1
|
Bescos R, Gallardo-Alfaro L, Ashor A, Rizzolo-Brime L, Siervo M, Casas-Agustench P. Nitrate and nitrite bioavailability in plasma and saliva: Their association with blood pressure - A systematic review and meta-analysis. Free Radic Biol Med 2025; 226:70-83. [PMID: 39522567 DOI: 10.1016/j.freeradbiomed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, we conducted a systematic review and meta-analysis to determine plasma and salivary nitrate (NO3-) and nitrite (NO2-) concentrations under resting and fasting conditions in different type of individuals and their association with blood pressure levels. A total of 77 studies, involving 1918 individuals aged 19-74 years (males = 906; females = 1012), which measured plasma and/or salivary NO3- and NO2- using the chemiluminescence technique, were included. Mean plasma NO3- and NO2- concentrations were 33.9 μmol/L and 158.3 nmol/L, respectively. Subgroup analyses revealed lower plasma NO3- and NO2- concentrations in individuals with cardiometabolic risk (NO3-: 21.2 μmol/L; 95 % CI, 13.4-29.0; NO2-: 122.8 nmol/L; 95 % CI, 75.3-138.9) compared to healthy (NO3-: 33.9 μmol/L; 95 % CI, 29.9-37.9; NO2-: 159.5 nmol/L; 95 % CI, 131.8-187.1; P < 0.01) and trained individuals (NO3-: 43.0 μmol/L; 95 % CI, 13.2-72.9; NO2-: 199.3 nmol/L; 95 % CI, 117.6-281; P < 0.01). Mean salivary NO3- and NO2- concentrations were 546.2 μmol/L and 197.8 μmol/L, respectively. Salivary NO3-, but no NO2-, concentrations were higher in individuals with cardiometabolic risk (680.0 μmol/L; 95 % CI, 510.2-849.8; P = 0.001) compared to healthy individuals (535.9 μmol/L; 95 % CI, 384.2-687.6). A significant positive association (coefficient, 15.4 [95 % CI, 0.255 to 30.5], P = 0.046) was observed between salivary NO3- and diastolic blood pressure (DBP). These findings suggest that the health status is positively associated with plasma NO3- and NO2- concentrations, but the circulatory levels of these anions are not associated with blood pressure. Only salivary NO3- showed a significant positive association with DBP.
Collapse
Affiliation(s)
- Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom.
| | - Laura Gallardo-Alfaro
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; RICAPPS- Red de Investigación Cooperativa de Atención Primaria y Promoción de la Salud - Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Ammar Ashor
- Department of Internal Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Lucia Rizzolo-Brime
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Patricia Casas-Agustench
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom
| |
Collapse
|
2
|
Esen O, Bailey SJ, Stashuk DW, Howatson G, Goodall S. Influence of nitrate supplementation on motor unit activity during recovery following a sustained ischemic contraction in recreationally active young males. Eur J Nutr 2024; 63:2379-2387. [PMID: 38809323 PMCID: PMC11377467 DOI: 10.1007/s00394-024-03440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE Dietary nitrate (NO3-) supplementation enhances muscle blood flow and metabolic efficiency in hypoxia, however, its efficacy on neuromuscular function and specifically, the effect on motor unit (MU) activity is less clear. We investigated whether NO3- supplementation affected MU activity following a 3 min sustained ischemic contraction and whether this is influenced by blood flow restriction (BFR) during the recovery period. METHOD In a randomized, double-blinded, cross-over design, 14 males (mean ± SD, 25 ± 6 years) completed two trials following 5 days of supplementation with NO3--rich (NIT) or NO3--depleted (PLA) beetroot juice to modify plasma nitrite (NO2-) concentration (482 ± 92 vs. 198 ± 48 nmol·L-1, p < 0.001). Intramuscular electromyography was used to assess MU potential (MUP) size (duration and area) and mean firing rates (MUFR) during a 3 min submaximal (25% MVC) isometric contraction with BFR. These variables were also assessed during a 90 s recovery period with the first half completed with, and the second half completed without, BFR. RESULTS The change in MUP area and MUFR, did not differ between conditions (all p > 0.05), but NIT elicited a reduction in MUP recovery time during brief isometric contractions (p < 0.001), and during recoveries with (p = 0.002) and without (p = 0.012) BFR. CONCLUSION These novel observations improve understanding of the effects of NO3- on the recovery of neuromuscular function post-exercise and might have implications for recovery of muscle contractile function. TRIAL REGISTRATION The study was registered on clinicaltrials.gov with ID of NCT05993715 on August 08, 2023.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK.
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK
- Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Esen O, Fox J, Karayigit R, Walshe I. Acute Beetroot Juice Supplementation Has No Effect on Upper- and Lower-Body Maximal Isokinetic Strength and Muscular Endurance in International-Level Male Gymnasts. Int J Sport Nutr Exerc Metab 2024; 34:164-171. [PMID: 38237581 DOI: 10.1123/ijsnem.2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 04/14/2024]
Abstract
Nitrate (NO3-) has properties that can improve muscle function, leading to improvements in metabolic cost of exercise as well as enhance force production. Gymnastics is a whole-body sport, involving events that demand a high level of strength and fatigue resistance. However, the effect of NO3- supplementation on both upper- and lower-body function in gymnasts is unknown. This study examined the effect of acute beetroot juice (BRJ) supplementation on isokinetic strength and endurance of the upper- and lower-body in highly trained international-level male gymnasts. In a double-blind, randomized crossover design, 10 international-level male gymnasts completed two acute supplementation periods, consuming either 2 × 70 ml NO3--rich (∼12.8 mmol/L of NO3-) or NO3--depleted (PLA) BRJ. Maximal strength of the upper-leg and upper-arm at 60°/s, 120°/s, 180°/s, and 300°/s, and muscular endurance (50 repeated isokinetic contractions at 180°/s) were assessed. Plasma NO3- (BRJ: 663 ± 164 μM, PLA: 89 ± 48 μM) and nitrite (NO2-) concentrations (BRJ: 410 ± 137 nmol/L, PLA: 125 ± 36 nmol/L) were elevated following BRJ compared to PLA (both p < .001). Maximal strength of knee and elbow extensors and flexors did not differ between supplements (p > .05 for all velocities). Similarly, fatigue index of knee and elbow extension and flexion was not different between supplements (all p > .05). Acute BRJ supplementation, containing ∼12.8 mmol/L of NO3-, increased plasma NO3- and NO2- concentrations, but did not enhance isokinetic strength or fatigue resistance of either upper or lower extremities in international-level male gymnasts.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Joseph Fox
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Turkey
| | - Ian Walshe
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
4
|
Moreno-Heredero B, Morencos E, Morais JE, Barbosa TM, Veiga S. A Single Dose of Beetroot Juice not Enhance Performance during Intervallic Swimming Efforts. J Sports Sci Med 2024; 23:228-235. [PMID: 38455435 PMCID: PMC10915612 DOI: 10.52082/jssm.2024.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Despite the numerous scientific evidence on the topic, there is no clear and consistent answer that clarifies the true effects of beetroot juice (BJ) supplementation on different types of physical performance. This study examined whether an acute intake of BJ improves swimming performance, physiological variables of anaerobic metabolism, or subjective measures during high-intensity interval exercise with incomplete rest in competitive swimmers. Eighteen competitive swimmers (nine females and nine males) participated in this cross-over randomized, placebo-controlled, double-blind and counterbalanced study. In two trials, swimmers ingested BJ (70 mL, 6.4 mmol/400 mg NO3-) or placebo (PLA) (70 mL, 0.04 mmol/3 mg NO3-) three hours before a 2×6×100 m maximal effort with 40 seconds rest between repetitions and three minutes between blocks. The 100 m times showed no differences between groups (p > 0.05), but there was an interaction between block×repetition×condition (F5 = 3.10; p = 0.046; ηp2 = 0.54), indicating that the BJ group decreased the time of the sixth repetition of block2 compared to block1 (p = 0.01). Lactate concentration showed no differences between conditions (p > 0.05), but there was a main effect of block (ηp2 = 0.60) and a block×repetition interaction (ηp2 = 0.70), indicating higher values in block2 and increasing values between repetitions in block1. The subjective scales, perception of exertion (RPE) and Total Quality Recovery (TQR), showed no effects of condition (p > 0.05), but BJ swimmers had a greater TQR in the last repetitions of each block. In conclusion, a single dose of BJ did not enhance intermittent swimming performance or modified the physiological (lactate and heart rate) or subjective (RPE and TQR) variables; although there was a possible positive effect on the exercise tolerance at the end of effort.
Collapse
Affiliation(s)
- Berta Moreno-Heredero
- Exercise Physiology Group, Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Departamento de Deportes, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Esther Morencos
- Exercise Physiology Group, Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Jorge E Morais
- Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Tiago M Barbosa
- Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Santiago Veiga
- Departamento de Deportes, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
5
|
Kurhaluk N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int J Mol Sci 2023; 24:ijms24098205. [PMID: 37175912 PMCID: PMC10179183 DOI: 10.3390/ijms24098205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
6
|
Moreno B, Morencos E, Vicente-Campos D, Muñoz A, González-García J, Veiga S. Effects of beetroot juice intake on repeated performance of competitive swimmers. Front Physiol 2023; 13:1076295. [PMID: 36703935 PMCID: PMC9871287 DOI: 10.3389/fphys.2022.1076295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Beetroot juice is a sport supplement with a high level of evidence on the physical performance enhancement. However, in swimming, there is no clear data about the effects of beetroot juice on performance. Objective: To investigate whether an acute intake of beetroot juice (BJ) improves the performance of competitive swimmers in a repeated maximum swimming effort. Method: Thirteen national-level swimmers (six females and seven males), participated in this randomized, double-blind crossover study. In two different trials, swimmers ingested a 70-mL placebo shot (.04 mmol NO3 -; PLA) or a 70-mL Beet-It shot (6.4 mmol of NO3 -beet juice [BJ]) 3 h before undergoing a 6 × 100-m front-crawl maximal effort test with 7 min rest between each 100 m. Results: Overall, 100-m times showed no difference between the BJ and PLA groups (p = .364), although a possibly shorter time was observed for BJ in the last repetition (p = .104; mean difference [MD] = -.99 s, mean-based inference [MBI] = 49/51/0). Participants in the BJ condition showed a possibly lower rate of perceived exertion in the first (p = .242, MD = -.85, MBI = 70/28/2) and second repetitions (p = .165, MD = 1.15, MBI = 83/16/1), whereas Total Quality Recovery scale scores were likely higher in the first (p = .110, MD = 1.15, MBI = 83/16/1) and third (p = .082, MD = -.77, MBI = 70/29/1) repetitions compared with those in the PLA group. Blood lactate concentration [La+] levels showed no differences between groups in any of the repetitions (p > .05, unclear), and we observed an increase in 100-m times for both BJ and PLA (BJ: p = .014, MD = -1.51 s; PLA: p = .029, MD = -1.57 s) after the fifth repetition. Conclusion: No clear differences in performance were observed in a 6 × 100-m repeated sprint test by competitive swimmers when supplementing (or not) with BJ. However, there was a trend toward a better recovery between efforts and a better tolerance of fatigue when swimmers ingested BJ.
Collapse
Affiliation(s)
- Berta Moreno
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain,Departamento de Deportes, Universidad Politécnica de Madrid, Madrid, Spain
| | - Esther Morencos
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Davinia Vicente-Campos
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Alejandro Muñoz
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Jaime González-García
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Santiago Veiga
- Departamento de Deportes, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Santiago Veiga,
| |
Collapse
|
7
|
Esen O, Cepicka L, Gabrys T, Karayigit R. High-Dose Nitrate Supplementation Attenuates the Increased Blood Pressure Responses to Isometric Blood Flow Restriction Exercise in Healthy Males. Nutrients 2022; 14:nu14173645. [PMID: 36079902 PMCID: PMC9460709 DOI: 10.3390/nu14173645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
The effect of nitrate (NO3−) supplementation on blood pressure (BP) responses during large muscle mass isometric and ischaemic exercise in healthy young adults is unclear. The aim of the present study was to assess the effect of 5-day supplementation of NO3− on BP responses during a short isometric contraction and a sustained ischaemic contraction. In a randomised, double-blinded, crossover design, 14 healthy active young adults underwent BP measurements after 5 days of either NO3− (NIT) or placebo (PLA) supplementation. Beat-by-beat BP was measured at pre- and post-exercise rest, and during a short (20 s) isometric contraction at 25% maximal strength and throughout a sustained ischaemic contraction. Plasma nitrite (NO2−) concentration increased significantly after NO3− supplementation compared to placebo (475 ± 93 nmol·L−1 vs. 198 ± 46 nmol·L−1, p < 0.001, d = 3.37). Systolic BP was significantly lower at pre- (p = 0.051) and post-exercise rest (p = 0.006), during a short isometric contraction (p = 0.030), and throughout a sustained ischaemic contraction (p = 0.040) after NO3− supplementation. Mean arterial pressure was significantly lower at pre- (p = 0.004) and post-exercise rest (p = 0.043), during a short isometric contraction (p = 0.041), and throughout a sustained ischaemic contraction (p = 0.021) after NO3− supplementation. Diastolic BP was lower at pre-exercise rest (p = 0.032), but not at post-exercise rest, during a short isometric contraction, and during a sustained ischaemic contraction (all p > 0.05). Five days of NO3− supplementation elevated plasma NO2− concentration and reduced BP during a short isometric contraction and a sustained ischaemic contraction in healthy adults. These observations indicate that multiple-day nitrate supplementation can decrease BP at rest and attenuate the increased BP response during isometric exercise. These findings support that NO3− supplementation is an effective nutritional intervention in reducing SBP and MAP in healthy young males during submaximal exercise.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
- Correspondence: ; Tel.: +44-191-232-60-02
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Tomasz Gabrys
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Raci Karayigit
- Department of Coaching Education, Faculty of Sport Sciences, Ankara University, Ankara 06830, Turkey
| |
Collapse
|
8
|
Acute Beetroot Juice Supplementation Enhances Intermittent Running Performance but Does Not Reduce Oxygen Cost of Exercise among Recreational Adults. Nutrients 2022; 14:nu14142839. [PMID: 35889796 PMCID: PMC9319752 DOI: 10.3390/nu14142839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
Nitrate (NO3−) supplementation has been reported to enhance intermittent exercise performance; however, its impact on oxygen (O2) cost during intermittent running exercise is unclear. The aim of this study was to assess if acute NO3− supplementation would elicit performance benefits in recreationally active individuals during the Yo−Yo intermittent recovery level 1 (Yo-Yo IR1) test, with its potential benefit on O2 consumption (VO2), in a double-blind, randomized, crossover study, 12 recreational males consumed NO3−-rich (NIT; ~12.8 mmol), and NO3−-depleted (PLA; 0.04 mmol) concentrated beetroot juice 3 h before completing the Yo-Yo IR1 test. VO2 was measured at 160, 280 and 440 m (sub-maximal) and when the test was terminated (peak). Performance in the Yo−Yo IR1 was greater with NIT (990 ± 442.25 m) compared to PLA (870 ± 357.4 m, p = 0.007). The VO2 was not significantly different at 160 m (1.92 ± 0.99 vs. 2.1 ± 0.88 L·min−1), 280 m (2.62 ± 0.94 vs. 2.83 ± 0.94 L·min−1), 440 m (3.26 ± 1.04 vs. 3.46 ± 0.98 L·min−1) and peak (4.71 ± 1.01 vs. 4.92 ± 1.17 L·min−1) between NIT and PLA trials (all p > 0.05). The present study has indicated that acute supplementation of NO3− enhanced intermittent running performance but had no effect on VO2 during the Yo−Yo IR1 test in recreational young adults.
Collapse
|
9
|
Kaufman MW, Roche M, Fredericson M. The Impact of Supplements on Sports Performance for the Trained Athlete: A Critical Analysis. Curr Sports Med Rep 2022; 21:232-238. [PMID: 35801724 DOI: 10.1249/jsr.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Elite athletes often use nutritional supplements to improve performance and gain competitive advantage. The prevalence of nutrient supplementation ranges from 40% to 100% among trained athletes, yet few athletes have a trusted source of information for their supplement decisions and expected results. This critical analysis review evaluates systematic reviews, meta-analyses, randomized control trials, and crossover trials investigating commonly used supplements in sport: caffeine, creatine, beta-alanine (β-alanine), branched chain amino acids (BCAAs), and dietary nitrates. By reviewing these supplements' mechanisms, evidence relating directly to improving sports performance, and ideal dosing strategies, we provide a reference for athletes and medical staff to personalize supplementation strategies. Caffeine and creatine impact power and high-intensity athletes, β-alanine, and BCAA mitigate fatigue, and dietary nitrates improve endurance. With each athlete having different demands, goals to maximize their performance, athletes and medical staff should collaborate to personalize supplementation strategies based on scientific backing to set expectations and potentiate results.
Collapse
Affiliation(s)
- Matthew W Kaufman
- Department of Orthopedic Surgery, Case Western Reserve University, Cleveland, OH
| | - Megan Roche
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA
| | | |
Collapse
|
10
|
Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv Nutr 2022; 13:1866-1881. [PMID: 35580578 PMCID: PMC9526841 DOI: 10.1093/advances/nmac054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
To identify how variables such as exercise condition, supplementation strategy, participant characteristics and demographics, and practices that control oral microbiota diversity could modify the effect of inorganic nitrate ingestion (as nitrate salt supplements, beetroot juice, and nitrate-rich vegetables) on exercise performance, we conducted a systematic review with meta-analysis. Studies were identified in PubMed, Embase, and Cochrane databases. Eligibility criteria included randomized controlled trials assessing the effect of inorganic nitrate on exercise performance in healthy adults. To assess the variation in effect size, we used meta-regression models for continuous variables and subgroup analysis for categorical variables. A total of 123 studies were included in this meta-analysis, comprising 1705 participants. Nitrate was effective for improving exercise performance (standardized mean difference [SMD]: 0.101; 95% CI: 0.051, 0.151, P <0.001, I2 = 0%), although nitrate salts supplementation was not as effective (P = 0.629) as ingestion via beetroot juice (P <0.001) or a high-nitrate diet (P = 0.005). Practices that control oral microbiota diversity influenced the nitrate effect, with practices harmful to oral bacteria decreasing the ergogenic effect of nitrate. The ingestion of nitrate was most effective for exercise lasting between 2 and 10 min (P <0.001). An inverse dose-response relation between the fraction of inspired oxygen and the effect size (coefficient: -0.045, 95% CI: -0.085, -0.005, P = 0.028) suggests that nitrate was more effective in increasingly hypoxic conditions. There was a dose-response relation for acute administration (P = 0.049). The most effective acute dose was between 5 and 14.9 mmol provided ≥150 min prior to exercise (P <0.001). An inverse dose-response for protocols ≥2 d was observed (P = 0.025), with the optimal dose between 5 and 9.9 mmol·d-1 (P <0.001). Nitrate, via beetroot juice or a high-nitrate diet, improved exercise performance, in particular, in sessions lasting between 2 and 10 min. Ingestion of 5-14.9 mmol⋅d-1 taken ≥150 min prior to exercise appears optimal for performance gains and athletes should be aware that practices controlling oral microbiota diversity may decrease the effect of nitrate.
Collapse
Affiliation(s)
| | - Breno Duarte Costa
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline Corado Gomes
- Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
12
|
Chen L, Zhu Y, Hu Z, Wu S, Jin C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci Nutr 2021; 9:6406-6420. [PMID: 34760270 PMCID: PMC8565237 DOI: 10.1002/fsn3.2577] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, beetroot is mainly consumed as a food additive. In recent years, the beetroot, especially the betalains (betanin) and nitrates it contains, now has received increasing attention for their effective biological activity. Betalains have been proven to eliminate oxidative and nitrative stress by scavenging DPPH, preventing DNA damage, and reducing LDL. It also has been found to exert antitumor activity by inhibiting cell proliferation, angiogenesis, inducing cell apoptosis, and autophagy. In some chronic diseases, nitrate is the main component for lowing blood lipids, glucose, and pressure, while its role in treating hypertension and hyperglycemia has not been clearly stated. Moreover, the intake of nitrate-rich beetroot could enhance athletic performance and attenuate muscle soreness in certain types of exercise. The objective of this review is to provide sufficient evidence for the clarification of health benefits of beetroot, especially in the aspect of biooxidation, neoplastic diseases, some chronic diseases, and energy supplementation.
Collapse
Affiliation(s)
- Liping Chen
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Yuankang Zhu
- College of Second Clinical MedicalWenzhou Medical UniversityWenzhouChina
| | - Zijing Hu
- Chemical Biology Research CenterCollege of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Shengjie Wu
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Chengtao Jin
- Department of PharmacySchool of MedicineSir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| |
Collapse
|
13
|
Macuh M, Knap B. Effects of Nitrate Supplementation on Exercise Performance in Humans: A Narrative Review. Nutrients 2021; 13:3183. [PMID: 34579061 PMCID: PMC8465461 DOI: 10.3390/nu13093183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrates have become increasingly popular for their potential role as an ergogenic aid. The purpose of this article was to review the current scientific evidence of nitrate supplementation on human performance. The current recommendation of nitrate supplementation is discussed, as well as possible health complications associated with nitrate intake for athletes, and dietary strategies of covering nitrate needs through sufficient intake of nitrate-rich foods alone are presented. Pubmed, Scopus, and Web of Science were searched for articles on the effects of nitrate supplementation in humans. Nitrates are an effective ergogenic aid when taken acutely or chronically in the range of ~5-16.8 mmol (~300-1041 mg) 2-3 h before exercise and primarily in the case of exercise duration of ~10-17 min in less trained individuals (VO2max < 65 mL/kg/min). Nitrate needs are most likely meet by ingesting approximately 250-500 g of leafy and root vegetables per day; however, dietary supplements might represent a more convenient and accurate way of covering an athlete's nitrate needs. Athletes should refrain from mouthwash usage when nitrate supplementation benefits are desired. Future research should focus on the potential beneficial effects of nitrate supplementation on brain function, possible negative impacts of chronic nitrate supplementation through different nitrate sources, and the effectiveness of nitrate supplementation on strength and high-intensity intermittent exercise.
Collapse
Affiliation(s)
- Matjaž Macuh
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana; Jamnikarjeva 10, 1000 Ljubljana, Slovenia
| | - Bojan Knap
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Repeated administration of inorganic nitrate on blood pressure and arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2021; 38:2122-2140. [PMID: 32723980 DOI: 10.1097/hjh.0000000000002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We aim to synthesize effects of repeated administration (≥3 days) of inorganic nitrate on blood pressure and arterial stiffness measures. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials with at least 3 days treatment of inorganic nitrate on blood pressure and arterial stiffness in individuals with or without elevated cardiovascular disease risk. MEDLINE, EMBASE and the Cochrane Library were searched through 2 July 2019. Two independent reviewers extracted relevant study data. Data were pooled using the generic inverse variance method with random-effects model, and expressed as mean differences with 95% confidence intervals. Certainty in the evidence was assessed using GRADE. RESULTS Forty-seven trials were included (n = 1101). Administration of inorganic nitrate significantly lowered SBP [mean difference: -2.91 mmHg, 95% confidence interval (95% CI): -3.92 to -1.89, I = 76%], DBP (mean difference: -1.45 mmHg, 95% CI: -2.22 to -0.68, I = 78%], central SBP (mean difference: -1.56 mmHg, 95% CI: -2.62 to -0.50, I = 30%) and central DBP (mean difference: -1.99 mmHg, 95% CI: -2.37 to -1.60, I = 0%). There was no effect on 24-h blood pressure, augmentation index or pulse wave velocity. Certainty in the evidence was graded moderate for central blood pressure, pulse wave velocity and low for peripheral blood pressure, 24-h blood pressure and augmentation index. CONCLUSION Repeated administration (≥3 days) of inorganic nitrate lower peripheral and central blood pressure. Results appear to be driven by beneficial effects in healthy and hypertensive individuals. More studies are required to increase certainty in the evidence.
Collapse
|
15
|
Rowland SN, Chessor R, French G, Robinson GP, O'Donnell E, James LJ, Bailey SJ. Oral nitrate reduction is not impaired after training in chlorinated swimming pool water in elite swimmers. Appl Physiol Nutr Metab 2020; 46:86-89. [PMID: 32835490 DOI: 10.1139/apnm-2020-0357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study tested the hypothesis that exposure to chlorine-sterilised pool water would impair oral nitrate reduction (ONR). ONR was assessed in elite swimmers before and after morning and afternoon pool-based training. Nonswimmers were only assessed in the morning. ONR was similar in swimmers and nonswimmers (P = 1.000) and unchanged before and after morning and afternoon training (P ≥ 0.341). Therefore, exposure to chlorinated pool water does not interfere with ONR. Novelty Exposure to chlorine-sterilised pool water does not impair oral nitrate reduction in elite swimmers.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Richard Chessor
- British Swimming, Loughborough University, Loughborough LE11 3TU, UK
| | - George French
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - George P Robinson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
16
|
Lorenzo Calvo J, Alorda-Capo F, Pareja-Galeano H, Jiménez SL. Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients 2020; 12:nu12061796. [PMID: 32560317 PMCID: PMC7353291 DOI: 10.3390/nu12061796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
Endurance can be defined as the capacity to maintain one’s velocity or power output for the longest possible time. Maintaining such activity can lead to the onset of fatigue. Dietary nitrate supplementation produces an ergogenic effect due to the improvement of mitochondrial oxygen efficiency through a reduction in the oxygen cost of exercise that increases vasodilation and blood flow to the skeletal muscle in recreationally active subjects. However, the effects of dietary nitrate supplementation on well-trained endurance athletes remain unclear; such supplementation could affect more performance areas. In the present study, a systematic review of the literature was conducted to clarify the use and effects of nitrate as a dietary supplement in endurance athletes trained in cyclic sports (repetitive movement sports). A systematic search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines in the databases of SCOPUS, Web of Science (WOS), Medline (PubMed), and Sport Discus from 1 January 2010 to 30 November 2019. Twenty-seven studies were included in the study. The methodological quality of the articles was assessed using the McMaster Critical Review Form. Statistically significant ergogenic results were obtained in 8 (29.63%) of the 27 studies investigated, with significant results obtained for cardiorespiratory parameters and performance measures. Improvement in exercise tolerance was obtained, which could help with exhaustion over time, while the improvement in exercise economics was not as clear. Additionally, the dose necessary for this ergogenic effect seems to have a direct relationship with the physical condition of the athlete. The acute dose is around 6–12.4 mmol/day of nitrate administered 2–3 h before the activity, with the same amount given as a chronic dose over 6–15 days. Further studies are required to understand the factors that affect the potential ergogenic impacts of nitrate on athletic performance among endurance athletes.
Collapse
Affiliation(s)
- Jorge Lorenzo Calvo
- Sport Department, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence: (J.L.C.); (S.L.J.); Tel.: +34-670-723-696 (S.L.J.)
| | - Francesca Alorda-Capo
- Faculty of Sport Sciences, Universidad Europea De Madrid, 28670 Madrid, Spain; (F.A.-C.); (H.P.-G.)
| | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea De Madrid, 28670 Madrid, Spain; (F.A.-C.); (H.P.-G.)
| | - Sergio L. Jiménez
- Faculty of Sport Sciences, Universidad Europea De Madrid, 28670 Madrid, Spain; (F.A.-C.); (H.P.-G.)
- Correspondence: (J.L.C.); (S.L.J.); Tel.: +34-670-723-696 (S.L.J.)
| |
Collapse
|
17
|
Zamani H, de Joode MEJR, Hossein IJ, Henckens NFT, Guggeis MA, Berends JE, de Kok TMCM, van Breda SGJ. The benefits and risks of beetroot juice consumption: a systematic review. Crit Rev Food Sci Nutr 2020; 61:788-804. [PMID: 32292042 DOI: 10.1080/10408398.2020.1746629] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beetroot juice (BRJ) has become increasingly popular amongst athletes aiming to improve sport performances. BRJ contains high concentrations of nitrate, which can be converted into nitric oxide (NO) after consumption. NO has various functions in the human body, including a vasodilatory effect, which reduces blood pressure and increases oxygen- and nutrient delivery to various organs. These effects indicate that BRJ may have relevant applications in prevention and treatment of cardiovascular disease. Furthermore, the consumption of BRJ also has an impact on oxygen delivery to skeletal muscles, muscle efficiency, tolerance and endurance and may thus have a positive impact on sports performances. Aside from the beneficial aspects of BRJ consumption, there may also be potential health risks. Drinking BRJ may easily increase nitrate intake above the acceptable daily intake, which is known to stimulate the endogenous formation of N-nitroso compounds (NOC's), a class of compounds that is known to be carcinogenic and that may also induce several other adverse effects. Compared to studies on the beneficial effects, the amount of data and literature on the negative effects of BRJ is rather limited, and should be increased in order to perform a balanced risk assessment.
Collapse
Affiliation(s)
- H Zamani
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M E J R de Joode
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - I J Hossein
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N F T Henckens
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M A Guggeis
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Berends
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T M C M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S G J van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
18
|
Influence of Equimolar Doses of Beetroot Juice and Sodium Nitrate on Time Trial Performance in Handcycling. Nutrients 2019; 11:nu11071642. [PMID: 31323779 PMCID: PMC6683039 DOI: 10.3390/nu11071642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the influence of a single dose of either beetroot juice (BR) or sodium nitrate (NIT) on performance in a 10 km handcycling time trial (TT) in able-bodied individuals and paracyclists. In total, 14 able-bodied individuals [mean ± SD; age: 28 ± 7 years, height: 183 ± 5 cm, body mass (BM): 82 ± 9 kg, peak oxygen consumption (VO2peak): 33.9 ± 4.2 mL/min/kg] and eight paracyclists (age: 40 ± 11 years, height: 176 ± 9cm, BM: 65 ± 9 kg, VO2peak: 38.6 ± 10.5 mL/min/kg) participated in the study. All participants had to perform three TT on different days, receiving either 6 mmol nitrate as BR or NIT or water as a placebo. Time-to-complete the TT, power output (PO), as well as oxygen uptake (VO2) were measured. No significant differences in time-to-complete the TT were found between the three interventions in able-bodied individuals (p = 0.80) or in paracyclists (p = 0.61). Furthermore, VO2 was not significantly changed after the ingestion of BR or NIT in either group (p < 0.05). The PO to VO2 ratio was significantly higher in some kilometers of the TT in able-bodied individuals (p < 0.05). The ingestion of BR or NIT did not increase handcycling performance in able-bodied individuals or in paracyclists.
Collapse
|