1
|
Dabrowski W, Pfortmueller CA, Kotfis K, Jaroszynski A, Gagos M, Plotek W, Malbrain MLNG. Is there a place for natural agents with anti-inflammatory and antioxidative properties in critically ill patients? Potential usefulness of Xanthohumol. Pharmacol Ther 2025; 266:108766. [PMID: 39637948 DOI: 10.1016/j.pharmthera.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Multi-organ dysfunction is a major issue in critically ill patients, where a significant inflammatory response appears to be the primary factor driving the degree of organ impairment, which correlates with the extent of organ injury. The management of inflammation requires a multidisciplinary approach, including antibiotics for infection control, circulatory and respiratory support, and correction of coagulation abnormalities. However, the use of anti-inflammatory treatments is typically restricted to a selected group of medications, with their effectiveness remaining the subject of extensive debate. Xanthohumol (Xn), a natural compound extracted from hops, possesses strong anti-inflammatory and antioxidative properties, with a mild anti-coagulation effect. Its biological activity is related to the inhibition of different inflammatory pathways, reduction in cytokine production and secretion, and an increase in antioxidative enzyme activity. This review examined the potential use of Xn as an adjuvant in the treatment of various pathologies in critically ill patients.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland.
| | | | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Care and Pain Management, Pomeranian Medical University of Szczecin, Poland
| | | | - Mariusz Gagos
- Department of Cell Biology, Maria Curie-Sklodowska University of Lublin, Poland
| | - Wlodzimierz Plotek
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland; Medical Data Management, Medaman, Geel, Belgium; International Fluid Academy, Lovenjoel, Belgium
| |
Collapse
|
2
|
Stevanoska M, Beekmann K, Punt A, Sturla SJ, Aichinger G. Predicting in vivo concentrations of dietary hop phytoestrogens by physiologically based kinetic modeling. Food Chem Toxicol 2025; 196:115247. [PMID: 39793946 DOI: 10.1016/j.fct.2025.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Hop extracts containing prenylated polyphenols such as 8-prenylnaringenin (8-PN) and its precursor isoxanthohumol (iXN) are popular among women seeking natural alternatives to hormone therapy for postmenopausal symptoms. Due to structural similarities with estrogens, these compounds act as estrogen receptor agonists. Especially 8-PN, described as the most potent phytoestrogen known to date, poses a potential risk for endocrine disruption. Therefore, its use as a hormone replacement raises concerns for human health. However, a significant challenge in assessing the potential endocrine-disruptive effects of hop polyphenols is the lack of data on their toxicokinetics. Particularly, information on in vivo concentrations in target tissues is lacking. To address this gap, we developed a physiologically based kinetic (PBK) model tailored to female physiology. The model was used to predict the levels of hop polyphenols in human blood and target tissues under realistic exposure scenarios. The predictions suggest that iXN and 8-PN concentrations in target tissues reach the low nanomolar range after dietary supplementation. This study enhances our understanding of internal concentrations of iXN and 8-PN after dietary consumption and is of direct applicability for respective risk assessment.
Collapse
Affiliation(s)
- Maja Stevanoska
- Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | | | - Ans Punt
- Wageningen Food Safety Research (WFSR), Netherlands
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Georg Aichinger
- Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
3
|
Piekara J, Piasecka-Kwiatkowska D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants (Basel) 2024; 13:1559. [PMID: 39765887 PMCID: PMC11674025 DOI: 10.3390/antiox13121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent antioxidant compound, which, according to current research, has the potential to prevent and inhibit the development of diseases, i.e., cancer and neurodegenerative diseases. The review aims to examine the antioxidant role of XN in disease prevention, with an emphasis on the benefits and risks associated with its supplementation. The regulation by XN of the Nrf2/NF-kB/mTOR/AKT (Nuclear factor erythroid 2-related factor 2/Nuclear factor kappa-light-chain-enhancer of activated B cells/Mammalian target of rapamycin/Protein Kinase B) pathways induce a strong antioxidant and anti-inflammatory effect, among others the acceleration of autophagy through increased synthesis of Bcl-2 (B-cell lymphoma 2) proteins, inhibition of the synthesis of VEGF (Vascular-endothelial growth factor) responsible for angiogenesis and phosphorylation of HKII (Hexokinase II). It is the key function of XN to ameliorate inflammation and to promote the healing process in organs. However, existing data also indicate that XN may have adverse effects in certain diseases, such as advanced prostate cancer, where it activates the AMPK (activated protein kinase) pathway responsible for restoring cellular energy balance. This potential risk may explain why XN has not been classified as a therapeutic drug so far and proves that further research is needed to determine the effectiveness of XN against selected disease entities at a given stage of the disease.
Collapse
Affiliation(s)
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623 Poznan, Poland;
| |
Collapse
|
4
|
Gao WY, Chen PY, Hsu HJ, Liou JW, Wu CL, Wu MJ, Yen JH. Xanthohumol, a prenylated chalcone, regulates lipid metabolism by modulating the LXRα/RXR-ANGPTL3-LPL axis in hepatic cell lines and high-fat diet-fed zebrafish models. Biomed Pharmacother 2024; 174:116598. [PMID: 38615609 DOI: 10.1016/j.biopha.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 μM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.
Collapse
Affiliation(s)
- Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Science and Engineering, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan.
| |
Collapse
|
5
|
Hu J, Mesnage R, Tuohy K, Heiss C, Rodriguez-Mateos A. (Poly)phenol-related gut metabotypes and human health: an update. Food Funct 2024; 15:2814-2835. [PMID: 38414364 DOI: 10.1039/d3fo04338j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dietary (poly)phenols have received great interest due to their potential role in the prevention and management of non-communicable diseases. In recent years, a high inter-individual variability in the biological response to (poly)phenols has been demonstrated, which could be related to the high variability in (poly)phenol gut microbial metabolism existing within individuals. An interplay between (poly)phenols and the gut microbiota exists, with (poly)phenols being metabolised by the gut microbiota and their metabolites modulating gut microbiota diversity and composition. A number of (poly)phenol metabolising phenotypes or metabotypes have been proposed, however, potential metabotypes for most (poly)phenols have not been investigated, and the relationship between metabotypes and human health remains ambiguous. This review presents updated knowledge on the reciprocal interaction between (poly)phenols and the gut microbiome, associated gut metabotypes, and subsequent impact on human health.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Robin Mesnage
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Buchinger Wilhelmi Clinic, Überlingen, Germany
| | - Kieran Tuohy
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
6
|
Mukai R, Hata N. Tissue distribution and pharmacokinetics of isoxanthohumol from hops in rodents. Food Sci Nutr 2024; 12:2210-2219. [PMID: 38455172 PMCID: PMC10916623 DOI: 10.1002/fsn3.3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/03/2023] [Accepted: 12/04/2023] [Indexed: 03/09/2024] Open
Abstract
Vegetables and fruits contain prenylflavonoids with biological functions that might improve human health. The prenylflavonoid isoxanthohumol (IXA) and its derivative, 8-prenylnaringenin (8-PN), have beneficial activities, including anti-cancer effects and suppression of insulin resistance. However, their pharmacokinetic profile is unclear. Previous studies suggested flavonoids have low systemic availability and are excreted via the feces. Therefore, this study investigated the tissue distribution dynamics of high-purity IXA (>90%) from hops administered orally, either singly (50 mg/kg body weight [BW]) or daily for 14 days (30 mg/kg BW), to mice. High-pressure liquid chromatography demonstrated that IXA was absorbed rapidly after a single administration and reached plasma maximum concentration (C max) (3.95 ± 0.81 μmol/L) by 0.5 h. IXA was present at high levels in the liver compared with the kidney, pancreas, lung, skeletal muscle, spleen, thymus, and heart. The highest IXA level after 14 days of IXA ingestion was observed in the liver, followed by the kidney, thymus, spleen, lung, and brain. There was no significant difference in IXA accumulation in tissues between the single and multiple dose groups. Analyses of the livers of rats treated with different concentrations of IXA (112.5-1500 mg/kg BW) once a day for 28 days demonstrated that IXA accumulated dose-dependently with a correlation coefficient of .813. The accumulation of 8-PN was dependent on the intake period but not the intake amount of IXA (correlation coefficient -.255). In summary, IXA and 8-PN were detected in tissues and organs up to 24 h after ingestion, suggesting that orally ingested IXA might have health benefits as a nutraceutical.
Collapse
Affiliation(s)
- Rie Mukai
- Department of Food Science, Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushimaJapan
| | - Natsumi Hata
- Department of Food Science, Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
7
|
Takeji S, Okada M, Hayashi S, Kanamaru K, Uno Y, Imaishi H, Uno T. Metabolism of testosterone and progesterone by cytochrome P450 2C19 allelic variants. Biopharm Drug Dispos 2023; 44:420-430. [PMID: 37815926 DOI: 10.1002/bdd.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023]
Abstract
CYP2C19 is a member of the human microsomal cytochrome P450 (CYP). Significant variation in CYP2C19 levels and activity can be attributed to polymorphisms in this gene. Wildtype CYP2C19 and 13 mutants (CYP2C19.1B, CYP2C19.5A, CYP2C19.5B, CYP2C19.6, CYP2C19.8, CYP2C19.9, CYP2C19.10, CYP2C19.11, CYP2C19.13, CYP2C19.16, CYP2C19.19, CYP2C19.23, CYP2C19.30, and CYP2C19.33) were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Hydroxylase activity toward testosterone and progesterone was also examined. Ten CYP2C19 variants showed Soret peaks (450 nm) typical of P450 in the reduced CO-difference spectra. CYP2C19.11 and CYP2C19.23 showed higher testosterone 11α, 16α-/17- and progesterone 6β-,21-,16α-/17α-hydroxylase activities than CYP2C19.1B. CYP2C19.6, CYP2C19.16, CYP2C19.19, and CYP2C19.30 showed lower activity than CYP2C19.1B. CYP2C19.9, CYP2C19.10. CYP2C19.13, and CYP2C19.33 showed different hydroxylation activities than CYP2C19.1B. These results indicated that CYP2C19 variants have very different substrate specificities for testosterone and progesterone.
Collapse
Affiliation(s)
- Shiori Takeji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mai Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shu Hayashi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kengo Kanamaru
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Hiromasa Imaishi
- Functional Analysis of Environmental Genes, Research Center for Environmental, Genomics, Kobe University, Kobe, Japan
| | - Tomohide Uno
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
8
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Tronina T, Bartmańska A, Popłoński J, Rychlicka M, Sordon S, Filip-Psurska B, Milczarek M, Wietrzyk J, Huszcza E. Prenylated Flavonoids with Selective Toxicity against Human Cancers. Int J Mol Sci 2023; 24:ijms24087408. [PMID: 37108571 PMCID: PMC10138577 DOI: 10.3390/ijms24087408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The antiproliferative activity of xanthohumol (1), a major prenylated chalcone naturally occurring in hops, and its aurone type derivative (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone (2) were investigated. Both flavonoids, as well as cisplatin as a reference anticancer drug, were tested in vivo against ten human cancer cell lines (breast cancer (MCF-7, SK-BR-3, T47D), colon cancer (HT-29, LoVo, LoVo/Dx), prostate cancer (PC-3, Du145), lung cancer (A549) and leukemia (MV-4-11) and two normal cell lines (human lung microvascular endothelial (HLMEC)) and murine embryonic fibroblasts (BALB/3T3). Chalcone 1 and aurone 2 demonstrated potent to moderate anticancer activity against nine tested cancer cell lines (including drug-resistant ones). The antiproliferative activity of all the tested compounds against cancer and the normal cell lines was compared to determine their selectivity of action. Prenylated flavonoids, especially the semisynthetic derivative of xanthohumol (1), aurone 2, were found as selective antiproliferative agents in most of the used cancer cell lines, whereas the reference drug, cisplatin, acted non-selectively. Our findings suggest that the tested flavonoids can be considered strong potential candidates for further studies in the search for effective anticancer drugs.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Agnieszka Bartmańska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Magdalena Rychlicka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
10
|
Briguglio M. The Reason Beer Makes You Pee and Why You Should Abstain before Orthopedic Surgery. Nutrients 2023; 15:nu15071687. [PMID: 37049527 PMCID: PMC10097290 DOI: 10.3390/nu15071687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Hydration practices in the view of hip, knee, or spine surgery instruct patients to avoid caffeinated drinks, alcoholic beverages, and sugar-sweetened drinks because they adversely impact body fluid homeostasis. However, some patients might be inclined to not include beer among the prohibited beverages because of its low alcohol content and conflicting evidence about its rehydrating effects. The author of this opinion article discusses the shreds of evidence that establish beer as a drink to avoid prior to orthopedic surgery.
Collapse
|
11
|
Carbone K, Gervasi F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. PLANTS (BASEL, SWITZERLAND) 2022; 11:3434. [PMID: 36559547 PMCID: PMC9782902 DOI: 10.3390/plants11243434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of phytoconstituents (e.g., bitter acids, polyphenols, prenyl flavonoids) present in the female inflorescences, commonly known as cones or strobili, endowed with anti-inflammatory, antioxidant, antimicrobial, and phytoestrogen activities. Hop has recently attracted the interest of the scientific community due to the presence of xanthohumol, whose strong anti-cancer activity against various types of cancer cells has been well documented, and for the presence of 8-prenyl naringenin, the most potent known phytoestrogen. Studies in the literature have also shown that hop compounds can hinder numerous signalling pathways, including ERK1/2 phosphorylation, regulation of AP-1 activity, PI3K-Akt, and nuclear factor NF-κB, which are the main targets of the antiproliferative action of bitter acids and prenylflavonoids. In light of these considerations, the aim of this review was to provide an up-to-date overview of the main biologically active compounds found in hops, as well as their in vitro and in vivo applications for human health and disease prevention. To this end, a quantitative literature analysis approach was used, using VOSviewer software to extract and process Scopus bibliometric data. In addition, data on the pharmacokinetics of bioactive hop compounds and clinical studies in the literature were analysed. To make the information more complete, studies on the beneficial properties of the other two species belonging to the genus Humulus, H. japonicus and H. yunnanensis, were also reviewed for the first time.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | | |
Collapse
|
12
|
Tanaka Y, Okuyama H, Nishikawa M, Ikushiro SI, Ikeda M, Ishima Y, Ukawa Y, Oe K, Terao J, Mukai R. 8-Prenylnaringenin tissue distribution and pharmacokinetics in mice and its binding to human serum albumin and cellular uptake in human embryonic kidney cells. Food Sci Nutr 2022; 10:1070-1080. [PMID: 35432956 PMCID: PMC9007292 DOI: 10.1002/fsn3.2733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022] Open
Abstract
8-Prenylnaringenin (8-PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8-PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8-PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8-PN and its mother (non-prenylated) compound naringenin. C57/BL6 mice were fed an 8-PN or naringenin mixed diet for 22 days. The amount of 8-PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the C max of 8-PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8-PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8-PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8-PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Hitomi Okuyama
- Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| | - Miyu Nishikawa
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology Faculty of Engineering Toyama Prefectural University Toyama Japan
| | - Mayumi Ikeda
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuichi Ukawa
- Healthcare SBU Business Strategy Business Planning Daicel Corporation Tokyo Japan
| | - Kenichi Oe
- Healthcare SBU Business Strategy, R&D Daicel Corporation Niigata Japan
| | - Junji Terao
- Faculty of Clinical Nutrition and Dietetics Konan Women's University Hyogo Japan
| | - Rie Mukai
- Department of Food Science Graduate School of Biomedical Sciences Tokushima University Tokushima Japan.,Department of Food Science Graduate School of Technology, Industrial and Social Sciences Tokushima University Tokushima Japan
| |
Collapse
|
13
|
The Potent Phytoestrogen 8-Prenylnaringenin: A Friend or a Foe? Int J Mol Sci 2022; 23:ijms23063168. [PMID: 35328588 PMCID: PMC8953904 DOI: 10.3390/ijms23063168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
8-prenylnaringenin (8-PN) is a prenylated flavonoid, occurring, in particular, in hop, but also in other plants. It has proven to be one of the most potent phytoestrogens in vitro known to date, and in the past 20 years, research has unveiled new effects triggered by it in biological systems. These findings have aroused the hopes, expectations, and enthusiasm of a “wonder-drug” for a host of human diseases. However, the majority of 8-PN effects require such high concentrations that they cannot be reached by normal dietary exposure, only pharmacologically; thus, adverse impacts may also emerge. Here, we provide a comprehensive and up-to-date review on this fascinating compound, with special reference to the range of beneficial and untoward health consequences that may ensue from exposure to it.
Collapse
|
14
|
Bai HH, Xia TS, Jiang YP, Xu WM, Xu PC, Wang NN, Gou XJ, Xin HL. Absorption, metabolism, and pharmacokinetic profile of xanthohumol in rats as determined via UPLC-MS/MS. Biopharm Drug Dispos 2021; 43:11-22. [PMID: 34914109 DOI: 10.1002/bdd.2306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022]
Abstract
Xanthohumol, a natural isoflavone from Humulus lupulus L., possesses biological activities. However, the biological fate of xanthohumol in vivo remains unclear. The aim of this study was to investigate the absorption and metabolism of xanthohumol in rats through UPLC-MS/MS. The plasma, urine and fecal samples were collected after oral administration of xanthohumol (25, 50, 100 mg/kg) in SD rats. The contents of xanthohumol and its metabolites were determined by UPLC-MS/MS. A total of 6 metabolites of xanthohumol were identified in rats, including methylated, glucuronidated, acid-catalyzed cyclization and oxidation, indicating xanthohumol underwent phase I and II metabolism. Besides, isoxanthohumol was the major metabolites of xanthohumol. Xanthohumol was rapidly absorbed, metabolized, and eliminated in rats. The pharmacokinetics results showed the Tmax of xanthohumol and isoxanthohumol were 3 and 2.33 h, respectively. The AUC0-t of xanthohumol and isoxanthohumol were 138.83 ± 6.03 and 38.77 ± 4.46 ng/ml·h, respectively. Furthermore, xanthohumol was mainly excreted in the form of prototype through feces and a small amount of xanthohumol was excreted through urine. These results illustrated the absorption, metabolism, and pharmacokinetics process of xanthohumol in rats, and provided a reference for the further rational applications.
Collapse
Affiliation(s)
- Huan-Huan Bai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Tian-Shuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Wu-Mu Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ping-Cui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Na-Ni Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xiao-Jun Gou
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Paraiso IL, Mattio LM, Alcázar Magaña A, Choi J, Plagmann LS, Redick MA, Miranda CL, Maier CS, Dallavalle S, Kioussi C, Blakemore PR, Stevens JF. Xanthohumol Pyrazole Derivative Improves Diet-Induced Obesity and Induces Energy Expenditure in High-Fat Diet-Fed Mice. ACS Pharmacol Transl Sci 2021; 4:1782-1793. [PMID: 34927010 DOI: 10.1021/acsptsci.1c00161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The energy intake exceeding energy expenditure (EE) results in a positive energy balance, leading to storage of excess energy and weight gain. Here, we investigate the potential of a newly synthesized compound as an inducer of EE for the management of diet-induced obesity and insulin resistance. Xanthohumol (XN), a prenylated flavonoid from hops, was used as a precursor for the synthesis of a pyrazole derivative tested for its properties on high-fat diet (HFD)-induced metabolic impairments. In a comparative study with XN, we report that 4-(5-(4-hydroxyphenyl)-1-methyl-1H-pyrazol-3-yl)-5-methoxy-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol (XP) uncouples oxidative phosphorylation in C2C12 cells. In HFD-fed mice, XP improved glucose tolerance and decreased weight gain by increasing EE and locomotor activity. Using an untargeted metabolomics approach, we assessed the effects of treatment on metabolites and their corresponding biochemical pathways. We found that XP and XN reduced purine metabolites and other energy metabolites in the plasma of HFD-fed mice. The induction of locomotor activity was associated with an increase in inosine monophosphate in the cortex of XP-treated mice. Together, these results suggest that XP, better than XN, affects mitochondrial respiration and cellular energy metabolism to prevent obesity in HFD-fed mice.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Luce M Mattio
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan 20133, Italy
| | - Armando Alcázar Magaña
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| | - Layhna S Plagmann
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Margaret A Redick
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cristobal L Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, Milan 20133, Italy
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Paul R Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
16
|
Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, Giménez-Bastida JA, Selma MV, González-Sarrías A, Espín JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct 2021; 12:10324-10355. [PMID: 34558584 DOI: 10.1039/d1fo02033a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the high human interindividual variability in response to (poly)phenol consumption, the cause-and-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention of LDL oxidation, respectively) has been well established. Most of the variables affecting this interindividual variability have been identified (food matrix, gut microbiota, single-nucleotide-polymorphisms, etc.). However, the final drivers for the health effects of (poly)phenol consumption have not been fully identified. At least partially, these drivers could be (i) the (poly)phenols ingested that exert their effect in the gastrointestinal tract, (ii) the bioavailable metabolites that exert their effects systemically and/or (iii) the gut microbial ecology associated with (poly)phenol metabolism (i.e., gut microbiota-associated metabotypes). However, statistical associations between health effects and the occurrence of circulating and/or excreted metabolites, as well as cross-sectional studies that correlate gut microbial ecologies and health, do not prove a causal role unequivocally. We provide a critical overview and perspective on the possible main drivers of the effects of (poly)phenols on human health and suggest possible actions to identify the putative actors responsible for the effects.
Collapse
Affiliation(s)
- Carlos E Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María Á Ávila-Gálvez
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, 2781-901, Oeiras, Portugal
| | - Juan A Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María V Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
17
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
18
|
Trius-Soler M, Marhuenda-Muñoz M, Laveriano-Santos EP, Martínez-Huélamo M, Sasot G, Storniolo CE, Estruch R, Lamuela-Raventós RM, Tresserra-Rimbau A. Moderate Consumption of Beer (with and without Ethanol) and Menopausal Symptoms: Results from a Parallel Clinical Trial in Postmenopausal Women. Nutrients 2021; 13:nu13072278. [PMID: 34209273 PMCID: PMC8308431 DOI: 10.3390/nu13072278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The menopausal transition can be a challenging period for women’s health and a trigger of uncomfortable symptoms. Beer is the main food source of isoxanthohumol, a precursor of 8-prenylnaringenin, the strongest phytoestrogen identified to date. As phytoestrogens are reported to reduce perimenopausal symptoms, we evaluated if a daily moderate consumption of beer with (AB) and without alcohol (NAB) could improve menopausal symptoms and modify cardiovascular risk factors. A total of 37 postmenopausal women were enrolled in a parallel controlled intervention trial and assigned to three study groups: 16 were administered AB (330 mL/day), 7 NAB (660 mL/day), and 14 were in the control group. After a 6-month follow-up of the 34 participants who finished the trial, both interventions (AB and NAB) significantly reduced the severity of the menopause-related symptoms (p-value AB vs. Control: 0.009; p-value NAB vs. Control: 0.033). Moreover, AB had a beneficial net effect on psychological menopausal discomforts compared to the control group. As the sex hormone profile did not differ significantly between the study groups, the effects of both types of beers (AB and NAB) are attributed to the non-alcoholic fraction of beer. Furthermore, moderate NAB consumption improved the lipid profile and decreased blood pressure in postmenopausal women.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - María Marhuenda-Muñoz
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Emily P. Laveriano-Santos
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Miriam Martínez-Huélamo
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Gemma Sasot
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Carolina E. Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Internal Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Correspondence: (R.M.L.-R.); (A.T.-R.); Tel.: +34-934-034-843 (R.M.L.-R. & A.T.-R.)
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.T.-S.); (M.M.-M.); (E.P.L.-S.); (M.M.-H.); (G.S.); (C.E.S.)
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Correspondence: (R.M.L.-R.); (A.T.-R.); Tel.: +34-934-034-843 (R.M.L.-R. & A.T.-R.)
| |
Collapse
|
19
|
Chemoprotective Effects of Xanthohumol against the Carcinogenic Mycotoxin Aflatoxin B1. Foods 2021; 10:foods10061331. [PMID: 34207931 PMCID: PMC8230236 DOI: 10.3390/foods10061331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
The present study addresses the chemoprotective effects of xanthohumol (XN), a prenylated flavonoid found in the female inflorescences (hops) of the plant Humulus lupulus L., against the carcinogenic food contaminant aflatoxin B1 (AFB1). The chemical reactions of XN and its derivatives (isoxanthohumol (IXN), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN)) with the AFB1 metabolite, aflatoxin B1 exo-8,9-epoxide (AFBO), were investigated in silico, by calculating activation free energies (ΔG‡) at the Hartree–Fock level of theory in combination with the 6-311++G(d,p) basis set and two implicit solvation models. The chemoprotective effects of XN were investigated in vitro in the metabolically competent HepG2 cell line, analyzing its influence on AFB1-induced cytotoxicity using the MTS assay, genotoxicity using the comet and γH2AX assays, and cell cycle modulation using flow cytometry. Our results show that the ΔG‡ required for the reactions of XN and its derivatives with AFBO are comparable to the ΔG‡ required for the reaction of AFBO with guanine, indicating that XN, IXN, 8-PN, and 6-PN could act as scavengers of AFBO, preventing DNA adduct formation and DNA damage induction. This was also reflected in the results from the in vitro experiments, where a reduction in AFB1-induced cytotoxicity and DNA single-strand and double-strand breaks was observed in cells exposed to combinations of AFB1 and XN, highlighting the chemoprotective effects of this phytochemical.
Collapse
|
20
|
Aichinger G, Bliem G, Marko D. Systemically Achievable Doses of Beer Flavonoids Induce Estrogenicity in Human Endometrial Cells and Cause Synergistic Effects With Selected Pesticides. Front Nutr 2021; 8:691872. [PMID: 34164426 PMCID: PMC8215115 DOI: 10.3389/fnut.2021.691872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Some prenylated polyphenols originating from hops, which are thus natural constituents of beer, have been discussed critically for their agonistic potential toward estrogen receptors. So far, little attention has been attributed to the fact that humans are typically not exposed to isolated compounds, but to mixtures which for example might comprise in addition to hop flavonoids further xenoestrogens, e.g., certain pesticides used for plant protection of hops and barley. Thus, we used the alkaline phosphatase assay to assess combinatory estrogenic effects of three signature compounds – xanthohumol, 8-prenylnaringenin and iso-xanthohumol–on Ishikawa cells in a combination that resembled the concentration ratios observable in beer. Moreover, we added this natural flavonoid pattern to a mixture of representative estrogenic pesticides to assess their combined effects. Using state-of-the-art statistical tools, we observed cumulative to slightly synergistic effects between isolated flavonoids as well as the flavonoid and the pesticide mixture. Of potential importance, these effects were found at low nanomolar hop polyphenol concentrations that one can reasonably expect to occur in vivo after the consumption of strongly hopped beer. Taken together, our results imply that cumulative/synergistic estrogenicity should be explored in detail and urgently be incorporated into risk assessment of prenylated chalcones.
Collapse
Affiliation(s)
- Georg Aichinger
- Department for Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Laboratory of Toxicology, Department of Health Sciences and Technology, Eidgenoessische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Gloria Bliem
- Department for Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Doris Marko
- Department for Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Paudel S, Kim Y, Choi SM, Kim JH, Bae JS, Lee T, Lee S. Identification of suberosin metabolites in human liver microsomes by high-performance liquid chromatography combined with high-resolution quadrupole-orbitrap mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4623. [PMID: 32734675 DOI: 10.1002/jms.4623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Suberosin is a natural prenylated coumarin derivative isolated from Citropsis articulata. It has various pharmacological properties, especially as an anticoagulant, for which it has been used since antiquity. However, its metabolic pathway and metabolites have not yet been studied. Therefore, this study characterizes its metabolic pathway and metabolites in human liver microsomes (HLMs) using high-resolution quadrupole-orbitrap mass spectrometry (HRMS/MS). Eight metabolites (M1-M8) were found, including three monohydroxylated (M1-M3), one hydrated (M4), three dihydroxylated (M5-M7), and one glucuronide conjugate (M8). Furthermore, forms of cytochrome P450 (CYPs) responsible for suberosin metabolism in HLMs were characterized. CYP1A2 was identified as a major enzyme for the production of M1 and M5 metabolites. The M2, M3, and M7 metabolites were predominantly generated by CYP2B6. M8 was the only phase II metabolite, identified as a glucuronide conjugate from either M1 or M2. This glucuronide conjugate may be the only promising metabolite from phase II metabolism. Phase I metabolism, especially hydroxylation, was found to provide a predominant metabolic pathway of suberosin in HLMs. Further studies should be conducted to explore the metabolites, examining their efficacy and their toxicity in an in vivo system.
Collapse
Affiliation(s)
- Sanjita Paudel
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Younah Kim
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su Min Choi
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong-Sup Bae
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Taeho Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
22
|
|
23
|
Recent patents on therapeutic activities of xanthohumol: a prenylated chalconoid from hops ( Humulus lupulus L.). Pharm Pat Anal 2021; 10:37-49. [PMID: 33445965 DOI: 10.4155/ppa-2020-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is expanding proof that specific natural compounds found in plants have additional conventional medicinal properties. One such compound is xanthohumol (XN), which is being explored as an antimicrobial, anticarcinogenic, antidiabetic and anti-inflammatory agent - aside from its utilization in dealing with conditions like autism, bone and skin improvement and microbial infections, lipid-related illnesses, and so on. XN is reported to suppress the uncontrolled production of inflammatory mediators responsible for diseases including cardiovascular disease, neurodegeneration and tumors. Further, it is accounted to limit adipogenesis and control obesity by focusing on principal adipocyte marker proteins. It is most generally utilized in the brewing industry as an additive and flavoring agent to add bitterness and aroma to beer. Present investigation sum up the patents filed in most recent 2 years on development of different pharmaceutical mixes and strategies dependent on various therapeutic potentials of XN.
Collapse
|
24
|
Tronina T, Popłoński J, Bartmańska A. Flavonoids as Phytoestrogenic Components of Hops and Beer. Molecules 2020; 25:molecules25184201. [PMID: 32937790 PMCID: PMC7570471 DOI: 10.3390/molecules25184201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
The value of hops (Humulus lupulus L.) in beer production has been undisputed for centuries. Hops is rich in humulones and lupulones which gives the characteristic aroma and bitter taste, and preserves this golden drink against growing bacteria and molds. Besides α- and β-acids, the lupulin glands of hop cones excrete prenylated flavonoids, which exhibit a broad spectrum of biological activities and therefore has therapeutic potential in humans. Recently, interest in hops was raised due to hop prenylated flavanones which show extraordinary estrogen activities. The strongest known phytoestrogen so far is 8-prenylnaringenin (8-PN), which along with 6-prenylanaringenin (6-PN), 6,8-diprenylnaringenin (6,8-DPN) and 8-geranylnaringenin (8-GN) are fundamental for the potent estrogen activity of hops. This review provides insight into the unusual hop phytoestrogens and shows numerous health benefits associated with their wide spectrum of biological activities including estrogenic, anticancer, neuropreventive, antinflamatory, and antimicrobial properties, which were intensively studied, and potential applications of these compounds such as, as an alternative to hormone replacement therapy (HRT).
Collapse
|
25
|
Peiffer DS, Ma E, Wyatt D, Albain KS, Osipo C. DAXX-inducing phytoestrogens inhibit ER+ tumor initiating cells and delay tumor development. NPJ Breast Cancer 2020; 6:37. [PMID: 32864429 PMCID: PMC7429502 DOI: 10.1038/s41523-020-00178-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recurrence of estrogen receptor (ER)-positive breast tumors despite curative-intent adjuvant therapy is thought to be due to enrichment of tumor initiating cells (TIC) during endocrine therapy (ET). Recently, it was identified that by antagonizing the ER, ET promotes rapid degradation of the death-associated factor 6 (DAXX) protein, which is necessary and sufficient to potently inhibit TICs. Thus, the goal of the current study was to identify a DAXX-inducing agent to inhibit TICs and prevent proliferation of the tumor. Phytoestrogens (naringenin, resveratrol, genistein, apigenin, and quercetin) were screened for DAXX protein expression, anti-TIC and anti-proliferative efficacy in vitro and in vivo. Specific DAXX-inducing phytoestrogens were tested to assess selectivity towards ERα and/or ERβ. Results showed that phytoestrogens tested induced DAXX protein expression and inhibited survival of TICs from ER+ MCF-7 and T47D cells. Only naringenin, resveratrol, and quercetin did not stimulate total cell proliferation. Naringenin, resveratrol, but not quercetin inhibited survival of TICs in vitro and in vivo in a DAXX-dependent manner. Naringenin-induced DAXX protein expression and inhibition of TICs seemed to be more selective towards ERβ while resveratrol was more selective through ERα. Naringenin or resveratrol inhibited the rate of tumor initiation and rate of tumor growth in a DAXX-dependent manner. These results suggest that a therapeutic approach using a phytoestrogen to induce DAXX protein expression could potently inhibit TICs within a tumor to delay or prevent tumor initiation. Therefore, a DAXX-promoting phytoestrogen should be explored for prevention of tumor progression in advanced disease and relapse in the adjuvant setting.
Collapse
Affiliation(s)
- Daniel S. Peiffer
- MD/PhD and Integrated Cell Biology Programs, Loyola University Chicago Stritch School of Medicine, Maywood, IL United States
| | - Emily Ma
- MD/PhD and Integrated Cell Biology Programs, Loyola University Chicago Stritch School of Medicine, Maywood, IL United States
| | - Debra Wyatt
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL United States
| | - Kathy S. Albain
- Department of Medicine, Division of Hematology/Oncology, Loyola University Chicago Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, IL United States
| | - Clodia Osipo
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL United States
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL United States
| |
Collapse
|
26
|
Paraiso IL, Revel JS, Choi J, Miranda CL, Lak P, Kioussi C, Bobe G, Gombart AF, Raber J, Maier CS, Stevens JF. Targeting the Liver-Brain Axis with Hop-Derived Flavonoids Improves Lipid Metabolism and Cognitive Performance in Mice. Mol Nutr Food Res 2020; 64:e2000341. [PMID: 32627931 PMCID: PMC8693899 DOI: 10.1002/mnfr.202000341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/16/2020] [Indexed: 08/18/2023]
Abstract
SCOPE Sphingolipids including ceramides are implicated in the pathogenesis of obesity and insulin resistance. Correspondingly, inhibition of pro-inflammatory and neurotoxic ceramide accumulation prevents obesity-mediated insulin resistance and cognitive impairment. Increasing evidence suggests the farnesoid X receptor (FXR) is involved in ceramide metabolism, as bile acid-FXR crosstalk controls ceramide levels along the gut-liver axis. The authors previously reported that FXR agonist xanthohumol (XN), the principal prenylated flavonoid in hops (Humulus lupulus), and its hydrogenated derivatives, α,β-dihydroxanthohumol (DXN), and tetrahydroxanthohumol (TXN), ameliorated obesity-mediated insulin resistance, and cognitive impairment in mice fed a high-fat diet. METHODS AND RESULTS To better understand how the flavonoids improve both, lipid and bile acid profiles in the liver are analyzed, sphingolipid relative abundance in the hippocampus is measured, and linked them to metabolic and neurocognitive performance. XN, DXN, and TXN (30 mg kg-1 BW per day) decrease ceramide content in liver and hippocampus; the latter is linked to improvements in spatial learning and memory. In addition, XN, DXN, and TXN decrease hepatic cholesterol content by enhancing de novo synthesis of bile acids. CONCLUSION These observations suggest that XN, DXN, and TXN may alleviate obesity-induced metabolic and neurocognitive impairments by targeting the liver-brain axis.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Johana S Revel
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Cristobal L Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Parnian Lak
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
27
|
van Breemen RB, Chen L, Tonsing-Carter A, Banuvar S, Barengolts E, Viana M, Chen SN, Pauli GF, Bolton JL. Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5212-5220. [PMID: 32285669 PMCID: PMC8071352 DOI: 10.1021/acs.jafc.0c01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Botanical dietary supplements produced from hops (Humulus lupulus) containing the chemopreventive compound xanthohumol and phytoestrogen 8-prenylnaringenin are used by women to manage menopausal symptoms. Because of the long half-lives of prenylated hop phenols and reports that they inhibit certain cytochrome P450 enzymes, a botanically authenticated and chemically standardized hop extract was tested for Phase I pharmacokinetic drug interactions. Sixteen peri- and postmenopausal women consumed the hop extract twice daily for 2 weeks, and the pharmacokinetics of tolbutamide, caffeine, dextromethorphan, and alprazolam were evaluated before and after supplementation as probe substrates for the enzymes CYP2C9, CYP1A2, CYP2D6, and CYP3A4/5, respectively. The observed area under the time-concentration curves were unaffected, except for alprazolam which decreased 7.6% (564.6 ± 46.1 h·μg/L pre-hop and 521.9 ± 36.1 h·μg/L post-hop; p-value 0.047), suggesting minor induction of CYP3A4/5. No enzyme inhibition was detected. According to FDA guidelines, this hop dietary supplement caused no clinically relevant pharmacokinetic interactions with respect to CYP2C9, CYP1A2, CYP2D6, or CYP3A4/5. The serum obtained after consumption of the hop extract was analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry to confirm compliance. Abundant Phase II conjugates of the hop prenylated phenols were observed including monoglucuronides and monosulfates as well as previously unreported diglucuronides and sulfate-glucuronic acid diconjugates.
Collapse
Affiliation(s)
- Richard B. van Breemen
- Linus Pauling Institute, College of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
- To whom correspondence should be addressed Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, 2900 SW Campus Way, Corvallis, OR 97331, Tel: 541-737-5078, Fax: 541-737-5077,
| | - Luying Chen
- Linus Pauling Institute, College of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Alyssa Tonsing-Carter
- Clinical and Healthcare Research Policy Division, National Institutes of Health, 6705 Rockledge Dr., Suite 750, Bethesda, MD 20817
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Suzanne Banuvar
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Elena Barengolts
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Marlos Viana
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| |
Collapse
|
28
|
Cortés-Martín A, Selma MV, Tomás-Barberán FA, González-Sarrías A, Espín JC. Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Mol Nutr Food Res 2020; 64:e1900952. [PMID: 32196920 DOI: 10.1002/mnfr.201900952] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Indexed: 12/23/2022]
Abstract
The full consensus on the role of dietary polyphenols as human-health-promoting compounds remains elusive. The two-way interaction between polyphenols and gut microbiota (GM) (i.e., modulation of GM by polyphenols and their catabolism by the GM) is determinant in polyphenols' effects. The identification of human metabotypes associated with a differential gut microbial metabolism of polyphenols has opened new research scenarios to explain the inter-individual variability upon polyphenols consumption. The metabotypes unequivocally identified so far are those involved in the metabolism of isoflavones (equol and(or) O-desmethylangolesin producers versus non-producers) and ellagic acid (urolithin metabotypes, including producers of only urolithin-A (UM-A), producers of urolithin-A, isourolithin-A, and urolithin-B (UM-B), and non-producers (UM-0)). In addition, the microbial metabolites (phenolic-derived postbiotics) such as equol, urolithins, valerolactones, enterolactone, and enterodiol, and 8-prenylnaringenin, among others, can exert differential health effects. The knowledge is updated and position is taken here on i) the two-way interaction between GM and polyphenols, ii) the evidence between phenolic-derived postbiotics and health, iii) the role of metabotypes as biomarkers of GM and the clustering of individuals depending on their metabotypes (metabotyping) to explain polyphenols' effects, and iv) the gut microbial metabolism of catecholamines to illustrate the intersection between personalized nutrition and precision medicine.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Francisco Abraham Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
29
|
The Effect of Hops ( Humulus lupulus L.) Extract Supplementation on Weight Gain, Adiposity and Intestinal Function in Ovariectomized Mice. Nutrients 2019; 11:nu11123004. [PMID: 31817899 PMCID: PMC6950254 DOI: 10.3390/nu11123004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen decline during menopause is associated with altered metabolism, weight gain and increased risk of cardiometabolic diseases. The gut microbiota also plays a role in the development of cardiometabolic dysfunction and is also subject to changes associated with age-related hormone changes. Phytoestrogens are plant-based estrogen mimics that have gained popularity as dietary supplements for the treatment or prevention of menopause-related symptoms. These compounds have the potential to both modulate and be metabolized by the gut microbiota. Hops (Humulus lupulus L.) contain potent phytoestrogen precursors, which rely on microbial biotransformation in the gut to estrogenic forms. We supplemented ovariectomized (OVX) or sham-operated (SHAM) C57BL/6 mice, with oral estradiol (E2), a flavonoid-rich extract from hops, or a placebo carrier oil, to observe effects on adiposity, inflammation, and gut bacteria composition. Hops extract (HE) and E2 protected against increased visceral adiposity and liver triglyceride accumulation in OVX animals. Surprisingly, we found no evidence of OVX having a significant impact on the overall gut bacterial community structure. We did find differences in the abundance of Akkermansia muciniphila, which was lower with HE treatment in the SHAM group relative to OVX E2 treatment and to placebo in the SHAM group.
Collapse
|
30
|
Han J. Chemical Aspects of Gut Metabolism of Flavonoids. Metabolites 2019; 9:metabo9070136. [PMID: 31295867 PMCID: PMC6680792 DOI: 10.3390/metabo9070136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
The intestine is a small world where all the chemical reactions are operated by gut microbiota. Study on the gut metabolism of natural products is a new and expanding research area that leads to new bioactive metabolites, as well as novel chemical reactions. To provide exemplary cases, flavonoid biotransformation by intestinal bacteria with focus on S-equol biosynthesis and aryl methyl ether cleavage reaction, is described in this review.
Collapse
Affiliation(s)
- Jaehong Han
- Metalloenzyme Research Group and Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
31
|
Seliger JM, Martin HJ, Maser E, Hintzpeter J. Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenylflavonoids isoxanthohumol and 8-prenylnaringenin. Chem Biol Interact 2019; 305:156-162. [DOI: 10.1016/j.cbi.2019.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/20/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
32
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
33
|
Logan IE, Miranda CL, Lowry MB, Maier CS, Stevens JF, Gombart AF. Antiproliferative and Cytotoxic Activity of Xanthohumol and Its Non-Estrogenic Derivatives in Colon and Hepatocellular Carcinoma Cell Lines. Int J Mol Sci 2019; 20:ijms20051203. [PMID: 30857300 PMCID: PMC6429097 DOI: 10.3390/ijms20051203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Xanthohumol (XN), a prenylated flavonoid found in hops, inhibits growth in a variety of cancer cell lines; however, its use raises concerns as gut microbiota and the host’s hepatic cytochrome P450 enzymes metabolize it into the most potent phytoestrogen known, 8-prenylnaringenin (8-PN). The XN derivatives dihydroxanthohumol (DXN) and tetrahydroxanthohumol (TXN) are not metabolized into 8-PN and they show higher tissue concentrations in vivo compared with XN when orally administered to mice at the same dose. Here we show that DXN and TXN possess improved anti-proliferative activity compared with XN in two colon (HCT116, HT29) and two hepatocellular (HepG2, Huh7) carcinoma cell lines, as indicated by their respective IC50 values. Furthermore, XN, DXN, and TXN induce extensive apoptosis in all these carcinoma cell lines. Finally, TXN induces G0/G1 cell cycle arrest in the colon carcinoma cell line HT29. Our findings suggest that DXN and TXN could show promise as therapeutic agents against colorectal and liver cancer in preclinical studies without the drawback of metabolism into a phytoestrogen.
Collapse
Affiliation(s)
- Isabelle E Logan
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Cristobal L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Malcolm B Lowry
- Department of Microbiology, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Adrian F Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
34
|
Microbial Metabolites in Cancer Promotion or Prevention. MICROBIOME AND CANCER 2019. [DOI: 10.1007/978-3-030-04155-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Bolton JL, Dunlap TL, Hajirahimkhan A, Mbachu O, Chen SN, Chadwick L, Nikolic D, van Breemen RB, Pauli GF, Dietz BM. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem Res Toxicol 2019; 32:222-233. [PMID: 30608650 PMCID: PMC6643004 DOI: 10.1021/acs.chemrestox.8b00345] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Botanical dietary supplements for women's health are increasingly popular. Older women tend to take botanical supplements such as hops as natural alternatives to traditional hormone therapy to relieve menopausal symptoms. Especially extracts from spent hops, the plant material remaining after beer brewing, are enriched in bioactive prenylated flavonoids that correlate with the health benefits of the plant. The chalcone xanthohumol (XH) is the major prenylated flavonoid in spent hops. Other less abundant but important bioactive prenylated flavonoids are isoxanthohumol (IX), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN). Pharmacokinetic studies revealed that these flavonoids are conjugated rapidly with glucuronic acid. XH also undergoes phase I metabolism in vivo to form IX, 8-PN, and 6-PN. Several hop constituents are responsible for distinct effects linked to multiple biological targets, including hormonal, metabolic, inflammatory, and epigenetic pathways. 8-PN is one of the most potent phytoestrogens and is responsible for hops' estrogenic activities. Hops also inhibit aromatase activity, which is linked to 8-PN. The weak electrophile, XH, can activate the Keap1-Nrf2 pathway and turn on the synthesis of detoxification enzymes such as NAD(P)H-quinone oxidoreductase 1 and glutathione S-transferase. XH also alkylates IKK and NF-κB, resulting in anti-inflammatory activity. Antiobesity activities have been described for XH and XH-rich hop extracts likely through activation of AMP-activated protein kinase signaling pathways. Hop extracts modulate the estrogen chemical carcinogenesis pathway by enhancing P450 1A1 detoxification. The mechanism appears to involve activation of the aryl hydrocarbon receptor (AhR) by the AhR agonist, 6-PN, leading to degradation of the estrogen receptor. Finally, prenylated phenols from hops are known inhibitors of P450 1A1/2; P450 1B1; and P450 2C8, 2C9, and 2C19. Understanding the biological targets of hop dietary supplements and their phytoconstituents will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha L. Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Obinna Mbachu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Luke Chadwick
- Bell’s Brewery, 8938 Krum Avenue, Galesburg, Michigan 49053, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Richard B. van Breemen
- Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, Corvallis, Oregon 97331, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
36
|
Kim HJ, Yim SH, Han F, Kang BY, Choi HJ, Jung DW, Williams DR, Gustafson KR, Kennelly EJ, Lee IS. Biotransformed Metabolites of the Hop Prenylflavanone Isoxanthohumol. Molecules 2019; 24:molecules24030394. [PMID: 30678278 PMCID: PMC6385124 DOI: 10.3390/molecules24030394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023] Open
Abstract
A metabolic conversion study on microbes is known as one of the most useful tools to predict the xenobiotic metabolism of organic compounds in mammalian systems. The microbial biotransformation of isoxanthohumol (1), a major hop prenylflavanone in beer, has resulted in the production of three diastereomeric pairs of oxygenated metabolites (2–7). The microbial metabolites of 1 were formed by epoxidation or hydroxylation of the prenyl group, and HPLC, NMR, and CD analyses revealed that all of the products were diastereomeric pairs composed of (2S)- and (2R)- isomers. The structures of these metabolic compounds were elucidated to be (2S,2″S)- and (2R,2″S)-4′-hydroxy-5-methoxy-7,8-(2,2-dimethyl-3-hydroxy-2,3-dihydro-4H-pyrano)-flavanones (2 and 3), (2S)- and (2R)-7,4′-dihydroxy-5-methoxy-8-(2,3-dihydroxy-3-methylbutyl)-flavanones (4 and 5) which were new oxygenated derivatives, along with (2R)- and (2S)-4′-hydroxy-5-methoxy-2″-(1-hydroxy-1-methylethyl)dihydrofuro[2,3-h]flavanones (6 and 7) on the basis of spectroscopic data. These results could contribute to understanding the metabolic fates of the major beer prenylflavanone isoxanthohumol that occur in mammalian system.
Collapse
Affiliation(s)
- Hyun Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Korea.
| | - Soon-Ho Yim
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeonnam 58245, Korea.
| | - Fubo Han
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea.
| | - Bok Yun Kang
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea.
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Gyeonggi-do 13488, Korea.
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA.
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
37
|
Seliger JM, Misuri L, Maser E, Hintzpeter J. The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J Enzyme Inhib Med Chem 2018; 33:607-614. [PMID: 29532688 PMCID: PMC6010053 DOI: 10.1080/14756366.2018.1437728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023] Open
Abstract
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki = 15.08 μM, 0.34 μM, 0.71 μM) and of human AKR1B10 (Ki = 20.11 μM, 2.25 μM, 1.95 μM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure?activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.
Collapse
Affiliation(s)
- Jan Moritz Seliger
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Livia Misuri
- Department of Biology, Tuscany Region PhD School in Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
38
|
Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly Cancer Selective Antiproliferative Activity of Natural Prenylated Flavonoids. Molecules 2018; 23:molecules23112922. [PMID: 30423918 PMCID: PMC6278664 DOI: 10.3390/molecules23112922] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Xanthohumol (XN) and four minor hops prenylflavonoids: α,β-dihydroxanthohumol (2HXN), isoxanthohumol (IXN), 8-prenylnaringenin (8PN), and 6-prenylnaringenin (6PN), were tested for antiproliferative activity towards human cancer and normal cell lines. Nonprenylated naringenin (NG) was used as a model compound. Xanthohumol, α,β-dihydroxanthohumol and 6-prenylnaringenin were the most active compounds. Xanthohumol exhibited higher antiproliferative activity than cisplatin (CP) against five cancer cell lines: ovarian resistant to cisplatin A2780cis, breast MDA-MB-231 and T-47D, prostate PC-3, and colon HT-29. Isoxanthohumol was more potent than cisplatin against breast cancer cell lines MDA-MB-231 and T-47D whereas 6-prenylnaringenin was stronger than cisplatin against breast cancer cell line T-47D. It was found that tested chalcones possessed highly selective antiproliferative activity towards all tested breast cancer lines compared to the normal breast MCF 10A cell line (the calculated selectivity index ranged from 5 to 10). Low antiproliferative activity of naringenin indicates the importance of the prenyl group with respect to antiproliferative activity.
Collapse
Affiliation(s)
- Agnieszka Bartmańska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| | - Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
39
|
Moriya H, Tanaka S, Iida Y, Kitagawa S, Aizawa SI, Taga A, Terashima H, Yamamoto A, Kodama S. Chiral separation of isoxanthohumol and 8-prenylnaringenin in beer, hop pellets and hops by HPLC with chiral columns. Biomed Chromatogr 2018; 32:e4289. [DOI: 10.1002/bmc.4289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Hyuga Moriya
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| | - Sohei Tanaka
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| | - Yukari Iida
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| | - Satomi Kitagawa
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| | - Sen-ichi Aizawa
- Graduate School of Science and Engineering; University of Toyama; Toyama Japan
| | - Atsushi Taga
- School of Pharmacy; Kinki University; Higashi-Osaka Japan
| | | | - Atsushi Yamamoto
- Department of Biological Chemistry, College of Bioscience and Biotechnology; Chubu University; Kasugai-shi Aichi Japan
| | - Shuji Kodama
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| |
Collapse
|
40
|
Qian J, Xie F, Shi Y, Li J, Zhang L, Li Y, Guo F, Wang R. Pharmacokinetic and metabolism studies of bavachinin through ultra-high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2018; 32:e4293. [DOI: 10.1002/bmc.4293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Qian
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Fan Xie
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Yanhong Shi
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Jinhang Li
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Liuqiang Zhang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Yiming Li
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Fujiang Guo
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| | - Rui Wang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai People's Republic of China
| |
Collapse
|
41
|
Sus N, Schlienz J, Calvo-Castro LA, Burkard M, Venturelli S, Busch C, Frank J. Validation of a rapid and sensitive reversed-phase liquid chromatographic method for the quantification of prenylated chalcones and flavanones in plasma and urine. NFS JOURNAL 2018. [DOI: 10.1016/j.nfs.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Mukai R. Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability. Biosci Biotechnol Biochem 2018; 82:207-215. [DOI: 10.1080/09168451.2017.1415750] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Flavonoids are distributed across the plant kingdom and have attracted substantial attention owing to their potential benefits for human health. Several studies have demonstrated that flavonoids prenylation enhances various biological activities, suggesting an attractive tool for developing functional foods. This review provides an overview of the current knowledge on how prenylation influences the biological activity and bioavailability of flavonoids. The enhancement effect of prenylation on the biological activities of dietary flavonoids in mammals was demonstrated by comparing the effect of 8-prenyl naringenin (8PN) with that of parent naringenin in the prevention of disuse muscle atrophy in mice. This enhancement results from higher muscular accumulation of 8PN than naringenin. As to bioavailability, despite the lower absorption of 8-prenyl quercetin (8PQ) compared with quercetin, higher 8PQ accumulation was found in the liver and kidney. These data imply that prenylation interferes with the elimination of flavonoids from tissues.
Collapse
Affiliation(s)
- Rie Mukai
- Field of Food Science and Technology, Department of Food Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
43
|
O'Connor A, Konda V, Reed RL, Christensen JM, Stevens JF, Contractor N. Rice Protein Matrix Enhances Circulating Levels of Xanthohumol Following Acute Oral Intake of Spent Hops in Humans. Mol Nutr Food Res 2018; 62:e1700692. [PMID: 29322620 DOI: 10.1002/mnfr.201700692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Indexed: 12/12/2022]
Abstract
SCOPE Xanthohumol (XN), a prenylated flavonoid found in hops, exhibits anti-inflammatory and antioxidant properties. However, poor bioavailability may limit therapeutic applications. As food components are known to modulate polyphenol absorption, the objective is to determine whether a protein matrix could enhance the bioavailability of XN post oral consumption in humans. METHODS AND RESULTS This is a randomized, double-blind, crossover study in healthy participants (n = 6) evaluating XN and its major metabolites (isoxanthohumol [IX], 6- and 8-prenylnaringenin [6-PN, 8-PN]) for 6 h following consumption of 12.4 mg of XN delivered via a spent hops-rice protein matrix preparation or a control spent hops preparation. Plasma XN and metabolites are measured by LC-MS/MS. Cmax , Tmax , and area-under-the-curve (AUC) values were determined. Circulating XN and metabolite response to each treatment was not bioequivalent. Plasma concentrations of XN and XN + metabolites (AUC) are greater with consumption of the spent hops-rice protein matrix preparation. CONCLUSION Compared to a standard spent hops powder, a protein-rich spent hops matrix demonstrates enhanced plasma levels of XN and metabolites following acute oral intake.
Collapse
Affiliation(s)
| | | | - Ralph L Reed
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | - Jan F Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
44
|
Non-estrogenic Xanthohumol Derivatives Mitigate Insulin Resistance and Cognitive Impairment in High-Fat Diet-induced Obese Mice. Sci Rep 2018; 8:613. [PMID: 29330372 PMCID: PMC5766630 DOI: 10.1038/s41598-017-18992-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Xanthohumol (XN), a prenylated flavonoid from hops, improves dysfunctional glucose and lipid metabolism in animal models of metabolic syndrome (MetS). However, its metabolic transformation into the estrogenic metabolite, 8-prenylnaringenin (8-PN), poses a potential health concern for its use in humans. To address this concern, we evaluated two hydrogenated derivatives, α,β-dihydro-XN (DXN) and tetrahydro-XN (TXN), which showed negligible affinity for estrogen receptors α and β, and which cannot be metabolically converted into 8-PN. We compared their effects to those of XN by feeding C57BL/6J mice a high-fat diet (HFD) containing XN, DXN, or TXN for 13 weeks. DXN and TXN were present at higher concentrations than XN in plasma, liver and muscle. Mice administered XN, DXN or TXN showed improvements of impaired glucose tolerance compared to the controls. DXN and TXN treatment resulted in a decrease of HOMA-IR and plasma leptin. C2C12 embryonic muscle cells treated with DXN or TXN exhibited higher rates of uncoupled mitochondrial respiration compared to XN and the control. Finally, XN, DXN, or TXN treatment ameliorated HFD-induced deficits in spatial learning and memory. Taken together, DXN and TXN could ameliorate the neurocognitive-metabolic impairments associated with HFD-induced obesity without risk of liver injury and adverse estrogenic effects.
Collapse
|
45
|
Chen HJ, Liu J. Actein ameliorates hepatic steatosis and fibrosis in high fat diet-induced NAFLD by regulation of insulin and leptin resistant. Biomed Pharmacother 2017; 97:1386-1396. [PMID: 29156528 DOI: 10.1016/j.biopha.2017.09.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023] Open
Abstract
Insulin and leptin resistance are highly involved in metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Presently, no approved treatment is available. Actein is isolated from the rthizomes of Cimicifuga foetida, a triterpene glycoside, exhibiting important biological properties, such as anti-inflammatory, anti-cancer, and anti-oxidant activity. However, its effects on metabolic syndrome are poorly understood. The aims of the study were mainly to investigate the molecular mechanisms regulating insulin and leptin resistance, and lipogenic action of actein in high fat diet-fed mice. Our data indicated that actein-treated mice displayed lower body weight, epididymal and subcutaneous fat mass, as well as serum lipid levels. Also, improved insulin and leptin resistance were observed in actein-treated groups. Liver inflammation and fibrosis triggered by high fat diet were decreased for actein administration. Moreover, hepatic lipid accumulation was also reduced by actein along with reductions of hepatic de novo lipogenesis-linked signals in actein-treated rodents with high fat diet. High fat diet-induced activation of insulin receptor substrate 1/Forkhead box protein O1 (IRS1/FOXO1), Janus kinase 2 gene/signal transducer and activator of transcription (JAK2/STAT3) and Protein Kinase B/Glycogen synthase kinase 3 beta (AKT/GSK3β) pathways in liver was inhibited by actein, a potential mechanism by which hyperinsulinemia, hyperleptindemia and dyslipidemia were attenuated. Thus, the findings above might be of nutritional and therapeutic importance for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hong-Jun Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
46
|
Gu J, Sui Z, Fang C, Tan Q. Stereochemical considerations in pharmacokinetic processes of representative antineoplastic agents. Drug Metab Rev 2017; 49:438-450. [PMID: 29078726 DOI: 10.1080/03602532.2017.1394322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The vast majority of chemical drugs or drug candidates contain stereocenter(s) in their molecular structures. In these molecules, stereochemical properties are vital properties that influence or even determine their drug actions. Therefore, studying the stereochemical issues of drugs (or drug candidates) is necessary for rational drug use. These stereochemical issues are usually involved with the stereoselectivity in pharmacokinetic processes, especially in the metabolism process. Thus, the investigation of the stereochemical issues in drug metabolism process deserves great attention, especially in those chiral/prochiral antineoplastic agents exhibiting pharmacodynamics and toxicologic differences between stereoisomers. Published reviews concerning this certain issue are inspiring, however they were covering all drug types and only limited antineoplastic drugs were discussed. Here in this review, the research on stereochemical issues in pharmacokinetic processes of some representative antineoplastic agents were described, especially focusing on some newly developed compounds. We highlight the chemical transformations in pharmacokinetic processes of these chiral/prochiral compounds and discuss their different behaviors with metabolic enzymes or transporter proteins, to explicate the observed stereoselectivity intrinsically.
Collapse
Affiliation(s)
- Jing Gu
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Zheng Sui
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Chunshu Fang
- b The Health Team of 77133th Troops , Chinese People's Liberation Army , Chongqing , China
| | - Qunyou Tan
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
47
|
Keiler AM, Helle J, Bader MI, Ehrhardt T, Nestler K, Kretzschmar G, Bernhardt R, Vollmer G, Nikolić D, Bolton JL, Pauli GF, Chen SN, Dietz BM, van Breemen RB, Zierau O. A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:50-58. [PMID: 28899509 PMCID: PMC5736964 DOI: 10.1016/j.phymed.2017.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/15/2017] [Accepted: 08/01/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND Hops (Humulus lupulus (L.)) dietary supplements are of interest as herbal remedies to alleviate menopausal symptoms, such as hot flushes, depression and anxiety. So far, the evidence regarding estrogenic and related properties of hops preparations has been considered insufficient for a market authorization for menopausal indications. PURPOSE The study aims to investigate a chemically standardized hops extract regarding its safety in the uterus, as wells as its efficacy to prevent bone loss in the ovariectomized rat model. STUDY DESIGN/METHODS Female Wistar rats were ovariectomized and divided into a control group receiving phytoestrogen-free diet, a group treated with E2benzoate (0.93 mg/kg body weight/d) and a group treated with the standardized hops extract (60 mg/kg body weight/d) for 8 weeks. Micro-computed tomography of the tibiae and vertebrae, as wells as histological changes in the uterus and tibia were analyzed. RESULTS Neither uterotrophic nor proliferative effects were observed in the endometrium in response to the oral 8-week administration of the hops extract. However, site-dependent skeletal effects were observed. The hops extract significantly decreased the number of osteoclasts in the tibial metaphysis and prevented reduction of the trabecular thickness that resulted from estradiol depletion. In contrast, the hops extract did not prevent the ovariectomy-induced micro-architectural changes in the lumbar vertebra. Certain parameters (e.g. thickness and number of trabeculae) were even found to be below the values determined in the ovariectomized control group. CONCLUSION Taken together, the results provide evidence for the safety of the standardized hops extract and point to a weak bone type-specific, protective effect on bone loss following estradiol depletion.
Collapse
Affiliation(s)
- Annekathrin M Keiler
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany; Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Manuela I Bader
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tino Ehrhardt
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Kristin Nestler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ricardo Bernhardt
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
48
|
Chen SF, Chen PY, Hsu HJ, Wu MJ, Yen JH. Xanthohumol Suppresses Mylip/Idol Gene Expression and Modulates LDLR Abundance and Activity in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7908-7918. [PMID: 28812343 DOI: 10.1021/acs.jafc.7b02282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthohumol, a prenylated flavonoid found in hops (Humulus lupulus L.), exhibits multiple biological activities such as antiatherosclerosis and hypolipidemic activities. In this study, we aim to investigate the hypocholesterolemic effects and molecular mechanisms of xanthohumol in hepatic cells. We found that xanthohumol (10 and 20 μM) increased the amount of cell-surface low-density lipoprotein receptor (LDLR) from 100.0 ± 2.1% to 115.0 ± 1.3% and 135.2 ± 2.7%, and enhanced the LDL uptake activity from 100.0 ± 0.9% to 139.1 ± 13.2% in HepG2 cells (p < 0.01). The mRNA levels of LDLR, HMGCR, and PCSK9 were not altered. Xanthohumol (20 μM) reduced the expression of inducible degrader of the LDL receptor (Mylip/Idol) mRNA and protein by approximately 45% (p < 0.01), which was reported to be associated with increases of LDLR level. We demonstrated that xanthohumol suppressed hepatic Mylip/Idol expression via counteracting liver X receptor (LXR) activation. The molecular docking results predicted that xanthohumol has a high binding affinity to interact with the LXRα ligand-binding domain, which may result in attenuation of LXRα-induced Mylip/Idol expression. Finally, we demonstrated that the Mylip/Idol expression and LDLR activity were synergistically changed by a combination of xanthohumol and simvastatin treatment. Our findings indicated that xanthohumol may regulate the LXR-Mylip/Idol axis to modulate hepatic LDLR abundance and activity.
Collapse
Affiliation(s)
- Shih-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| | - Pei-Yi Chen
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital , Hualien 970, Taiwan
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University , Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science , Tainan 717, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| |
Collapse
|
49
|
Wang Q, Kuang Y, He J, Li K, Song W, Jin H, Qiao X, Ye M. The prenylated phenolic natural product isoglycycoumarin is a highly selective probe for human cytochrome P450 2A6. Eur J Pharm Sci 2017; 109:472-479. [PMID: 28867491 DOI: 10.1016/j.ejps.2017.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Prenylated phenolic compounds are an important class of bioactive natural products. One major in vivo metabolic pathway of these compounds is hydroxylation at terminal methyl of the isoprenyl group. This study aims to identify the P450 isozyme catalyzing this metabolic reaction. In human liver microsomes, 16 out of 24 screened compounds could be metabolized into their hydroxylated derivatives. Chemical inhibition assays using 11 isozyme specific inhibitors indicated the hydroxylation reactions of 12 compounds were primarily catalyzed by cytochrome P450 2A6 (CYP2A6). In particular, CYP2A6 was the major enzyme participating in the metabolism of isoglycycoumarin (IGCM). The product of IGCM was obtained and identified as licopyranocoumarin (4″-hydroxyl isoglycycoumarin) using NMR spectroscopic analysis. The Km values for human liver microsomes and recombinant human CYP2A6 were 7.98 and 10.14μM, respectively. According to molecular docking analysis, the catalytic mechanism may involve cyclized isoprenyl group of IGCM entering the active cavity of CYP2A6. These results demonstrate that IGCM could serve as an ideal isozyme selective probe to evaluate CYP2A6 activities.
Collapse
Affiliation(s)
- Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Junbin He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Wei Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
50
|
Lima-Fontes M, Costa R, Rodrigues I, Soares R. Xanthohumol Restores Hepatic Glucolipid Metabolism Balance in Type 1 Diabetic Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7433-7439. [PMID: 28745504 DOI: 10.1021/acs.jafc.7b02595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diabetes exhibits increased inflammation, angiogenesis, and apoptosis, three processes attenuated by xanthohumol (XN). Herein, we evaluate the effect of XN-enriched stout beer consumption in hepatic glucolipid metabolism imbalance seen in type 1 diabetes (T1D). Five groups of Wistar rats were established: streptozotocin-induced diabetic rats drinking water, treated with 5% ethanol, stout beer, and stout beer supplemented with 10 mg of XN/L and healthy rats drinking water. Hepatic periodic acid-Schiff, reticulin, sirius red, and oil red O histological staining was performed. Lipogenic enzymes and glucose transporter 2 (GLUT2) expression was evaluated by western blotting. Increased fibrosis in T1D animals was significantly decreased to control levels by XN (3.85 ± 0.38 in T1D-beer versus 1.78 ± 0.27 in controls, p < 0.05; 2.27 ± 0.69 in T1D-beer + XN versus 1.78 ± 0.27 in controls, p > 0.05). XN reduced T1D hepatic reticulin staining (9.74 ± 3.78 in T1D-beer, p < 0.05 versus control) to healthy levels (4.45 ± 1.05 in T1D-beer + XN versus 4.60 ± 0.20 in healthy controls, p > 0.05). XN consumption interfered with the T1D liver catabolic state, reversing glycogen depletion (22.09 ± 7.70 in T1D-beer + XN versus 4.68 ± 4.84 in T1D-beer, p < 0.05) and GLUT2 upregulation (1.71 ± 0.46 in T1D-beer + XN versus 2.13 ± 0.34 in T1D-beer, p < 0.05) and enhancing lipogenesis (1.19 ± 0.11 in T1D-beer + XN versus 1.96 ± 0.36 in T1D, p < 0.05 for acetyl-CoA carboxylase; 1.10 ± 0.04 in T1D-beer + XN versus 0.44 ± 0.31 in T1D, p < 0.05 for fatty acid synthase). These findings reveal that XN can be a therapeutic agent against liver metabolic changes in T1D, playing a possible role in the insulin receptor pathways.
Collapse
Affiliation(s)
- Mário Lima-Fontes
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto , Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel Costa
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto , Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ilda Rodrigues
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto , Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel Soares
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto , Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto , Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|