1
|
Falk Neto JH, Boulé N, Jones KE, Comeau AK, Kennedy MD. The intra-day and inter-day reliability of a 6-second Wingate to determine maximal peak power in endurance-trained athletes. PLoS One 2024; 19:e0307325. [PMID: 39240856 PMCID: PMC11379134 DOI: 10.1371/journal.pone.0307325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 09/08/2024] Open
Abstract
Determining an athlete's maximal peak power (MPP) is crucial in profiling endurance sports participants. While short (3 to 6 seconds) all-out efforts have been validated for MPP assessment, prior studies mainly involved non-endurance trained athletes. This study aimed to assess the intra- and inter-day reliability of a 6-second Wingate test for MPP determination in endurance athletes. Endurance-trained participants (22 males, 5 females) completed nine 6-second Wingate tests over four days (3 trials at baseline, 2 trials on each subsequent day). Analysis revealed no systematic differences in MPP (F(4.09, 106.3) = 1.88, p = 0.117) or time to peak power (χ2 (8) = 5.23, p = 0.732) across the trials. Reliability, assessed through the intraclass correlation coefficient (ICC) and standard error of measurement (SEM), was excellent across all trials (ICC = 0.95, SEM = 40.0W, SEM% = 3.7%). Absolute reliability improved when selecting the average or the best MPP values from each day (SEM% = 2.7% and 2.9%, respectively). Within-day reliability was consistently rated as excellent, with the best values on the 4th day of tests. No significant differences in MPP values occurred between the first and second 6-second Wingate tests on days 1 to 3, with both trials demonstrating similar reliability values (SEM%: 3.2% vs 2.8%, for the first and second trials, respectively). The test also demonstrated a good sensitivity to detect a meaningful change in MPP values. In conclusion, the 6-second Wingate test proves reliable for determining MPP in endurance-trained athletes. Two trials are recommended on the first day of testing, with a single MPP likely sufficient to determine the athlete's MPP on subsequent days.
Collapse
Affiliation(s)
- Joao Henrique Falk Neto
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Normand Boulé
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Kelvin E Jones
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, Edmonton, Alberta, Canada
| | - Aidan K Comeau
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Michael D Kennedy
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Losnegard T, Kocbach J, Sandbakk Ø. Pacing Demands in Competitive Nordic Skiing. Int J Sports Physiol Perform 2024:1-13. [PMID: 39231491 DOI: 10.1123/ijspp.2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND PURPOSE Cross-country skiing, biathlon, and Nordic combined are Winter Olympics sports that involve cross-country skiing in undulating terrain, characterized by various subtechniques and repeated intensity fluctuations. The stochastic interval profile of these sports necessitates the continuous regulation of work and energy expenditure throughout training sessions and competitions, a concept known as pacing. With the advent of technological advancements that allow for the measurement of these features during training and competitions, scientific studies have broadened our understanding of the associated racing and pacing demands. We provide the current scientific overview of pacing demands in competitive cross-country skiing, biathlon, and Nordic combined and propose guidelines for how performance can be enhanced by adjusting pacing behavior. CONCLUSIONS AND PRACTICAL APPLICATIONS The study of pacing in skiing has evolved from basic lap-to-lap, or segment, analyses to detailed insights into micropacing strategies. This includes analysis of speed, internal and external power, subtechnique distribution, and associated temporal patterns, combined with subjective ratings of effort. While several objective tools such as heart rate, blood lactate concentration, and speed measurements are widely used in practice, current understanding suggests that these measures should supplement, rather than replace, the use of perceived effort (eg, rating of perceived exertion) to regulate intensity during training and competition in undulating terrain. Therefore, the ability to self-regulate effort appears to be an important performance characteristic and should be developed in adolescents and systematically used to optimize and evaluate the training process and race performance throughout athletes' careers.
Collapse
Affiliation(s)
- Thomas Losnegard
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jan Kocbach
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Falk Neto JH, Faulhaber M, Kennedy MD. The Characteristics of Endurance Events with a Variable Pacing Profile-Time to Embrace the Concept of "Intermittent Endurance Events"? Sports (Basel) 2024; 12:164. [PMID: 38921858 PMCID: PMC11207974 DOI: 10.3390/sports12060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
A variable pacing profile is common in different endurance events. In these races, several factors, such as changes in elevation or race dynamics, lead participants to perform numerous surges in intensity. These surges are so frequent that certain events, such as cross-country (XC) skiing, mountain biking (MTB), triathlon, and road cycling, have been termed "intermittent endurance events". The characteristics of these surges vary depending on the sport: MTB and triathlon require athletes to perform numerous short (<10 s) bouts; XC skiing require periods of short- and moderate-(30 s to 2 min) duration efforts, while road cycling is comprised of a mix of short-, moderate-, and long-duration (>2 min) bouts. These bouts occur at intensities above the maximal metabolic steady state (MMSS), with many efforts performed at intensities above the athletes' maximal aerobic power or speed (MAP/MAS) (i.e., supramaximal intensities). Given the factors that influence the requirement to perform surges in these events, athletes must be prepared to always engage in a race with a highly stochastic pace. The aim of this review is to characterize the variable pacing profile seen in endurance events and to discuss how the performance of multiple maximal and supramaximal surges in intensity can affect how athletes fatigue during a race and influence training strategies that can lead to success in these races.
Collapse
Affiliation(s)
- Joao Henrique Falk Neto
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Martin Faulhaber
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Michael D. Kennedy
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
4
|
Forbes SC, Candow DG, Neto JHF, Kennedy MD, Forbes JL, Machado M, Bustillo E, Gomez-Lopez J, Zapata A, Antonio J. Creatine supplementation and endurance performance: surges and sprints to win the race. J Int Soc Sports Nutr 2023; 20:2204071. [PMID: 37096381 PMCID: PMC10132248 DOI: 10.1080/15502783.2023.2204071] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Creatine supplementation is an effective ergogenic aid to augment resistance training and improve intense, short duration, intermittent performance. The effects on endurance performance are less known. The purpose of this brief narrative review is to discuss the potential mechanisms of how creatine can affect endurance performance, defined as large muscle mass activities that are cyclical in nature and are >~3 min in duration, and to highlight specific nuances within the literature. Mechanistically, creatine supplementation elevates skeletal muscle phosphocreatine (PCr) stores facilitating a greater capacity to rapidly resynthesize ATP and buffer hydrogen ion accumulation. When co-ingested with carbohydrates, creatine enhances glycogen resynthesis and content, an important fuel to support high-intensity aerobic exercise. In addition, creatine lowers inflammation and oxidative stress and has the potential to increase mitochondrial biogenesis. In contrast, creatine supplementation increases body mass, which may offset the potential positive effects, particularly in weight-bearing activities. Overall, creatine supplementation increases time to exhaustion during high-intensity endurance activities, likely due to increasing anaerobic work capacity. In terms of time trial performances, results are mixed; however, creatine supplementation appears to be more effective at improving performances that require multiple surges in intensity and/or during end spurts, which are often key race-defining moments. Given creatines ability to enhance anaerobic work capacity and performance through repeated surges in intensity, creatine supplementation may be beneficial for sports, such as cross-country skiing, mountain biking, cycling, triathlon, and for short-duration events where end-spurts are critical for performance, such as rowing, kayaking, and track cycling.
Collapse
Affiliation(s)
- Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | - Darren G Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | | | - Michael D Kennedy
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, AB, Canada
| | - Jennifer L Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | | | - Erik Bustillo
- Train 8Nine/CrossFit Coconut Grove, Erik Bustillo Consulting, Miami, FL, USA
| | - Jose Gomez-Lopez
- Rehab & Nutrition Center, Human Performance Laboratory, Motion Training, Lo Barnechea, Chile
| | | | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
5
|
Flores LJF, de Souza Campos F, Baumann L, Weber MG, Barazetti LK, Nampo FK, de Paula Ramos S. Photobiomodulation does not improve anaerobic performance in well-trained cyclists. Lasers Med Sci 2023; 38:134. [PMID: 37294341 DOI: 10.1007/s10103-023-03803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
To determine if photobiomodulation (PBM) has ergogenic effects on the anaerobic performance of well-trained cyclists. Fifteen healthy male road or mountain bike cyclists participated in this randomized, double-blinded, placebo-controlled, crossover study. Athletes were randomly assigned to receive photobiomodulation (630 nm, 4.6 J/cm2, 6 J per point, 16 points, PBM session) or placebo intervention (PLA session) in the first session. The athletes then performed a 30-s Wingate test to determine mean and peak average power, relative power, mean and peak velocity, mean and peak RPM, fatigue index, total distance, time to peak power, explosive strength, and power drop. After 48 h, athletes returned to the laboratory for the crossover intervention. The repeated-measures ANOVA test followed by Bonferroni post hoc test or Friedman test with Dunn's post hoc test (p < 0.05), and Cohen's d statistic were used for comparisons. Performance in the Wingate test was not significantly different (p > 0.05) between PBM and PLA sessions for any variable. Only a small effect size was detected for time to peak power (-0.40; 1.11 to 0.31) and explosive strength (0.38; -0.34 to 1.09). We conclude that irradiation with red light, under a low energy density, does not promote ergogenic effects on the anaerobic performance of cycling athletes.
Collapse
Affiliation(s)
| | | | - Lucielle Baumann
- State University of Western Paraná, Marechal Cândido Rondon, Brazil
| | | | - Lilian Keila Barazetti
- Department of Physical Education, State University of Western Paraná, Marechal Cândido Rondon, Brazil
| | | | - Solange de Paula Ramos
- Study Group in Tissue Regeneration, Adaptation, and Repair, State University of Londrina, Londrina, Brazil.
- Universidade Estadual de Londrina, Rodovia Celso Garcia Cid PR 445, km 380, Campus Universitário, Bairro Porta de Versalhes I, Londrina, Paraná, CEP 86055-990, Brazil.
| |
Collapse
|
6
|
López-Belmonte Ó, Ruiz-Navarro JJ, Gay A, Cuenca-Fernández F, Mujika I, Arellano R. Analysis of pacing and kinematics in 3000 m freestyle in elite level swimmers. Sports Biomech 2023:1-17. [PMID: 36866783 DOI: 10.1080/14763141.2023.2184418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
This study aimed to determine elite swimmers' pacing strategy in the 3000 m event and to analyse the associated performance variability and pacing factors. Forty-seven races were performed by 17 male and 13 female elite swimmers in a 25 m pool (20.7 ± 2.9 years; 807 ± 54 FINA points). Lap performance, clean swim velocity (CSV), water break time (WBT), water break distance (WBD), stroke rate (SR), stroke length (SL) and stroke index (SI) were analysed including and excluding the first (0-50 m) and last lap (2950-3000 m). The most common pacing strategy adopted was parabolic. Lap performance and CSV were faster in the first half of the race compared to the second half (p < 0.001). WBT, WBD, SL and SI were reduced (p < 0.05) in the second half compared to the first half of the 3000 m when including and excluding the first and last laps for both sexes. SR increased in the second half of the men's race when the first and last laps were excluded. All studied variables showed significant variation between the two halves of the 3000 m, the highest variation being obtained in WBT and WBD, suggesting that fatigue negatively affected swimming kinematics.
Collapse
Affiliation(s)
- Óscar López-Belmonte
- Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jesús J Ruiz-Navarro
- Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Ana Gay
- Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco Cuenca-Fernández
- Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, University of Finis Terrae, Santiago, Chile
| | - Raúl Arellano
- Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Seeberg TM, Kocbach J, Wolf H, Talsnes RK, Sandbakk ØB. Race development and performance-determining factors in a mass-start cross-country skiing competition. Front Sports Act Living 2023; 4:1094254. [PMID: 36704262 PMCID: PMC9871829 DOI: 10.3389/fspor.2022.1094254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Although five of six Olympic events in cross-country skiing involve mass-starts, those events are sparsely examined scientifically. Therefore, in this study, we investigated speed profiles, pacing strategies, group dynamics and their performance-determining impact in a cross-country skiing mass-start competition. Methods Continuous speed and position of 57 male skiers was measured in a six-lap, 21.8 km national mass-start competition in skating style and later followed up with an online questionnaire. Skiers ranked from 1 to 40 were split into four performance-groups: R1-10 for ranks 1 to 10, R11-20 for ranks 11 to 20, R21-30 for ranks 21 to 30, and R31-40 for ranks 31 to 40. Results All skiers moved together in one large pack for 2.3 km, after which lower-performing skiers gradually lost the leader pack and formed small, dynamic packs. A considerable accordion effect occurred during the first half of the competition that lead to additional decelerations and accelerations and a higher risk of incidents that disadvantaged skiers at the back of the pack. Overall, 31% of the skiers reported incidents, but none were in R1-10. The overall trend was that lap speed decreased after Lap 1 for all skiers and thereafter remained nearly unchanged for R1-10, while it gradually decreased for the lower-performing groups. Skiers in R31-40, R21-30, and R11-20 lost the leader pack during Lap 3, Lap 4, and Lap 5, respectively, and more than 60% of the time-loss relative to the leader pack occurred in the uphill terrain sections. Ultimately, skiers in R1-10 sprinted for the win during the last 1.2 km, in which 2.4 s separated the top five skiers, and a photo finish differentiated first from second place. Overall, a high correlation emerged between starting position and final rank. Conclusions Our results suggest that (a) an adequate starting position, (b) the ability to avoid incidents and disadvantages from the accordion effect, (c) tolerate fluctuations in intensity, and (d) maintain speed throughout the competition, particularly in uphill terrain, as well as (e) having well-developed final sprint abilities, are key factors determining performance during skating-style mass-start cross-country skiing competitions.
Collapse
Affiliation(s)
- Trine M. Seeberg
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway,Smart Sensor and Microsensor System, SINTEF Digital, SINTEF AS, Oslo, Norway,Correspondence: Trine M. Seeberg
| | - Jan Kocbach
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Wolf
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Kjøsen Talsnes
- Department of Sports Science and Physical Education, Nord University, Bodø, Norway
| | - Øyvind B. Sandbakk
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Abstract
ABSTRACT Reinpõld, K, Bossi, AH, and Hopker, JG. What does it take to complete the cape epic? J Strength Cond Res 36(12): 3513-3520, 2022-This study aimed to describe the racing and training demands of the Cape Epic. Six male mountain bike riders (age: 39 ± 7 years, height: 181 ± 3 cm, and body mass: 78.7 ± 8.1 kg) trained for 4.5 months and took part in the Cape Epic. Training and racing data (prologue, stage 1, and 2) were analyzed, and riders were tested in the laboratory on 3 distinct occasions for maximal oxygen uptake (V̇O 2 max), maximal work rate (Ẇmax), and power output associated with the respiratory compensation point (RCP PO ). Statistical significance was set at p ≤ 0.05. With race durations of 1.5 ± 0.2, 6.5 ± 1.2, and 6.4 ± 1.4 hours for, respectively, prologue, stage 1, and 2, normalized power was higher in prologue (3.73 ± 0.72 W·kg -1 ) compared with stages 1 (3.06 ± 0.59 W·kg -1 , p < 0.001) and 2 (2.94 ± 0.69 W·kg -1 , p < 0.001). Riders spent more time in power zones 1 and 2 (as %RCP PO ) and less time in zones 4 and 5, during stage 2 compared with prologue (all zones p ≤ 0.028). Despite no changes in V̇O 2 max or Ẇmax, RCP PO increased from midtraining (3.89 ± 0.61 W·kg -1 ) to prerace testing (4.08 ± 0.64 W·kg -1 , p = 0.048). No differences were found between base and build training phases for time in power zones. In conclusion, the Cape Epic requires an ability to sustain high submaximal power outputs for several hours as well as an ability to repeat high-intensity efforts throughout the race. A well-balanced program, incorporating a pyramidal intensity distribution, may be used as a starting point for the design of optimal training approaches.
Collapse
Affiliation(s)
- Karmen Reinpõld
- School of Natural Sciences and Health, University of Tallinn, Tallinn, Estonia ; and
| | - Arthur H Bossi
- School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, Kent, England
| | - James G Hopker
- School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, Kent, England
| |
Collapse
|
9
|
Hebisz P, Cortis C, Hebisz R. Acute Effects of Sprint Interval Training and Chronic Effects of Polarized Training (Sprint Interval Training, High Intensity Interval Training, and Endurance Training) on Choice Reaction Time in Mountain Bike Cyclists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14954. [PMID: 36429672 PMCID: PMC9690254 DOI: 10.3390/ijerph192214954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the acute effects of sprint interval training and chronic effects of polarized training on choice reaction time in cyclists. Twenty-six mountain bike cyclists participated in the study and were divided into experimental (E) and control (C) groups. The cyclists trained for 9-weeks and performed five training sessions each week. Types of training sessions: (1) sprint interval training (SIT) which consisted of 8-16, 30 s repetitions at maximal intensity, (2) high-intensity interval training (HIIT) included 5 to 7, 5-min efforts at an intensity of 85-95% maximal aerobic power (Pmax), and (3) endurance training (ET) performed at an intensity of 55-60% Pmax, lasting 120--180 min. In each week the cyclists performed: in group E a polarized training program, which included 2 × SIT, 1 × HIIT and 2 × ET, while in group C 2 × HIIT and 3 × ET. Before (acute effects) and after the 9-week training period (chronic effects) participants performed laboratory sprint interval testing protocol (SITP), which consisted of 12 maximal repetitions lasting 30 s. During SITP maximal and mean anaerobic power, as well as lactate ion concentration and blood pH were measured. Choice reaction time (RT) was measured 4-times: before and immediately after the SITP test-before and after the 9-week training period. Evaluated the average choice RT, minimal choice RT (shortest reaction), maximal choice RT (longest reaction), and the number of incorrect reactions. Before the training period as acute effects of SITP, it was observed: a shorter average choice RT (F = 13.61; p = 0.001; η2 = 0.362) and maximal choice RT (F = 4.71; p = 0.040; η2 = 0.164), and a decrease the number of incorrect reactions (F = 53.72; p = 0.000; η2 = 0.691), for E and C groups. After the 9-week training period, chronic effects showed that choice RT did not change in any of the cyclists' groups. Only in the E group after the polarized training period, the number of incorrect reactions decreased (F = 49.03; p = 0.000; η2 = 0.671), average anaerobic power increased (F = 8.70; p = 0.007; η2 = 0.274) and blood pH decreased (F = 27.20; p = 0.000; η2 = 0.531), compared to the value before the training period. In conclusion, a shorter choice RT and a decrease in the number of incorrect reactions as acute effects of SITP, and a decrease in the number of incorrect reactions and higher average power as chronic effects of the polarized training program are beneficial for mountain bike cyclists.
Collapse
Affiliation(s)
- Paulina Hebisz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Cristina Cortis
- Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, 03043 Cassino, Italy
| | - Rafal Hebisz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| |
Collapse
|
10
|
Arriel RA, Souza HLR, Sasaki JE, Marocolo M. Current Perspectives of Cross-Country Mountain Biking: Physiological and Mechanical Aspects, Evolution of Bikes, Accidents and Injuries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12552. [PMID: 36231848 PMCID: PMC9565958 DOI: 10.3390/ijerph191912552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Mountain biking (MTB) is a cycling modality performed on a variety of unpaved terrain. Although the cross-country Olympic race is the most popular cross-country (XC) format, other XC events have gained increased attention. XC-MTB has repeatedly modified its rules and race format. Moreover, bikes have been modified throughout the years in order to improve riding performance. Therefore, the aim of this review was to present the most relevant studies and discuss the main results on the XC-MTB. Limited evidence on the topic suggests that the XC-MTB events present a variation in exercise intensity, demanding cardiovascular fitness and high power output. Nonetheless, these responses and demands seem to change according to each event. The characteristics of the cyclists differ according to the performance level, suggesting that these parameters may be important to achieve superior performance in XC-MTB. Moreover, factors such as pacing and ability to perform technical sections of the circuit might influence general performance. Bicycles equipped with front and rear suspension (i.e., full suspension) and 29″ wheels have been shown to be effective on the XC circuit. Lastly, strategies such as protective equipment, bike fit, resistance training and accident prevention measures can reduce the severity and the number of injuries.
Collapse
Affiliation(s)
- Rhaí André Arriel
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-330, Brazil
| | - Hiago L. R. Souza
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-330, Brazil
| | - Jeffer Eidi Sasaki
- Laboratory UFTM, Federal University of Triangulo Mineiro, Uberaba 38061-500, Brazil
| | - Moacir Marocolo
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-330, Brazil
| |
Collapse
|
11
|
Hebisz R, Borkowski J, Hebisz P. Creatine Kinase and Myoglobin Plasma Levels in Mountain Bike and Road Cyclists 1 h after the Race. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159456. [PMID: 35954814 PMCID: PMC9367889 DOI: 10.3390/ijerph19159456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022]
Abstract
The aim of this study was to determine if 1 h after a cycling race, changes in plasma creatine kinase activity (CK) and myoglobin concentrations (MB) differ between mountain bike and road cyclists and if these changes show any correlation with race performance. Male mountain bike cyclists (n = 11) under 23 years old and male road cyclists (n = 14), also under 23 years old, were studied following one of their respective races. The cyclists had blood drawn 2 h before and 1 h after the race to assess CK and MB, then the change in pre- and post-race difference was calculated (ΔCK and ΔMB). Each cyclist’s performance time was recorded and the time difference from the winner was calculated (TD). The cyclists’ aerobic capacity was assessed during the incremental test, which determines maximal oxygen uptake and maximal aerobic power. It was observed that 1 h after the cycling race, CK (p = 0.001, η2 = 0.40, F = 15.6) and MB (p = 0.000, η2 = 0.43, F = 17.2) increased, compared to pre-race values. Post-race CK increased only in road cyclists, while post-race MB increased only in mountain bike cyclists. Smaller TD were found for lower ΔMB in road cyclists but for higher ΔCK in mountain bike cyclists.
Collapse
|
12
|
Rønnestad BR. Case Report: Effects of Multiple Seasons of Heavy Strength Training on Muscle Strength and Cycling Sprint Power in Elite Cyclists. Front Sports Act Living 2022; 4:860685. [PMID: 35548458 PMCID: PMC9082540 DOI: 10.3389/fspor.2022.860685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sprint performance is critical for endurance performance in sports characterized by multiple accelerations like a cross-country Olympic mountain bike (XCO MTB) race. There are indications that 10–25 weeks of heavy strength training (HST) can improve cycling sprint power in cyclists. However, there is a lack of data on the effect of continuing HST across several seasons. In the first part of this case report, two elite cyclists performed HST across two preparatory periods (i.e., 1.5 years), while two others continued with endurance training only. HST induced a mean increase in leg press force and cycling sprint power of 16% after the first preparatory period (November to April), which was maintained during the competition period. After the next preparatory period a further increase from the first test was achieved (22 and 19%, respectively). The two cyclists with no HST had no changes in leg press force and cycling sprint power. The second part contains data from two of the cyclists from the first part. One of them continued with HST for 2 more years and achieved a continuous increase in leg press force during all four preparatory periods, ending up with a total increase of 44% after 3.5 years, while the development of cycling sprint power had more variation with an apparent plateau from the third to fourth preparatory periods, ending up with an improvement of 25%. The other cyclist did not perform HST in the first part but started with HST and performed this across the last two preparatory periods. After two preparatory periods with HST (i.e., 1.5 years), the increased leg press force and cycling sprint power were 24 and 22%, respectively, which was in the same range as the improvement observed after 1.5 years of HST in the first part of this case report. The present data extend previous short-term studies indicating that HST can give reasonable muscle strength improvements in elite cyclists across multiple preparatory periods. Furthermore, the present data indicate that HST adaptations can be maintained across multiple competition periods. Cycling sprint power seems to approximately follow the development of leg press performance.
Collapse
|
13
|
Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, Nybo L. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin) 2021; 8:262-283. [PMID: 34485620 PMCID: PMC8409751 DOI: 10.1080/23328940.2021.1957367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.
Collapse
Affiliation(s)
- Jacob Feder Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Boris Kingma
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,TNO, the Netherlands Organization for Applied Scientific Research, Unit Defense, Safety & Security, Soesterberg, The Netherlands
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Leonidas G Ioannou
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Andreas D Flouris
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
14
|
Næss S, Sollie O, Gløersen ØN, Losnegard T. Exercise Intensity and Pacing Pattern During a Cross-Country Olympic Mountain Bike Race. Front Physiol 2021; 12:702415. [PMID: 34349670 PMCID: PMC8326908 DOI: 10.3389/fphys.2021.702415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Objective: To examine the power profiles and pacing patterns in relation to critical power (CP) and maximal aerobic power (MAP) output during a cross-country Olympic (XCO) mountain bike race. Methods: Five male and two female national competitive XCO cyclists completed a UCI Cat. 1 XCO race. The races were 19 km and 23 km and contained five (female) and six (male) laps, respectively. Power output (PO) during the race was measured with the cyclists’ personal power meters. On two laboratory tests using their own bikes and power meters, CP and work capacity above CP (W') were calculated using three time trials of 12, 7, and 3 min, while MAP was established based on a 3-step submaximal test and the maximal oxygen uptake from the 7-min time trial. Results: Mean PO over the race duration (96 ± 7 min) corresponded to 76 ± 9% of CP and 63 ± 4% of MAP. 40 ± 8% of race time was spent with PO > CP, and the mean duration and magnitude of the bouts >CP was ~8 s and ~120% of CP. From the first to last lap, time >CP and accumulated W' per lap decreased with 9 ± 6% and 45 ± 17%, respectively. For single >CP bouts, mean magnitude and mean W' expended decreased by 25 ± 8% and 38 ± 15% from the first to the last lap, respectively. Number and duration of bouts did not change significantly between laps. Conclusion: The highly variable pacing pattern in XCO implies the need for rapid changes in metabolic power output, as a result of numerous separate short-lived >CP actions which decrease in magnitude in later laps, but with little lap-to-lap variation in number and duration.
Collapse
Affiliation(s)
- Steffan Næss
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ove Sollie
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | | | - Thomas Losnegard
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
15
|
Race Performance Prediction from the Physiological Profile in National Level Youth Cross-Country Cyclists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115535. [PMID: 34064188 PMCID: PMC8196776 DOI: 10.3390/ijerph18115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022]
Abstract
Cross-country mountain biking is an Olympic sport discipline with high popularity among elite and amateur cyclists. However, there is a scarcity of data regarding the key determinants of performance, particularly in young cross-country cyclists. The aim of this study was to examine the physiological profile of youth national-level cross-country cyclists and to determine those variables that were able to best predict the performance in an official race. Ten youth cross-country cyclists of a national team underwent a complete evaluation that included anthropometric assessments, laboratory tests to evaluate the wattage at blood lactate thresholds and at maximal oxygen uptake (POVO2max), and field tests to make an in-depth power profile of the athletes. The data obtained in the above-mentioned tests was analysed along with total and partial race times during a competition belonging to the Union Cycliste Internationale (UCI) calendar. In the present study, large and statistically significant correlations (r = -0.67 to -0.95, p ≤ 0.05) were found between maximal and submaximal indices of aerobic fitness and cycling performance, especially when they were normalised to body mass. A multiple regression analysis demonstrated that the wattage at 2 mmol/L, 4 mmol/L and POVO2max were able to explain 82% of the variance in total race time. In summary, the results of this study support the use of maximal and submaximal indices of aerobic power as predictors of performance in youth cross-country cyclists.
Collapse
|
16
|
Aerobic and Anaerobic Power Distribution During Cross-Country Mountain Bike Racing. Int J Sports Physiol Perform 2021; 16:1610-1615. [PMID: 33848975 DOI: 10.1123/ijspp.2020-0758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/22/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine aerobic and anaerobic demands of mountain bike cross-country racing. METHODS Twelve elite cyclists (7 males; V˙O2max = 73.8 [2.6] mL·min-1·kg-1, maximal aerobic power [MAP] = 370 [26] W, 5.7 [0.4] W·kg-1, and 5 females; V˙O2max = 67.3 [2.9] mL·min-1·kg-1, MAP = 261 [17] W, 5.0 [0.1] W·kg-1) participated over 4 seasons at several (119) international and national races and performed laboratory tests regularly to assess their aerobic and anaerobic performance. Power output, heart rate, and cadence were recorded throughout the races. RESULTS The mean race time was 79 (12) minutes performed at a mean power output of 3.8 (0.4) W·kg-1; 70% (7%) MAP (3.9 [0.4] W·kg-1 and 3.6 [0.4] W·kg-1 for males and females, respectively) with a cadence of 64 (5) rev·min-1 (including nonpedaling periods). Time spent in intensity zones 1 to 4 (below MAP) were 28% (4%), 18% (8%), 12% (2%), and 13% (3%), respectively; 30% (9%) was spent in zone 5 (above MAP). The number of efforts above MAP was 334 (84), which had a mean duration of 4.3 (1.1) seconds, separated by 10.9 (3) seconds with a mean power output of 7.3 (0.6) W·kg-1 (135% [9%] MAP). CONCLUSIONS These findings highlight the importance of the anaerobic energy system and the interaction between anaerobic and aerobic energy systems. Therefore, the ability to perform numerous efforts above MAP and a high aerobic capacity are essential to be competitive in mountain bike cross-country.
Collapse
|
17
|
Physiological and Mechanical Indices Serving the New Cross-Country Olympic Mountain Bike Performance. Int J Sports Physiol Perform 2021; 16:1008-1013. [PMID: 33639610 DOI: 10.1123/ijspp.2020-0319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To identify relevant physiological, mechanical, and strength indices to improve the evaluation of elite mountain bike riders competing in the current Cross-Country Olympic (XCO) format. METHODS Considering the evolution of the XCO race format over the last decade, the present testing protocol adopted a battery of complementary laboratory cycling tests: a maximal aerobic consumption, a force-velocity test, and a multi-short-sprint test. A group of 33 elite-level XCO riders completed the entire testing protocol and at least 5 international competitions. RESULTS Very large correlations were found between the XCO performance and maximal aerobic power output (r = .78; P < .05), power at the second ventilation threshold (r = .83; P < .05), maximal pedaling force (r = .77; P < .05), and maximum power in the sixth sprint (r = .87; P < .05) of the multi-short-sprint test. A multiple regression model revealed that the normalized XCO performance was predicted at 89.2% (F3,29 = 89.507; r = .95; P < .001) by maximum power in the sixth sprint (β = 0.602; P < .001), maximal pedaling rate (β = 0.309; P < .001), and relative maximal aerobic power output (β = 0.329; P < .001). DISCUSSION Confirming our expectations, the current XCO performance was highly correlated with a series of physiological and mechanical parameters reflecting the high level of acyclic and intermittent solicitation of both aerobic and anaerobic metabolic pathways and the required qualities of maximal force and velocity. CONCLUSION The combination of physiological, mechanical, and strength characteristics may thus improve the prediction of elite XCO cyclists' performance. It seems of interest to evaluate the ability to repeatedly produce brief intensive efforts with short active recovery periods.
Collapse
|
18
|
Exercise Intensity during Olympic-Distance Triathlon in Well-Trained Age-Group Athletes: An Observational Study. Sports (Basel) 2021; 9:sports9020018. [PMID: 33494505 PMCID: PMC7912546 DOI: 10.3390/sports9020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to examine the exercise intensity during the swimming, cycling, and running legs of nondraft legal, Olympic-distance triathlons in well-trained, age-group triathletes. Seventeen male triathletes completed incremental swimming, cycling, and running tests to exhaustion. Heart rate (HR) and workload corresponding to aerobic and anaerobic thresholds, maximal workloads, and maximal HR (HRmax) in each exercise mode were analyzed. HR and workload were monitored throughout the race. The intensity distributions in three HR zones for each discipline and five workload zones in cycling and running were quantified. The subjects were then assigned to a fast or slow group based on the total race time (range, 2 h 07 min–2 h 41 min). The mean percentages of HRmax in the swimming, cycling, and running legs were 89.8% ± 3.7%, 91.1% ± 4.4%, and 90.7% ± 5.1%, respectively, for all participants. The mean percentage of HRmax and intensity distributions during the swimming and cycling legs were similar between groups. In the running leg, the faster group spent relatively more time above HR at anaerobic threshold (AnT) and between workload at AnT and maximal workload. In conclusion, well-trained male triathletes performed at very high intensity throughout a nondraft legal, Olympic-distance triathlon race, and sustaining higher intensity during running might play a role in the success of these athletes.
Collapse
|
19
|
Babault N, Paizis C, Trimble M, Trimble DA, Cometti C. Pacing and Positioning Strategies During an Elite Fixed-Gear Cycling Criterium. Front Sports Act Living 2020; 2:586568. [PMID: 33345156 PMCID: PMC7739637 DOI: 10.3389/fspor.2020.586568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Fixed-gear cycling performance during criteriums predominantly involves the aerobic system. Whether pacing is another important factor for performance is unknown. The purpose of the present study was to explore pacing and/or positioning strategies of fixed-gear riders during criteriums. Race results of an international fixed-gear criterium were analyzed (20 laps for women and 28 laps for men; laps = 1,270 m). Statistics were conducted on individuals lap time and positioning during the finals. Race pattern in women (n = 35) and men (n = 53) revealed that the faster laps (P < 0.05) were in the middle and at the end of the race and the slower laps (P < 0.05) were at the end of the race (laps 17–18 for women and lap 26 for men). The final ranking was significantly correlated with the mean race position (Kendall's tau = 0.664 and 0.689 for women and men, respectively). A coefficient of variation >50% revealed an important positioning variability. The best riders are mostly amongst the first during the race. However, the others exhibited larger mean position variations during the first half of the race. Our results demonstrated variable pacing strategies during fixed-gear criteriums. Although some riders had economical drafting strategies during the first half of the race, riding placed ahead during the whole race seemed to be an essential performance factor.
Collapse
Affiliation(s)
- Nicolas Babault
- Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Faculty of Sport Sciences, Dijon, France
- *Correspondence: Nicolas Babault
| | - Christos Paizis
- Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Mary Trimble
- Trimble Racing Inc., New York, NY, United States
| | | | - Carole Cometti
- Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Faculty of Sport Sciences, Dijon, France
| |
Collapse
|
20
|
Determinants of Cycling Performance: a Review of the Dimensions and Features Regulating Performance in Elite Cycling Competitions. SPORTS MEDICINE-OPEN 2020; 6:23. [PMID: 32495230 PMCID: PMC7271082 DOI: 10.1186/s40798-020-00252-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/17/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND A key tenet of sports performance research is to provide coaches and athletes with information to inform better practice, yet the determinants of athletic performance in actual competition remain an under-examined and under-theorised field. In cycling, the effects of contextual factors, presence of and interaction with opponents, environmental conditions, competition structure and socio-cultural, economic and authoritarian mechanisms on the performance of cyclists are not well understood. OBJECTIVES To synthesise published findings on the determinants of cyclists' behaviours and chances of success in elite competition. METHODS Four academic databases were searched for peer-reviewed articles. A total of 44 original research articles and 12 reviews met the inclusion criteria. Key findings were grouped and used to shape a conceptual framework of the determinants of performance. RESULTS The determinants of cycling performance were grouped into four dimensions: features related to the individual cyclist, tactical features emerging from the inter-personal dynamics between cyclists, strategic features related to competition format and the race environment and global features related to societal and organisational constraints. Interactions between these features were also found to shape cyclists' behaviours and chances of success. CONCLUSION Team managers, coaches, and athletes seeking to improve performance should give attention to features related not only to the individual performer, but also to features of the interpersonal, strategic, global dimensions and their interactions.
Collapse
|
21
|
Bosio A, Borchini M, Pecci C, Donatucci B, Montano M, Iellamo F. Is the achievement of 85% of age-predicted heart ratemax at exercise test sufficient to make diagnosis of myocardial ischemia in athletes? Minerva Cardioangiol 2020; 68:67-71. [PMID: 32429625 DOI: 10.23736/s0026-4725.20.05172-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Exercise test (ET) is a validated tool for the identification of coronary artery disease (CAD) even among athletes. A "cut-off" of 85% HRmax is often chosen as an "end point" although it has been shown that this percentage is far from a maximal effort and might be insufficient to evaluate athletes who often reach HRs close to 100% of the theoretical HRmax during sport activity. The aim of this study was to identify the percentage of theoretical HRmax (% HRmax) at which ST segment depression due to a coronary insufficiency on ECG at ET became significant and how much this value would be different from the "cut-off" of 85% of the theoretical HRmax. METHODS Forty-two male competitive athletes of three different sport disciplines (58±7.9 years) tested positive during ET at HRmax greater than 85% with ST depression ≥2 mm from V1 to V6 and / or ≥1 mm from D1 to aVf at J point + 80 ms, were included. ECG traces recorded at 85% of HRmax, were compared with those recorded at the percentage of HRmax corresponding to the significant ST depression (%HRmaxST). RESULTS % HRmax at which the ST depression become significant was 93.4±3.4% with a Δ% of + 8.4% compared to 85%. ST segment depression at peak exercise on precordial leads was significantly different from that at 85% HRmax (P<0.0001). TC coronary scan confirmed CAD. CONCLUSIONS The cut off of 85% HRmax is insufficient to identify signs of reduced coronary reserve in competitive athletes.
Collapse
Affiliation(s)
- Annalisa Bosio
- Specialization School in Sports Medicine and Exercise, Tor Vergata University, Rome, Italy
| | - Mauro Borchini
- Mapei Sport Research Center, Olgiate Olona, Varese, Italy
| | - Claudio Pecci
- Mapei Sport Research Center, Olgiate Olona, Varese, Italy
| | - Bruno Donatucci
- Specialization School in Sports Medicine and Exercise, Tor Vergata University, Rome, Italy
| | - Matteo Montano
- Specialization School in Sports Medicine and Exercise, Tor Vergata University, Rome, Italy
| | - Ferdinando Iellamo
- Specialization School in Sports Medicine and Exercise, Tor Vergata University, Rome, Italy - .,IRCCS San Raffaele Pisana Institute, Rome, Italy
| |
Collapse
|
22
|
Tang Y, Wang D, Wang Y, Yin K, Zhang C, Zou L, Liu Y. Do Surface Slope and Posture Influence Lower Extremity Joint Kinetics during Cycling? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082846. [PMID: 32326216 PMCID: PMC7215921 DOI: 10.3390/ijerph17082846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the effects of surface slope and body posture (i.e., seated and standing) on lower extremity joint kinetics during cycling. Fourteen participants cycled at 250 watts power in three cycling conditions: level seated, uphill seated and uphill standing at a 14% slope. A motion analysis system and custom instrumented pedal were used to collect the data of fifteen consecutive cycles of kinematics and pedal reaction force. One crank cycle was equally divided into four phases (90° for each phase). A two-factor repeated measures MANOVA was used to examine the effects of the slope and posture on the selected variables. Results showed that both slope and posture influenced joint moments and mechanical work in the hip, knee and ankle joints (p < 0.05). Specifically, the relative contribution of the knee joint to the total mechanical work increased when the body posture changed from a seated position to a standing position. In conclusion, both surface slope and body posture significantly influenced the lower extremity joint kinetics during cycling. Besides the hip joint, the knee joint also played the role as the power source during uphill standing cycling in the early downstroke phase. Therefore, adopting a standing posture for more power output during uphill cycling is recommended, but not for long periods, in view of the risk of knee injury.
Collapse
Affiliation(s)
- Yunqi Tang
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (Y.T.); (D.W.); (Y.W.); (K.Y.); (C.Z.); (L.Z.)
- College of Art & Design, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Donghai Wang
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (Y.T.); (D.W.); (Y.W.); (K.Y.); (C.Z.); (L.Z.)
- Shanghai R&D Center, Lifesense Medical Electronics Co., Ltd., Shanghai 200051, China
| | - Yong Wang
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (Y.T.); (D.W.); (Y.W.); (K.Y.); (C.Z.); (L.Z.)
- Department of Physical education, Liaocheng University, Liaocheng 252059, China
| | - Keyi Yin
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (Y.T.); (D.W.); (Y.W.); (K.Y.); (C.Z.); (L.Z.)
| | - Cui Zhang
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (Y.T.); (D.W.); (Y.W.); (K.Y.); (C.Z.); (L.Z.)
- Sport biomechanics lab, Shandong Institute of Sports Science, Jinan 250102, China
| | - Limin Zou
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (Y.T.); (D.W.); (Y.W.); (K.Y.); (C.Z.); (L.Z.)
- Department of Physical education, Jinggangshan University, Ji’an 343009, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (Y.T.); (D.W.); (Y.W.); (K.Y.); (C.Z.); (L.Z.)
- Correspondence: ; Tel.: +86-21-65507860
| |
Collapse
|
23
|
Nikolaidis PT, Chtourou H, Ramirez-Campillo R, Villiger E, Rosemann T, Knechtle B. The Combined Effect of Aging and Performance Level on Pacing in Duathlon - the "ITU Powerman Long Distance Duathlon World Championships". Front Psychol 2019; 10:296. [PMID: 30833921 PMCID: PMC6388661 DOI: 10.3389/fpsyg.2019.00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
The role of age and performance level has been investigated in runners such as marathoners, but not in multi-sports athletes such as duathletes (running, cycling, and running). Thus, the aim of the present study was to examine the combined effects of aging and performance level on pacing of duathletes competing in two different race distances. Pacing (defined as the relative contribution of cycling time, %, to the overall race time) was analyzed for 6,671 duathletes competing from 2003 to 2017 in the short distance race (10 km first run, 50 km cycling and 5 km second run) or long distance race (10 km first run, 150 km cycling and 30 km second run) of “Powerman Zofingen,” the “ITU Powerman Long Distance Duathlon World Championships.” Men were faster, older, and spent less time (%) in cycling than women in both distances races (p < 0.001). Younger age groups spent more time (%) in cycling than their older counterparts in women (both short and long distance, p = 0.036, ηp2 = 0.031, p = 0.025, ηp2 = 0.044, respectively) and men (long distance race, p < 0.001, ηp2 = 0.016). Fast performance groups spent more time (%) in cycling than their slower counterparts in short (women, p < 0.001, ηp2 = 0.057; men, p < 0.001, ηp2 = 0.035) and long distance (women, p < 0.001, ηp2 = 0.070; men, p < 0.001, ηp2 = 0.052). A small age group × performance group interaction on cycling time (%) was observed in the men’s short distance (p = 0.001, ηp2 = 0.020) – but not in the long distance or in women – with smaller differences between performance groups in the older than in the younger age groups. Women, young and fast duathletes were relatively slower in cycling than men, old and slow duathletes; that was, old duathletes were relatively faster in cycling than in running. Moreover, there was indication that the difference in pacing among performance groups might be attenuated with aging. Since fast duathletes were relatively faster in running than in cycling, slow duathletes should be encouraged to cycle slower and run faster.
Collapse
Affiliation(s)
- Pantelis T Nikolaidis
- Faculty of Biomedical Sciences, University of East Attica, Egaleo, Greece.,Exercise Physiology Laboratory, Nikaia, Greece
| | - Hamdi Chtourou
- Institut Supérieur du Sport et de l'éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia.,Activité Physique: Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisia
| | - Rodrigo Ramirez-Campillo
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
| | - Elias Villiger
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.,Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| |
Collapse
|
24
|
Moss SL, Francis B, Calogiuri G, Highton J. Pacing during a cross-country mountain bike mass-participation event according to race performance, experience, age and sex. Eur J Sport Sci 2018; 19:793-801. [PMID: 30556485 DOI: 10.1080/17461391.2018.1552722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study describes pacing strategies adopted in an 86-km mass-participation cross-country marathon mountain bike race (the 'Birkebeinerrittet'). Absolute (km·h-1) and relative speed (% average race speed) and speed coefficient of variation (%CV) in five race sections (15.1, 31.4, 52.3, 74.4 and 100% of total distance) were calculated for 8182 participants. Data were grouped and analysed according to race performance, age, sex and race experience. The highest average speed was observed in males (21.8 ± 3.7 km/h), 16-24 yr olds (23.0 ± 4.8 km/h) and those that had previously completed >4 Birkebeinerrittet races (22.5 ± 3.4 km/h). Independent of these factors, the fastest performers exhibited faster speeds across all race sections, whilst their relative speed was higher in early and late climbing sections (Cohen's d = 0.45-1.15) and slower in the final descending race section (d = 0.64-0.98). Similar trends were observed in the quicker age, sex and race experience groups, who tended to have a higher average speed in earlier race sections and a lower average speed during the final race section compared to slower groups. In all comparisons, faster groups also had a lower %CV for speed than slower groups (fastest %CV = 24.02%, slowest %CV = 32.03%), indicating a lower variation in speed across the race. Pacing in a cross-country mountain bike marathon is related to performance, age, sex and race experience. Better performance appears to be associated with higher relative speed during climbing sections, resulting in a more consistent overall race speed.
Collapse
Affiliation(s)
- Samantha Louise Moss
- a Department of Sport and Exercise Science , University of Chester , Chester , UK
| | - Ben Francis
- a Department of Sport and Exercise Science , University of Chester , Chester , UK
| | - Giovanna Calogiuri
- b Department of Public Health, Faculty of Social and Health Sciences , Inland Norway University of Applied Sciences , Elverum , Norway
| | - Jamie Highton
- a Department of Sport and Exercise Science , University of Chester , Chester , UK
| |
Collapse
|
25
|
Hays A, Devys S, Bertin D, Marquet LA, Brisswalter J. Understanding the Physiological Requirements of the Mountain Bike Cross-Country Olympic Race Format. Front Physiol 2018; 9:1062. [PMID: 30158873 PMCID: PMC6104479 DOI: 10.3389/fphys.2018.01062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives: To evaluate the physiological requirements imposed by the current mountain biking Cross-Country Olympic (XCO) format. Methods: Sixteen Cross-Country cyclists competing at national or international level participated in this study. All participants completed a simulated and a real official race on a cycling-accredited race track. Oxygen consumption (O2) and heart rate (HR) values expressed as %O2max and %HRmax, respectively, were divided into three physiological intensity zones. The first zone (Z1) was the physiological region below VT1, the second zone (Z2) corresponded to a region between VT1 and VT2, and the third zone (Z3) was located between VT2 and VO2max. For power output, an additional fourth zone was considered above maximal aerobic power (MAP). Results: When competing in the current XCO format, 37.0 ± 17.9% of the race is performed above the second ventilatory threshold at a mean intensity of 87% O2max and 25% of the race was spent above MAP. This contribution varied between laps, with a very high intensity during the first lap and more aerobic subsequent laps. The durations of most of the periods beyond MAP oscillated between 5 and 30 s. Between these short, repeated bursts, low-intensity periods of exercise were recorded. Conclusion: The current XCO race format is an acyclical and intermittent exercise comparable to high-intensity team sports. Moreover, our results highlight the relevance of O2 values when analyzing XCO performance, they should be combined with commonly used HR and/or power output data.
Collapse
Affiliation(s)
- Arnaud Hays
- Institut des Sciences du Mouvement, Aix-Marseille Université, Marseille, France
| | - Simon Devys
- Institut des Sciences du Mouvement, Aix-Marseille Université, Marseille, France
| | - Denis Bertin
- Institut des Sciences du Mouvement, Aix-Marseille Université, Marseille, France
| | - Laurie-Anne Marquet
- Institut des Sciences du Mouvement, Aix-Marseille Université, Marseille, France
| | | |
Collapse
|