1
|
Chen Q, Zhao X, Setianegara J, Hao Y, Zhao T, Zhang T, Darafsheh A. Response characterization of radiochromic OC-1 films in photon, electron, and proton beams. Med Phys 2024; 51:8584-8596. [PMID: 39186784 DOI: 10.1002/mp.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Radiochromic film (RCF) dosimeters with their high spatial resolution and tissue equivalent properties are conveniently used for two-dimensional and small-field dosimetry. OC-1 is a new model of RCF dosimeter that was commercially introduced recently. Due to its novelty there is a need to characterize its response in various radiation beam types. PURPOSE To study the response of OC-1 RCFs to megavoltage clinical x-ray, electron, and proton beams, as well as kilovoltage x-ray beams used in a small animal research irradiator. MATERIALS AND METHODS OC-1 RCFs were cut into ∼4 × 4 cm2 pieces. RCF samples were irradiated at various dose levels in the range 0.5-120 Gy using different modalities; a small animal radiation research platform (SARRP) (220 kVp), a medical linear accelerator (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF photon beams, as well as 6 and 20 MeV electron beams), and a gantry-mounted proton therapy synchrocyclotron. In order to study any dependency on the fractionation scheme, same dose was delivered at several fractions to a set of films. Different dose rates in the range 200-600 MU/min were delivered to a set of films to investigate any dose rate dependency. The films were scanned pre-irradiation and at 48 h post-irradiation using a flatbed scanner. The net optical density (OD) was measured for red, green, and blue color channel for each film. The orientation dependency was studied by scanning the films at eight different orientations. In order to study the temporal evolution of the response of the films, film samples were irradiated at 10 and 50 Gy using 6 MV photon beams and were scanned upon irradiation at certain time intervals up to 3 months. The spectral response of the films were studied over the visible range using a spectrometer. RESULTS For megavoltage photon, electron, and plateau region of the proton beams, we did not observe a significant dependency on the beam quality, dose rate, and fractionation scheme. At the kV beam, an unusual over-response was observed in the films' net OD. An orientation dependency in the response of the films with a sinusoidal trend was observed. The response of the films increased with time following a double or triple exponential trend. The spectral absorption peaks were blue-shifted with dose. CONCLUSION OC-1 RCFs were found to be reliable dosimeters with no significant energy dependency in MV range for photon and electron beams including the FFF beams. They over-respond when irradiated by kV x-ray beams compared to MV x-ray beams. Caution must be exercised to maintain the orientation of the films when scanning. Due to the temporal growth in the net OD of the films, same post-irradiation time interval must be used for scanning the calibration and test films.
Collapse
Affiliation(s)
- Qinghao Chen
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Xiandong Zhao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jufri Setianegara
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tiezhi Zhang
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Ayala R, García R, Ruiz G, García MJ, Soza Á, Gómez S, Udías JM, Ibáñez P. Dosimetric study of bevel factors in IOERT with mobile linacs: Towards a unified code of practice. Phys Med 2024; 127:104836. [PMID: 39481139 DOI: 10.1016/j.ejmp.2024.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/28/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Dosimetry in intraoperative electron radiotherapy (IOERT) poses distinct challenges, especially with inclined applicators deviating from international protocols. Ion recombination in ionization chambers, electron beam degradation due to scattering in cylindrical applicators, coupled with a lack of a well-defined beam quality surrogate, complicate output factor determination with ionization chambers. Synthetic diamond-based detectors, offer potential solutions; however, their suitability requires further exploration. PURPOSE This study addresses output factor determination for beveled applicators. Objectives include assessing the suitability of PTW microDiamond detectors and determining correction factors for ionization chamber measurements based on energy variations at the depth of maximum dose (zmax) for beveled applicators. Experimental data are compared against results obtained from Monte Carlo simulations. METHODS We conducted measurements using both PTW microDiamond and IBA CC01 detectors. In addition to benchmarking bevel factors with penEasy, we employed Monte Carlo simulations to determine angular response correction factors for microDiamond detectors and to evaluate energy variations at zmax for beveled applicators. RESULTS The findings indicate that angular response correction factors are unnecessary for microDiamond detectors with beveled applicators. However, variations in mean energy at zmax potentially impact absorbed dose calculations with ionization chambers, particularly with the most inclined applicators. CONCLUSIONS Based on our results, the study recommends using microDiamond detectors over cylindrical ionization chambers for output factor determination in IOERT with inclined applicators. Addressing energy variations at zmax is crucial to improve accuracy in ionization chamber measurements. These findings have implications for dosimetry protocols in IOERT, contributing to enhanced delivery in clinical practice.
Collapse
Affiliation(s)
- Rafael Ayala
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain; Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain.
| | - Rocío García
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Gema Ruiz
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - María Jesús García
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Álvaro Soza
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Susana Gómez
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007, Madrid, Spain
| | - José Manuel Udías
- Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paula Ibáñez
- Nuclear Physics Group and IPARCOS, Department of Structure of Matter, Thermal Physics and Electronics, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
4
|
Palmiero A, Liu K, Colnot J, Chopra N, Neill D, Connell L, Velasquez B, Koong AC, Lin SH, Balter P, Tailor R, Robert C, Germond JF, Gonçalves Jorge P, Geyer R, Beddar S, Moeckli R, Schüler E. On the acceptance, commissioning, and quality assurance of electron FLASH units. Med Phys 2024. [PMID: 39462477 DOI: 10.1002/mp.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND AND PURPOSE FLASH or ultra-high dose rate (UHDR) radiation therapy (RT) has gained attention in recent years for its ability to spare normal tissues relative to conventional dose rate (CDR) RT in various preclinical trials. However, clinical implementation of this promising treatment option has been limited because of the lack of availability of accelerators capable of delivering UHDR RT. Commercial options are finally reaching the market that produce electron beams with average dose rates of up to 1000 Gy/s. We established a framework for the acceptance, commissioning, and periodic quality assurance (QA) of electron FLASH units and present an example of commissioning. METHODS A protocol for acceptance, commissioning, and QA of UHDR linear accelerators was established by combining and adapting standards and professional recommendations for standard linear accelerators based on the experience with UHDR at four clinical centers that use different UHDR devices. Non-standard dosimetric beam parameters considered included pulse width, pulse repetition frequency, dose per pulse, and instantaneous dose rate, together with recommendations on how to acquire these measurements. RESULTS The 6- and 9-MeV beams of an UHDR electron device were commissioned by using this developed protocol. Measurements were acquired with a combination of ion chambers, beam current transformers (BCTs), and dose-rate-independent passive dosimeters. The unit was calibrated according to the concept of redundant dosimetry using a reference setup. CONCLUSION This study provides detailed recommendations for the acceptance testing, commissioning, and routine QA of low-energy electron UHDR linear accelerators. The proposed framework is not limited to any specific unit, making it applicable to all existing eFLASH units in the market. Through practical insights and theoretical discourse, this document establishes a benchmark for the commissioning of UHDR devices for clinical use.
Collapse
Affiliation(s)
- Allison Palmiero
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Julie Colnot
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Nitish Chopra
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Denae Neill
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luke Connell
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Brett Velasquez
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Albert C Koong
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ramesh Tailor
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charlotte Robert
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Reiner Geyer
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| |
Collapse
|
5
|
Lim SN, Sohn JJ, Klawikowski SJ, Hayes JP, Donnelly E, Das IJ. Characterization of brass mesh bolus for electron beam therapy. Biomed Phys Eng Express 2024; 10:065046. [PMID: 39419072 DOI: 10.1088/2057-1976/ad87f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Purpose. Bolus is often required for targets close to or on skin surface, however, standard bolus on complex surfaces can result in air gaps that compromise dosimetry. Brass mesh boluses (RPD, Inc., Albertville, MN) are designed to conform to the patient's surface and reduce air gaps. While they have been well characterized for their use with photons, minimal characterization exists in literature for their use with electrons.Methods and materials.Dosimetric characteristics of brass mesh bolus was investigated for use with 6, 9 and 12 MeV electrons using a 10 × 10 cm2applicator on standard multi-energy LINAC. Measurements for bolus equivalence and percentage depth doses (PDDs) under brass mesh, as well as surface dose measurements were performed on solid water and a 3D printed resin breast phantom (Anycubic Photon MonoX, Shenzhen, China) using Markus®parallel-plate ionization chamber (Model 34045, PTW Freiburg, Germany), thermoluminescent detectors (TLD) and EBRT film. After obtaining surface dose measurements, these were compared to dose calculated on the Pinnacle3 treatment planning system (TPS, 16.2, Koninklijke Philips N.V.).Results. Measurements of surface dose under brass mesh showed consistently higher dose than without bolus, confirming that brass mesh can increase the PDD at surface up to ∼ 94% of dose at dmax, depending on incident electron energy. This increase is equivalent to using ∼ 7.2 mm water equivalent bolus for 6 MeV, ∼ 3.6 mm for 9 MeV and ∼ 2.2 mm bolus for 12 MeV electrons. TPS results showed close agreement within-vivomeasurements, confirming the potential for brass mesh as bolus for electron irradiation, provided blousing effect is correctly modelled.Conclusions. To increase electron surface dose, a brass mesh can be used with equivalent effect of water-density bolus varying with electron energy. Proper implementation could allow for ease of treatment, as well as increase bolus conformality in electron-only plans.
Collapse
Affiliation(s)
- Sara N Lim
- Department of Radiation Oncology, City of Hope, Duarte, CA, 91010, United States of America
| | - James J Sohn
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, United States of America
| | - Slade J Klawikowski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, United States of America
| | - John P Hayes
- Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, United States of America
| | - Eric Donnelly
- Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, United States of America
| | - Indra J Das
- Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, United States of America
| |
Collapse
|
6
|
Barraclough B, Labby ZE, Frigo SP. Portability of IMRT QA between matched linear accelerators. J Appl Clin Med Phys 2024; 25:e14492. [PMID: 39250771 PMCID: PMC11466462 DOI: 10.1002/acm2.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 07/27/2024] [Indexed: 09/11/2024] Open
Abstract
PURPOSE To determine if patient-specific IMRT quality assurance can be measured on any matched treatment delivery system (TDS) for patient treatment delivery on another. METHODS Three VMAT plans of varying complexity were created for each available energy for head and neck, SBRT lung, and right chestwall anatomical sites. Each plan was delivered on three matched Varian TrueBeam TDSs to the same Scandidos Delta4 Phantom+ diode array with only energy-specific device calibrations. Dose distributions were corrected for TDS output and then compared to TPS calculations using gamma analysis. Round-robin comparisons between measurements from each TDS were also performed using point-by-point dose difference, median dose difference, and the percent of point dose differences within 2% of the mean metrics. RESULTS All plans had more than 95% of points passing a gamma analysis using 3%/3 mm criteria with global normalization and a 20% threshold when comparing measurements to calculations. The tightest gamma analysis criteria where a plan still passed > 95% were similar across delivery systems-within 0.5%/0.5 mm for all but three plan/energy combinations. Median dose deviations in measurement-to-measurement comparisons were within 0.7% and 1.0% for global and local normalization, respectively. More than 90% of the point differences were within 2%. CONCLUSION A set of plans spanning available energies and complexity levels were delivered by three matched TDSs. Comparisons to calculations and between measurements showed dose distributions delivered by each TDS using the same DICOM RT-plan file meet tolerances much smaller than typical clinical IMRT QA criteria. This demonstrates each TDS is modeled to a similar accuracy by a common class (shared) beam model. Additionally, it demonstrates that dose distributions from one TDS show small differences in median dose to the others. This is an important validation component of the common beam model approach, allowing for operational improvements in the clinic.
Collapse
Affiliation(s)
- Brendan Barraclough
- Department of Radiation OncologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Zacariah E. Labby
- Department of Human OncologyUniversity of Wisconsin ‐ MadisonMadisonWisconsinUSA
| | - Sean P. Frigo
- Department of Human OncologyUniversity of Wisconsin ‐ MadisonMadisonWisconsinUSA
| |
Collapse
|
7
|
Horseman TS, Parajuli B, Frank AM, Weaver A, Schauer DA, Moran S, Anderson JA, Holmes-Hampton GP, Burmeister DM. MICROBIOME AND INFLAMMASOME ALTERATIONS FOUND DURING RADIATION DOSE FINDING IN A SINCLAIR MINIPIG MODEL OF GASTROINTESTINAL ACUTE RADIATION SYNDROME. Shock 2024; 62:556-564. [PMID: 39012765 PMCID: PMC11446529 DOI: 10.1097/shk.0000000000002422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
ABSTRACT Both abdominal radiotherapy and a nuclear event can result in gastrointestinal symptoms, including acute radiation syndrome (GI-ARS). GI-ARS is characterized by compromised intestinal barrier integrity increasing the risk for infectious complications. Physiologically relevant animal models are crucial for elucidating host responses and therapeutic targets. We aimed to determine the radiation dose requirements for creating GI-ARS in the Sinclair minipig. Male, sexually mature swine were randomly divided into sham (n = 6) and three lower hemibody radiation dosage groups of 8, 10, and 12 Gy (n = 5/group) delivered using linear accelerator-derived x-rays (1.9 Gy/min). Animals were monitored for GI-ARS symptoms for 14 days with rectal swab and blood collection at days 0-3, 7, 10, and 14 followed by necropsy for western blotting and histology. Dose-dependent increases in weight loss, diarrhea severity, and mortality (log-rank test, P = 0.041) were seen. Villi length was significantly reduced in all irradiated animals compared to controls ( P < 0.001). Serum citrulline decreased and bacterial translocation increased after irradiation compared to controls. Increased NLRP3 levels in post-mortem jejunum were seen ( P = 0.0043) as well as increased IL-1β levels in the 12 Gy group ( P = 0.041). Radiation dose and survival were associated with significant gut microbial community shifts in beta diversity. Moreover, decedents had increased Porphyromonas, Campylobacter, Bacteroides , Parvimonas , and decreased Fusobacterium and decreased Aerococcus, Lactobacillus, Prevotella, and Streptococcus . Our novel Sinclair minipig model showed dose-dependent clinical symptoms of GI-ARS. These findings provide invaluable insights into the intricate interplay between GI-ARS, intestinal inflammation, and gut microbiota alterations offering potential targets for therapeutic and diagnostic interventions after radiation exposure.
Collapse
Affiliation(s)
- Timothy S. Horseman
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Babita Parajuli
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Andrew M. Frank
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alia Weaver
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David A. Schauer
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sean Moran
- Biomedical Instrumentation Center, Proteomics Core, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joseph A. Anderson
- Comparative Pathology Division, Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P. Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David M. Burmeister
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
8
|
Tani K, Wakita A, Tohyama N, Fujita Y. Dosimetric impact of calibration coefficients determined using linear accelerator photon and electron beams for ionization chamber in an on-site dosimetry audit. JOURNAL OF RADIATION RESEARCH 2024; 65:619-627. [PMID: 39154377 PMCID: PMC11420846 DOI: 10.1093/jrr/rrae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to clarify the dosimetric impact of calibration beam quality for calibration coefficients of the absorbed dose to water for an ionization chamber in an on-site dosimetry audit. Institution-measured doses of 200 photon and 184 electron beams were compared with the measured dose using one year data before and after the calibration of the ionization chamber used. For photon and electron reference dosimetry, the agreements of the institution-measured dose against two measured doses in this audit were evaluated using the calibration coefficients determined using 60Co (${N}_{D,\mathrm{w},{}^{60}\mathrm{Co}}$) and linear accelerator (linac) (${N}_{D,\mathrm{w},Q}$) beams. For electron reference dosimetry, the agreement of two institution-measured doses against the measured dose was evaluated using${N}_{D,\mathrm{w},Q}$. Institution-measured doses were evaluated using direct- and cross-calibration coefficients. For photon reference dosimetry, the mean differences and standard deviation (SD) of institution-measured dose against the measured dose using ${N}_{D,\mathrm{w},{}^{60}\mathrm{Co}}$ and ${N}_{D,\mathrm{w},Q}$ were -0.1% ± 0.4% and -0.3% ± 0.4%, respectively. For electron reference dosimetry, the mean differences and SD of institution-measured dose using the direct-calibration coefficient against the measured dose using ${N}_{D,\mathrm{w},{}^{60}\mathrm{Co}}$ and ${N}_{D,\mathrm{w},Q}$ were 1.3% ± 0.8% and 0.8% ± 0.8%, respectively. Further, the mean differences and SD of institution-measured dose using the cross-calibration coefficient against the measured dose using ${N}_{D,\mathrm{w},Q}$ were -0.1% ± 0.6%. For photon beams, the dosimetric impact of introducing calibration coefficients determined using linac beams was small. For electron beams, it was larger, and the measured dose using ${N}_{D,\mathrm{w},Q}$ was most consistent with the institution-measured dose, which was evaluated using a cross-calibration coefficient.
Collapse
Affiliation(s)
- Kensuke Tani
- Division of Medical Physics, EuroMediTech Co., Ltd, 2-20-4 Higashi-Gotanda, Shinagawa, Tokyo 141-0022, Japan
| | - Akihisa Wakita
- Division of Medical Physics, EuroMediTech Co., Ltd, 2-20-4 Higashi-Gotanda, Shinagawa, Tokyo 141-0022, Japan
| | - Naoki Tohyama
- Department of Health Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya, Tokyo 154-8525, Japan
| | - Yukio Fujita
- Department of Health Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya, Tokyo 154-8525, Japan
| |
Collapse
|
9
|
Muir B, Davis S, Dhanesar S, Hillman Y, Iakovenko V, Kim GGY, Alves VGL, Lei Y, Lowenstein J, Renaud J, Sarfehnia A, Siebers J, Tantôt L. AAPM WGTG51 Report 385: Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy electron beams. Med Phys 2024; 51:5840-5857. [PMID: 38980220 DOI: 10.1002/mp.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
An Addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water is presented for electron beams with energies between 4 MeV and 22 MeV (1.70 cm ≤ R 50 ≤ 8.70 cm $1.70\nobreakspace {\rm cm} \le R_{\text{50}} \le 8.70\nobreakspace {\rm cm}$ ). This updated formalism allows simplified calibration procedures, including the use of calibrated cylindrical ionization chambers in all electron beams without the use of a gradient correction. Newk Q $k_{Q}$ data are provided for electron beams based on Monte Carlo simulations. Implementation guidance is provided. Components of the uncertainty budget in determining absorbed dose to water at the reference depth are discussed. Specifications for a reference-class chamber in electron beams include chamber stability, settling, ion recombination behavior, and polarity dependence. Progress in electron beam reference dosimetry is reviewed. Although this report introduces some major changes (e.g., gradient corrections are implicitly included in the electron beam quality conversion factors), they serve to simplify the calibration procedure. Results for absorbed dose per linac monitor unit are expected to be up to approximately 2 % higher using this Addendum compared to using the original TG-51 protocol.
Collapse
Affiliation(s)
- Bryan Muir
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Stephen Davis
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Sandeep Dhanesar
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texa, USA
| | - Yair Hillman
- Department of Radiation Oncology, Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Grace Gwe-Ya Kim
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, San Diego, California, USA
| | | | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jessica Lowenstein
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texa, USA
| | - James Renaud
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jeffrey Siebers
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Laurent Tantôt
- Département de radio-oncologie, CIUSSS de l'Est-de-l'Île-de-Montréal - Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Taneja S, Barbee DL. Implementation of an ionization chamber array for linear accelerator monthly dosimetry QA. J Appl Clin Med Phys 2024; 25:e14433. [PMID: 38923344 PMCID: PMC11492307 DOI: 10.1002/acm2.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE The IC Profiler (ICP) manufactured by Sun Nuclear Corporation (SNC) is an ionization chamber (IC) array used for linear accelerator dosimetry measurements. Previous work characterized response of the ICP under various conditions, but there is limited work of its implementation into monthly QA measurement procedures. This work quantifies ICP accuracy and variables that affect accuracy for beam output measurements, and demonstrates feasibility of using the ICP for all recommended monthly dosimetry measurements. METHODS A total of 1985 output measurements on six Varian TrueBeam and Edge linear accelerators were performed using three ICP with quad wedges (QWs) and were compared with conventional IC measurements. The accuracy of the ICP for beam output was characterized as the difference between the ICP and IC. Variables that affect ICP accuracy, including gain settings, calibrations, and template baselining as well as machine or energy-specific bias were investigated. Measurements of profile constancy, energy, dose rate constancy, wedge factors, and gating were performed. RESULTS The initially observed mean output difference between the ICP and IC was 0.16% (0.61%). When gain settings were optimized, the output difference accuracy improved to -0.02% (0.38%). The output accuracy of the ICP was not dependent on array, dose, temperature and pressure calibrations, or template baselining. Statistically, ICP output accuracy was dependent on machine and beam energy, but clinically, all measurements fell within 0.5% of unity. ICP measurements of energy, dose rate constancy, and wedge factors matched passing results with conventional IC in water measurements. Gating and beam profile constancy measurements demonstrated good stability using the ICP. Finally, monthly dosimetry QA using ICP was completed in an average of 33 min compared to 66 min using the IC. CONCLUSION This work demonstrated the feasibility and efficiency of using the ICP, with specific considerations, as a measurement device for dosimetric linear accelerator monthly QA.
Collapse
Affiliation(s)
- Sameer Taneja
- Department of Radiation OncologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - David L. Barbee
- Department of Radiation OncologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
11
|
Brivio D, Liles A, Gagne M, Sajo E, Zygmanski P. Toward a multi-layer micro-structured detector for high-energy electron radiotherapy. Med Phys 2024; 51:6412-6422. [PMID: 38772041 DOI: 10.1002/mp.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The use of electron beams has been rekindled by the advent of ultra-high-dose rate radiotherapy (FLASH) and very high energy electrons (VHEE). The need for development of novel technology for beam monitoring and dosimetry of such beams is of paramount importance prior to their clinical translation. PURPOSE In this work we explore the potential of a multi-layer nanoporous aerogel High-Energy-Current (HEC) detector as a dosimeter for electron beam. The detector does not suffer from radiation damage or signal saturation, making it suitable for very-high-dose-rate applications. Standard dose rates and energies are used to establish reference for FLASH and VHEE. We explore detector response to electron energy and residual range both experimentally and computationally. METHODS Multilayer HEC detectors were constructed using 1×-10× basic modules of Aluminum(Al)_aerogel(A)_Tantalum(Ta) with 10-70 µm layer thicknesses. Signals are collected from all electrodes (3-21, depending on module multiplicity) with zero external voltage bias. Measurements are acquired as a function of depth(z) in water equivalent plastic using Varian TrueBeam for energies E = 6,9,12,15 MeV (SAD = 105 cm, 6 × 6 cone, 1000 MU/min). Computational simulations of identical detector geometries are performed using the 1D deterministic code CEPXS/ONEDANT. Additionally, percent-depth-doses PDD(z), measured with diode in water, are used to explore the response of HEC for various energies and residual ranges. RESULTS The current measured from Ta electrodes resembles the shape of deposited charges in water and it is proportional to the derivative of the clinical PDD corrected for contribution from photon contamination. The signal is positive on the surface, and it decreases with depth reaching a negative local minimum at z = R50, before increasing again, reaching zero at about the practical range z = Rp. In contrast, the signal from Al electrodes is shaped like the electron PDD(z) shape but with lower signal at the surface and higher bremsstrahlung tail. By subtracting the signal from Ta and Al electrodes we obtained a curve resembling PDD(z,E) after Bremsstrahlung contamination correction. CONCLUSIONS Multi-layer HEC sensors exhibit characteristic responses to electron beams that are unlike responses of ion chambers or diodes. Since the sensor structures are sensitive to electronic disequilibrium, high-Z electrodes give a signal proportional to the charge deposition pattern and can be modeled using the derivative of PDD(z).
Collapse
Affiliation(s)
- Davide Brivio
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Arianna Liles
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Matthew Gagne
- Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts, USA
- RayWatch Inc., Hopkinton, Hopkinton, Massachusetts, USA
| | - Erno Sajo
- Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Piotr Zygmanski
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Kawashima M, Varnava M, Ozawa S, Higuchi H, Hoshino Y, Tashiro M. Evaluation of monthly variations in electrometer calibration coefficients using a charge generator for radiation therapy. Radiol Phys Technol 2024; 17:770-775. [PMID: 39090386 PMCID: PMC11341583 DOI: 10.1007/s12194-024-00830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Electrometers are important devices that are part of the standard dosimetry system. Therefore, we evaluated the variation of electrometer calibration coefficients (kelec) over 1 year in this study. We investigated two types of electrometers: a rate mode and an integrate mode. Each electrometer was connected to a charge generator, a constant charge was applied, and kelec was determined by measuring the current. The current measurements were repeated once a month. For electrometers with multiple ranges, measurements were taken at low and medium ranges. Almost all kelec measurements agreed within 0.2% of the initial measurements. However, the low range of the electrometer with an integrate mode showed seasonal variation, with a variation greater than 0.2%. This study shows that electrometers may exhibit errors that cannot be detected through annual inspections. The importance of quality assurance using a charge generator at one's own institution was demonstrated.
Collapse
Affiliation(s)
- Motohiro Kawashima
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| | - Maria Varnava
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2 Futabanosato, Higashi-Ku, Hiroshima, 732-0057, Japan
- RTQM System Inc., 1-11-5 Hikarimachi, Higashi-Ku, Hiroshima, 732-0052, Japan
| | - Hiromitsu Higuchi
- Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoshihiko Hoshino
- Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
13
|
Orts M, Rossomme S, Souris K, Sterpin E. Monte Carlo simulation of initial and volume ion recombination correction factor in plane parallel ionization chambers exposed to ion beams. Phys Med Biol 2024; 69:165012. [PMID: 39047771 DOI: 10.1088/1361-6560/ad6730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Objective.Accurate reference dosimetry with ionization chambers (ICs) relies on correcting for various influencing factors, including ion recombination. Theoretical frameworks, such as the Boag and Jaffe theories, are conventionally used to describe the ion recombination correction factors. Experimental methods are time consuming, the applicability may be limited and, in some cases, impractical to be used in clinical routine. The development of simulation tools becomes necessary to enhance the understanding of recombination under circumstances that may differ from conventional use. Before progressing, it is crucial to benchmark novel approaches to calculate ion recombination losses under known conditions. In this study, we introduce and validate a versatile simulation tool based on a Monte Carlo scheme for calculating initial and volume ion recombination correction factors in air-filled ICs exposed to ion beams with clinical dose rates.Approach. The simulation includes gaussian distribution of ion positions to model the distribution of charge carriers along the chamber volume. It accounts for various physical transport effects, including drift, diffusion, space charge screening and free electron fraction. To compute ion recombination, a Monte Carlo scheme is used due to its versatility in multiple geometries, without exhibiting convergence problems associated with numerically solved procedures.Main results. The code is validated in conventional dose rates against Jaffe's theory for initial recombination and Boag's theory for volume recombination based on parameters derived from experimental data including proton, helium and carbon ion beams measured with a plane parallel IC.Significance. The simulation demonstrates excellent agreement, typically 0.05% or less relative difference with the theoretical and experimental data. The current code successfully predicts ion recombination correction factors, in a large variety of ion beams, including different temporal beam structures.
Collapse
Affiliation(s)
- Marina Orts
- UCLouvain-Institut de Recherche Expérimentale et Clinique-Molecular Imaging Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Severine Rossomme
- Ion Beams Applications S.A., Dosimetry Business Unit, Louvain La Neuve, Belgium
| | - Kevin Souris
- Ion Beams Applications S.A., Dosimetry Business Unit, Louvain La Neuve, Belgium
| | - Edmond Sterpin
- UCLouvain-Institut de Recherche Expérimentale et Clinique-Molecular Imaging Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Oncology-Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
- Particle Therapy Interuniversity Center Leuven-Particle, Leuven, Belgium
| |
Collapse
|
14
|
Rogers DWO. Minimum phantom size for megavoltage photon beam reference dosimetry. Med Phys 2024; 51:5663-5671. [PMID: 38669481 DOI: 10.1002/mp.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Water phantoms are required to perform reference dosimetry and beam quality measurements but there are no published studies about the size requirements for such phantoms. PURPOSE To investigate, using Monte Carlo techniques, the size requirements for water phantoms used in reference dosimetry and/or to measure the beam quality specifiers% d d ( 10 ) x $\%dd(10)_{\sf x}$ andT P R 10 20 $TPR^{20}_{10}$ . METHODS The EGSnrc application DOSXYZnrc is used to calculateD ( 10 ) $D(10)$ , the dose per incident fluence at 10 cm depth in a water phantom irradiated by incident10 × 10 cm 2 $10\,\times \,10 \, {\rm {cm}}^{2}$ beams of60 Co $^{60}{\rm {Co}}$ or 6 MV photons. The water phantom dimensions are varied from30 × 30 × 40 cm 3 $30 \,\times \, 30 \,\times \, 40 \, {\rm {cm}}^3$ to15 × 15 × 22 cm 3 $15 \,\times \, 15 \,\times \, 22 \, {\rm {cm}}^3$ and occasionally smaller. The% d d ( 10 ) x $\%dd(10)_{\sf x}$ andT P R 10 20 $TPR^{20}_{10}$ values are also calculated with care being taken to distinguishT P R 10 20 $TPR^{20}_{10}$ results when using Method A (changing depth of water in phantom) and Method B (moving entire phantom). Typical statistical uncertainties are 0.03%. RESULTS Phantom dimensions have only minor effects for phantoms larger than20 × 20 × 25 cm 3 $20 \,\times \, 20 \,\times \, 25 \, {\rm {cm}}^3$ . A table of corrections to the dose at 10 cm depth in10 × 10 cm 2 $10 \,\times \, 10 \, {\rm {cm}}^{2}$ beams of60 Co $^{60}{\rm {Co}}$ or 6 MV photons are provided and range from no correction to 0.75% for a60 Co $^{60}{\rm {Co}}$ beam incident on a20 × 20 × 15 cm 3 $20 \,\times \, 20 \,\times \, 15 \, {\rm {cm}}^3$ phantom. There can be distinct differences in theT P R 10 20 $TPR^{20}_{10}$ values measured using Method A or Method B, especially for smaller phantoms. It is explicitly demonstrated that, within ± $\pm$ 0.15%,T P R 10 20 $TPR^{20}_{10}$ values for a30 × 30 × 30 cm 3 $30 \,\times \, 30 \,\times \, 30 \, {\rm {cm}}^3$ phantom measured using Method A or B are independent of source detector distance between 40 and 200 cm. CONCLUSIONS The phantom sizes recommended in the TG-51 and IAEA TRS-398 reference dosimetry protocols are adequate for accurate reference dosimetry and in some cases are even conservative. Correction factors are necessary for accurate measurement of the dose at 10 cm depth in smaller phantoms and these factors are provided. Very accurate beam quality specifiers are not required for reference dosimetry itself, but for specifying beam stability and characteristics it is important to specify phantom sizes and also the method used forT P R 10 20 $TPR^{20}_{10}$ measurements.
Collapse
Affiliation(s)
- D W O Rogers
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| |
Collapse
|
15
|
Johnson D, Li HH, Kimler BF. Dosimetry: Was and Is an Absolute Requirement for Quality Radiation Research. Radiat Res 2024; 202:102-129. [PMID: 38954476 DOI: 10.1667/rade-24-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This review aims to trace the evolution of dosimetry, highlight its significance in the advancement of radiation research, and identify the current trends and methodologies in the field. Key historical milestones, starting with the first publications in the journal in 1954, will be synthesized before addressing contemporary practices in radiation medicine and radiobiological investigation. Finally, possibilities for future opportunities in dosimetry will be offered. The overarching goal is to emphasize the indispensability of accurate and reproducible dosimetry in enhancing the quality of radiation research and practical applications of ionizing radiation.
Collapse
Affiliation(s)
- Daniel Johnson
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| | - H Harold Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| |
Collapse
|
16
|
Xu Z, Balik S, Woods K, Shen Z, Cheng C, Cui J, Gallogly H, Chang E, Lukas L, Lim A, Natsuaki Y, Ye J, Ma L, Zhang H. Dosimetric characterization for GRID collimator-based spatially fractionated radiation therapy: Dosimetric parameter acquisition and machine interchangeability investigation. J Appl Clin Med Phys 2024; 25:e14410. [PMID: 38810092 PMCID: PMC11302805 DOI: 10.1002/acm2.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.
Collapse
Affiliation(s)
- Zhengzheng Xu
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Salim Balik
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Kaley Woods
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Zhilei Shen
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Chihyao Cheng
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Jing Cui
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Haihong Gallogly
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Eric Chang
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Lauren Lukas
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Andrew Lim
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Yutaka Natsuaki
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Jason Ye
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Lijun Ma
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Hualin Zhang
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| |
Collapse
|
17
|
D'Souza M, Sarfehnia A. Suitability of novel 3D-printed and coated vessels for water calorimetry. Med Phys 2024; 51:5654-5662. [PMID: 38656695 DOI: 10.1002/mp.17091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/17/2023] [Accepted: 03/30/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND In water calorimetry, absolute dose to water is determined by measuring radiation-induced temperature rises. In conventional water calorimeters, temperature detectors are housed in handmade glass vessels that are filled with high-purity water, thus mitigating radiation-induced exo/endothermic chemical reactions of impurities that would otherwise introduce additional heat gain/loss, known as heat defect. Being hand-crafted, these glass vessels may suffer from imperfections, have shape and design constraints, are often backordered, and can be prohibitively expensive. PURPOSE The purpose of this work is to determine suitability of 3D-printed plastic vessels that are further coated for use in water calorimetry applications, and to study their stability and characterize their associated heat defect correction factor (k hd ) ${k_{{\mathrm{hd}}}})$ . This novel vessel production technique would allow for cost-effective rapid construction of vessels that can be produced with high accuracy and designs that are simply not practical with current glass vessel construction techniques. This in turn enables water calorimetry applications in many novel radiation delivery modalities, which may include spherical vessels in GammaKnife ICON water calorimetry as an example. METHODS Eight vessels were 3D-printed using Accura ClearVue in an SLA 3D-printer. Two vessels were coated with Parylene C and four were coated with Parylene N. The water calorimetry preparation procedures followed for these vessels was identical to that of our traditional glass-vessels (i.e., same cleaning procedures, same high purity water, and same saturation procedures with high purity hydrogen gas). The performance of each vessel was characterized using our in-house built water calorimeter in an Elekta Versa using both 6 MV flattening filter-free (FFF) and 18 MV beams. The stability of the coating as function of time and accumulated dose was evaluated through repeated measurements.k hd ${k_{{\mathrm{hd}}}}\;$ of each vessel was determined through cross-comparisons against an Exradin A1SL ionization chamber with direction calibration link to Canada's primary standard laboratory. RESULTS k HD ${k_{{\mathrm{HD}}}}\;$ of the two uncoated vessels differed by 2.8% under a 6 MV FFF beam. Vessels coated with Parylenes resulted in a stable and reproducible heat defect for both energies. An overallk hd ${k_{{\mathrm{hd}}}}$ of 1.001 ± 0.010 and 1.005 ± 0.010 were obtained for Parylene N and Parylene C coated vessels respectively. All Parylene coated vessels showed agreement, within the established uncertainties, to the zero-heat defect observed in a hydrogen-saturated glass vessel system. An additional long-term study (17 days) of a Parylene N vessel showed no change in response with accumulated dose and time. Electron microscopy images of a Parylene N coated vessel showed a uniform intact coating after repeated irradiations. CONCLUSIONS An uncoated 3D-printed vessel is not viable for water calorimetry because it exhibits an unstable vessel-dependent heat defect. However, applying a Parylene coating stabilizes the heat defect, suggesting that coated 3D-printed vessels may be suitable for use in water calorimetry. This method facilitates the creation of intricate vessel shapes, which can be efficiently manufactured using 3D printing.
Collapse
Affiliation(s)
- Mark D'Souza
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Hayes C, King RB, Hounsell AR, Agnew CE. Impact of target degradation on the 6FFF output of a Varian TrueBeam Linac. Phys Med 2024; 124:103424. [PMID: 39002424 DOI: 10.1016/j.ejmp.2024.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024] Open
Abstract
The dosimetric output of a 6FFF beam, produced from a Varian TrueBeam linac exhibited an unexpected downward trend over time that was contrary to well-established expectations. To elucidate the cause of this uncharacteristic trend, a review of the linac's quality control results over its lifetime was performed, including, constancy checks of the dosimetric output, beam energy, flatness and symmetry, and percentage depth dose characteristics. These results were supplemented with a comprehensive series of measurements including flatness and symmetry measurements with a 1D-diode array, high-resolution measurements of the photon beam's build-up region with a parallel-plate chamber and measurement of the beam's output as a function of the x-ray target position. The review of the linac's QC results and supplemental tests identified no deviations in the linac's performance from its commissioning and baseline measurements. However, the 6FFF beam output exhibited a significant dependence on the target location relative to its default position, increasing by 5.43 % with a 0.5 mm target translation, indicating that target degradation was the cause of the atypical output trend. The change in output behaviour was believed to be the result of primary electrons escaping the degraded target and interacting with the linac's monitor chamber. Replacement of the x-ray target caused the 6FFF output to realign with expected trends. Target degradation was uncovered due to a robust quality control trending database and awareness of typical output behaviour. These results demonstrate the importance of data trending to identify component failure and provide centres with knowledge to recognise this potential fault.
Collapse
Affiliation(s)
- Chris Hayes
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland, United Kingdom.
| | - Raymond B King
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland, United Kingdom
| | - Alan R Hounsell
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland, United Kingdom; Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Jubilee Road, Belfast, Northern Ireland, United Kingdom
| | - Christina E Agnew
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
19
|
Failing T, Hensley FW, Keil B, Zink K. Investigations on the beam quality correction factor for ionization chambers in high-energy brachytherapy dosimetry. Phys Med Biol 2024; 69:165002. [PMID: 39009012 DOI: 10.1088/1361-6560/ad638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective. To enhance the investigations on MC calculated beam quality correction factors of thimble ionization chambers from high-energy brachytherapy sources and to develop reliable reference conditions in source and detector setups in water.Approach. The response of five different ionization chambers from PTW-Freiburg and Standard Imaging was investigated for irradiation by a high dose rate Ir-192 Flexisource in water. For a setup in a Beamscan water phantom, Monte Carlo simulations were performed to calculate correction factors for the chamber readings. After exact positioning of source and detector the absorbed dose rate at the TG-43 reference point at one centimeter nominal distance from the source was measured using these factors and compared to the specification of the calibration certificate. The Monte Carlo calculations were performed using the restricted cema formalism to gain further insight into the chamber response. Calculations were performed for the sensitive volume of the chambers, determined by the methods currently used in investigations of dosimetry in magnetic fields.Main results. Measured dose rates and values from the calibration certificate agreed within the combined uncertainty (k= 2) for all chambers except for one case in which the full air cavity was simulated. The chambers showed a distinct directional dependence. With the restricted cema formalism calculations it was possible to examine volume averaging and energy dependence of the perturbation factors contributing to the beam quality correction factor also differential in energy.Significance. This work determined beam quality correction factors to measure the absorbed dose rate from a brachytherapy source in terms of absorbed dose to water for a variety of ionization chambers. For the accurate dosimetry of brachytherapy sources with ionization chambers it is advisable to use correction factors based on the sensitive volume of the chambers and to take account for the directional dependence of chamber response.
Collapse
Affiliation(s)
- T Failing
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
| | - F W Hensley
- Department for Radiotherapy and Radiooncology, University Medical Center Heidelberg, Heidelberg, Germany
| | - B Keil
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- Department for Diagnostic and Interventional Radiology, Philipps-University Marburg, Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - K Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Gießen, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
- Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- Marburg Iontherapy Center (MIT), Marburg, Germany
| |
Collapse
|
20
|
Fenwick JD, Kumar S, Pardo-Montero J. Collection efficiencies of cylindrical and plane parallel ionization chambers: analytical and numerical results and implications for experimentally determined correction factors. Phys Med Biol 2024; 69:155023. [PMID: 39013400 PMCID: PMC11285487 DOI: 10.1088/1361-6560/ad63ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Objectives.To derive a collection efficiency formula,fGauss, for cylindrical ionization chambers in pulsed radiation beams from a volume recombination model of Boaget al(1996Phys. Med. Biol.41885-97) including free electrons. To validatefGaussand a parallel plate chamber formulafexpusing an ion transport code and calculate changes in collection efficiencies caused by electric field charge screening at 0.1-100 mGy doses-per-pulse. And to determine collection efficienciesCE∞predicted at infinite voltage in the absence of avalanche effects by fitting scaled formulae to efficiencies computed for 100-400 V chamber voltages and 10 and 100 mGy doses-per-pulse.Approach.Calculations were performed for an idealized parallel plate chamber with 2 mm electrode separationd, and for an idealized cylindrical chamber with 0.5 and 2.333 mm inner and electrode radiirinandrout.Main results.fGaussandfexppredict the same collection efficiencies for cylindrical and parallel plate chambers satisfyingd2=(rout2-rin2)ln(rout/rin)/2, an equivalence condition met by the chambers studied. Without charge screening, efficiencies computed using the code equalledfGaussandfexp. With screening, efficiencies changed by ⩽0.03%, ⩽1.1% and ⩽21.3% at 1, 10 and 100 mGy doses-per-pulse, and differed between the chambers by ⩽0.9% and ⩽19.6% at ⩽10 and 100 mGy dose-per-pulse. For fits offexpandfGauss,CE∞values were ⩽1.2% and ⩽17.6% from unity at 10 and 100 mGy per pulse respectively, closer than for other formulae tested.Significance.Allowing for screening,fGaussandfexpdescribed computed collection efficiencies to within 0.03%, 1.1% and 21.3% at doses-per-pulse ⩽1, 10 and 100 mGy. Equivalence of the two chambers broke down at 100 mGy per pulse. Departures ofCE∞values from unity suggest that collection efficiencies determined experimentally by fittingfGaussorfexpto readings made at multiple voltages will be accurate to within 1.2% and 17.6% at 10 and 100 mGy per pulse respectively.
Collapse
Affiliation(s)
- John D Fenwick
- Department of Medical Physics and Bioengineering, 8th Floor, Malet Place Engineering Building, University College London, Gower Street, London WC1E 6BT, England, United Kingdom
| | - Sudhir Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT & CRS Building, Anushaktinagar, Mumbai 400094, India
| | - Juan Pardo-Montero
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Subiel A, Bourgouin A, Kranzer R, Peier P, Frei F, Gomez F, Knyziak A, Fleta C, Bailat C, Schüller A. Metrology for advanced radiotherapy using particle beams with ultra-high dose rates. Phys Med Biol 2024; 69:14TR01. [PMID: 38830362 DOI: 10.1088/1361-6560/ad539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.
Collapse
Affiliation(s)
- Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexandra Bourgouin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
- National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| | | | - Peter Peier
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Franziska Frei
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Faustino Gomez
- University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adrian Knyziak
- Central Office of Measures (GUM), Elektoralna 2 Str., 00-139 Warsaw, Poland
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
22
|
Hill LW, Jack D. A slope method for the determination of electron energy for quality assurance. J Appl Clin Med Phys 2024; 25:e14369. [PMID: 38685586 PMCID: PMC11244682 DOI: 10.1002/acm2.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Particle accelerators, manufactured for delivering patient radiation treatment, require numerous and frequent quality assurance measures. One of those is the periodic check for electron energy stability. The American Association of Physicists in Medicine has established requirements for this procedure. The current recommendation is to perform a ratio of two ionization points, one at Dmax and another at a point approximately to the 50% depth, compared to a baseline as a relative check. PURPOSE This ratio method is a sensitive measurement and sometimes produces results that are difficult to interpret or relate to acceptable tolerances. We sought to find a simple method that gives more stable results, which can be interpreted and related to energy changes. METHOD We propose a method that takes two measurements on the descending portion of the shifted percent depth ionization (PDI) curves to calculate the slope, tangent to the I50 point, the point at which the ionization falls to 50% of its maximum value. We then used the slope measurement, compared to an established baseline, to relate energy. RESULTS After collecting data over a 3-year period, we saw that standard deviations for the slope method have much less variability than the traditional ratio method. We were also able to correlate the slope results to ionization scans performed in water and found they were in better agreement than the traditional ratio method. CONCLUSION The slope method does not require precise positioning since the slope remains relatively constant over the descending portion of the curve. Our data show that this results in an easier interpretative test of electron energy stability and delivers reliable feedback for quality assurance.
Collapse
Affiliation(s)
- Larry W Hill
- Department of Radiation Therapy, Genesis Care/21st Century Oncology, Fort Walton Beach, Florida, USA
| | - David Jack
- Department of Radiation Therapy, Genesis Care/21st Century Oncology, Fort Walton Beach, Florida, USA
| |
Collapse
|
23
|
Garibaldi C, Beddar S, Bizzocchi N, Tobias Böhlen T, Iliaskou C, Moeckli R, Psoroulas S, Subiel A, Taylor PA, Van den Heuvel F, Vanreusel V, Verellen D. Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient's safety and radiation protection. Radiother Oncol 2024; 196:110291. [PMID: 38648991 DOI: 10.1016/j.radonc.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - Paige A Taylor
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Van den Heuvel
- Zuidwest Radiotherapeutisch Institute, Vlissingen, the Netherlands; Dept of Oncology, University of Oxford, Oxford, UK
| | - Verdi Vanreusel
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium; SCK CEN (Research in Dosimetric Applications), Mol, Belgium
| | - Dirk Verellen
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium
| |
Collapse
|
24
|
Talbi A, Zidouz T, Abarane A, Mekkioui A, Allach A, Zaryah M, Harchaoui ME. Establishment of beam qualities for medical applications (mammography and CT) in the gamma and X calibration laboratory of CNESTEN according to EN 61267 standards. Appl Radiat Isot 2024; 209:111325. [PMID: 38626623 DOI: 10.1016/j.apradiso.2024.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
The present study aimed to validate the different radiodiagnostic beam qualities (RQT, WAH and WAV) by the measurements of the X-ray beams HVL of a HOPEWELL generator, X80-225 kV from a high voltage range of 10 at 200 kV, at CNESTEN Gamma and X Calibration Laboratory. The experiments were carried out using the PTW TN 32005 ionization chamber, established at 100 cm from the center of the X-ray tube and connected to a SUPERMAX electrometer. The HVL values were measured by applying the attenuation law to the flow of Kair air kerma, including their uncertainties. The obtained HVL values were compared with standard values of diagnostic levels. It was observed that the HVL of the present X-ray machine in most qualities are smaller than the standard ones. An approved method (described in the STANDARD EN 61267 and IAEA TECHNICAL REPORTS SERIES n° 457) was applied to determine the amount of additional filtration required to meet the standard values, and by checking their compliance with the maximum absolute deviation. The results indicate the adequacy of the LEGX laboratory for the calibration of the radiation detection instruments used in computed tomography and mammography with an expanded uncertainty in the best measurement capability of ±4 % (k = 2).
Collapse
Affiliation(s)
- A Talbi
- National Center for Energy Sciences and Nuclear Technology, CNESTEN, Rabat, Morocco.
| | - T Zidouz
- Faculty of Sciences Kenitra, Ibn Tofail University, Kenitra, Morocco
| | - A Abarane
- Higher Institute of Health Sciences, Settat, Morocco
| | - A Mekkioui
- National Center for Energy Sciences and Nuclear Technology, CNESTEN, Rabat, Morocco
| | - A Allach
- National Center for Energy Sciences and Nuclear Technology, CNESTEN, Rabat, Morocco
| | - M Zaryah
- National Center for Energy Sciences and Nuclear Technology, CNESTEN, Rabat, Morocco
| | - M El Harchaoui
- Faculty of Sciences Kenitra, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
25
|
McDermott PN. Monte Carlo evaluation of uncertainties in photon and electron TG-51 absorbed dose calibration. J Appl Clin Med Phys 2024; 25:e14339. [PMID: 38608655 PMCID: PMC11244687 DOI: 10.1002/acm2.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE The accuracy of dose delivery to all patients treated with medical linacs depends on the accuracy of beam calibration. Dose delivery cannot be any more accurate than this. Given the importance of this, it seems worthwhile taking another look at the expected uncertainty in TG-51 photon dose calibration and a first look at electron calibration. This work builds on the 2014 addendum to TG-51 for photons and adds to it by also considering electrons. In that publication, estimates were made of the uncertainty in the dose calibration. In this paper, we take a deeper look at this important issue. METHODS The methodology used here is more rigorous than previous determinations as it is based on Monte Carlo simulation of uncertainties. It is assumed that mechanical QA has been performed following TG-142 prior to beam calibration and that there are no uncertainties that exceed the tolerances specified by TG-142. RESULTS/CONCLUSIONS Despite the different methodology and assumptions, the estimated uncertainty in photon beam calibration is close to that in the addendum. The careful user should be able to easily reach a 95% confidence interval (CI) of ± 2.3% for photon beam calibration with standard instrumentation. For electron beams calibrated with a Farmer chamber, the estimated uncertainties are slightly larger, and the 95% CI is ±2.6% for 6 MeV and slightly smaller than this for 18 MeV. There is no clear energy dependence in these results. It is unlikely that the user will be able to improve on these uncertainties as the dominant factor in the uncertainty resides in the ion chamber dose calibration factorN D , w 60 Co $N_{D,w}^{{}^{60}{\mathrm{Co}}}$ . For both photons and electrons, reduction in the ion chamber depth uncertainty below about 0.5 mm and SSD uncertainty below 1 mm have almost no effect on the total dose uncertainty, as uncertainties beyond the user's control totally dominate under these circumstances.
Collapse
Affiliation(s)
- Patrick N McDermott
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, Royal Oak, Michigan, USA
| |
Collapse
|
26
|
Domingo Muñoz I, Van Hoey O, Parisi A, Bassler N, Grzanka L, De Saint-Hubert M, Vaniqui A, Olko P, Sądel M, Stolarczyk L, Vestergaard A, Jäkel O, Gardenali Yukihara E, Brage Christensen J. Assessment of fluence- and dose-averaged linear energy transfer with passive luminescence detectors in clinical proton beams. Phys Med Biol 2024; 69:135004. [PMID: 38774985 DOI: 10.1088/1361-6560/ad4e8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
Objective.This work investigates the use of passive luminescence detectors to determine different types of averaged linear energy transfer (LET-) for the energies relevant to proton therapy. The experimental results are compared to reference values obtained from Monte Carlo simulations.Approach.Optically stimulated luminescence detectors (OSLDs), fluorescent nuclear track detectors (FNTDs), and two different groups of thermoluminescence detectors (TLDs) were irradiated at four different radiation qualities. For each irradiation, the fluence- (LET-f) and dose-averaged LET (LET-d) were determined. For both quantities, two sub-types of averages were calculated, either considering the contributions from primary and secondary protons or from all protons and heavier, charged particles. Both simulated and experimental data were used in combination with a phenomenological model to estimate the relative biological effectiveness (RBE).Main results.All types ofLET-could be assessed with the luminescence detectors. The experimental determination ofLET-fis in agreement with reference data obtained from simulations across all measurement techniques and types of averaging. On the other hand,LET-dcan present challenges as a radiation quality metric to describe the detector response in mixed particle fields. However, excluding secondaries heavier than protons from theLET-dcalculation, as their contribution to the luminescence is suppressed by ionization quenching, leads to equal accuracy betweenLET-fandLET-d. Assessment of RBE through the experimentally determinedLET-dvalues agrees with independently acquired reference values, indicating that the investigated detectors can determineLET-with sufficient accuracy for proton therapy.Significance.OSLDs, TLDs, and FNTDs can be used to determineLET-and RBE in proton therapy. With the capability to determine dose through ionization quenching corrections derived fromLET-, OSLDs and TLDs can simultaneously ascertain dose,LET-, and RBE. This makes passive detectors appealing for measurements in phantoms to facilitate validation of clinical treatment plans or experiments related to proton therapy.
Collapse
Affiliation(s)
- Iván Domingo Muñoz
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Niels Bassler
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Leszek Grzanka
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | | | - Ana Vaniqui
- Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Paweł Olko
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | - Michał Sądel
- Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN), Kraków, Poland
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jeppe Brage Christensen
- Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
| |
Collapse
|
27
|
Quoc SD, Fujibuchi T, Arakawa H, Hamada K. Simulating the head of a TrueBeam linear particle accelerator and calculating the photoneutron spectrum on the central axis of a 10-MV photon using particle and heavy-ion transport system code. RADIATION PROTECTION DOSIMETRY 2024; 200:779-790. [PMID: 38767288 DOI: 10.1093/rpd/ncae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Photon energy is higher than the (γ,n) threshold, allowing it to interact with the nuclei of materials with high z properties and liberate fast neutrons. This represents a potentially harmful source of radiation for humans and the environment. This study validated the Monte Carlo simulation, using the particle and heavy-ion transport code system (PHITS) on a TrueBeam 10-MV linear particle accelerator's head shielding model and then used this PHITS code to simulate a photo-neutron spectrum for the transport of the beam. The results showed that, when comparing the simulated to measured PDD and crosslines, 100% of the γ-indexes were <1 (γ3%/3mm) for both simulations, for both phase-space data source and a mono energy source. Neutron spectra were recorded in all parts of the TrueBeam's head, as well as photon neutron spectra at three points on the beamline.
Collapse
Affiliation(s)
- Soai Dang Quoc
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshioh Fujibuchi
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hiroyuki Arakawa
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Keisuke Hamada
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Radiological Technology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame Minami-ku, Fukuoka, Fukuoka 811-1395, Japan
| |
Collapse
|
28
|
Liu K, Holmes S, Schüler E, Beddar S. A comprehensive investigation of the performance of a commercial scintillator system for applications in electron FLASH radiotherapy. Med Phys 2024; 51:4504-4512. [PMID: 38507253 PMCID: PMC11147715 DOI: 10.1002/mp.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Bancheri J, Seuntjens J. A semi-analytical procedure to determine the ion recombination correction factor in high dose-per-pulse beams. Med Phys 2024; 51:4458-4471. [PMID: 38446555 DOI: 10.1002/mp.17005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The conventional theories and methods of determining the ion recombination correction factor, such as Boag theory and the related two voltage method and Jaffé plot extrapolation, do not seem to yield accurate results in FLASH /high dose per pulse (DPP) beams ( > $>$ 10 mGy DPP). This is due to the presence of a large free electron fraction that distorts the electric field inside the chamber sensitive volume. To understand the influence of these effects on the ion recombination correction factor and to develop new expressions for it, it is necessary to re-visit the underlying physics. PURPOSE To present a mathematical procedure to develop an analytical expression for the ion recombination correction factor. The expression is the basis for an extrapolation method so the correction factor can be determined in a clinical setting. METHODS A semi-analytical solution method, the homotopy perturbation method (HPM), is used to solve the partial differential equations (PDEs) describing the charge carrier physics, including space charge and free electrons. The electron velocity and attachment rate are modeled as functions of the electric field strength. An expression for the charge collection efficiency and ion recombination correction factor are developed. A fit procedure based on this expression is used to compare it to measured data from previously published articles. Another fit procedure using a general equation is also proposed and compared to the data. RESULTS The series obtained for the charge collection efficiency and the ion recombination correction factor are determined to be asymptotic series and the optimal truncation established. The ion recombination correction factor exhibits a1 / V 2 $1/V^2$ dependency due to the free electron presence. The fit using this expression agrees well with measured data as long as (1) the DPP is below 1 Gy for chambers with a 1 mm plate separation and (2) when the DPP is below 3 Gy for chambers with a 0.5 mm plate separation. In these DPP ranges, the deviation between measured and fit value did not exceed 6%. In both chamber cases the voltage range where the fit applies decreases as DPP increases. The general equation yielded comparable results. CONCLUSIONS The HPM was shown to be applicable to a complex system of PDEs and generate meaningful and novel solutions, as they include both space charge and free electrons. The HPM also lends itself to other chamber geometries. The fit procedure was also shown to yield accurate results for the ion recombination correction up to the 1 Gy DPP level.
Collapse
Affiliation(s)
- Julien Bancheri
- Department of Physics & Medical Physics Unit, McGill University, Montreal, Quebec, Canada
| | - Jan Seuntjens
- Princess Margaret Cancer Centre, Radiation Medicine Program, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Jermain PR, Muir B, McEwen M, Niu Y, Pang D. Accurate machine-specific reference and small-field dosimetry for a self-shielded neuro-radiosurgical system. Med Phys 2024; 51:4423-4433. [PMID: 38695760 DOI: 10.1002/mp.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The newly available ZAP-X stereotactic radiosurgical system is designed for the treatment of intracranial lesions, with several unique features that include a self-shielding, gyroscopic gantry, wheel collimation, non-orthogonal kV imaging, short source-axis distance, and low-energy megavoltage beam. Systematic characterization of its radiation as well as other properties is imperative to ensure its safe and effective clinical application. PURPOSE To accurately determine the radiation output of the ZAP-X with a special focus on the smaller diameter cones and an aim to provide useful recommendations on quantification of small field dosimetry. METHODS Six different types of detectors were used to measure relative output factors at field sizes ranging from 4 to 25 mm, including the PTW microSilicon and microdiamond diodes, Exradin W2 plastic scintillator, Exradin A16 and A1SL ionization chambers, and the alanine dosimeter. The 25 mm cone served as the reference field size. Absolute dose was determined with both TG-51-based dosimetry using a calibrated PTW Semiflex ion chamber and measurements using alanine dosimeters. RESULTS The average radiation output factors (maximum deviation from the average) measured with the microDiamond, microSilicon, and W2 detectors were: for the 4 mm cone, 0.741 (1.0%); for the 5 mm cone: 0.817 (1.0%); for the 7.5 mm cone: 0.908 (1.0%); for the 10 mm cone: 0.946 (0.4%); for the 12.5 mm cone: 0.964 (0.2%); for the 15 mm cone: 0.976 (0.1%); for the 20 mm cone: 0.990 (0.1%). For field sizes larger than 10 mm, the A1SL and A16 micro-chambers also yielded consistent output factors within 1.5% of those obtained using the microSilicon, microdiamond, and W2 detectors. The absolute dose measurement obtained with alanine was within 1.2%, consistent with combined uncertainties, compared to the PTW Semiflex chamber for the 25 mm reference cone. CONCLUSION For field sizes less than 10 mm, the microSilicon diode, microDiamond detector, and W2 scintillator are suitable devices for accurate small field dosimetry of the ZAP-X system. For larger fields, the A1SL and A16 micro-chambers can also be used. Furthermore, alanine dosimetry can be an accurate verification of reference and absolute dose typically measured with ion chambers. Use of multiple suitable detectors and uncertainty analyses were recommended for reliable determination of small field radiation outputs.
Collapse
Affiliation(s)
- Peter R Jermain
- Department of Radiation Medicine, Medstar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Bryan Muir
- Metrology Research Centre, National Research Council, Ottawa, Ontario, Canada
| | - Malcolm McEwen
- Metrology Research Centre, National Research Council, Ottawa, Ontario, Canada
| | - Ying Niu
- Department of Radiation Medicine, Medstar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Dalong Pang
- Department of Radiation Medicine, Medstar Georgetown University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
31
|
Das IJ, Khan AU, Dogan SK, Longo M. Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol 2024; 97:1088-1098. [PMID: 38552328 PMCID: PMC11135801 DOI: 10.1093/bjr/tqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT, and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields >1×1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC), or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC-based forward and inverse planning is an alternative path for bulky tumours. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focussed mainly for dosimetry for low-energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ahtesham Ullah Khan
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Mariaconcetta Longo
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
32
|
Sohn JJ, Das IJ. Investigation of triaxial cables and microdetectors in small field dosimetry. Biomed Phys Eng Express 2024; 10:045031. [PMID: 38768575 DOI: 10.1088/2057-1976/ad4dab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Background. Small field dosimetry presents unique challenges with source occlusion, lateral charged particle equilibrium and detector size. As detector volume decreases, signal strength declines while noise increases, deteriorating the signal-to-noise ratio (SNR). This issue may be compounded by triaxial cables connecting detectors to electrometers. However, effects of cables, critical for precision dosimetry, are often overlooked. There is a need to evaluate triaxial cable and detector impacts on SNR in small fields. The purpose of this study is to evaluate the influence of triaxial cables and microdetectors on signal-to-noise ratios in small-field dosimetry. This study also aims to establish the importance of cable quality assurance for measurement accuracy.Methods. Six 9.1 m length triaxial cables from different manufacturers were tested with six microdetectors (microDiamond, PinPoint, EDGE, Plastic scintillator, microSilicon, SRS-Diode). A 6 MV photon beam (TrueBeam) was used, with a water phantom at 5 cm depth with 0.5 × 0.5 cm2to 10 × 10 cm2fields at 600 MU min-1. Readings were acquired using cable-detector permutations with a dedicated electrometer (except the scintillator which has its own). Cables had differing connector types, conductor materials, insulation, and diameters. Detectors had various sensitive volumes, materials, typical signals, and bias voltages.Results. Normalized field output correction factors (FOFs) relative differences of 13.4% and 4.6% between the highest and lowest values across triaxial cables for 0.5 × 0.5 cm2and 1 × 1 cm2fields, respectively. The maximum difference in FOF between any cable-detector combinations was 0.2% for the smallest field size. No consistent FOF trend was observed across all detectors when increasing cable diameter. Additionally, the non-normalized FOF differences of 0.9% and 0.3% were observed between cables for 0.5 × 0.5 cm2and 1 × 1 cm2fields, respectively.Conclusions. Regular triaxial cable quality assurance is critical for precision small field dosimetry. A national protocol is needed to standardize cable evaluations/calibrations, particularly for small signals (
Collapse
Affiliation(s)
- James J Sohn
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, United States of America
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States of America
| |
Collapse
|
33
|
Bertinetti A, Garcia T, Palmer B, Rodrigues M, Bradshaw T, Vija AH, Culberson W. Active and passive dosimetry for beta-emitting radiopharmaceutical therapy agents in a custom SPECT/CT compatible phantom. Phys Med Biol 2024; 69:115031. [PMID: 38684165 DOI: 10.1088/1361-6560/ad450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Objective. This work introduces a novel approach to performing active and passive dosimetry for beta-emitting radionuclides in solution using common dosimeters. The measurements are compared to absorbed dose to water (Dw) estimates from Monte Carlo (MC) simulations. We present a method for obtaining absorbed dose to water, measured with dosimeters, from beta-emitting radiopharmaceutical agents using a custom SPECT/CT compatible phantom for validation of Monte Carlo based absorbed dose to water estimates.Approach. A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, Exradin A20-375 parallel plate ion chamber, unlaminated EBT3 film, and thin TLD100 microcubes was constructed for the purpose of measuring absorbed dose to water from solutions of common beta-emitting radiopharmaceutical therapy agents. The phantom is equipped with removable detector inserts that allow for multiple configurations and is designed to be used for validation of image-based absorbed dose estimates with detector measurements. Two experiments with131I and one experiment with177Lu were conducted over extended measurement intervals with starting activities of approximately 150-350 MBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019.Main results. Agreement withink= 1 uncertainty between measured and MC predictedDwwas observed for all dosimeters, except the A20-375 ion chamber during the second131I experiment. Despite the agreement, the measured values were generally lower than predicted values by 5%-15%. The uncertainties atk = 1 remain large (5%-30% depending on the dosimeter) relative to other forms of radiation therapy.Significance. Despite high uncertainties, the overall agreement between measured and simulated absorbed doses is promising for the use of dosimeter-based RPT measurements in the validation of MC predictedDw.
Collapse
Affiliation(s)
| | | | - Benjamin Palmer
- University of Wisconsin-Madison, WI, United States of America
| | | | - Tyler Bradshaw
- University of Wisconsin-Madison, WI, United States of America
| | - A Hans Vija
- Siemens Healthineers, United States of America
| | | |
Collapse
|
34
|
Quiñones LÁ, Sánchez A, Pérez J, Seguro Á, Castro I, Castanedo M, Vicent D, Iborra MA. Thermoplastic polymers as water substitutes. Biomed Phys Eng Express 2024; 10:045009. [PMID: 38670074 DOI: 10.1088/2057-1976/ad43ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Background. New applications of 3D printing have recently appeared in the fields of radiotherapy and radiology, but the knowledge of many radiological characteristics of the compounds involved is still limited. Therefore, studies are needed to improve our understanding about the transport and interaction of ionizing radiation in these materials.Purpose. The purpose of this study is to perform an analysis of the most important radiation interaction parameters in thermoplastic materials used in Fused Deposition Modeling 3D printing. Additionally, we propose improvements to bring their characteristics closer to those of water and use them as water substitutes in applications such as radiodiagnosis, external radiotherapy, and brachytherapy.Methods. We have calculated different magnitudes as mass linear attenuation, mass energy absorption coefficients, as well as stopping power and electronic density of several thermoplastic materials along with various compounds that have been used as water substitutes and in a new proposed blend. To perform these computations, we have used the XCOM and ESTAR databases from NIST and the EGSnrc code for Montecarlo simulations.Results. From the representation of the calculated interaction parameters, we have been able to establish relationships between their properties and the proportion of certain chemical elements. In addition, studying these same characteristics in different commercial solutions used as substitutes for water phantoms allows us to extrapolate improvements for these polymers.Conclusion. The radiological characteristics of the analyzed thermoplastic materials can be improved by adding some chemical elements with atomic numbers higher than oxygen and by using polyethylene in new blends.
Collapse
Affiliation(s)
- Luis Ángel Quiñones
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Andrea Sánchez
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Joaquín Pérez
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Álvaro Seguro
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Ignacio Castro
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Miguel Castanedo
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - Diana Vicent
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| | - María Amparo Iborra
- Medical Physics Service, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, No 21. 11009, Cádiz, Spain
| |
Collapse
|
35
|
Khan AU, Radtke J, DeWerd L. Characterization of a segmented printed circuit board (PCB) as a standard for absorbed dose to water from alpha-emitting radionuclides. Med Phys 2024; 51:3665-3676. [PMID: 38194496 DOI: 10.1002/mp.16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Our previous work introduced and evaluated a standard for surface absorbed dose rate per unit radioactivity to water from unsealed alpha-emitting radionuclides used in targeted radionuclide therapy (TRT). An overall uncertainty over 4.0% at k = 1 was reported for the absorbed dose to air measurements, which was partially attributed to the rotational alignment uncertainty in the geometrical setup. PURPOSE A printed circuit board (PCB) with a segmented guard was constructed to align the extrapolation chamber (EC) and the source plates using a differential capacitance technique. The PCB EC aimed to enhance the repeatability of the ionization current measurements. The PCB EC was evaluated using a thin film 210Po source. The measured absorbed dose to air cavity was compared with the Monte Carlo (MC) calculations. Using the extrapolation method, the surface absorbed dose rate to water was calculated. METHODS The PCB EC was constructed with a 4.50 mm diameter collector surrounded by four sectors and a guard electrode. The sectors were isolated for rotational alignment and later connected to the guard for ionization current measurements. A bridge circuit measured differential capacitance between opposing sectors, and a hexapod motion stage rotated the source substrate to minimize the differential capacitance. The EC was evaluated using a 210Po source with a 3.20 mm diameter and 1.253 μ $\mu $ Ci radioactivity. MC simulations were performed to calculate thek p o i n t ${k}_{point}$ ,k b a c k s c a t t e r ${k}_{backscatter}$ , andk d i v ${k}_{div}$ correction factors. Ionization current measurements were performed for air gaps in the 0.3-0.525 mm range and surface absorbed dose rate to water was calculated. RESULTS Rotational offsets of up to 3.0° were found and the current repeatability was found to increase with the absorbed dose to air uncertainty calculated to be ∼2.0%. Using the capacitance method, the effective EC diameter was measured to be 4.53 mm. The recombination, polarity, and electrometer corrections were reported to be within 1.00% across all measurement trials. The MC-calculated correction factors were calculated to be much larger than the recombination and polarity correction factors. The averagek p o i n t ${k}_{point}$ ,k b a c k s c a t t e r ${k}_{backscatter}$ , andk d i v ${k}_{div}$ corrections were calculated to be 1.063, 0.9402, and 2.136, respectively. The MC-calculated absorbed dose to air was found to overestimate the absorbed dose by over 4.00% when compared with the measured absorbed dose to air. The surface absorbed dose rate to water was calculated to be2.304 × 10 - 6 $2.304 \times {10}^{ - 6}$ Gy/s/Bq with an overall uncertainty of 4.07%. CONCLUSIONS The constructed PCB EC was deemed suitable as an absorbed dose standard. A repeatable rotational alignment was achieved using the differential capacitance technique. The metal electrodes on the PCB made a difference of < 1.00% on the backscatter correction when compared to the EC comprised of polystyrene-equivalent collector. A 20% difference in the surface absorbed dose rate to water was found between the two ECs, which is attributed to the cavity diameter differences leading to different magnitudes of dose fall-off along the lateral direction.
Collapse
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeff Radtke
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Larry DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Sharma S, Upreti RR, Kinhikar RA, Sahani G, Dash Sharma PK. Patterns of quality assurance and treatment planning for stereotactic body radiation therapy in India - A survey. J Cancer Res Ther 2024:01363817-990000000-00091. [PMID: 38623989 DOI: 10.4103/jcrt.jcrt_1090_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/30/2023] [Indexed: 04/17/2024]
Abstract
AIM The use of stereotactic body radiation therapy (SBRT) is an increasing trend in the country. The aim of this study is to gain knowledge on patterns of quality assurance (QA) and treatment planning (TP) aspects with respect to SBRT. MATERIALS AND METHODS A questionnaire with multiple choice was designed to determine practices of SBRT covering areas such as years of experience, type of linear accelerator, tumor-motion strategies, calculation algorithm used in the TP system (TPS), the protocol used for small field dosimetry, the detector used for small field dosimetry and QA, respiratory management during delivery. The survey was sent to all radiotherapy institutes in the country having a minimum of one linear accelerator, and responses were analyzed. RESULTS From June 2022 to December 2022, 265 responses to the SBRT survey were received with response rate as 60.4%. The most common reason for not adopting SBRT was reported as a lack of capability of treatment machines to deliver SBRT (61.6%). Lung (81.1%) was the most practiced site. The most common delivery unit was a conventional linear accelerator (83%); 6 MV FFF (85.7%) was mostly used energy; volumetric-modulated arc radiotherapy (VMAT) (91.5%) was mostly used delivery technique; most of the equipment (more than 91.5%) used multileaf collimator (MLC) leaf width ≤5 mm. The most popular methods used for motion strategies during computed tomography (CT) were motion-encompassing and breath-hold techniques used by 65 (62.5%) and 62 (59.6%) respondents, respectively. The most popular method used for respiratory management during delivery was breath-hold by 55 (52.4%) respondents. Most TPS are equipped with either Type-C or Type-B algorithms. Heterogeneity was observed in the QA protocol and acceptance criteria for analysis of patient-specific QA. CONCLUSION The survey resulted in heterogeneity in QA and TP aspects among users of SBRT and demands for harmonizing the dosimetric aspects of SBRT in the country.
Collapse
Affiliation(s)
- Smriti Sharma
- Radiological Safety Division, Atomic Energy Regulatory Board, Anushaktinagar, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Ritu Raj Upreti
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
- Department of Medical Physics, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Rajesh A Kinhikar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
- Department of Medical Physics, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - G Sahani
- Radiological Safety Division, Atomic Energy Regulatory Board, Anushaktinagar, Mumbai, Maharashtra, India
| | - P K Dash Sharma
- Radiological Safety Division, Atomic Energy Regulatory Board, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
Hernández Millares R, Bae C, Kim SJ, Kim T, Park SY, Lee K, Ye SJ. Clonogenic assay and computational modeling using real cell images to study physical enhancement and cellular sensitization induced by metal nanoparticles under MV and kV X-ray irradiation. NANOSCALE 2024; 16:7110-7122. [PMID: 38501279 DOI: 10.1039/d3nr06257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This study was initiated due to the physically unexplainable tumor controls resulting from metal nanoparticle (MNP) experiments even under MV X-ray irradiation. A more accurate explanation of the mechanism of radiosensitization induced by MNP is warranted, considering both its physical dose enhancement and biological sensitization, as related research is lacking. Thus, we aimed to examine the intricate dynamics involved in MNP-induced radiosensitization. We conducted specifically designed clonogenic assays for the A549 lung cancer cell line with MNP irradiated by 6 MV and 300 kVp X-rays. Two types of MNP were employed: one based on iron oxide, promoting ferroptosis, and the other on gold nanoparticles known for inducing a significant dose enhancement, particularly at low-energy X-rays. We introduced the lethality enhancement factor (LEF) as the fraction in the cell killing attributed to biological sensitization. Subsequently, Monte Carlo simulations were conducted to evaluate the radial dose profiles for each MNP, corresponding to the physical enhancement. Finally, the local effect model was applied to the clonogenic assay results on real cell images. The LEF and the dose enhancement in the cytoplasm were incorporated to increase the accuracy in the average lethal events and, consequently, in the survival fraction. The results reveal an increased cell killing for both of the MNP under MV and kV X-ray irradiation. In both types of MNP, the LEF reveals a biological sensitization evident. The sensitizer enhancement ratio, derived from the calculations, exhibited only 3% and 1% relative differences compared to the conventional linear-quadratic model for gold and ferroptosis inducer nanoparticles, respectively. These findings indicate that MNPs sensitize cells via radiation through mechanisms akin to ferroptosis inducers, not exclusively relying on a physical dose enhancement. Their own contributions to survival fractions were successfully integrated into computational modeling.
Collapse
Affiliation(s)
- Rodrigo Hernández Millares
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaewon Bae
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok-Jin Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Taewan Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - So-Yeon Park
- Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, 05368, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
| |
Collapse
|
38
|
Yip E, Tari SY, Reynolds MW, Sinn D, Murray BR, Fallone BG, Oliver PA. Clinical reference dosimetry for the 0.5 T inline rotating biplanar Linac-MR. Med Phys 2024; 51:2933-2940. [PMID: 38308821 DOI: 10.1002/mp.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The world's first clinical 0.5 T inline rotating biplanar Linac-MR system is commissioned for clinical use. For reference dosimetry, unique features to device, including an SAD = 120 cm, bore clearance of 60 cm × 110 cm, as well as 0.5 T inline magnetic field, provide some challenges to applying a standard dosimetry protocol (i.e., TG-51). PURPOSE In this work, we propose a simple and practical clinical reference dosimetry protocol for the 0.5T biplanar Linac-MR and validated its results. METHODS Our dosimetry protocol for this system is as follows: tissue phantom ratios at 20 and 10 cm are first measured and converted into %dd10x beam quality specifier using equations provided and Kalach and Rogers. The converted %dd10x is used to determine the ion chamber correction factor, using the equations in the TG-51 addendum for the Exradin A12 farmer chamber used, which is cross-calibrated with one calibrated at a standards laboratory. For a 0.5 T parallel field, magnetic field effect on chamber response is assumed to have no effect and is not explicitly corrected for. Once the ion chamber correction factor for a non-standard SAD (kQ,msr) is determined, TG-51 is performed to obtain dose at a depth of 10 cm at SAD = 120 cm. The dosimetry protocol is repeated with the magnetic field ramped down. To validate our dosimetry protocol, Monte Carlo (EGSnrc) simulations are performed to confirm the determined kQ,msr values. MC Simulations and magnetic Field On versus Field Off measurements are performed to confirm that the magnetic field has no effect. To validate our overall dosimetry protocol, external dose audits, based on optical simulated luminescent dosimeters, thermal luminescent dosimeters, and alanine dosimeters are performed on the 0.5 T Linac-MR system. RESULTS Our EGSnrc results confirm our protocol-determined kQ,msr values, as well as our assumptions about magnetic field effects (kB = 1) within statistical uncertainty for the A-12 chamber. Our external dosimetry procedures also validated our overall dosimetry protocol for the 0.5 T biplanar Linac-MR hybrid. Ramping down the magnetic field has resulted in a dosimetric difference of 0.1%, well within experimental uncertainty. CONCLUSION With the 0.5 T parallel magnetic field having minimal effect on the ion chamber response, a TPR20,10 approach to determine beam quality provides an accurate method to perform clinical dosimetry for the 0.5 T biplanar Linac-MR.
Collapse
Affiliation(s)
- Eugene Yip
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Shima Y Tari
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Michael W Reynolds
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Radiation Oncology, BC Cancer - Victoria, Victoria, British Columbia, Canada
| | - David Sinn
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Radiaiton Oncology, The Queen's Medical Centre, Honolulu, Hawaii, USA
| | - Brad R Murray
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| | - B Gino Fallone
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- MagnetTx Oncology Solutions, Edmonton, Alberta, Canada
| | - Patricia Ak Oliver
- Department of Oncology, Medical Physics Division, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Medical Physics, Nova Scotia Health, Halifax, Nova Scotia, Canada
| |
Collapse
|
39
|
Levin DS, Friedman PS, Ferretti C, Ristow N, Tecchio M, Litzenberg DW, Bashkirov V, Schulte R. A prototype scintillator real-time beam monitor for ultra-high dose rate radiotherapy. Med Phys 2024; 51:2905-2923. [PMID: 38456622 DOI: 10.1002/mp.17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND FLASH Radiotherapy (RT) is an emergent cancer RT modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications. PURPOSE A FLASH Beam Scintillator Monitor (FBSM) is being developed that employs a novel proprietary scintillator material. The FBSM has capabilities that conventional RT detector technologies are unable to simultaneously provide: (1) large area coverage; (2) a low mass profile; (3) a linear response over a broad dynamic range; (4) radiation hardness; (5) real-time analysis to provide an IEC-compliant fast beam-interrupt signal based on true two-dimensional beam imaging, radiation dosimetry and excellent spatial resolution. METHODS The FBSM uses a proprietary low mass, less than 0.5 mm water equivalent, non-hygroscopic, radiation tolerant scintillator material (designated HM: hybrid material) that is viewed by high frame rate CMOS cameras. Folded optics using mirrors enable a thin monitor profile of ∼10 cm. A field programmable gate array (FPGA) data acquisition system generates real-time analysis on a time scale appropriate to the FLASH RT beam modality: 100-1000 Hz for pulsed electrons and 10-20 kHz for quasi-continuous scanning proton pencil beams. An ion beam monitor served as the initial development platform for this work and was tested in low energy heavy-ion beams (86Kr+26 and protons). A prototype FBSM was fabricated and then tested in various radiation beams that included FLASH level dose per pulse electron beams, and a hospital RT clinic with electron beams. RESULTS Results presented in this report include image quality, response linearity, radiation hardness, spatial resolution, and real-time data processing. The HM scintillator was found to be highly radiation damage resistant. It exhibited a small 0.025%/kGy signal decrease from a 216 kGy cumulative dose resulting from continuous exposure for 15 min at a FLASH compatible dose rate of 237 Gy/s. Measurements of the signal amplitude versus beam fluence demonstrate linear response of the FBSM at FLASH compatible dose rates of >40 Gy/s. Comparison with commercial Gafchromic film indicates that the FBSM produces a high resolution 2D beam image and can reproduce a nearly identical beam profile, including primary beam tails. The spatial resolution was measured at 35-40 µm. Tests of the firmware beta version show successful operation at 20 000 Hz frame rate or 50 µs/frame, where the real-time analysis of the beam parameters is achieved in less than 1 µs. CONCLUSIONS The FBSM is designed to provide real-time beam profile monitoring over a large active area without significantly degrading the beam quality. A prototype device has been staged in particle beams at currents of single particles up to FLASH level dose rates, using both continuous ion beams and pulsed electron beams. Using a novel scintillator, beam profiling has been demonstrated for currents extending from single particles to 10 nA currents. Radiation damage is minimal and even under FLASH conditions would require ≥50 kGy of accumulated exposure in a single spot to result in a 1% decrease in signal output. Beam imaging is comparable to radiochromic films, and provides immediate images without hours of processing. Real-time data processing, taking less than 50 µs (combined data transfer and analysis times), has been implemented in firmware for 20 kHz frame rates for continuous proton beams.
Collapse
Affiliation(s)
- Daniel S Levin
- Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Claudio Ferretti
- Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas Ristow
- Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
| | - Monica Tecchio
- Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
| | - Dale W Litzenberg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vladimir Bashkirov
- Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
40
|
Orlando N, Crosby J, Glide-Hurst C, Culberson W, Keller B, Sarfehnia A. Experimental determination of magnetic field quality conversion factors for eleven ionization chambers in 1.5 T and 0.35 T MR-linac systems. Med Phys 2024; 51:2998-3009. [PMID: 38060696 PMCID: PMC11330643 DOI: 10.1002/mp.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The static magnetic field present in magnetic resonance (MR)-guided radiotherapy systems can influence dose deposition and charged particle collection in air-filled ionization chambers. Thus, accurately quantifying the effect of the magnetic field on ionization chamber response is critical for output calibration. Formalisms for reference dosimetry in a magnetic field have been proposed, whereby a magnetic field quality conversion factor kB,Q is defined to account for the combined effects of the magnetic field on the radiation detector. Determination of kB,Q in the literature has focused on Monte Carlo simulation studies, with experimental validation limited to only a few ionization chamber models. PURPOSE The purpose of this study is to experimentally measure kB,Q for 11 ionization chamber models in two commercially available MR-guided radiotherapy systems: Elekta Unity and ViewRay MRIdian. METHODS Eleven ionization chamber models were characterized in this study: Exradin A12, A12S, A28, and A26, PTW T31010, T31021, and T31022, and IBA FC23-C, CC25, CC13, and CC08. The experimental method to measure kB,Q utilized cross-calibration against a reference Exradin A1SL chamber. Absorbed dose to water was measured for the reference A1SL chamber positioned parallel to the magnetic field with its centroid placed at the machine isocenter at a depth of 10 cm in water for a 10 × 10 cm2 field size at that depth. Output was subsequently measured with the test chamber at the same point of measurement. kB,Q for the test chamber was computed as the ratio of reference dose to test chamber output, with this procedure repeated for each chamber in each MR-guided radiotherapy system. For the high-field 1.5 T Elekta Unity system, the dependence of kB,Q on the chamber orientation relative to the magnetic field was quantified by rotating the chamber about the machine isocenter. RESULTS Measured kB,Q values for our test dataset of ionization chamber models ranged from 0.991 to 1.002, and 0.995 to 1.004 for the Elekta Unity and ViewRay MRIdian, respectively, with kB,Q tending to increase as the chamber sensitive volume increased. Measured kB,Q values largely agreed within uncertainty to published Monte Carlo simulation data and available experimental data. kB,Q deviation from unity was minimized for ionization chamber orientation parallel or antiparallel to the magnetic field, with increased deviations observed at perpendicular orientations. Overall (k = 1) uncertainty in the experimental determination of the magnetic field quality conversion factor, kB,Q was 0.71% and 0.72% for the Elekta Unity and ViewRay MRIdian systems, respectively. CONCLUSIONS For a high-field MR-linac, the characterization of ionization chamber performance as angular orientation varied relative to the magnetic field confirmed that the ideal orientation for output calibration is parallel. For most of these chamber models, this study represents the first experimental characterization of chamber performance in clinical MR-linac beams. This is a critical step toward accurate output calibration for MR-guided radiotherapy systems and the measured kB,Q values will be an important reference data source for forthcoming MR-linac reference dosimetry protocols.
Collapse
Affiliation(s)
- Nathan Orlando
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Jennie Crosby
- Carbone Cancer Center, Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | - Carri Glide-Hurst
- Carbone Cancer Center, Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Wesley Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Brian Keller
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Arman Sarfehnia
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
41
|
Singh VK, Wise SY, Fatanmi OO, Petrus SA, Carpenter AD, Lee SH, Hauer-Jensen M, Seed TM. Histopathological studies of nonhuman primates exposed to supralethal doses of total- or partial-body radiation: influence of a medical countermeasure, gamma-tocotrienol. Sci Rep 2024; 14:5757. [PMID: 38459144 PMCID: PMC10923821 DOI: 10.1038/s41598-024-56135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sarah A Petrus
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, 20814, USA
| |
Collapse
|
42
|
Ullah Khan A, DeWerd LA, Yadav P. Beam quality correction factors for ionization chambers in a 0.35 T magnetic resonance (MR)-linac - A Monte Carlo study. Phys Med 2024; 119:103314. [PMID: 38335742 DOI: 10.1016/j.ejmp.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE The purpose of this study was to directly calculate [Formula: see text] correction factors for four cylindrical ICs for a 0.35 T MR-linac using the Monte Carlo (MC) method. METHODS A previously-validated TOPAS/GEANT4 MC head model of the 0.35 T MR-linac was employed. The MR-compatible Exradin A12, A1SL, A26, and A28 cylindrical ICs were modeled considering the dead volume in the air cavity. The [Formula: see text] correction factor was determined for initial electron energies of 5-7 MeV. The correction factor was calculated for all four angular orientations in the lateral plane. The impact of the 0.35 T magnetic field on the IC response was also investigated. RESULTS The maximum beam quality dependence in the [Formula: see text] exhibited by the A12, A1SL, A26, and A28 ICs was 1.10 %, 2.17 %, 0.81 %, and 1.75 %, respectively, considering all angular orientations. The magnetic field dependence was < 1 % and the maximum [Formula: see text] correction was < 2 % when the detector was aligned along the direction of the magnetic field at 0° and 180° angles. The A12 IC over-responded up to 5.40 % for the orthogonal orientation. An asymmetry in the response of up to 8.30 % was noted for the A28 IC aligned at 90° and 270° angles. CONCLUSIONS A parallel orientation for the IC, with respect to the magnetic field, is recommended for reference dosimetry in MRgRT. Both over and under-response in the IC signal was noted for the orthogonal orientations, which is highly dependent on the cavity diameter, cavity length, and the dead volume.
Collapse
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Poonam Yadav
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Dries W, Petoukhova A, Hertsens N, Stevens P, Jarbinet V, Bimmel-Nagel CH, Weterings J, van Wingerden K, Bauwens C, Vanreusel V, Simon S. Intraoperative electron beam intercomparison of 6 sites using mailed thermoluminescence dosimetry: Absolute dose and energy. Phys Med 2024; 119:103302. [PMID: 38310679 DOI: 10.1016/j.ejmp.2024.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024] Open
Abstract
PURPOSE In 2018, the Netherlands Commission on Radiation Dosimetry subcommittee on IORT initiated a limited intercomparison of electron IORT (IOERT) in Belgium and The Netherlands. The participating institutions have enough variability in age, type of equipment, and in dose calibration protocols. METHODS In this study, three types of IOERT-dedicated mobile accelerators were represented: Mobetron 2000, LIAC HWL and LIAC. Mobetron produces electron beams with energies of 6, 9 and 12 MeV, while LIAC HWL and LIAC can deliver 6, 8, 10 and 12 MeV electron beams. For all energies, the reference beam (10 cm diameter, 0° incidence) and 5 cm diameter beams were measured, as these smaller beams are used more frequently in clinic. The mailed TLD service from the Radiation Dosimetry Services (RDS, Houston, USA) has been used. Following RDS' standard procedures, each beam was irradiated to 300 cGy at dmax with TLDs around dmax and around depth of 50 % dose (R50). Absolute dose at 100 % and beam energy, expressed as R50, could be verified in this way. RESULTS All absolute doses and energies under reference conditions were well within RDS-stated uncertainties: dose deviations were <5 % and deviations in R50 were <5 mm. For the small 5 cm beams, all results were also within acceptance levels except one absolute dose value. Deviations were not significantly dependent on manufacturer, energy, diameter and calibration protocol. CONCLUSIONS All absolute dose values, except one of a non-reference beam, and all energy values were well within the measurement accuracy of RDS TLDs.
Collapse
Affiliation(s)
- Wim Dries
- Catharina Hospital, Eindhoven, The Netherlands
| | - Anna Petoukhova
- Haaglanden Medical Centre, Department of Medical Physics, Leidschendam, The Netherlands.
| | | | | | | | | | | | - Ko van Wingerden
- Haaglanden Medical Centre, Department of Medical Physics, Leidschendam, The Netherlands
| | | | | | | |
Collapse
|
44
|
Liu K, Velasquez B, Schüler E. Technical note: High-dose and ultra-high dose rate (UHDR) evaluation of Al 2 O 3 :C optically stimulated luminescent dosimeter nanoDots and powdered LiF:Mg,Ti thermoluminescent dosimeters for radiation therapy applications. Med Phys 2024; 51:2311-2319. [PMID: 37991111 PMCID: PMC10939935 DOI: 10.1002/mp.16832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose-per-pulse (DPP) applications. PURPOSE In this study, Al2 O3 :C nanoDot optically stimulated luminescent dosimeters (OSLDs), single-use powder-based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy. METHODS OSLDs and TLDs were evaluated against established dose-rate-independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9-MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters' response in order to isolate their potential dependencies on dose, dose rate, and DPP. RESULTS The OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross-comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18-245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter-dosimeter comparison) was found to be within 2%. CONCLUSIONS We demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Brett Velasquez
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
45
|
Rezaee M, Adhikary A. The Effects of Particle LET and Fluence on the Complexity and Frequency of Clustered DNA Damage. DNA 2024; 4:34-51. [PMID: 38282954 PMCID: PMC10810015 DOI: 10.3390/dna4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Motivation Clustered DNA-lesions are predominantly induced by ionizing radiation, particularly by high-LET particles, and considered as lethal damage. Quantification of this specific type of damage as a function of radiation parameters such as LET, dose rate, dose, and particle type can be informative for the prediction of biological outcome in radiobiological studies. This study investigated the induction and complexity of clustered DNA damage for three different types of particles at an LET range of 0.5-250 keV/μm. Methods Nanometric volumes (36.0 nm3) of 15 base-pair DNA with its hydration shell was modeled. Electron, proton, and alpha particles at various energies were simulated to irradiate the nanometric volumes. The number of ionization events, low-energy electron spectra, and chemical yields for the formation of °OH, H°, e aq - , and H2O2 were calculated for each particle as a function of LET. Single- and double-strand breaks (SSB and DSB), base release, and clustered DNA-lesions were computed from the Monte-Carlo based quantification of the reactive species and measured yields of the species responsible for the DNA lesion formation. Results The total amount of DNA damage depends on particle type and LET. The number of ionization events underestimates the quantity of DNA damage at LETs higher than 10 keV/μm. Minimum LETs of 9.4 and 11.5 keV/μm are required to induce clustered damage by a single track of proton and alpha particles, respectively. For a given radiation dose, an increase in LET reduces the number of particle tracks, leading to more complex clustered DNA damage, but a smaller number of separated clustered damage sites. Conclusions The dependency of the number and the complexity of clustered DNA damage on LET and fluence suggests that the quantification of this damage can be a useful method for the estimation of the biological effectiveness of radiation. These results also suggest that medium-LET particles are more appropriate for the treatment of bulk targets, whereas high-LET particles can be more effective for small targets.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, 1550 Orleans St., Baltimore, MD 21231, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI 48309, USA
| |
Collapse
|
46
|
Gebauer B, Baumann KS, Fuchs H, Georg D, Oborn BM, Looe HK, Lühr A. Proton dosimetry in a magnetic field: Measurement and calculation of magnetic field correction factors for a plane-parallel ionization chamber. Med Phys 2024; 51:2293-2305. [PMID: 37898105 DOI: 10.1002/mp.16797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The combination of magnetic resonance imaging and proton therapy offers the potential to improve cancer treatment. The magnetic field (MF)-dependent change in the dosage of ionization chambers in magnetic resonance imaging-integrated proton therapy (MRiPT) is considered by the correction factork B ⃗ , M , Q $k_{\vec{B},M,Q}$ , which needs to be determined experimentally or computed via Monte Carlo (MC) simulations. PURPOSE In this study,k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was both measured and simulated with high accuracy for a plane-parallel ionization chamber at different clinical relevant proton energies and MF strengths. MATERIAL AND METHODS The dose-response of the Advanced Markus chamber (TM34045, PTW, Freiburg, Germany) irradiated with homogeneous 10 × $\times$ 10 cm2 $^2$ quasi mono-energetic fields, using 103.3, 128.4, 153.1, 223.1, and 252.7 MeV proton beams was measured in a water phantom placed in the MF of an electromagnet with MF strengths of 0.32, 0.5, and 1 T. The detector was positioned at a depth of 2 g/cm2 $^2$ in water, with chamber electrodes parallel to the MF lines and perpendicular to the proton beam incidence direction. The measurements were compared with TOPAS MC simulations utilizing COMSOL-calculated 0.32, 0.5, and 1 T MF maps of the electromagnet.k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was calculated for the measurements for all energies and MF strengths based on the equation:k B ⃗ , M , Q = M Q M Q B ⃗ $k_{\vec{B},M,Q}=\frac{M_\mathrm{Q}}{M_\mathrm{Q}^{\vec{B}}}$ , whereM Q B ⃗ $M_\mathrm{Q}^{\vec{B}}$ andM Q $M_\mathrm{Q}$ were the temperature and air-pressure corrected detector readings with and without the MF, respectively. MC-based correction factors were determined ask B ⃗ , M , Q = D det D det B ⃗ $k_{\vec{B},M,Q}=\frac{D_\mathrm{det}}{D_\mathrm{det}^{\vec{B}}}$ , whereD det B ⃗ $D_\mathrm{det}^{\vec{B}}$ andD det $D_\mathrm{det}$ were the doses deposited in the air cavity of the ionization chamber model with and without the MF, respectively. Furthermore, MF effects on the chamber dosimetry are studied using MC simulations, examining the impact on the absorbed dose-to-water (D W $D_{W}$ ) and the shift in depth of the Bragg peak. RESULTS The detector showed a reduced dose-response for all measured energies and MF strengths, resulting in experimentally determinedk B ⃗ , M , Q $k_{\vec{B},M,Q}$ values larger than unity. For all energies and MF strengths examined,k B ⃗ , M , Q $k_{\vec{B},M,Q}$ ranged between 1.0065 and 1.0205. The dependence on the energy and the MF strength was found to be non-linear with a maximum at 1 T and 252.7 MeV. The MC simulatedk B ⃗ , M , Q $k_{\vec{B},M,Q}$ values agreed with the experimentally determined correction factors within their standard deviations with a maximum difference of 0.6%. The MC calculated impact onD W $D_{W}$ was smaller 0.2 %. CONCLUSION For the first time, measurements and simulations were compared for proton dosimetry within MFs using an Advanced Markus chamber. Good agreement ofk B ⃗ , M , Q $k_{\vec{B},M,Q}$ was found between experimentally determined and MC calculated values. The performed benchmarking of the MC code allows for calculatingk B ⃗ , M , Q $k_{\vec{B},M,Q}$ for various ionization chamber models, MF strengths and proton energies to generate the data needed for a proton dosimetry protocol within MFs and is, therefore, a step towards MRiPT.
Collapse
Affiliation(s)
- Benjamin Gebauer
- OncoRay National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Kilian-Simon Baumann
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- Ion-Beam Therapy Center, Marburg, Germany
| | - Hermann Fuchs
- Department of Radiation Oncology, Medical University of Vienna, Wien, Austria
- MedAustron Iontherapy centre, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Wien, Austria
- MedAustron Iontherapy centre, Wiener Neustadt, Austria
| | - Brad M Oborn
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Cancer Care Centre, Wollongong, New South Wales, Australia
| | - Hui-Khee Looe
- Department for Radiotherapy and Radiooncology, Pius Hospital, Medical Campus Carl von Ossietzky University, Oldenburg, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
47
|
Xu Q, Vinogradskiy Y, Grimm J, Nie W, Dupre P, Chawla AK, Bajaj G, Yang H, LaCouture T, Fan J. Evaluation of a novel patient-specific quality assurance phantom for robotic single-isocentre, multiple-target stereotactic radiosurgery, and stereotactic radiotherapy. Br J Radiol 2024; 97:660-667. [PMID: 38401536 PMCID: PMC11027335 DOI: 10.1093/bjr/tqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/26/2024] Open
Abstract
OBJECTIVES To evaluate patient-specific quality assurance (PSQA) of 3 targets in a single delivery using a novel film-based phantom. METHODS The phantom was designed to rotate freely as a sphere and could measure 3 targets with film in a single delivery. After identifying the coordinates of 3 targets in the skull, the rotation angles about the equator and meridian were computed for optimal phantom setup, ensuring the film plane intersected the 3 targets. The plans were delivered on the CyberKnife system using fiducial tracking. The irradiated films were scanned and processed. All films were analysed using 3 gamma criteria. RESULTS Fifteen CyberKnife test plans with 3 different modalities were delivered on the phantom. Both automatic and marker-based registration methods were applied when registering the irradiated film and dose plane. Gamma analysis was performed using a 3%/1 mm, 2%/1 mm, and 1%/1 mm criteria with a 10% threshold. For the automatic registration method, the passing rates were 98.2% ± 1.9%, 94.2% ± 3.7%, and 80.9% ± 6.3%, respectively. For the marker-based registration approach, the passing rates were 96.4% ± 2.7%, 91.7% ± 4.3%, and 78.4% ± 6.2%, respectively. CONCLUSIONS A novel spherical phantom was evaluated for the CyberKnife system and achieved acceptable PSQA passing rates using TG218 recommendations. The phantom can measure true-composite dose and offers high-resolution results for PSQA, making it a valuable device for robotic radiosurgery. ADVANCES IN KNOWLEDGE This is the first study on PSQA of 3 targets concurrently on the CyberKnife system.
Collapse
Affiliation(s)
- Qianyi Xu
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jimm Grimm
- Department of Radiation Oncology, Wellstar Health System, Marietta, GA 30060, United States
| | - Wei Nie
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Pamela Dupre
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Ashish K Chawla
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Gopal Bajaj
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| | - Haihua Yang
- Department of Radiation Oncology, Taizhou Hospital, Zhejiang 317000, China
| | - Tamara LaCouture
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jiajin Fan
- Department of Advanced Radiation Oncology and Proton Therapy, Inova Schar Cancer Institute, Fairfax, VA 22031, United States
| |
Collapse
|
48
|
Höfel S, Zwicker F, Fix MK, Drescher M. Towards liquid EPR dosimetry using nitroxides in aqueous solution. Phys Med Biol 2024; 69:055026. [PMID: 38306975 DOI: 10.1088/1361-6560/ad25c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Objective. Water-equivalent dosimeters are desirable for dosimetry in radiotherapy. The present work investigates basic characteristics of novel aqueous detector materials and presents a signal loss approach for electron paramagnetic resonance (EPR) dosimetry.Approach. The proposed principle is based on the radiation dose dependent annihilation of EPR active nitroxides (NO·) in aqueous solutions. Stable nitroxide radicals (3-Maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (MmP), 3-Carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CmP)) in aqueous solutions containing dimethyl sulfoxide (DMSO) as an additive were filled in glass capillaries for irradiation and EPR readout. Radiation doses ranging from 1 to 64 Gy were applied with a clinical 6 MV flattening filter free photon beam. EPR readout was then performed with a X-band benchtop spectrometer. The dose response, temporal stability and reproducibility of the samples' EPR signal amplitudes as well as the influence of the nitroxide concentration between 10 and 160μM on the absolute signal loss were investigated using MmP. CmP was used to examine the dependence of the dose response on DMSO concentration between 0 and 10 vol%. An indirect effect model was fitted to the experimental data assuming irradiation induced radical reactions as the underlying mechanism.Main results. For an initial MmP concentration of 20μM, absolute EPR signal loss is linear up to a dose of 16 Gy with a yield G(-NO·) of approximately 0.4μmol J-1. Within five weeks upon sample irradiation to doses between 0 and 32 Gy relative EPR signal fluctuations were on average (126 readouts) below 1% (1σ). For c(MmP) ≥ 20μM, absolute signal loss is only weakly dependent on c(MmP), whereas it increases strongly with increasing c(DMSO) in the range 0-5 vol%. An indirect effect model is applicable to describe the reaction mechanism resulting in the observed dose response curve.Significance. Liquids consisting of nitroxides in aqueous solution and small amounts of DMSO (2 vol%) show promising basic characteristics for application as water-equivalent EPR dosimeter materials in radiotherapy. The EPR signal loss is based on an indirect effect mediated by diffusing radicals originating from the radiolysis of the water/DMSO mixture.
Collapse
Affiliation(s)
- Sebastian Höfel
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Klinik und Praxis für Strahlentherapie am Klinikum Konstanz, Konstanz, Germany
| | - Felix Zwicker
- Klinik und Praxis für Strahlentherapie am Klinikum Konstanz, Konstanz, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
49
|
Karimi AH, Das IJ, Chegeni N, Jabbari I, Jafari F, Geraily G. Beam quality and the mystery behind the lower percentage depth dose in grid radiation therapy. Sci Rep 2024; 14:4510. [PMID: 38402259 PMCID: PMC10894234 DOI: 10.1038/s41598-024-55197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
Grid therapy recently has been picking momentum due to favorable outcomes in bulky tumors. This is being termed as Spatially Fractionated Radiation Therapy (SFRT) and lattice therapy. SFRT can be performed with specially designed blocks made with brass or cerrobend with repeated holes or using multi-leaf collimators where dosimetry is uncertain. The dosimetric challenge in grid therapy is the mystery behind the lower percentage depth dose (PDD) in grid fields. The knowledge about the beam quality, indexed by TPR20/10 (Tissue Phantom Ratio), is also necessary for absolute dosimetry of grid fields. Since the grid may change the quality of the primary photons, a new [Formula: see text] should be evaluated for absolute dosimetry of grid fields. A Monte Carlo (MC) approach is provided to resolving the dosimetric issues. Using 6 MV beam from a linear accelerator, MC simulation was performed using MCNPX code. Additionally, a commercial grid therapy device was used to simulate the grid fields. Beam parameters were validated with MC model for output factor, depth of maximum dose, PDDs, dose profiles, and TPR20/10. The electron and photon spectra were also compared between open and grid fields. The dmax is the same for open and grid fields. The PDD with grid is lower (~ 10%) than the open field. The difference in TPR20/10 of open and grid fields is observable (~ 5%). Accordingly, TPR20/10 is still a good index for the beam quality in grid fields and consequently choose the correct [Formula: see text] in measurements. The output factors for grid fields are 0.2 lower compared to open fields. The lower depth dose with grid therapy is due to lower depth fluence with scatter radiation but it does not impact the dosimetry as the calibration parameters are insensitive to the effective beam energies. Thus, standard dosimetry in open beam based on international protocol could be used.
Collapse
Affiliation(s)
- Amir Hossein Karimi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Department, Cancer Institute, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Nahid Chegeni
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iraj Jabbari
- Department of Nuclear Engineering, Faculty of Physics, University of Isfahan, Isfahan, Iran
| | - Fatemeh Jafari
- Radiation Oncology Department, Cancer Institute, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Radiation Oncology Department, Cancer Institute, Imam-Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Das IJ, Dogan SK, Gopalakrishnan M. Determination of the Prpand radial dose correction factor in reference dosimetry. Biomed Phys Eng Express 2024; 10:027003. [PMID: 38306972 DOI: 10.1088/2057-1976/ad25bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objectives.In an addendum to AAPM TG-51 protocol, McEwenet al, (DOI:10.1118/1.4866223) introduced a new factorPrpto account for the radial dose distribution of the photon beam over the detector volume mainly in flattening filter free (FFF) beams.Prpand its extension to non-FFF beam reference dosimetry is investigated to see its impact in a clinical situation.Approches.ThePrpwas measured using simplified version of Sudhyadhomet al(DOI:10.1118/1.4941691) for Elekta and Varian FFF beams with two commonly used calibration detectors; PTW-30013 and Exradin-A12 ion chambers after acquiring high resolution profiles in detectors cardinal coordinates. For radial dose correction factor, the ion chambers were placed in a small water phantom and the central axis position was set to center of the sensitive volume on the treatment table and was studied by rotating the table by 15-degree interval from -90 to +90 degrees with respect to the initial (zero) position.Main results.The magnitude ofPrpvaries very little with machine, detector and beam energies to a value of 1.003 ± 0.0005 and 1.005 ± 0.0005 for 6FFF and 10FFF, respectively. The radial anisotropy for the Elekta machine with Exradin-A12 and PTW-30013 detector the magnitudes are in the range of (0.9995±0.0011 to 1.0015±0.0010) and (0.9998±0.0007 to 1.0015±0.0010), respectively. Similarly, for the Varian machine with Exradin-A12 and PTW-30013 ion chambers, the magnitudes are in the range of (1.0004±0.0010 to 1.0018±0.0018) and (1.0006±0.0009 to 1.0027±0.0007), respectively.Significance.ThePrpis ≤ 0.3% and 0.5% for 6FFF and 10FFF, respectively. The radial dose correction factor in regular beams also does not impact the dosimetry where the maximum magnitude is ±0.2% which is within experimental uncertainty.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Mahesh Gopalakrishnan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| |
Collapse
|