiation. METHODS Rats were subjected to 0, 0.5, 2.5, 5, 25 or 100 Gy local SR X-ray irradiation at left hind limb. Rat blood samples were analyzed at 2-90 days after irradiation. The SR X-ray irradiated skin and tibia were sectioned for morphological examination. For non-human primate study, three male macaques were subjected to 0.5 or 2.5 Gy SR X-ray on crus. Skin responses of macaques were observed. RESULTS All rats that received SR X-ray irradiation doses greater than 2.5 Gy experienced hair loss and bone-growth inhibition, which were accompanied by decreased number of follicles, thickened epidermal layer, and decreased density of bone marrow cells (p < 0.05). Macaque skin could tolerate 0.5 Gy SR X-ray but showed significant hair loss when the dose was raised above 2.5 Gy. CONCLUSION The safety threshold doses of SR X-ray for rat skin, bone marrow and macaque skin are between 0.5 and 2.5 Gy. Our study provided essential information regarding the biosafety of SR X-ray irradiation.
Collapse
Affiliation(s)
- Yifan Lu
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Guanghui Tang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Hui Lin
- b School of Electronic Science and Application Physics , Hefei University of Technology , Hefei , Anhui , China
| | - Xiaojie Lin
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Lu Jiang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| | - Guo-Yuan Yang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China.,c Department of Neurology, Ruijin Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Yongting Wang
- a Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
17
|
Synchrotron Radiation X-Ray Phase-Contrast Tomography Visualizes Microvasculature Changes in Mice Brains after Ischemic Injury. Neural Plast 2016; 2016:3258494. [PMID: 27563468 PMCID: PMC4983401 DOI: 10.1155/2016/3258494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/02/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Imaging brain microvasculature is important in plasticity studies of cerebrovascular diseases. Applying contrast agents, traditional μCT and μMRI methods gain imaging contrast for vasculature. The aim of this study is to develop a synchrotron radiation X-ray inline phase-contrast tomography (SRXPCT) method for imaging the intact mouse brain (micro)vasculature in high resolution (~3.7 μm) without contrast agent. A specific preparation protocol was proposed to enhance the phase contrast of brain vasculature by using density difference over gas-tissue interface. The CT imaging system was developed and optimized to obtain 3D brain vasculature of adult male C57BL/6 mice. The SRXPCT method was further applied to investigate the microvasculature changes in mouse brains (n = 14) after 14-day reperfusion from transient middle cerebral artery occlusion (tMCAO). 3D reconstructions of brain microvasculature demonstrated that the branching radius ratio (post- to preinjury) of small vessels (radius < 7.4 μm) in the injury group was significantly smaller than that in the sham group (p < 0.05). This result revealed the active angiogenesis in the recovery brain after stroke. As a high-resolution and contrast-agent-free method, the SRXPCT method demonstrates higher potential in investigations of functional plasticity in cerebrovascular diseases.
Collapse
|
18
|
Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation. Sci Rep 2015; 5:14982. [PMID: 26443231 PMCID: PMC4595735 DOI: 10.1038/srep14982] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders.
Collapse
|
19
|
Zhang MQ, Sun DN, Xie YY, Peng GY, Xia J, Long HY, Xiao B. Three-dimensional visualization of rat brain microvasculature following permanent focal ischaemia by synchrotron radiation. BJR Case Rep 2014. [DOI: 10.1259/bjrcr.20130670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Zhang MQ, Sun DN, Xie YY, Peng GY, Xia J, Long HY, Xiao B. Three-dimensional visualization of rat brain microvasculature following permanent focal ischaemia by synchrotron radiation. Br J Radiol 2014; 87:20130670. [PMID: 24702152 DOI: 10.1259/bjr.20130670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Identifying morphological changes that occur in microvessels under both normal and ischaemic conditions is crucial for understanding and treating stroke. However, conventional imaging techniques are not able to detect microvessels on a micron or sub-micron scale without angiography. In the present study, synchrotron radiation (SR)-based X-ray in-line phase contrast imaging (ILPCI) was used to acquire high-resolution and high-contrast images of rat brain tissues in both normal and ischaemic states. METHODS ILPCI was performed at the Shanghai Synchrotron Radiation Facility, Shanghai, China, without the use of contrast agents. CT slices were reformatted and then converted into three-dimensional (3D) reconstruction images to analyse subtle details of the cerebral microvascular network. RESULTS By using ILPCI, brain vessels up to 11.8 μm in diameter were resolved. The number of cortical and penetrating arteries detected were found to undergo a remarkable decrease within the infarct area. 3 days after permanent ischaemia, vascular masses were also observed in the peripheral region of the infarcts. CONCLUSION SR-based ILPCI-CT can serve as a powerful tool to accurately visualize brain microvasculature. The morphological parameters of blood vessels in both CT slices and 3D reconstructions were determined, and this approach has great potential for providing an effective diagnosis and evaluation for rehabilitation therapy for stroke. ADVANCES IN KNOWLEDGE In the absence of contrast agent, the 3D morphologies of the brain microvasculature in normal and stroke rats were obtained using SR-based ILPCI. SR imaging is a sensitive and promising method which can be used to explore primary brain function.
Collapse
Affiliation(s)
- M Q Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|