1
|
Winker M, Hoffmann S, Laborde S, Javelle F. The acute effects of motor cortex transcranial direct current stimulation on athletic performance in healthy adults: A systematic review and meta-analysis. Eur J Neurosci 2024; 60:5086-5110. [PMID: 39120435 DOI: 10.1111/ejn.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
This systematic review and meta-analysis assesses independently the acute effects of anodal and cathodal motor cortex transcranial direct current stimulation (tDCS) on athletic performance in healthy adults. Besides, it evaluates the unique and conjoint effects of potential moderators (i.e., stimulation parameters, exercise type, subjects' training status and risk of bias). Online database search was performed from inception until March 18th 2024 (PROSPERO: CRD42023355461). Forty-three controlled trials were included in the systematic review, 40 in the anodal tDCS meta-analysis (68 effects), and 9 (11 effects) in the cathodal tDCS meta-analysis. Performance enhancement between pre- and post-stimulation was the main outcome measure considered. The anodal tDCS effects on physical performance were small to moderate (g = .29, 95%CI [.18, .40], PI = -.64 to 1.23, I2 = 64.0%). Exercise type, training status and use of commercial tDCS were significant moderators of the results. The cathodal tDCS effects were null (g = .04, 95%CI [-.05, .12], PI = -.14 to .23, I2 = 0%), with a small to moderate heterogeneity entirely due to sampling error, thus impairing further moderator analysis. These findings hold significant implications for the field of brain stimulation and physical performance, as they not only demonstrate a small to moderate effect of acute tDCS but also identify specific categories of individuals, devices and activities that are more susceptible to improvements. By addressing the multidimensional factors influencing the mechanisms of tDCS, we also provide suggestions for future research.
Collapse
Affiliation(s)
- Matteo Winker
- University of Cologne, Cologne, Germany
- Institute for Sport and Sport Science, Performance and Health (Sports Medicine), TU Dortmund University, Dortmund, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sven Hoffmann
- Psychological Methods and Evaluation, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
2
|
Uehara L, Coelho DB, Baptista AF, Santana L, Moreira RJD, Zana Y, Malosá L, Lima T, Valentim G, Cardenas-Rojas A, Fregni F, Corrêa JCF, Corrêa FI. Does Transcranial Direct Current Stimulation reduce central and peripheral muscle fatigue in recreational runners? A triple-blind, sham-controlled, randomized, crossover clinical study. Braz J Phys Ther 2024; 28:101088. [PMID: 38936315 PMCID: PMC11260918 DOI: 10.1016/j.bjpt.2024.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Runners seek health benefits and performance improvement. However, fatigue might be considered a limiting factor. Transcranial Direct Current Stimulation (tDCS) has been investigated to improve performance and reduce fatigue in athletes. While some studies showing that tDCS may improve a variety of physical measures, other studies failed to show any benefit. OBJECTIVE To evaluate the acute effects of tDCS on central and peripheral fatigue compared to a sham intervention in recreational runners. METHODS This is a triple-blind, controlled, crossover study of 30 recreational runners who were randomized to receive one of the two interventions, anodal or sham tDCS, after the fatigue protocol. The interventions were applied to the quadriceps muscle hotspot for 20 min. Peak torque, motor-evoked potential, and perceived exertion rate were assessed before and after the interventions, and blood lactate level was assessed before, during, and after the interventions. A generalized estimated equation was used to analyze the peak torque, motor-evoked potential, and blood lactate data, and the Wilcoxon test was used for perceived exertion rate data. RESULTS Our findings showed no difference between anodal tDCS and sham tDCS on peak torque, motor-evoked potential, blood lactate, and perceived exertion rate. CONCLUSION The tDCS protocol was not effective in improving performance and reducing fatigue compared to a sham control intervention. BRAZILIAN CLINICAL TRIALS REGISTRY RBR-8zpnxz.
Collapse
Affiliation(s)
- Laura Uehara
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Lucas Santana
- Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | | | - Yossi Zana
- Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Luciana Malosá
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Taiane Lima
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Gabriela Valentim
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - João Carlos Ferrari Corrêa
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Fernanda Ishida Corrêa
- Master's and Doctorate in Rehabilitation Sciences Program, Universidade Nove de Julho, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Yang Y, Feng Z, Luo YH, Chen JM, Zhang Y, Liao YJ, Jiang H, Long Y, Wei B. Exercise-Induced Central Fatigue: Biomarkers, and Non-Medicinal Interventions. Aging Dis 2024:AD.2024.0567. [PMID: 39012671 DOI: 10.14336/ad.2024.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Fatigue, commonly experienced in daily life, is a feeling of extreme tiredness, shortage or lack of energy, exhaustion, and difficulty in performing voluntary tasks. Central fatigue, defined as a progressive failure to voluntarily activate the muscle, is typically linked to moderate- or light-intensity exercise. However, in some instances, high-intensity exercise can also trigger the onset of central fatigue. Exercise-induced central fatigue often precedes the decline in physical performance in well-trained athletes. This leads to a reduction in nerve impulses, decreased neuronal excitability, and an imbalance in brain homeostasis, all of which can adversely impact an athlete's performance and the longevity of their sports career. Therefore, implementing strategies to delay the onset of exercise-induced central fatigue is vital for enhancing athletic performance and safeguarding athletes from the debilitating effects of fatigue. In this review, we discuss the structural basis, measurement methods, and biomarkers of exercise-induced central fatigue. Furthermore, we propose non-pharmacological interventions to mitigate its effects, which can potentially foster improvements in athletes' performances in a healthful and sustainable manner.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhi Feng
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu-Hang Luo
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Jue-Miao Chen
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu Zhang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yi-Jun Liao
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Hui Jiang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yinxi Long
- Department of Neurology, Affiliated Hengyang Hospital of Hunan Normal University &;amp Hengyang Central Hospital, Hengyang, 421001, China
| | - Bo Wei
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Yu Y, Zhang X, Nitsche MA, Vicario CM, Qi F. Does a single session of transcranial direct current stimulation enhance both physical and psychological performance in national- or international-level athletes? A systematic review. Front Physiol 2024; 15:1365530. [PMID: 38962069 PMCID: PMC11220198 DOI: 10.3389/fphys.2024.1365530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Some studies showed that a single session of transcranial direct current stimulation (tDCS) has the potential of modulating motor performance in healthy and athletes. To our knowledge, previously published systematic reviews have neither comprehensively investigated the effects of tDCS on athletic performance in both physical and psychological parameters nor investigated the effects of tDCS on high-level athletes. We examined all available research testing a single session of tDCS on strength, endurance, sport-specific performance, emotional states and cognitive performance for better application in competition and pre-competition trainings of national- or international-level athletes. A systematic search was conducted in PubMed, Web of Science, EBSCO, Embase, and Scopus up until to June 2023. Studies were eligible when participants had sports experience at a minimum of state and national level competitions, underwent a single session of tDCS without additional interventions, and received either sham tDCS or no interventions in the control groups. A total of 20 experimental studies (224 participants) were included from 18 articles. The results showed that a single tDCS session improved both physical and psychological parameters in 12 out of the 18 studies. Of these, six refer to the application of tDCS on the motor system (motor cortex, premotor cortex, cerebellum), five on dorsolateral prefrontal cortex and two on temporal cortex. The most sensitive to tDCS are strength, endurance, and emotional states, improved in 67%, 75%, and 75% of studies, respectively. Less than half of the studies showed improvement in sport-specific tasks (40%) and cognitive performance (33%). We suggest that tDCS is an effective tool that can be applied to competition and pre-competition training to improve athletic performance in national- or international-level athletes. Further research would explore various parameters (type of sports, brain regions, stimulation protocol, athlete level, and test tasks) and neural mechanistic studies in improving efficacy of tDCS interventions. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022326989, identifier CRD42022326989.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Xinbi Zhang
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Carmelo M. Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Fengxue Qi
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| |
Collapse
|
5
|
Codella R, Gallo G, Meloni A, Luzi L, Filipas L. Elite Cyclists with Type 1 Diabetes Show Acceptable Glycemic Excursions During a Time-Trial Performance Under High-Definition Transcranial Direct Current Stimulation. Endocr Pract 2024; 30:380-383. [PMID: 38307458 DOI: 10.1016/j.eprac.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE To evaluate the effects of bilateral dorsolateral prefrontal cortex high-definition transcranial direct current stimulation (HD-tDCS) on glycemic excursions during a time-trial performance in elite cyclists with type 1 diabetes (T1D). METHODS In a double-blind, randomized crossover order, 9 elite cyclists with T1D (no complications) underwent either HD-tDCS (F3 and F4) or control (SHAM) and completed a constant-load trial at 75% of the second ventilatory threshold plus a 15-km cycling time trial. RESULTS Real-time continuous glucose monitoring revealed similar glycemic variability between the 2 conditions, showing a significant effect of time but no interaction (stimulation × time) or stimulation effect. CONCLUSION Because glycemic control is crucial for both health and performance, these findings suggest that HD-tDCS could be safely used to enhance performance in athletes with T1D and potentially in a broader active T1D population.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.
| | - Gabriele Gallo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Andrea Meloni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
6
|
Rocha JVDS, de Almeida RF, de Lima Cordeiro BN, Cardoso Sarcinelli CH, Zimerer C, Arêas FZ. Effects of bi-hemispheric anodal transcranial direct current stimulation on soccer player performance: a triple-blinded, controlled, and randomized study. Front Sports Act Living 2024; 6:1350660. [PMID: 38584685 PMCID: PMC10995377 DOI: 10.3389/fspor.2024.1350660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The search for increased performance and physical performance are linked to the use of ergogenic resources. The vertical jump is one of the measures commonly used to evaluate the performance of lower limbs in athletes. Transcranial direct current stimulation (tDCS) is a non-invasive, safe, economically viable technique that can modulate cortical excitability, which can influence the increase in the performance of athletes in general. This study aimed to investigate whether the use of tDCS on the primary motor cortex (M1) improves the performance of soccer players. A cross-sectional study was conducted. Twenty-seven players were randomized into three groups: Active tDCS group (n = 9), Sham group (n = 9), and control group (n = 9). Stimulation was applied at 2 mA for 15 min using a cephalic mount. Visual Pain Scale (VAS) and Subjective Recovery Scale (SRS) were monitored before and after tDCS. In addition, the participants performed the Countermovement Jump (CMJ) before and after the stimulation intercalated with Heart Rate (HR) and Rating of Perceived Exertion (RPE CR-10). No differences were found in any of the performance variables analyzed (p > 0.05) nor in the responses of HR (p > 0.05), RPE (p > 0.05), VAS (p > 0.05), and SRS (p > 0.05) between groups. The tDCS in M1 did not change the performance of the vertical jump, and there was no improvement in the subjective scales. New studies should also be developed with different stimulus intensities in different cortical areas and sports modalities.
Collapse
Affiliation(s)
- Jader Vinicius Da Silva Rocha
- Universidade Federal do Espirito Santo, Vitória, Brazil
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | | | - Bárbara Naeme de Lima Cordeiro
- Universidade Federal do Espirito Santo, Vitória, Brazil
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | | | - Carla Zimerer
- Universidade Federal do Espirito Santo, Vitória, Brazil
| | - Fernando Zanela Arêas
- Universidade Federal do Espirito Santo, Vitória, Brazil
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
7
|
Sun H, Soh KG, Mohammadi A, Toumi Z, Zhang L, Ding C, Gao X, Tian J. Counteracting mental fatigue for athletes: a systematic review of the interventions. BMC Psychol 2024; 12:67. [PMID: 38336843 PMCID: PMC10854164 DOI: 10.1186/s40359-023-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024] Open
Abstract
The deleterious effects of mental fatigue (MF) on athletes have been carefully studied in various sports, such as soccer, badminton, and swimming. Even though many researchers have sought ways to ameliorate the negative impact of MF, there is still a lack of studies that review the interventions used to counteract MF among athletes. This review aims to report the current evidence exploring the effects of interventions on MF and sport-specific performance, including sport-specific motor performance and perceptual-cognitive skills. Web of Science, Scopus, PubMed, and SPORTDicus (EBSCOhost) were combed through to find relevant publications. Additionally, the references and Google Scholar were searched for any grey literature. For the current review, we included only randomized controlled trials that involved athletes, a primary task to induce MF, interventions to counter MF with comparable protocols, and the outcomes of sport-specific motor performance and perceptual-cognitive skill. The selection criteria resulted in the inclusion of 10 articles. The manipulations of autonomous self-control exertion, person-fit, nature exposure, mindfulness, and transactional direct current stimulation showed that positive interventions counteract MF and improve sport-specific performance in different domains, including strength, speed, skill, stamina, and perceptual-cognitive skills. The selected interventions could significantly counteract MF and improve subsequent sport-specific performance. Moreover, self-regulation and attention resources showed the importance of the potential mechanisms behind the relevant interventions.
Collapse
Affiliation(s)
- He Sun
- School of Physical Education, Henan University, Kaifeng, China
| | - Kim Geok Soh
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alireza Mohammadi
- Faculty of Business Management, City University Malaysia, Selangor, Malaysia
| | - Zakaria Toumi
- School of Psychology, Northeast Normal University, Changchun, China
| | - Lingling Zhang
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- The National Football Academy, Shandong Sport University, Jinan, China
| | - Cong Ding
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Xiaojuan Gao
- School of Physical Education, Henan University, Kaifeng, China
| | - Jian Tian
- School of Physical Education, Henan University, Kaifeng, China.
| |
Collapse
|
8
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
9
|
Luo J, Fang C, Huang S, Wu J, Liu B, Yu J, Xiao W, Ren Z. Effects of single session transcranial direct current stimulation on aerobic performance and one arm pull-down explosive force of professional rock climbers. Front Physiol 2023; 14:1153900. [PMID: 37089430 PMCID: PMC10117960 DOI: 10.3389/fphys.2023.1153900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Objective: To explore the effects of single-session transcranial direct current stimulation (tDCS) on aerobic performance and explosive force in the one-arm pull-down of long-term trained rock climbers. Method: Twenty athletes (twelve male and eight female) from the Rock Climbing Team of Hunan province (Hunan, China) were selected for a randomized double-blind crossover study. After baseline tests, All subjects visited laboratories twice to randomly receive either sham or a-tDCS at a current intensity of 2 mA for 20 min. The two visits were more than 72 h apart. Immediately after each stimulation, subjects completed a 9-min 3-level-load aerobic test and a one-arm pull-down test. Results: Differences in the heart rate immediately after 9-min incremental aerobic exercises revealed no statistical significance between each group (p > 0.05). However, the decrease in heart rate per unit time after exercise after real stimulation was significantly better than before stimulation (p < 0.05), and no statistical significance was observed between after sham stimulation and before stimulation (p > 0.05). One-arm pull-down explosive force on both sides after real stimulation was improved by a-tDCS compared with before stimulation, but with no significant difference (p > 0.05). Real stimulation was significantly improved, compared with sham stimulation on the right side (p < 0.05). Conclusion: Single-session tDCS could potentially benefit sports performance in professional athletes.
Collapse
Affiliation(s)
- Jia Luo
- Key Laboratory of Kinesiology Evaluation and Recovery of General Administration of Sport of China, Sports Science Institute of Hunan, Changsha, China
| | - Caihua Fang
- Key Laboratory of Kinesiology Evaluation and Recovery of General Administration of Sport of China, Sports Science Institute of Hunan, Changsha, China
| | - Sen Huang
- Key Laboratory of Kinesiology Evaluation and Recovery of General Administration of Sport of China, Sports Science Institute of Hunan, Changsha, China
| | - Jinlong Wu
- College of Physical Education, Southwest University, Chongqing, China
| | - Bowen Liu
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Jingxuan Yu
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Wen Xiao
- College of Physical Education, Shenzhen University, Shenzhen, China
| | - Zhanbing Ren
- College of Physical Education, Shenzhen University, Shenzhen, China
- *Correspondence: Zhanbing Ren,
| |
Collapse
|
10
|
Marinus N, Van Hoornweder S, Aarts M, Vanbilsen J, Hansen D, Meesen R. The influence of a single transcranial direct current stimulation session on physical fitness in healthy subjects: a systematic review. Exp Brain Res 2023; 241:31-47. [PMID: 36357590 PMCID: PMC9648891 DOI: 10.1007/s00221-022-06494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Physical fitness is of indisputable importance for both health, and sports. Currently, the brain is being increasingly recognized as a contributor to physical fitness. Hereby, transcranial direct current stimulation (tDCS), as an ergogenic aid, has gained scientific interest. The current PRISMA-adherent review aimed to examine the effect of tDCS on the three core components of physical fitness: muscle strength, -endurance and cardiopulmonary endurance. Randomized controlled- or cross-over trials evaluating the effect of a single tDCS session (vs. sham) in healthy individuals were included. Hereby, a wide array of tDCS-related factors (e.g., tDCS montage and dose) was taken into account. Thirty-five studies (540 participants) were included. Between-study heterogeneity in factors such as age, activity level, tDCS protocol, and outcome measures was large. The capacity of tDCS to improve physical fitness varied substantially across studies. Nevertheless, muscle endurance was most susceptible to improvements following anodal tDCS (AtDCS), with 69% of studies (n = 11) investigating this core component of physical fitness reporting positive effects. The primary motor cortex and dorsolateral prefrontal cortex were targeted the most, with positive results being reported on muscle and cardiopulmonary endurance. Finally, online tDCS seemed most beneficial, and no clear relationship between tDCS and dose-related parameters seemed present. These findings can contribute to optimizing tDCS interventions during the rehabilitation of patients with a variety of (chronic) diseases such as cardiovascular disease. Therefore, future studies should focus on further unraveling the potential of AtDCS on physical fitness and, more specifically, muscle endurance in both healthy subjects and patients suffering from (chronic) diseases. This study was registered in Prospero with the registration number CRD42021258529. "To enable PROSPERO to focus on COVID-19 registrations during the 2020 pandemic, this registration record was automatically published exactly as submitted. The PROSPERO team has not checked eligibility".
Collapse
Affiliation(s)
- Nastasia Marinus
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium. .,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.
| | - Sybren Van Hoornweder
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Marthe Aarts
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Jessie Vanbilsen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Dominique Hansen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Raf Meesen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Louvain, Belgium
| |
Collapse
|
11
|
Impact of transcranial alternating current stimulation on working memory and selective attention in athletes with attention deficit hyperactivity disorder: randomized controlled trial. Neuroreport 2022; 33:756-762. [PMID: 36250434 DOI: 10.1097/wnr.0000000000001842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The current study aimed to investigate the impact of transcranial alternating current stimulation (tACS) on working memory and selective attention in athletes with attention deficit hyperactivity disorder (ADHD). METHODS In total 45 athletes with attention deficit hyperactivity disorder were randomly divided into three equal groups (sham, control and experimental groups). All participants in the sham and experimental groups received stimulations on the F3 and SO with a current of (10 HZ) 1 mA for 15 min over 10 sessions ( P ≤ 0.05), and after 10 sessions, each group was retested. After 2 weeks, a follow-up test was performed according to the post-test using the Stroop test and N-BACK- (working memory test) to test statistical hypotheses ( P ≤ 0.05). RESULTS The results of repeated measures analysis of variance revealed that applying tACS proved effective in improving the working memory and selective attention of ADHD athletes. CONCLUSIONS The study's findings indicated that the protocol of applying tACS 1 MA with 10 HZ improved the working memory and selective attention of ADHD athletes.
Collapse
|
12
|
Maudrich T, Ragert P, Perrey S, Kenville R. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis. Brain Stimul 2022; 15:1517-1529. [PMID: 36442774 DOI: 10.1016/j.brs.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a promising and feasible method to improve motor performance in healthy and clinical populations. However, the potential of tDCS to enhance sport-specific motor performance in athletes remains elusive. OBJECTIVE We aimed at analyzing the acute effects of a single anodal tDCS session on sport-specific motor performance changes in athletes compared to sham. METHODS A systematic review and meta-analysis was conducted in the electronic databases PubMed, Web of Science, and SPORTDiscus. The meta-analysis was performed using an inverse variance method and a random-effects model. Additionally, two subgroup analyses were conducted (1) depending on the stimulated brain areas (primary motor cortex (M1), temporal cortex (TC), prefrontal cortex (PFC), cerebellum (CB)), and (2) studies clustered in subgroups according to different sports performance domains (endurance, strength, visuomotor skill). RESULTS A total number of 19 studies enrolling a sample size of 258 athletes were deemed eligible for inclusion. Across all included studies, a significant moderate standardized mean difference (SMD) favoring anodal tDCS to enhance sport-specific motor performance could be observed. Subgroup analysis depending on cortical target areas of tDCS indicated a significant moderate SMD in favor of anodal tDCS compared to sham for M1 stimulation. CONCLUSION A single anodal tDCS session can lead to performance enhancement in athletes in sport-specific motor tasks. Although no definitive conclusions can be drawn regarding the modes of action as a function of performance domain or stimulation site, these results imply intriguing possibilities concerning sports performance enhancement through anodal M1 stimulation.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
13
|
Filipas L, Gallo G, Meloni A, Luzi L, Codella R. Effects of bilateral dorsolateral prefrontal cortex high-definition transcranial direct-current stimulation on time-trial performance in cyclists with type 1 diabetes mellitus. Brain Stimul 2022; 15:1292-1299. [PMID: 36126864 DOI: 10.1016/j.brs.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND HD-tDCS is capable to increase the focality of neuromodulation and has been recently applied to improve endurance performance in healthy subjects. OBJECTIVE/HYPOTHESIS Whether these putative advantages could be exploited in active subjects with type 1 diabetes mellitus (T1D) remains questionable. METHODS In a double-blind, randomized crossover order, 11 high-level cyclists (27 ± 4.3 years; weight: 65.5 ± 8.6 kg; height: 180 ± 8 cm; VO2peak: 67.5 ± 2.9 mL min-1 kg-1) with T1D underwent either HD-tDCS (F3, F4) or control (SHAM) and completed a constant-load trial (CLT) at 75% of the 2nd ventilatory threshold plus a 15-km cycling time-trial (TT). RESULTS After HD-tDCS, the total time to cover the TT was 3.8% faster (P < 0.01), associated with a higher mean power output (P < 0.01), and a higher rate of power/perception of effort (P < 0.01) and power/heart rate at iso-time (P < 0.05) than the SHAM condition. Physiological parameters during CLT and TT did not differ in both conditions. CONCLUSIONS These findings suggest that upregulation of the prefrontal cortex could enhance endurance performance in high-level cyclists with T1D, without altering physiological and perceptual responses at moderate intensity. Present data open to future applications of HD-tDCS to a wider population of active T1D-subjects.
Collapse
Affiliation(s)
- Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.
| | - Gabriele Gallo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Andrea Meloni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
14
|
Moscaleski LA, Fonseca A, Brito R, Morya E, Morgans R, Moreira A, Okano AH. Does high-definition transcranial direct current stimulation change brain electrical activity in professional female basketball players during free-throw shooting? FRONTIERS IN NEUROERGONOMICS 2022; 3:932542. [PMID: 38235466 PMCID: PMC10790899 DOI: 10.3389/fnrgo.2022.932542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2024]
Abstract
Differentiated brain activation in high-performance athletes supports neuronal mechanisms relevant to sports performance. Preparation for the motor action involves cortical and sub-cortical regions that can be non-invasively modulated by electrical current stimulation. This study aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on electrical brain activity in professional female basketball players during free-throw shooting. Successful free-throw shooting (n = 2,361) from seven professional female basketball players was analyzed during two experimental conditions (HD-tDCS cathodic and sham) separated by 72 h. Three spectral bio-markers, Power Ratio Index (PRI), Delta Alpha Ratio (DAR), and Theta Beta Ratio (TBR) were measured (electroencephalography [EEG] Brain Products). Multi-channel HD-tDCS was applied for 20 min, considering current location and intensity for cathodic stimulation: FCC1h, AFF5h, AFF1h (-0.5 mA each), and FCC5h (ground). The within EEG analyses (pre and post HD-tDCS) of frontal channels (Fp1, Fp2, F3, F4, FC1, FC3) for 1 second epoch pre-shooting, showed increases in PRI (p < 0.001) and DAR (p < 0.001) for HD-tDCS cathodic condition, and in TBR for both conditions (cathodic, p = 0.01; sham, p = 0.002). Sub-group analysis divided the sample into less (n = 3; LSG) and more (n = 4; MSG) stable free-throw-shooting performers and revealed that increases in pre to post HD-tDCS in PRI only occurred for the LSG. These results suggest that the effect of HD-tDCS may induce changes in slow frontal frequency brain activities and that this alteration seems to be greater for players demonstrating a less stable free-throw shooting performance.
Collapse
Affiliation(s)
- Luciane Aparecida Moscaleski
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - André Fonseca
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Rodrigo Brito
- Neuroscience Applied Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, Brazil
| | - Ryland Morgans
- Department of Sports Medicine and Medical Rehabilitation, Sechenov First State Medical University, Moscow, Russia
| | - Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Alexandre Hideki Okano
- Center of Mathematics, Computation, and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
15
|
Schmaußer M, Hoffmann S, Raab M, Laborde S. The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis. J Neurosci Res 2022; 100:1664-1694. [PMID: 35582757 DOI: 10.1002/jnr.25062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are widely used to test the involvement of specific cortical regions in various domains such as cognition and emotion. Despite the capability of stimulation techniques to test causal directions, this approach has been only sparsely used to examine the cortical regulation of autonomic nervous system (ANS) functions such as heart rate (HR) and heart rate variability (HRV) and to test current models in this regard. In this preregistered (PROSPERO) systematic review and meta-analysis, we aimed to investigate, based on meta-regression, whether NIBS represents an effective method for modulating HR and HRV measures, and to evaluate whether the ANS is modulated by cortical mechanisms affected by NIBS. Here we have adhered to the PRISMA guidelines. In a series of four meta-analyses, a total of 131 effect sizes from 35 sham-controlled trials were analyzed using robust variance estimation random-effects meta-regression technique. NIBS was found to effectively modulate HR and HRV with small to medium effect sizes. Moderator analyses yielded significant differences in effects between stimulation of distinct cortical areas. Our results show that NIBS is a promising tool to investigate the cortical regulation of ANS, which may add to the existing brain imaging and animal study literature. Future research is needed to identify further factors modulating the size of effects. As many of the studies reviewed were found to be at high risk of bias, we recommend that methods to reduce potential risk of bias be used in the design and conduct of future studies.
Collapse
Affiliation(s)
| | - Sven Hoffmann
- Institute of Psychology, University of Hagen, Hagen, Germany
| | - Markus Raab
- Institute of Psychology, German Sport University, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, UK
| | - Sylvain Laborde
- Institute of Psychology, German Sport University, Cologne, Germany.,UFR STAPS, EA 4260, Université de Caen Normandie, Caen, France
| |
Collapse
|
16
|
Effects of Bilateral Dorsolateral Prefrontal Cortex High-Definition Transcranial Direct-Current Stimulation on Physiological and Performance Responses at Severe-Intensity Exercise Domain in Elite Road Cyclists. Int J Sports Physiol Perform 2022; 17:1085-1093. [PMID: 35453121 DOI: 10.1123/ijspp.2022-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the effects of bilateral dorsolateral prefrontal cortex high-definition transcranial direct-current stimulation (HD-tDCS) on physiological and performance responses during exercise at the upper limit of the severe-intensity exercise domain in elite-level road cyclists. METHODS Eleven elite-level road cyclists (VO2peak: 71.8 [3.1] mL·kg-1·min-1) underwent the HD-tDCS or SHAM condition in a double-blind, counterbalanced, and randomized order. After 20 minutes of receiving either HD-tDCS on dorsolateral prefrontal cortex (F3 and F4) or SHAM stimulation, participants completed a 10-minute constant-load trial (CLT1) at 90% of the first ventilatory threshold and a 2-minute CLT (CLT2) at peak power output. Thereafter, they performed a simulated 2-km time trial (TT). Maximal oxygen uptake, respiratory exchange ratio, heart rate, and rating of perceived exertion were recorded during CLT1 and CLT2, whereas performance parameters were recorded during the TT. RESULTS In 6 out of 11 cyclists, the total time to complete the TT was 3.0% faster in HD-tDCS compared to SHAM. Physiological and perceptual variables measured during CLT1 and CLT2 did not change between HD-tDCS and SHAM. CONCLUSIONS HD-tDCS over the dorsolateral prefrontal cortex seemed to improve cycling TT performance within the upper limit of the severe-intensity exercise domain, suggesting that an upregulation of the prefrontal cortex could be critical even in this exercise intensity domain. However, the limited dimension and the high interindividual variability require further studies to test these putative ergogenic effects.
Collapse
|
17
|
Rodrigues GM, de Oliveira BRR, Jesus Abreu MA, Gomes F, Machado S, Monteiro W, Lattari E. Anodal Transcranial Direct Current Stimulation Does Not Affect Velocity Loss During a Typical Resistance Exercise Session. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022:1-10. [PMID: 35412452 DOI: 10.1080/02701367.2021.2005235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Purpose: This study investigated the effects of transcranial direct current stimulation (tDCS) on velocity loss in a typical resistance exercise session. Methods: Twelve recreationally resistance-trained males (age = 24.8 ± 3.0 years, body mass = 78.9 ± 13.6 kg, and height = 174.3 ± 7.3 cm) completed two experimental trials in a counterbalanced crossover design: anodal tDCS and sham conditions. The stimuli were applied over the left dorsolateral prefrontal cortex for 20 minutes, using a 2 mA current intensity in anodal tDCS and a 1-minute active stimulus in the sham condition. After stimulation, subjects performed three sets of the bench press at a 70% of 1 maximum repetition intensity and 1 min of inter-set rest. The velocity loss was calculated as the relative difference between the fastest repetition velocity (usually first) and the velocity of the last repetition of each set and averaged over all three sets. Results: The results found no interaction between conditions and sets (P = .122), and no effect for conditions (P = .323) or sets (P = .364) for the velocity loss in each set. Also, no differences were found between the average velocity loss of the three sets in the anodal tDCS (-25.0 ± 4.7%) and sham condition (-23.3 ± 6.4%; P = .323). Conclusion: Anodal tDCS does not affect movement velocity in a typical strength training protocol in recreationally trained subjects.
Collapse
Affiliation(s)
| | | | | | | | - Sérgio Machado
- Federal University of Santa Maria
- Neurodiversity Institute
| | - Walace Monteiro
- Salgado de Oliveira University (UNIVERSO)
- University of Rio de Janeiro State
| | | |
Collapse
|
18
|
Bowman-Smart, Hilary, Savulescu, Julian. The Ethics of Motivational Neuro-Doping in Sport: Praiseworthiness and Prizeworthiness. NEUROETHICS-NETH 2021; 14:205-215. [PMID: 34790275 PMCID: PMC8590656 DOI: 10.1007/s12152-020-09445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
Motivational enhancement in sport – a form of ‘neuro-doping’ – can help athletes attain greater achievements in sport. A key question is whether or not that athlete deserves that achievement. We distinguish three concepts – praiseworthiness (whether the athlete deserves praise), prizeworthiness (whether the athlete deserves the prize), and admiration (pure admiration at the performance) – which are closely related. However, in sport, they can come apart. The most praiseworthy athlete may not be the most prizeworthy, and so on. Using a model of praiseworthiness as costly commitment to a valuable end, and situating prizeworthiness within the boundaries of the sport, we argue that motivational enhancement in some cases can be compatible with desert.
Collapse
Affiliation(s)
- Bowman-Smart
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010 Australia.,Uehiro Centre for Practical Ethics, University of Oxford, St Ebbes St, Oxford, OX1 1PT UK
| | - Hilary
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Savulescu
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010 Australia.,Uehiro Centre for Practical Ethics, University of Oxford, St Ebbes St, Oxford, OX1 1PT UK
| | - Julian
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Uehiro Centre for Practical Ethics, University of Oxford, St Ebbes St, Oxford, OX1 1PT UK
| |
Collapse
|
19
|
da Silva Machado DG, Bikson M, Datta A, Caparelli-Dáquer E, Unal G, Baptista AF, Cyrino ES, Li LM, Morya E, Moreira A, Okano AH. Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Sci Rep 2021; 11:13911. [PMID: 34230503 PMCID: PMC8260713 DOI: 10.1038/s41598-021-92670-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called "conventional" tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg-1 min-1) were enrolled in this single-center, randomized, crossover, and sham-controlled trial. To test reliability, participants performed two time to exhaustion (TTE) tests (control conditions) on a cycle simulator with 80% of peak power until volitional exhaustion. Next, they randomly received HD-tDCS (2.4 mA), conventional (2.0 mA), or active sham tDCS (2.0 mA) over the motor cortex for 20-min before performing the TTE test. TTE, heart rate (HR), associative thoughts, peripheral (lower limbs), and whole-body ratings of perceived exertion (RPE) were recorded every minute. Outcome measures were reliable. There was no difference in TTE between HD-tDCS (853.1 ± 288.6 s), simulated conventional (827.8 ± 278.7 s), sham (794.3 ± 271.2 s), or control conditions (TTE1 = 751.1 ± 261.6 s or TTE2 = 770.8 ± 250.6 s) [F(1.95; 21.4) = 1.537; P = 0.24; η2p = 0.123]. There was no effect on peripheral or whole-body RPE and associative thoughts (P > 0.05). No serious adverse effect was reported. A single session of neither HD-tDCS nor conventional tDCS changed exercise performance and psychophysiological responses in athletes, suggesting that a ceiling effect may exist.
Collapse
Affiliation(s)
- Daniel Gomes da Silva Machado
- Associate Graduate Program in Physical Education - UEM/UEL, State University of Londrina, Londrina, PR, Brazil
- Department of Physical Education, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Abhishek Datta
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Egas Caparelli-Dáquer
- Nervous System Electric Stimulation Lab (LabEEL), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Abrahão F Baptista
- Nervous System Electric Stimulation Lab (LabEEL), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), Faculty of Medical Sciences, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Edilson Serpeloni Cyrino
- Associate Graduate Program in Physical Education - UEM/UEL, State University of Londrina, Londrina, PR, Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), Faculty of Medical Sciences, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, Brazil
| | - Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre Hideki Okano
- Associate Graduate Program in Physical Education - UEM/UEL, State University of Londrina, Londrina, PR, Brazil.
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), Faculty of Medical Sciences, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
20
|
Penna EM, Filho E, Campos BT, Ferreira RM, Parma JO, Lage GM, Coswig VS, Wanner SP, Prado LS. No Effects of Mental Fatigue and Cerebral Stimulation on Physical Performance of Master Swimmers. Front Psychol 2021; 12:656499. [PMID: 34290647 PMCID: PMC8287522 DOI: 10.3389/fpsyg.2021.656499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mental fatigue is a psychobiological state caused by extended periods of cognitive effort, and evidence suggests that mentally fatigued athletes present impaired physical performance. Different ergogenic aids have been proposed to counteract the deleterious effects of mental fatigue, but whether brain stimulation can counteract mental fatigue is still unknown. This scenario is even more obscure considering the effects of these interventions (mental fatigue induction and brain stimulation) in a very experienced population consisting of master athletes. Method: Ten master swimmers (30 ± 6 years old and 14 ± 8 years of experience) participated in the study. They underwent four experimental conditions before an 800-m freestyle test: mental fatigue with brain stimulation; mental fatigue without brain stimulation; absence of mental fatigue with brain stimulation; and absence of mental fatigue and no brain stimulation. Mental fatigue was induced by a cognitively demanding Stroop Color Test, whereas stimulation was applied on the temporal cortex. After that, the athletes swan 800 m as fast as possible and provided their ratings of perceived exertion (RPE) every 200 m. Results: Mental fatigue was effectively induced, as evidenced by a greater fatigue perception and more errors in the last blocks of the cognitive task. Mental fatigue induction did not influence performance (time to complete the swimming trial) and RPE. Similarly, brain stimulation failed to change these two parameters, regardless of mental fatigue induction. Conclusion: The prolonged physical performance of experienced master athletes is not influenced, under the present conditions, by mental fatigue induction, cerebral stimulation, and their association.
Collapse
Affiliation(s)
- Eduardo Macedo Penna
- GET/UFPA - Grupo de Estudos em Treinamento Físico e Esportivo, Universidade Federal do Pará, Castanhal, Brazil.,LAFISE - Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edson Filho
- Wheelock College of Education and Human Development, Boston University, Boston, MA, United States
| | - Bruno Teobaldo Campos
- LAFISE - Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renato Melo Ferreira
- LAQUA - Laboratório de Atividades Aquáticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Juliana Otoni Parma
- NNeuroM - Núcleo de Neurociências do Movimento Humano, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Menezes Lage
- NNeuroM - Núcleo de Neurociências do Movimento Humano, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Victor Silveira Coswig
- GET/UFPA - Grupo de Estudos em Treinamento Físico e Esportivo, Universidade Federal do Pará, Castanhal, Brazil
| | - Samuel Penna Wanner
- LAFISE - Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciano Sales Prado
- LAFISE - Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,CTE- Centro de Treinamento Esportivo/UFMG, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Chen CH, Chen YC, Jiang RS, Lo LY, Wang IL, Chiu CH. Transcranial Direct Current Stimulation Decreases the Decline of Speed during Repeated Sprinting in Basketball Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136967. [PMID: 34209833 PMCID: PMC8297176 DOI: 10.3390/ijerph18136967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to determine whether transcranial direct current stimulation (tDCS) can improve countermovement jump performance, fatigue index and alleviate the speed decline during repeated shuttle sprints in trained basketball players. Thirteen trained basketball players were divided into the tDCS trial and sham trial by the random crossover design. The tDCS trial was stimulated with 2-mA current in the M1 area in the middle of the top of the head for 20 min. For the sham trial, the current was turned off after 5 s, stopping the electrical stimulation. After warming up, the players underwent countermovement jump test, weighted countermovement jump test and then performed 40 × 15-m sprints with with a 1:4 exercise: rest ratio. The jump height, sprinting time, fatigue index, heart rate and rating of perceived exertion (RPE) were analyzed by paired-sample t-test, when significance was discovered by two-way repeated measures analysis of variance. The study results revealed that the tDCS trial significantly increase the countermovement jump performance (p = 0.04), decrease the sprinting time (p = 0.016), and had improved fatigue index during the sprinting process (p = 0.009). However, the heart rate and RPE during sprinting were nonsignificantly different between the trials. This study has identified that tDCS can decrease the speed decline, fatigue index during sprinting and increase countermovement jump performance without affecting heart rate or the rating of perceived exertion.
Collapse
Affiliation(s)
- Che-Hsiu Chen
- Department of Sport Performance, National Taiwan University of Sport, Taichung 404, Taiwan;
| | - Yu-Chun Chen
- Department of Physical Education, National Taiwan University of Sport, Taichung 404, Taiwan; (Y.-C.C.); (R.-S.J.)
| | - Ren-Shiang Jiang
- Department of Physical Education, National Taiwan University of Sport, Taichung 404, Taiwan; (Y.-C.C.); (R.-S.J.)
| | - Lok-Yin Lo
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404, Taiwan;
| | - I-Lin Wang
- College of Physical Education, Hubei Normal University, Huangshi 435002, China;
| | - Chih-Hui Chiu
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404, Taiwan;
- Correspondence: ; Tel.: +886-4-2221-3108 (ext. 3486)
| |
Collapse
|
22
|
Moreira A, Machado DGDS, Bikson M, Unal G, Bradley PS, Moscaleski L, Costa T, Kalil GCSG, Chao LW, Baptista AF, Morya E, Okano AH. Effect of Transcranial Direct Current Stimulation on Professional Female Soccer Players' Recovery Following Official Matches. Percept Mot Skills 2021; 128:1504-1529. [PMID: 34056967 DOI: 10.1177/00315125211021239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study investigated the effect of transcranial direct current stimulation (tDCS) combined with a recovery training session on the well-being and self-perceived recovery of professional female soccer players after official matches. Data from 13 world-class players were analyzed after participating in four official soccer matches of the first division of the Brazilian Women's Soccer Championship (7-, 10-, and 13-day intervals). We applied anodal tDCS (a-tDCS) over the left dorsolateral prefrontal cortex with 2 mA for 20 minutes (+F3/-F4 montage) the day after each match. Participants underwent two randomly ordered sessions of a-tDCS or sham. Players completed the Well-Being Questionnaire (WBQ) and the Total Quality Recovery (TQR) scale before each experimental condition and again the following morning. A two-way repeated-measures ANOVA showed a significant time x condition interaction on the WBQ (F(1,11)=5.21; p=0.043; ηp2=0.32), but not on the TQR (F(1,12) = 0.552; p = 0.47; ηp2 = 0.044). There was a large effect size (ES) for a-tDCS for the WBQ score (ES = 1.02; 95%CI = 0.17;1.88), and there was a moderate WBQ score increase (ES = 0.53; 95%CI = -0.29;1.34) for the sham condition. We found similar increases in the TQR score for a-tDCS (ES = 1.50; 95%CI = 0.63-2.37) and the sham condition (ES = 1.36; 95%CI = 0.51-2.22). These results suggest that a-tDCS (+F3/-F4 montage) combined with a recovery training session may slightly improve perceived well-being beyond the level of improvement after only the recovery training session among world-class female soccer players. Prior to widely adopting this recovery approach, further study is needed with larger and more diverse samples, including for female teams of different performance levels.
Collapse
Affiliation(s)
- Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/ CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Daniel Gomes da Silva Machado
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil.,Graduate Program in Collective Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, United States
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York, New York, United States
| | - Paul S Bradley
- Research Institute of Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Luciane Moscaleski
- Center for Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/ CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Taline Costa
- Sports Medicine Department, Sport Clube Corinthians Paulista, São Paulo, Brazil
| | - Gabriella C S G Kalil
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Liaw W Chao
- Centro de Acupuntura, Instituto de Ortopedia e Traumatologia - HCFMUSP, São Paulo, Brazil
| | - Abrahão F Baptista
- Center for Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil.,Laboratory of Medical Investigation 54 (LIM-54), Hospital das Clínicas, Faculdade de Medicina da USP, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/ CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Rio Grande do Norte, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/ CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Alexandre H Okano
- Center for Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/ CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
23
|
Bilateral Dorsolateral Prefrontal Cortex High-Definition Transcranial Direct-Current Stimulation Improves Time-Trial Performance in Elite Cyclists. Int J Sports Physiol Perform 2020; 16:224-231. [PMID: 33276322 DOI: 10.1123/ijspp.2019-0910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND The effects of anodal transcranial direct-current stimulation (tDCS) on endurance exercise performance are not yet fully understood. Different stimulated areas and low focality of classical tDCS technique may have led to discordant results. PURPOSE This study investigated the effect of a bilateral anodal high-definition tDCS (HD-tDCS) of the dorsolateral prefrontal cortex on the cycling time-trial (TT) performance and physiological and perceptual response at moderate intensity in elite cyclists. METHODS A total of 8 elite cyclists (maximal oxygen consumption: 72.2 [4.3] mL·min-1·kg-1) underwent in a double-blind, counterbalanced, and randomized order the experimental treatment (HD-tDCS) or control treatment (SHAM). After 20 minutes of receiving either HD-tDCS on the dorsolateral prefrontal cortex (F3 and F4) or SHAM stimulation, the participants completed a constant-load trial (CLT) at 75% of the second ventilatory threshold. Thereafter, they performed a simulated 15-km TT. The ratings of perceived exertion, heart rate, cadence, oxygen consumption, and respiratory exchange ratio were recorded during the CLT; the ratings of perceived exertion and heart rate were recorded during the TT. RESULTS The total time to complete the TT was 1.3% faster (HD-tDCS: 1212 [52] s vs SHAM: 1228 [56] s; P = .04) and associated with a higher heart rate (P < .001) and a tendency toward higher mean power output (P = .05). None of the physiological and perceptual variables measured during the CLT highlighted differences between the HD-tDCS and SHAM condition. CONCLUSIONS The findings suggest that bilateral HD-tDCS on the dorsolateral prefrontal cortex improves cycling TT performance without altering the physiological and perceptual response at moderate intensity, indicating that an upregulation of the prefrontal cortex could enhance endurance exercise performance.
Collapse
|
24
|
Mehrsafar AH, Rosa MAS, Zadeh AM, Gazerani P. A feasibility study of application and potential effects of a single session transcranial direct current stimulation (tDCS) on competitive anxiety, mood state, salivary levels of cortisol and alpha amylase in elite athletes under a real-world competition. Physiol Behav 2020; 227:113173. [DOI: 10.1016/j.physbeh.2020.113173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023]
|
25
|
Bornheim S, Croisier J, Leclercq V, Baude C, Kaux J. Les effets de la stimulation transcrânienne à courant continu (STCC) sur les performances physiques : une revue systématique de la littérature. Sci Sports 2020. [DOI: 10.1016/j.scispo.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Mesquita PHC, Franchini E, Romano-Silva MA, Lage GM, Albuquerque MR. Transcranial Direct Current Stimulation: No Effect on Aerobic Performance, Heart Rate, or Rating of Perceived Exertion in a Progressive Taekwondo-Specific Test. Int J Sports Physiol Perform 2020; 15:958-963. [PMID: 32023547 DOI: 10.1123/ijspp.2019-0410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 10/27/2023]
Abstract
PURPOSE To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) on the aerobic performance, heart rate (HR), and rating of perceived exertion (RPE) of highly trained taekwondo athletes. METHODS Twelve (8 men and 4 women) international/national-level athletes received a-tDCS or sham treatment over the M1 location in a randomized, single-blind crossover design. The stimulation was delivered at 1.5 mA for 15 min using an extracephalic bihemispheric montage. Athletes performed the progressive-specific taekwondo test 10 min after stimulation. HR was monitored continuously during the test, and RPE was registered at the end of each stage and at test cessation. RESULTS There were no significant differences between sham and a-tDCS in time to exhaustion (14.6 and 14.9, respectively, P = .53, effect size = 0.15) and peak kicking frequency (52 and 53.6, respectively, P = .53, effect size = 0.15) or in HR (P > .05) and RPE responses (P > .05). CONCLUSIONS Extracephalic bihemispheric a-tDCS over M1 did not influence the aerobic performance of taekwondo athletes or their psychophysiological responses, so athletes and staff should be cautious when using it in a direct-to-consumer manner.
Collapse
|
27
|
Valenzuela PL, Sánchez-Martínez G, Torrontegi E, Vázquez-Carrión J, Montalvo Z, Kara O. Validity, Reliability, and Sensitivity to Exercise-Induced Fatigue of a Customer-Friendly Device for the Measurement of the Brain's Direct Current Potential. J Strength Cond Res 2020; 36:1605-1609. [PMID: 32639373 DOI: 10.1519/jsc.0000000000003695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Valenzuela, PL, Sánchez-Martínez, G, Torrontegi, E, Vázquez-Carrión, J, Montalvo, Z, and Kara, O. Validity, reliability, and sensitivity to exercise-induced fatigue of a customer-friendly device for the measurement of the brain's direct current potential. J Strength Cond Res XX(X): 000-000, 2020-This study aimed to determine the validity, reliability, and sensitivity to exercise-induced fatigue of the brain's direct current (DC) potential measured with a commercially available and customer-friendly electroencephalography (EEG) device and Omegawave (OW). The study was composed of 3 different experiments as follows: (a) we compared the DC potential values obtained simultaneously in 31 subjects with both OW and a research-quality EEG system; (b) 3 consecutive DC potential measurements with OW were taken at rest on the same day in 25 subjects for reliability analyses; and (c) sensitivity to fatigue was assessed in 9 elite badminton players through the measurement of the DC potential with OW-as well as other fatigue-related measures (e.g., Hooper's index, heart rate variability, jump ability, and simple and complex reaction times)-24 hours after both a day of rest and of strenuous exercise, which were performed in a crossover and randomized design. The DC potential measured with OW was reliable (intraclass correlation coefficient = 0.97) and significantly correlated to that of EEG (r = 0.55, p = 0.001), although significant differences were observed between systems (p < 0.001). Compared with the rest day, strenuous exercise resulted in an impaired Hooper's index (p = 0.010) and jump ability (p = 0.008), longer simple (p = 0.038) and complex reaction times (p = 0.011), and a trend toward sympathetic dominance (standard deviation of normal to normal R-R intervals, p = 0.042; root mean square of differences between consecutive R-R intervals, p = 0.068). In turn, no significant differences were found between sessions for the DC potential (p = 0.173). In summary, the DC potential measured with OW was reliable and modestly correlated to that measured with EEG, but no differences were observed in response to the delayed fatigue (after 24 hours) elicited by strenuous exercise in elite athletes.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Madrid, Spain.,Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | | | - Elaia Torrontegi
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | - Javier Vázquez-Carrión
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | - Zigor Montalvo
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | - Olga Kara
- N.P. Bekhtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia.,O-Brain Research and Consulting, Tampere, Finland
| |
Collapse
|
28
|
Pugh J, Pugh C. Neurostimulation, doping, and the spirit of sport. NEUROETHICS-NETH 2020; 14:141-158. [PMID: 34824648 PMCID: PMC8590673 DOI: 10.1007/s12152-020-09435-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
There is increasing interest in using neuro-stimulation devices to achieve an ergogenic effect in elite athletes. Although the World Anti-Doping Authority (WADA) does not currently prohibit neuro-stimulation techniques, a number of researchers have called on WADA to consider its position on this issue. Focusing on trans-cranial direct current stimulation (tDCS) as a case study of an imminent so-called ‘neuro-doping’ intervention, we argue that the emerging evidence suggests that tDCS may meet WADA’s own criteria (pertaining to safety, performance-enhancing effect, and incompatibility with the ‘spirit of sport’) for a method’s inclusion on its list of prohibited substances and methods. We begin by surveying WADA’s general approach to doping, and highlight important limitations to the current evidence base regarding the performance-enhancing effect of pharmacological doping substances. We then review the current evidence base for the safety and efficacy of tDCS, and argue that despite significant shortcomings, there may be sufficient evidence for WADA to consider prohibiting tDCS, in light of the comparable flaws in the evidence base for pharmacological doping substances. In the second half of the paper, we argue that the question of whether WADA ought to ban tDCS turns significantly on the question of whether it is compatible with the ‘spirit of sport’ criterion. We critique some of the previously published positions on this, and advocate our own sport-specific and application-specific approach. Despite these arguments, we finally conclude by suggesting that tDCS ought to be monitored rather than prohibited due to compelling non-ideal considerations.
Collapse
Affiliation(s)
- Jonathan Pugh
- The Oxford Uehiro Centre for Practical Ethics, University of Oxford, Suite 8, Littlegate House, St Ebbes Street, Oxford, OX1 1PT UK
| | - Christopher Pugh
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
29
|
Romero-Martínez Á, Bressanutti S, Moya-Albiol L. A Systematic Review of the Effectiveness of Non-Invasive Brain Stimulation Techniques to Reduce Violence Proneness by Interfering in Anger and Irritability. J Clin Med 2020; 9:jcm9030882. [PMID: 32213818 PMCID: PMC7141522 DOI: 10.3390/jcm9030882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022] Open
Abstract
The field of neurocriminology has proposed several treatments (e.g., pharmacological, brain surgery, androgen-deprivation therapy, neurofeedback) to reduce violence proneness, but unfortunately, their effectiveness has been limited due to their side-effects. Therefore, it is necessary to explore alternative techniques to improve patients’ behavioural regulation with minimal undesirable effects. In this regard, non-invasive brain stimulation techniques, which are based on applying changing magnetic fields or electric currents to interfere with cortical excitability, have revealed their usefulness in alleviating the symptomatology of several mental disorders. However, to our knowledge, there are no reviews that assess whether these techniques are useful for reducing violence proneness. Therefore, we conducted a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria using the following databases: PsycINFO, PubMed, Dialnet, Psicodoc, Web of Knowledge, and the Cochrane Library. We initially identified 3746 entries, and eventually included 56 publications. Most of the studies were unanimous in concluding that the application of these techniques over the prefrontal cortex (PFC) was not sufficient to promote anger and irritability reductions in euthymic individuals of both genders. Nevertheless, the application of non-invasive brain stimulation techniques, especially transcranial direct current stimulation, over the right PFC seemed to reduce violent reactions in these individuals by interfering with the interpretation of the unfavourable situations (e.g., threating signals) or inner states that evoked anger. In antisocial and pathological populations, the conclusions were provided by a few pilot studies with important methodological weaknesses. The main conclusion of these studies was that bilateral stimulation of the PFC satisfactorily reduced anger and irritability only in inmates, patients with autism spectrum disorders (ASD), people who suffered a closed-head injury, and agitated patients with Alzheimer’s disease. Moreover, combining these techniques with risperidone considerably reduced aggressiveness in these patients. Therefore, it is necessary to be cautious about the benefits of these techniques to control anger, due the methodological weaknesses of these studies. Nonetheless, they offer valuable opportunities to prevent violence by designing new treatments combining brain stimulation with current strategies, such as psychotherapy and psychopharmacology, in order to promote lasting changes.
Collapse
|
30
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
31
|
Mesquita PHC, Lage GM, Franchini E, Romano-Silva MA, Albuquerque MR. Bi-hemispheric anodal transcranial direct current stimulation worsens taekwondo-related performance. Hum Mov Sci 2019; 66:578-586. [PMID: 31254810 DOI: 10.1016/j.humov.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Transcranial Direct Current Stimulation (tDCS) is a neuromodulatory technique that has been used as an ergogenic aid in exercise/sports performance. However, little is known about its effects on highly-trained subjects, as athletes. The present study aimed to verify the effects of bi-hemispheric anodal tDCS (a-tDCS) on the performance of taekwondo athletes. Additionally, we investigated the persistence of the effects of the a-tDCS one hour after it. Nineteen Taekwondo athletes received active or sham bi-hemispheric a-tDCS over the primary motor cortex (M1). a-tDCS was delivered at 1.5 mA for 15 min. Athletes performed Countermovement Jumps (CMJ) and the Frequency Speed of Kick Test (FSKT) immediately (Mo1) and one hour after stimulation (Mo2). The athletes also reported their session-rating of perceived exertion (session-RPE). The total number of kicks (TK) was higher in sham than in the active a-tDCS condition (p < 0.01). In addition, TK was higher at Mo2 than at Mo1 (p < 0.05). Similarly, the session-RPE was higher in the a-tDCS condition (p < 0.05) and was greater one-hour post-stimulation (p < 0.01). No differences were found for CMJ performance (p > 0.05). Thus, bi-hemispheric a-tDCS worsens performance of taekwondo athletes, and the effect remains present even 1 h after the stimulation.
Collapse
|
32
|
Lefaucheur JP. Boosting physical exercise with cortical stimulation or brain doping using tDCS: Fact or myth? Neurophysiol Clin 2019; 49:95-98. [DOI: 10.1016/j.neucli.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/26/2022] Open
|