1
|
Yamazoe Y, Murayama N. Construction of a CYP2J2-Template System and Its Application for Ligand Metabolism Prediction. Food Saf (Tokyo) 2024; 12:69-82. [PMID: 39713276 PMCID: PMC11649976 DOI: 10.14252/foodsafetyfscj.d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands. The refined CYP2J2-Template system will thus offer reliable estimations of this human CYP catalysis toward ligands of diverse structures, together with their deciphering information to lead to judgments.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate
School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai
980-8578, Japan
- Division of Risk Assessment, National Institute of Health
Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543,
Japan
| |
Collapse
|
2
|
Alniss HY, Sajeev S, Siddiqui R, Daalah M, Alawfi BS, Al-Jubeh HM, Ravi A, Khan NA. Targeting pathogenic Acanthamoeba castellanii using DNA minor groove binding agents. Acta Trop 2024; 260:107451. [PMID: 39510437 DOI: 10.1016/j.actatropica.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
DNA minor groove binders exhibit a high degree of sequence specificity and have a variety of biological actions including antiviral, anticancer, antibacterial, and anti-protozoal properties. Since it is the location of non-covalent interactions, the minor groove of double helical B-DNA is gaining significant interest as therapeutic targets. For the purpose of this investigation, the synthesis of five novel DNA minor groove binding agents was accomplished and antiparasitic efficacies were determined against Acanthamoeba castellanii of the T4 genotype in vitro. Using amoebicidal assays, the results revealed that all inhibitors tested showed significant killing of amoebae (P < 0.05). Pre-treatment of amoebae with DNA minor groove binders inhibited parasite-mediated human cell death by measuring lactate dehydrogenase release using cytopathogenicity assays. Cytotoxicity assays revealed minimal effects on human cells. As phenotypic switching leads to infection recurrence, assays revealed that inhibitors blocked amoebae phenotypic transformation. These are promising findings and suggest that DNA minor groove binders may hold promise for further research in the effective eradication of pathogenic A. castellanii.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, 27272 Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| | - Sreedevi Sajeev
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh EH14 4AS, UK; Microbiota Research Center, Istinye University, Istanbul 34010, Turkey
| | - Meshal Daalah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Naveed A Khan
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; School of Science, College of Science and Engineering, University of Derby, Derby DE22 1GB, UK.
| |
Collapse
|
3
|
Ogbonna EN, Terrell JR, Paul A, Farahat AA, Poon GMK, Boykin DW, Wilson WD. Single GC base pair recognition by a heterocyclic diamidine: structures, affinities, and dynamics. RSC Adv 2024; 14:29675-29682. [PMID: 39297050 PMCID: PMC11408989 DOI: 10.1039/d4ra05957c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
The recognition of specific genomic arrangements by rationally designed small molecules is fundamental for the expansion of targeted gene expression. Here, we report the first X-ray crystal structures that demonstrate single G (guanine) recognition by a highly selective diamidine (DB2447) in a mixed DNA sequence. The study presents detailed structural information on the mechanism of single G recognition by D2447 and its various interactions in the DNA minor groove. Molecular dynamics and binding studies were used to evaluate the details of our reported structures. The study provides structural insight and resources necessary for understanding single G selection in genomic sequences.
Collapse
Affiliation(s)
- Edwin N Ogbonna
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - J Ross Terrell
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - Ananya Paul
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - Abdelbasset A Farahat
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
- Master of Pharmaceutical Science Program, California North State University Elk Grove CA 95757 USA
| | - Gregory M K Poon
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - David W Boykin
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| | - W David Wilson
- Department of Chemistry and Centre of Diagnostics and Therapeutics, Georgia State University Atlanta GA 30303-3083 USA +1 404-413-5505 +1 404-413-5503
| |
Collapse
|
4
|
Ji Y, Zhao J, Gong J, Sedlazeck FJ, Fan S. Unveiling novel genetic variants in 370 challenging medically relevant genes using the long read sequencing data of 41 samples from 19 global populations. Mol Genet Genomics 2024; 299:65. [PMID: 38972030 DOI: 10.1007/s00438-024-02158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations. RESULTS Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution. CONCLUSION Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.
Collapse
Affiliation(s)
- Yanfeng Ji
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Junfan Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Jiao Gong
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Tippin T, Faison S, Schuck V, Dunn J, Naderer O. Utility of Cytochrome P450 4F2 Genotyping to Assess Drug Interaction Risk for Brincidovovir, a Cytochrome P450 4F2 Substrate. Clin Pharmacol Drug Dev 2024; 13:288-296. [PMID: 38171911 DOI: 10.1002/cpdd.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Smallpox was eradicated in 1980 but remains a biothreat due to the potential release of variola virus into the general population. Brincidofovir, the second medicine approved by the US Food and Drug Administration to treat smallpox, is metabolized by oxidative and hydrolytic pathways. The oxidative pathway is initiated by cytochrome P450 4F2 (CYP4F2), an enzyme lacking clinical probes for drug interaction studies. The aim of this work was to assess the impact of reduced activity CYP4F2 variants (rs2108622, C/T and T/T) on brincidofovir pharmacokinetics as a surrogate for drug inhibition. Genotyping was performed on blood from healthy participants receiving oral (n = 261) and intravenous (IV, n = 49) brincidofovir across 6 phase 1 trials. Plasma concentrations were measured by validated liquid chromatography tandem mass spectrometry methods. After oral administration, subjects with the lowest activity CYP4F2 genotype (T/T) had up to 36% higher AUCinf and 29% higher Cmax while subjects with the moderate activity CYP4F2 genotype (C/T) had similar Cmax and AUCinf compared to those with the wild-type genotype. Little to no increase in brincidofovir exposure parameters was observed following IV administration. Based on the lack of significant increases in brincidofovir plasma concentrations in subjects with low activity CYP4F2, a clinically meaningful drug-drug interaction is not expected with CYP4F2 inhibitor and brincidofovir coadministration.
Collapse
|
6
|
Sato Y, Hishinuma E, Yamazaki S, Ueda A, Kumondai M, Saito S, Tadaka S, Kinoshita K, Nakayoshi T, Oda A, Maekawa M, Mano N, Hirasawa N, Hiratsuka M. Functional Characterization of 29 Cytochrome P450 4F2 Variants Identified in a Population of 8380 Japanese Subjects and Assessment of Arachidonic Acid ω-Hydroxylation. Drug Metab Dispos 2023; 51:1561-1568. [PMID: 37775333 DOI: 10.1124/dmd.123.001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Cytochrome P450 4F2 (CYP4F2) is an enzyme that is involved in the metabolism of arachidonic acid (AA), vitamin E and K, and xenobiotics including drugs. CYP4F2*3 polymorphism (rs2108622; c.1297G>A; p.Val433Met) has been associated with hypertension, ischemic stroke, and variation in the effectiveness of the anticoagulant drug warfarin. In this study, we characterized wild-type CYP4F2 and 28 CYP4F2 variants, including a Val433Met substitution, detected in 8380 Japanese subjects. The CYP4F2 variants were heterologously expressed in 293FT cells to measure the concentrations of CYP4F2 variant holoenzymes using carbon monoxide-reduced difference spectroscopy, where the wild type and 18 holoenzyme variants showed a peak at 450 nm. Kinetic parameters [Vmax , substrate concentration producing half of Vmax (S50 ), and intrinsic clearance (CL int ) as Vmax /S50 ] of AA ω-hydroxylation were determined for the wild type and 21 variants with enzyme activity. Compared with the wild type, two variants showed significantly decreased CL int values for AA ω-hydroxylation. The values for seven variants could not be determined because no enzymatic activity was detected at the highest substrate concentration used. Three-dimensional structural modeling was performed to determine the reason for reduced enzymatic activity of the CYP4F2 variants. Our findings contribute to a better understanding of CYP4F2 variant-associated diseases and possible future therapeutic strategies. SIGNIFICANCE STATEMENT: CYP4F2 is involved in the metabolism of arachidonic acid and vitamin K, and CYP4F2*3 polymorphisms have been associated with hypertension and variation in the effectiveness of the anticoagulant drug warfarin. This study presents a functional analysis of 28 CYP4F2 variants identified in Japanese subjects, demonstrating that seven gene polymorphisms cause loss of CYP4F2 function, and proposes structural changes that lead to altered function.
Collapse
Affiliation(s)
- Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Eiji Hishinuma
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Shuki Yamazaki
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Akiko Ueda
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Sakae Saito
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Shu Tadaka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Kengo Kinoshita
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Tomoki Nakayoshi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Akifumi Oda
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Noriyasu Hirasawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masahiro Hiratsuka
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (Y.S., M.K., M.M., N.M., N.H., M.H.); Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., S.S., K.K., M.M., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., S.T., K.K., M.H.), and Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (S.Y., M.K., N.H., M.H.), Tohoku University, Sendai, Japan; Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan (T.N.); and Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| |
Collapse
|
7
|
Xu M, Chen Y, Xi X, Jiang C, Zhang Q, Wu T, Chu J, Dai G, Bai Y, Yu Q, Zou J, Ju W. In vitro inhibitory effects of components from Salvia miltiorrhiza on catalytic activity of three human AA ω-hydroxylases. Drug Metab Pharmacokinet 2022; 43:100402. [DOI: 10.1016/j.dmpk.2021.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/03/2022]
|
8
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Watanabe H, Yamaori S, Kamijo S, Aikawa K, Ohmori S. In Vitro Inhibitory Effects of Sesamin on CYP4F2 Activity. Biol Pharm Bull 2020; 43:688-692. [PMID: 32238710 DOI: 10.1248/bpb.b19-00953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sesamin is a major lignan in sesame seeds, and a recent meta-analysis of controlled trials indicated that sesamin intake decreases blood pressure. The antihypertensive effect of sesamin has been suggested to be due to sesamin-mediated suppression of 20-hydroxyeicosatetraenoic acid production catalyzed by CYP4F2. However, the detailed mechanism underlying inhibition of CYP4F2 function by sesamin remains unclear. In this study, the effects of sesamin on catalytic activity of CYP4F2 were investigated in vitro. Sesamin inhibited luciferin-4F2/3 O-dealkylase activity of recombinant human CYP4F2 with an IC50 value of 0.381 µM. When preincubated in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) for 20 min, sesamin potentiated the inhibition of CYP4F2 activity. Moreover, kinetic analysis of the inactivation revealed that sesamin showed a preincubation time- and concentration-dependent inhibition of CYP4F2 activity yielding a maximal inactivation rate constant (kinact) value of 0.354 min-1 and half-maximal inhibitory concentration (KI) value of 1.12 µM. The inactivation of CYP4F2 by sesamin required NADPH. These results indicated that sesamin is a mechanism-based inactivator of human CYP4F2.
Collapse
Affiliation(s)
- Hiroaki Watanabe
- Department of Pharmacy, Shinshu University Hospital.,Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University
| | - Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital.,Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University
| | - Shinobu Kamijo
- Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University
| | - Kaori Aikawa
- Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University
| | - Shigeru Ohmori
- Department of Pharmacy, Shinshu University Hospital.,Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University
| |
Collapse
|
10
|
Wu Q, Tsuduki T. CYP4F13 is the Major Enzyme for Conversion of alpha-Eleostearic Acid into cis-9, trans-11-Conjugated Linoleic Acid in Mouse Hepatic Microsomes. J Oleo Sci 2020; 69:1061-1075. [PMID: 32879197 DOI: 10.5650/jos.ess20080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous studies have shown that α-eleostearic acid (α-ESA; cis-9, trans-11, trans-13 (c9,t11,t13)-conjugated linolenic acid (CLnA)) is converted into c9,t11-conjugated linoleic acid (CLA) in rats. Furthermore, we have demonstrated that the conversion of α-ESA into CLA is a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent enzymatic reaction, which occurs mostly in the rat liver. However, the precise metabolic pathway and enzyme involved have not been identified yet. Therefore, in this study we aimed to determine the role of cytochrome P450 (CYP) in the conversion of α-ESA into c9,t11-CLA using an in vitro reconstitution system containing mouse hepatic microsomes, NADPH, and α-ESA. The CYP4 inhibitors, 17-ODYA and HET0016, performed the highest level of inhibition of CLA formation. Furthermore, the redox partner cytochrome P450 reductase (CPR) inhibitor, 2-chloroethyl ethyl sulfide (CEES), also demonstrated a high level of inhibition. Thus, these results indicate that the NADPH-dependent CPR/CYP4 system is responsible for CLA formation. In a correlation analysis between the specific activity of CLA formation and Cyp4 family gene expression in tissues, Cyp4a14 and Cyp4f13 demonstrated the best correlations. However, the CYP4F substrate prostaglandin A1 (PGA1) exhibited the strongest inhibitory effect on CLA formation, while the CYP4A and CYP4B1 substrate lauric acid had no inhibitory effect. Therefore, we conclude that the CYP4F13 enzyme is the major enzyme involved in CLA formation. This pathway is a novel pathway for endogenous CLA synthesis, and this study provides insight into the potential application of CLnA in functional foods.
Collapse
Affiliation(s)
- Qiming Wu
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| |
Collapse
|
11
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
12
|
Park JW, Kim KA, Park JY. Effects of Ketoconazole, a CYP4F2 Inhibitor, and CYP4F2*3 Genetic Polymorphism on Pharmacokinetics of Vitamin K 1. J Clin Pharmacol 2019; 59:1453-1461. [PMID: 31134657 DOI: 10.1002/jcph.1444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022]
Abstract
The objective of this study was to evaluate whether cytochrome P450 (CYP)4F2 is involved in the exposure of vitamin K1 through a drug interaction study with ketoconazole, a CYP4F2 inhibitor, and a pharmacogenetic study with CYP4F2*3. Twenty-one participants with different CYP4F2*3 polymorphisms were enrolled (8 for *1/*1, 7 for *1/*3, and 6 for *3/*3). All participants were treated twice daily for 5 days with 200 mg of ketoconazole or placebo. Finally, a single dose of 10 mg vitamin K1 was administered, plasma levels of vitamin K1 were measured, and its pharmacokinetics was assessed. Ketoconazole elevated the plasma levels of vitamin K1 and increased the average area under the concentration-time curve (AUCinf ) and peak concentration by 41% and 40%, respectively. CYP4F2*3 polymorphism also affected plasma levels of vitamin K1 and its pharmacokinetics in a gene dose-dependent manner. The average AUCinf value was 659.8 ng·h/mL for CYP4F2*1/*1, 878.1 ng·h/mL for CYP4F2*1/*3, and 1125.2 ng·h/mL for CYP4F2*3/*3 (P = .010). This study revealed that ketoconazole and CYP4F2*3 polymorphism substantially increased the exposure of vitamin K1 in humans. These findings provide a plausible explanation for variations in warfarin dose requirements resulting from interindividual variations in vitamin K1 exposure due to CYP4F2-related drug interactions and genetic polymorphisms.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Rahman A, O'Sullivan P, Rozas I. Recent developments in compounds acting in the DNA minor groove. MEDCHEMCOMM 2018; 10:26-40. [PMID: 30774852 DOI: 10.1039/c8md00425k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The macromolecule that carries genetic information, DNA, is considered as an exceptional target for diseases depending on cellular division of malignant cells (i.e. cancer), microbes (i.e. bacteria) or parasites (i.e. protozoa). To aim for a comprehensive review to cover all aspects related to DNA targeting would be an impossible task and, hence, the objective of the present review is to present, from a medicinal chemistry point of view, recent developments of compounds targeting the minor groove of DNA. Accordingly, we discuss the medicinal chemistry aspects of heterocyclic small-molecules binding the DNA minor groove, as novel anticancer, antibacterial and antiparasitic agents.
Collapse
Affiliation(s)
- Adeyemi Rahman
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Patrick O'Sullivan
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Isabel Rozas
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| |
Collapse
|
14
|
Yang S, Hu J, Li Y, Zhao Z. CYP2J2 is the major enzyme in human liver microsomes responsible for hydroxylation of SYL-927, a novel and selective sphingosine 1-phosphate receptor 1 (S1P 1 ) agonist. Biopharm Drug Dispos 2018; 39:431-436. [PMID: 30362120 DOI: 10.1002/bdd.2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
SYL-927, a novel and selective S1P1 agonist, is transferred to its active phosphate for the regulation of lymphocyte recirculation. This in vitro metabolism study is to elucidate the P450-mediated oxidation pathway of SYL-927 in human liver microsomes (HLMs). The results demonstrated that the ω-1 hydroxylated metabolite SYL-927-M was formed after incubation of SYL-927 with HLMs. Recombinant human CYP1A1 and CYP2J2 can efficiently catalyse SYL-927-M formation, followed by markedly less substrate conversion with CYP1A2, CYP2C19 and CYP2D6. Inhibition studies with chemical inhibitors and antibodies suggested that arachidonic acid, the substrate of CYP2J2, and CYP2J2-specific antibody effectively inhibited the formation of SYL-927-M in HLMs whereas no significant inhibition was observed with the inhibitors for CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4, demonstrating that CYP2J2 was primarily responsible for the formation of SYL-927-M.
Collapse
Affiliation(s)
- Shu Yang
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| | - Jinping Hu
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| |
Collapse
|
15
|
Discovery of rubiarbonone C as a selective inhibitor of cytochrome P450 4F enzymes. Arch Toxicol 2018; 92:3325-3336. [DOI: 10.1007/s00204-018-2315-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023]
|
16
|
Yamaori S, Araki N, Shionoiri M, Ikehata K, Kamijo S, Ohmori S, Watanabe K. A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat. J Pharmacol Exp Ther 2018; 366:446-457. [DOI: 10.1124/jpet.118.249557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
|
17
|
Matthes F, Massari S, Bochicchio A, Schorpp K, Schilling J, Weber S, Offermann N, Desantis J, Wanker E, Carloni P, Hadian K, Tabarrini O, Rossetti G, Krauss S. Reducing Mutant Huntingtin Protein Expression in Living Cells by a Newly Identified RNA CAG Binder. ACS Chem Neurosci 2018; 9:1399-1408. [PMID: 29506378 DOI: 10.1021/acschemneuro.8b00027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Expanded CAG trinucleotide repeats in Huntington's disease (HD) are causative for neurotoxicity. The mutant CAG repeat RNA encodes neurotoxic polyglutamine proteins and can lead to a toxic gain of function by aberrantly recruiting RNA-binding proteins. One of these is the MID1 protein, which induces aberrant Huntingtin (HTT) protein translation upon binding. Here we have identified a set of CAG repeat binder candidates by in silico methods. One of those, furamidine, reduces the level of binding of HTT mRNA to MID1 and other target proteins in vitro. Metadynamics calculations, fairly consistent with experimental data measured here, provide hints about the binding mode of the ligand. Importantly, furamidine also decreases the protein level of HTT in a HD cell line model. This shows that small molecules masking RNA-MID1 interactions may be active against mutant HTT protein in living cells.
Collapse
Affiliation(s)
- Frank Matthes
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Serena Massari
- Department of Pharmaceutical Science, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Anna Bochicchio
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Judith Schilling
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Stephanie Weber
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Nina Offermann
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| | - Jenny Desantis
- Department of Pharmaceutical Science, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Erich Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Oriana Tabarrini
- Department of Pharmaceutical Science, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Sybille Krauss
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127 Bonn, Germany
| |
Collapse
|
18
|
Involvement of CYP4F2 in the Metabolism of a Novel Monophosphate Ester Prodrug of Gemcitabine and Its Interaction Potential In Vitro. Molecules 2018; 23:molecules23051195. [PMID: 29772747 PMCID: PMC6100113 DOI: 10.3390/molecules23051195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023] Open
Abstract
Compound-3 is an oral monophosphate prodrug of gemcitabine. Previous data showed that Compound-3 was more potent than gemcitabine and it was orally active in a tumor xenograft model. In the present study, the metabolism of Compound-3 was investigated in several well-known in vitro matrices. While relatively stable in human and rat plasma, Compound-3 demonstrated noticeable metabolism in liver and intestinal microsomes in the presence of NADPH and human hepatocytes. Compound-3 could also be hydrolyzed by alkaline phosphatase, leading to gemcitabine formation. Metabolite identification using accurate mass- and information-based scan techniques revealed that Compound-3 was subjected to sequential metabolism, forming alcohol, aldehyde and carboxylic acid metabolites, respectively. Results from reaction phenotyping studies indicated that cytochrome P450 4F2 (CYP4F2) was a key CYP isozyme involved in Compound-3 metabolism. Interaction assays suggested that CYP4F2 activity could be inhibited by Compound-3 or an antiparasitic prodrug pafuramidine. Because CYP4F2 is a key CYP isozyme involved in the metabolism of eicosanoids and therapeutic drugs, clinical relevance of drug-drug interactions mediated via CYP4F2 inhibition warrants further investigation.
Collapse
|
19
|
Manjon C, Troczka BJ, Zaworra M, Beadle K, Randall E, Hertlein G, Singh KS, Zimmer CT, Homem RA, Lueke B, Reid R, Kor L, Kohler M, Benting J, Williamson MS, Davies TGE, Field LM, Bass C, Nauen R. Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides. Curr Biol 2018; 28:1137-1143.e5. [PMID: 29576476 PMCID: PMC5887109 DOI: 10.1016/j.cub.2018.02.045] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.
Collapse
Affiliation(s)
- Cristina Manjon
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Bartlomiej J Troczka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Marion Zaworra
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany; Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms University Bonn, 53115 Bonn, Germany
| | - Katherine Beadle
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Emma Randall
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Christoph T Zimmer
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Rafael A Homem
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Bettina Lueke
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Rebecca Reid
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Laura Kor
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Maxie Kohler
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Jürgen Benting
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Martin S Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Linda M Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| |
Collapse
|
20
|
de Montellano PRO. 1-Aminobenzotriazole: A Mechanism-Based Cytochrome P450 Inhibitor and Probe of Cytochrome P450 Biology. Med Chem 2018; 8:038. [PMID: 30221034 PMCID: PMC6137267 DOI: 10.4172/2161-0444.1000495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1-Aminobenzotriazole (1-ABT) is a pan-specific, mechanism-based inactivator of the xenobiotic metabolizing forms of cytochrome P450 in animals, plants, insects, and microorganisms. It has been widely used to investigate the biological roles of cytochrome P450 enzymes, their participation in the metabolism of both endobiotics and xenobiotics, and their contributions to the metabolism-dependent toxicity of drugs and chemicals. This review is a comprehensive evaluation of the chemistry, discovery, and use of 1-aminobenzotriazole in these contexts from its introduction in 1981 to the present.
Collapse
|
21
|
Antileishmanial Efficacy and Pharmacokinetics of DB766-Azole Combinations. Antimicrob Agents Chemother 2017; 62:AAC.01129-17. [PMID: 29061761 DOI: 10.1128/aac.01129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. In vitro combination studies with DB766 and antifungal azoles against intracellular Leishmania donovani showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure. In L. donovani-infected BALB/c mice, DB766-posaconazole combinations given orally for 5 days were more effective than DB766 or posaconazole alone. For example, 81% ± 1% (means ± standard errors) inhibition of liver parasite burden was observed for 37.5 mg/kg of body weight DB766 plus 15 mg/kg posaconazole, while 37.5 mg/kg DB766 and 15 mg/kg posaconazole administered as monotherapy gave 40% ± 5% and 21% ± 3% inhibition, respectively. Combination index (CI) analysis indicated that synergy or moderate synergy was observed in six of nine combined dose groups, while the other three were nearly additive. Liver concentrations of DB766 and posaconazole increased in almost all combination groups compared to monotherapy groups, although many increases were not statistically significant. For DB766-ketoconazole combinations evaluated in this model, two were antagonistic, one displayed synergy, and one was nearly additive. These data indicate that the efficacy of DB766-posaconazole and DB766-ketoconazole combinations in vivo is influenced in part by the pharmacokinetics of the combination, and that the former combination deserves further consideration in developing new treatment strategies against visceral leishmaniasis.
Collapse
|
22
|
Zhang JE, Klein K, Jorgensen AL, Francis B, Alfirevic A, Bourgeois S, Deloukas P, Zanger UM, Pirmohamed M. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response. Front Pharmacol 2017; 8:323. [PMID: 28620303 PMCID: PMC5449482 DOI: 10.3389/fphar.2017.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Genetic polymorphisms in the gene encoding cytochrome P450 (CYP) 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149) obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS) data from a prospective cohort of warfarin-treated patients (n = 711) was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017), an effect opposite to that previously reported with CYP4F2 (rs2108622). However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI), gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex regulation across the CYP4F gene cluster, the opposing effects between the two SNPs in the CYP4F gene cluster appear to compensate for each other and their effect on warfarin dose requirement is unlikely to be clinically significant.
Collapse
Affiliation(s)
- J E Zhang
- Wolfson Centre for Personalized Medicine, Department of Molecular and Clinical Pharmacology, The University of LiverpoolLiverpool, United Kingdom
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgart, Germany.,Department of Clinical Pharmacology, University of TuebingenTuebingen, Germany
| | - Andrea L Jorgensen
- Department of Biostatistics, The University of LiverpoolLiverpool, United Kingdom
| | - Ben Francis
- Department of Biostatistics, The University of LiverpoolLiverpool, United Kingdom
| | - Ana Alfirevic
- Wolfson Centre for Personalized Medicine, Department of Molecular and Clinical Pharmacology, The University of LiverpoolLiverpool, United Kingdom
| | - Stephane Bourgeois
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondon, United Kingdom
| | - Panagiotis Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondon, United Kingdom.,Wellcome Trust Sanger InstituteCambridge, United Kingdom.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgart, Germany.,Department of Clinical Pharmacology, University of TuebingenTuebingen, Germany
| | - Munir Pirmohamed
- Wolfson Centre for Personalized Medicine, Department of Molecular and Clinical Pharmacology, The University of LiverpoolLiverpool, United Kingdom
| |
Collapse
|
23
|
Uehara S, Yuki Y, Uno Y, Inoue T, Sasaki E, Yamazaki H. Terfenadine t-butyl hydroxylation catalyzed by human and marmoset cytochrome P450 3A and 4F enzymes in livers and small intestines. Xenobiotica 2017; 48:342-347. [PMID: 28436281 DOI: 10.1080/00498254.2017.1321811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Roles of human cytochrome P450 (P450) 3A4 in oxidation of an antihistaminic drug terfenadine have been previously investigated in association with terfenadine-ketoconazole interaction. Several antihistamine drugs have been recently identified as substrates for multiple P450 enzymes. In this study, overall roles of P450 3A4, 2J2, and 4F12 enzymes in terfenadine t-butyl hydroxylation were investigated in small intestines and livers from humans, marmosets, and/or cynomolgus monkeys. 2. Human liver microsomes and liver and small intestine microsomes from marmosets and cynomolgus monkeys effectively mediated terfenadine t-butyl hydroxylation. Ketoconazole and N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (a P450 4A/F inhibitor) almost completely and moderately inhibited these activities, respectively, in human liver microsomes; however, these chemicals did not show substantially suppression in marmoset liver. Anti-human P450 3A and 4F antibodies showed the roughly supportive inhibitory effects. 3. Recombinant P450 3A4/90 and 4F12 showed high terfenadine t-butyl hydroxylation activities with substrate inhibition constants of 84-144 μM (under 26-76 μM of Km values), in similar manners to liver and intestine microsomes. 4. These results suggest that human and marmoset P450 3A4/90 and 4F12 in livers or small intestines played important roles in terfenadine t-butyl hydroxylation. Marmosets could be a model for humans during first pass extraction of terfenadine and related substrates.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yukako Yuki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd. , Kainan , Wakayama , Japan
| | - Takashi Inoue
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Erika Sasaki
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
24
|
Wang Z, Chen Y, Drbohlav LM, Wu JQ, Wang MZ. Development of an In Vitro Model to Screen CYP1B1-Targeted Anticancer Prodrugs. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:1090-1099. [PMID: 28139960 PMCID: PMC8559613 DOI: 10.1177/1087057116675315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cytochrome P450 1B1 (CYP1B1) is an anticancer therapeutic target due to its overexpression in a number of steroid hormone-related cancers. One anticancer drug discovery strategy is to develop prodrugs specifically activated by CYP1B1 in malignant tissues to cytotoxic metabolites. Here, we aimed to develop an in vitro screening model for CYP1B1-targeted anticancer prodrugs using the KLE human endometrial carcinoma cell line. KLE cells demonstrated superior stability of CYP1B1 expression relative to transiently transfected cells and did not express any appreciable amount of cognate CYP1A1 or CYP1A2, which would have compromised the specificity of the screening assay. The effect of two CYP1B1-targeted probe prodrugs on KLE cells was evaluated in the absence and presence of a CYP1B1 inhibitor to chemically "knock out" CYP1B1 activity (CYP1B1 inhibited). Both probe prodrugs were more toxic to KLE cells than to CYP1B1-inhibited KLE cells and significantly induced G0/G1 arrest and decreased the S phase in KLE cells. They also exhibited pro-apoptotic effects in KLE cells, which were attenuated in CYP1B1-inhibited KLE cells. In summary, a KLE cell-based model has been characterized to be suitable for identifying CYP1B1-targeted anticancer prodrugs and should be further developed and employed for screening chemical libraries.
Collapse
Affiliation(s)
- Zhiying Wang
- 1 School of Pharmacy, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Yao Chen
- 1 School of Pharmacy, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Laura M Drbohlav
- 1 School of Pharmacy, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Judy Qiju Wu
- 2 School of Pharmacy, Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Michael Zhuo Wang
- 1 School of Pharmacy, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
25
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
26
|
Miyata A, Hasegawa M, Hachiuma K, Mori H, Horiuchi N, Mizuno-Yasuhira A, Chino Y, Jingu S, Sakai S, Samukawa Y, Nakai Y, Yamaguchi JI. Metabolite profiling and enzyme reaction phenotyping of luseogliflozin, a sodium–glucose cotransporter 2 inhibitor, in humans. Xenobiotica 2016; 47:332-345. [DOI: 10.1080/00498254.2016.1193263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Atsunori Miyata
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Masatoshi Hasegawa
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Kenji Hachiuma
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Haruyuki Mori
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Nobuko Horiuchi
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Akiko Mizuno-Yasuhira
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Yukihiro Chino
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Shigeji Jingu
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| | - Soichi Sakai
- Clinical Development, Taisho Pharmaceutical Co., Ltd, Tokyo, Japan,
| | - Yoshishige Samukawa
- Research and Development Headquarters, Taisho Pharmaceutical Co., Ltd, Tokyo, Japan, and
| | - Yasuhiro Nakai
- Development Headquarters, Taisho Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Jun-ichi Yamaguchi
- Department of Pharmacokinetics and Metabolism, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan,
| |
Collapse
|
27
|
|
28
|
Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. ACTA ACUST UNITED AC 2015; 44:262-74. [PMID: 26586378 DOI: 10.1124/dmd.115.067504] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 01/26/2023]
Abstract
Little is known regarding the effect of intestinal microbiota modifiers, such as probiotics and conventionalization with exogenous bacteria, on host hepatic drug metabolism. Therefore, the goal of this study was to determine the effect of these modifiers on the expression of various drug-metabolizing enzymes of the host liver. VSL3 is a probiotic that contains eight live strains of bacteria. Five groups of mice were used: 1) conventional mice (CV), 2) conventional mice treated with VSL3 in drinking water, 3) germ-free (GF) mice, 4) GF mice treated with VSL3, and 5) GF mice exposed to the conventional environment for 2 months. All mice were 3 months old at tissue collection. GF conditions markedly downregulated the cytochrome P450 (P450) 3a gene cluster, but upregulated the Cyp4a cluster, whereas conventionalization normalized their expression to conventional levels [reverse-transcription quantitative polymerase chain reaction (qPCR) and western blot]. Changes in the Cyp3a and 4a gene expression correlated with alterations in the pregnane X receptor and peroxisome proliferator-activated receptor α-DNA binding, respectively (chromatin immunoprecipitation-qPCR). VSL3 increased each bacterial component in the large intestinal content of the CV mice, and increased these bacteria even more in GF mice, likely due to less competition for growth in the GF environment. VSL3 given to conventional mice increased the mRNAs of Cyp4v3, alcohol dehydrogenase 1, and carboxyesterase 2a, but decreased the mRNAs of multiple phase II glutathione-S-transferases. VSL3 given to germ-free mice decreased the mRNAs of UDP-glucuronosyltransferases 1a9 and 2a3. In conclusion, conventionalization and VSL3 alter the expression of many drug-metabolizing enzyme s in the liver, suggesting the importance of considering "bacteria-drug" interactions for various adverse drug reactions in patients.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Johnson AL, Edson KZ, Totah RA, Rettie AE. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:223-62. [PMID: 26233909 DOI: 10.1016/bs.apha.2015.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression.
Collapse
Affiliation(s)
- Amanda L Johnson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katheryne Z Edson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA; Amgen Inc., Thousand Oaks, California, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Allan E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
30
|
Van Horn KS, Zhu X, Pandharkar T, Yang S, Vesely B, Vanaerschot M, Dujardin JC, Rijal S, Kyle DE, Wang MZ, Werbovetz KA, Manetsch R. Antileishmanial activity of a series of N²,N⁴-disubstituted quinazoline-2,4-diamines. J Med Chem 2014; 57:5141-56. [PMID: 24874647 PMCID: PMC4216219 DOI: 10.1021/jm5000408] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of N(2),N(4)-disubstituted quinazoline-2,4-diamines has been synthesized and tested against Leishmania donovani and L. amazonensis intracellular amastigotes. A structure-activity and structure-property relationship study was conducted in part using the Topliss operational scheme to identify new lead compounds. This study led to the identification of quinazolines with EC50 values in the single digit micromolar or high nanomolar range in addition to favorable physicochemical properties. Quinazoline 23 also displayed efficacy in a murine model of visceral leishmaniasis, reducing liver parasitemia by 37% when given by the intraperitoneal route at 15 mg kg(-1) day(-1) for 5 consecutive days. Their antileishmanial efficacy, ease of synthesis, and favorable physicochemical properties make the N(2),N(4)-disubstituted quinazoline-2,4-diamine compound series a suitable platform for future development of antileishmanial agents.
Collapse
Affiliation(s)
- Kurt S Van Horn
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
In vitro and in vivo evaluation of 28DAP010, a novel diamidine for treatment of second-stage African sleeping sickness. Antimicrob Agents Chemother 2014; 58:4452-63. [PMID: 24867978 DOI: 10.1128/aac.02309-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
African sleeping sickness is a neglected tropical disease transmitted by tsetse flies. New and better drugs are still needed especially for its second stage, which is fatal if untreated. 28DAP010, a dipyridylbenzene analogue of DB829, is the second simple diamidine found to cure mice with central nervous system infections by a parenteral route of administration. 28DAP010 showed efficacy similar to that of DB829 in dose-response studies in mouse models of first- and second-stage African sleeping sickness. The in vitro time to kill, determined by microcalorimetry, and the parasite clearance time in mice were shorter for 28DAP010 than for DB829. No cross-resistance was observed between 28DAP010 and pentamidine on the tested Trypanosoma brucei gambiense isolates from melarsoprol-refractory patients. 28DAP010 is the second promising preclinical candidate among the diamidines for the treatment of second-stage African sleeping sickness.
Collapse
|
32
|
Michaels S, Wang MZ. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics. Drug Metab Dispos 2014; 42:1241-51. [PMID: 24816681 DOI: 10.1124/dmd.114.058040] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation.
Collapse
Affiliation(s)
- Scott Michaels
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (M.Z.W., S.M.); Wolfe Laboratories, Inc., Watertown, Massachusetts (S.M.)
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas (M.Z.W., S.M.); Wolfe Laboratories, Inc., Watertown, Massachusetts (S.M.)
| |
Collapse
|
33
|
Pharmacokinetic comparison to determine the mechanisms underlying the differential efficacies of cationic diamidines against first- and second-stage human African trypanosomiasis. Antimicrob Agents Chemother 2014; 58:4064-74. [PMID: 24798280 DOI: 10.1128/aac.02605-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human African trypanosomiasis (HAT), a neglected tropical disease, is fatal without treatment. Pentamidine, a cationic diamidine, has been used to treat first-stage (hemolymphatic) HAT since the 1940s, but it is ineffective against second-stage (meningoencephalitic, or central nervous system [CNS]) infection. Novel diamidines (DB75, DB820, and DB829) have shown promising efficacy in both mouse and monkey models of first-stage HAT. However, only DB829 cured animals with second-stage infection. In this study, we aimed to determine the mechanisms underlying the differential efficacies of these diamidines against HAT by conducting a comprehensive pharmacokinetic characterization. This included the determination of metabolic stability in liver microsomes, permeability across MDCK and MDR1-MDCK cell monolayers, interaction with the efflux transporter MDR1 (P-glycoprotein 1 or P-gp), drug binding in plasma and brain, and plasma and brain concentration-time profiles after a single dose in mice. The results showed that DB829, an azadiamidine, had the highest systemic exposure and brain-to-plasma ratio, whereas pentamidine and DB75 had the lowest. None of these diamidines was a P-gp substrate, and the binding of each to plasma proteins and brain differed greatly. The brain-to-plasma ratio best predicted the relative efficacies of these diamidines in mice with second-stage infection. In conclusion, pharmacokinetics and CNS penetration influenced the in vivo efficacies of cationic diamidines against first- and second-stage HAT and should be considered when developing CNS-active antitrypanosomal diamidines.
Collapse
|
34
|
Yan L, Yan C, Qian K, Su H, Kofsky-Wofford SA, Lee WC, Zhao X, Ho MC, Ivanov I, Zheng YG. Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. J Med Chem 2014; 57:2611-22. [PMID: 24564570 PMCID: PMC3983339 DOI: 10.1021/jm401884z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein arginine methylation is a posttranslational modification critical for a variety of biological processes. Misregulation of protein arginine methyltransferases (PRMTs) has been linked to many pathological conditions. Most current PRMT inhibitors display limited specificity and selectivity, indiscriminately targeting many methyltransferase enzymes that use S-adenosyl-l-methionine as a cofactor. Here we report diamidine compounds for specific inhibition of PRMT1, the primary type I enzyme. Docking, molecular dynamics, and MM/PBSA analysis together with biochemical assays were conducted to understand the binding modes of these inhibitors and the molecular basis of selective inhibition for PRMT1. Our data suggest that 2,5-bis(4-amidinophenyl)furan (1, furamidine, DB75), one leading inhibitor, targets the enzyme active site and is primarily competitive with the substrate and noncompetitive toward the cofactor. Furthermore, cellular studies revealed that 1 is cell membrane permeable and effectively inhibits intracellular PRMT1 activity and blocks cell proliferation in leukemia cell lines with different genetic lesions.
Collapse
Affiliation(s)
- Leilei Yan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia , Athens, Georgia 30602, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Antiprotozoal activity of dicationic 3,5-diphenylisoxazoles, their prodrugs and aza-analogues. Bioorg Med Chem 2013; 22:559-76. [PMID: 24268543 DOI: 10.1016/j.bmc.2013.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 11/23/2022]
Abstract
Fifty novel prodrugs and aza-analogues of 3,5-bis(4-amidinophenyl)isoxazole and its derivatives were prepared. Eighteen of the 24 aza-analogues exhibited IC₅₀ values below 25 nM against Trypanosoma brucei rhodesiense or Plasmodium falciparum. Six compounds had antitrypanosomal IC₅₀ values below 10 nM. Twelve analogues showed similar antiplasmodial activities, including three with sub-nanomolar potencies. Forty-four diamidines (including 16 aza-analogues) and the 26 prodrugs were evaluated for efficacy in mice infected with T. b. rhodesiense STIB900. Six diamidines cured 4/4 mice at daily 5 mg/kg intraperitoneal doses for 4 days, giving results far superior to pentamidine and furamidine. One prodrug attained 3/4 cures at daily 25 mg/kg oral doses for 4 days.
Collapse
|
36
|
Ju W, Yang S, Ansede JH, Stephens CE, Bridges AS, Voyksner RD, Ismail MA, Boykin DW, Tidwell RR, Hall JE, Wang MZ. CYP1A1 and CYP1B1-mediated biotransformation of the antitrypanosomal methamidoxime prodrug DB844 forms novel metabolites through intramolecular rearrangement. J Pharm Sci 2013; 103:337-49. [PMID: 24186380 DOI: 10.1002/jps.23765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/03/2013] [Accepted: 10/10/2013] [Indexed: 12/18/2022]
Abstract
DB844 (CPD-594-12), N-methoxy-6-{5-[4-(N-methoxyamidino)phenyl]-furan-2-yl}-nicotinamidine, is an oral prodrug that has shown promising efficacy in both mouse and monkey models of second stage human African trypanosomiasis. However, gastrointestinal (GI) toxicity was observed with high doses in a vervet monkey safety study. In the current study, we compared the metabolism of DB844 by hepatic and extrahepatic cytochrome P450s to determine whether differences in metabolite formation underlie the observed GI toxicity. DB844 undergoes sequential O-demethylation and N-dehydroxylation in the liver to form the active compound DB820 (CPD-593-12). However, extrahepatic CYP1A1 and CYP1B1 produced two new metabolites, MX and MY. Accurate mass and collision-induced dissociation mass spectrometry analyses of the metabolites supported proposed structures of MX and MY. In addition, MY was confirmed with a synthetic standard and detection of nitric oxide (NO) release when DB844 was incubated with CYP1A1. Taken altogether, we propose that MX is formed by insertion of oxygen into the amidine CN to form an oxaziridine, which is followed by intramolecular rearrangement of the adjacent O-methyl group and subsequent release of NO. The resulting imine ester, MX, is further hydrolyzed to form MY. These findings may contribute to furthering the understanding of toxicities associated with benzamidoxime- and benzmethamidoxime-containing molecules.
Collapse
Affiliation(s)
- Wujian Ju
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jarrar YB, Cho SA, Oh KS, Kim DH, Shin JG, Lee SJ. Identification of cytochrome P450s involved in the metabolism of arachidonic acid in human platelets. Prostaglandins Leukot Essent Fatty Acids 2013; 89:227-34. [PMID: 23932368 DOI: 10.1016/j.plefa.2013.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/22/2013] [Accepted: 06/30/2013] [Indexed: 01/17/2023]
Abstract
Although cytochrome P450s (CYPs) have been identified in most human cells, identification of CYPs in human platelets remains poorly explored. CYP expressions in human platelets were screened by using reverse transcriptase-polymerase chain reaction and western blot analysis followed by functional assays using arachidonic acid (ARA). CYP1A1, 2U1, 2J2, 4A11, 4F2, and 5A1 were expressed as both proteins and mRNAs in platelets. Ethoxyresorufin-O-deethylase activity was observed in platelets and this activity was significantly decreased after treatment with the general P450 inhibitor SKF-525A and the CYP1A inhibitor, α-naphthoflavone (40-45%, P<0.001). Seventeen ARA metabolites were detected in ARA-treated platelets. Among these, the levels of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids were significantly decreased with the treatment of the P450 ω-hydroxylase inhibitor 17-octadecynoic acid (P<0.05-0.001). In summary, multiple ARA-metabolizing P450s were identified in human platelets. These findings may provide an important resource for understanding physiological function of platelet.
Collapse
Affiliation(s)
- Yazun B Jarrar
- Department of Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
38
|
Hu L, Patel A, Bondada L, Yang S, Wang MZ, Munde M, Wilson WD, Wenzler T, Brun R, Boykin DW. Synthesis and antiprotozoal activity of dicationic 2,6-diphenylpyrazines and aza-analogues. Bioorg Med Chem 2013; 21:6732-41. [PMID: 24012380 DOI: 10.1016/j.bmc.2013.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/28/2013] [Accepted: 08/04/2013] [Indexed: 02/05/2023]
Abstract
Dicationic 2,6-diphenylpyrazines, aza-analogues and prodrugs were synthesized; evaluated for DNA affinity, activity against Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.) in vitro, efficacy in T. b. r. STIB900 acute and T. b. brucei GVR35 CNS mouse models. Most diamidines gave poly(dA-dT)2 ΔTm values greater than pentamidine, IC50 values: T. b. r. (4.8-37nM) and P. f. (10-52nM). Most diamidines and prodrugs gave cures for STIB900 model (11, 19a and 24b 4/4 cures); 12 3/4 cures for GVR35 model. Metabolic stability half-life values for O-methylamidoxime prodrugs did not correlate with STIB900 results.
Collapse
Affiliation(s)
- Laixing Hu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhai G, Lehmler HJ, Schnoor JL. Inhibition of cytochromes P450 and the hydroxylation of 4-monochlorobiphenyl in whole poplar. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6829-35. [PMID: 23320482 PMCID: PMC3652898 DOI: 10.1021/es304298m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytochromes P450 (CYPs) are potential enzymes responsible for hydroxylation of many xenobiotics and endogenous chemicals in living organisms. It has been found that 4-monochlorobiphenyl (PCB3), mainly an airborne pollutant, can be metabolized to hydroxylated transformation products (OH-PCB3s) in whole poplars. However, the enzymes involved in the hydroxylation of PCB3 in whole poplars have not been identified. Therefore, two CYP suicide inhibitors, 1-aminobenzotriazole (ABT) and 17-octadecynoic acid (ODYA), were selected to probe the hydroxylation reaction of PCB3 in whole poplars in this work. Poplars (Populus deltoides × nigra, DN34) were exposed to PCB3 with or without inhibitor for 11 days. Results showed both ABT and ODYA can decrease the concentrations and yields of five OH-PCB3s in different poplar parts via the inhibition of CYPs. Furthermore, both ABT and ODYA demonstrated a dose-dependent relationship to the formation of OH-PCB3s in whole poplars. The higher the inhibitor concentrations, the lower the total yields of OH-PCB3s. For ABT spiked-additions, the total mass yield of five OH-PCB3s was inhibited by a factor of 1.6 times at an ABT concentration of 2.5 mg L(-1), 4.0 times at 12.5 mg L(-1), and 7.0 times at 25 mg L(-1). For the inhibitor ODYA, the total mass of five OH-PCB3s was reduced by 2.1 times compared to the control at an ODYA concentration of 2.5 mg L(-1). All results pointed to the conclusion that CYP enzymes were the agents which metabolized PCB3 to OH-PCB3s in whole poplars because suicide CYP inhibitors ABT and ODYA both led to sharp decreases of OH-PCB3s formation in whole poplars. A dose-response curve for each of the suicide inhibitors was developed.
Collapse
Affiliation(s)
- Guangshu Zhai
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States.
| | | | | |
Collapse
|
40
|
Chromatographic separation of piracetam and its metabolite in a mixture of microsomal preparations, followed by an MS/MS analysis. Eur J Med Chem 2013; 65:94-101. [DOI: 10.1016/j.ejmech.2013.04.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/10/2013] [Accepted: 04/26/2013] [Indexed: 11/21/2022]
|
41
|
Thuita JK, Wolf KK, Murilla GA, Liu Q, Mutuku JN, Chen Y, Bridges AS, Mdachi RE, Ismail MA, Ching S, Boykin DW, Hall JE, Tidwell RR, Paine MF, Brun R, Wang MZ. Safety, pharmacokinetic, and efficacy studies of oral DB868 in a first stage vervet monkey model of human African trypanosomiasis. PLoS Negl Trop Dis 2013; 7:e2230. [PMID: 23755309 PMCID: PMC3674995 DOI: 10.1371/journal.pntd.0002230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
There are no oral drugs for human African trypanosomiasis (HAT, sleeping sickness). A successful oral drug would have the potential to reduce or eliminate the need for patient hospitalization, thus reducing healthcare costs of HAT. The development of oral medications is a key objective of the Consortium for Parasitic Drug Development (CPDD). In this study, we investigated the safety, pharmacokinetics, and efficacy of a new orally administered CPDD diamidine prodrug, 2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868; CPD-007-10), in the vervet monkey model of first stage HAT. DB868 was well tolerated at a dose up to 30 mg/kg/day for 10 days, a cumulative dose of 300 mg/kg. Mean plasma levels of biomarkers indicative of liver injury (alanine aminotransferase, aspartate aminotransferase) were not significantly altered by drug administration. In addition, no kidney-mediated alterations in creatinine and urea concentrations were detected. Pharmacokinetic analysis of plasma confirmed that DB868 was orally available and was converted to the active compound DB829 in both uninfected and infected monkeys. Treatment of infected monkeys with DB868 began 7 days post-infection. In the infected monkeys, DB829 attained a median Cmax (dosing regimen) that was 12-fold (3 mg/kg/day for 7 days), 15-fold (10 mg/kg/day for 7 days), and 31-fold (20 mg/kg/day for 5 days) greater than the IC50 (14 nmol/L) against T. b. rhodesiense STIB900. DB868 cured all infected monkeys, even at the lowest dose tested. In conclusion, oral DB868 cured monkeys with first stage HAT at a cumulative dose 14-fold lower than the maximum tolerated dose and should be considered a lead preclinical candidate in efforts to develop a safe, short course (5–7 days), oral regimen for first stage HAT. Development of orally administered medicines for human African trypanosomiasis (HAT) would potentially reduce the need for patient hospitalization, thus lowering healthcare costs. In this study, we investigated the potential of a novel diamidine prodrug, DB868 (CPD-007-10), as an oral treatment for first stage HAT. When administered to uninfected monkeys by oral gavage, DB868 was well tolerated up to a maximum dose of 30 mg/kg/day for 10 days (cumulative dose [CD] = 300 mg/kg). DB868 was absorbed into the systemic circulation and was converted to the active compound DB829 in concentrations that were potentially therapeutic for blood trypanosomes. Subsequently, DB868 was evaluated for efficacy in the first stage vervet monkey model of HAT in which treatment was initiated at 7 days post-infection with T. b. rhodesiense KETRI 2537. All infected monkeys were cured, even at the lowest of the three dose regimens tested: 3 mg/kg/day for 7 days (CD = 21 mg/kg), 10 mg/kg/day for 7 days (CD = 70 mg/kg) and 20 mg/kg/day for 5 days (CD = 100 mg/kg). DB868 conversion to DB829 was comparable between uninfected and infected monkeys. In view of its favourable safety and oral efficacy profile, we conclude that DB868 is a suitable candidate for development as a new treatment for first stage HAT.
Collapse
Affiliation(s)
- John K. Thuita
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
- University of Basel, Basel, Switzerland
| | - Kristina K. Wolf
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Grace A. Murilla
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
| | - Qiang Liu
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James N. Mutuku
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
| | - Yao Chen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Arlene S. Bridges
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raymond E. Mdachi
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (KARI-TRC), Kikuyu, Kenya
| | - Mohamed A. Ismail
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - Shelley Ching
- SVC Associates, Inc., Apex, North Carolina, United States of America
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
| | - James Edwin Hall
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard R. Tidwell
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mary F. Paine
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Reto Brun
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Novel amidines and analogues as promising agents against intracellular parasites: a systematic review. Parasitology 2013; 140:929-51. [PMID: 23561006 DOI: 10.1017/s0031182013000292] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.
Collapse
|
43
|
Barrett MP, Gemmell CG, Suckling CJ. Minor groove binders as anti-infective agents. Pharmacol Ther 2013; 139:12-23. [PMID: 23507040 DOI: 10.1016/j.pharmthera.2013.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 12/29/2022]
Abstract
Minor groove binders are small molecules that form strong complexes with the minor groove of DNA. There are several structural types of which distamycin and netropsin analogues, oligoamides built from heterocyclic and aromatic amino acids, and bis-amidines separated by aromatic and heterocyclic rings are of particular pharmaceutical interest. These molecules have helical topology that approximately matches the curvature of DNA in the minor groove. Depending upon the precise structure of the minor groove binder, selectivity can be obtained with respect to the DNA base sequence to which the compound binds. Minor groove binders have found substantial applications in anti-cancer therapy but their significance in anti-infective therapy has also been significant and is growing. For example, compounds of the bis-amidine class have been notable contributors to antiparasitic therapy for many years with examples such as berenil and pentamidine being well-known. A recent growth area has been inreased sophistication in the oligoamide class. High sequence selectivity is now possible and compounds with distinct antibacterial, antifungal, antiviral, and antiparasitic activity have all been identified. Importantly, the structures of the most active compounds attacking the various infective organisms differ significantly but not necessarily predictively. This poses interesting questions of mechanism of action with many different targets involved in DNA processing being candidates. Access of compounds to specific cell types also plays a role and in some cases, can be decisive. Prospects for a range of selective therapeutic agents from this class of compounds are higher now than for some considerable time.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, United Kingdom.
| | | | | |
Collapse
|
44
|
Generaux CN, Ainslie GR, Bridges AS, Ismail MA, Boykin DW, Tidwell RR, Thakker DR, Paine MF. Compartmental and enzyme kinetic modeling to elucidate the biotransformation pathway of a centrally acting antitrypanosomal prodrug. Drug Metab Dispos 2013; 41:518-28. [PMID: 23223498 PMCID: PMC11024874 DOI: 10.1124/dmd.112.048231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022] Open
Abstract
DB868 [2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan], a prodrug of the diamidine DB829 [2,5-bis(5-amidino-2-pyridyl) furan], has demonstrated efficacy in murine models of human African trypanosomiasis. A cross-species evaluation of prodrug bioconversion to the active drug is required to predict the disposition of prodrug, metabolites, and active drug in humans. The phase I biotransformation of DB868 was elucidated using liver microsomes and sandwich-cultured hepatocytes from humans and rats. All systems produced four NADPH-dependent metabolites via O-demethylation (M1, M2) and N-dehydroxylation (M3, M4). Compartmental kinetic modeling of the DB868 metabolic pathway suggested an unusual N-demethoxylation reaction that was supported experimentally. A unienzyme Michaelis-Menten model described the kinetics of M1 formation by human liver microsomes (HLMs) (K(m), 11 μM; V(max), 340 pmol/min/mg), whereas a two-enzyme model described the kinetics of M1 formation by rat liver microsomes (RLMs) (K(m1), 0.5 μM; V(max1), 12 pmol/min/mg; K(m2), 27 μM; V(max2), 70 pmol/min/mg). Human recombinant CYP1A2, CYP3A4, and CYP4F2, rat recombinant Cyp1a2 and Cyp2d2, and rat purified Cyp4f1 catalyzed M1 formation. M2 formation by HLMs exhibited allosteric kinetics (S(50), 18 μM; V(max), 180 pmol/mg), whereas M2 formation by RLMs was negligible. Recombinant CYP1A2/Cyp1a2 catalyzed M2 formation. DB829 was detected in trace amounts in HLMs at the end of the 180-min incubation and was detected readily in sandwich-cultured hepatocytes from both species throughout the 24-h incubation. These studies demonstrated that DB868 biotransformation to DB829 is conserved between humans and rats. An improved understanding of species differences in the kinetics of DB829 formation would facilitate preclinical development of a promising antitrypanosomal prodrug.
Collapse
Affiliation(s)
- Claudia N Generaux
- Divisions of Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
A prodrug is a compound that has negligible, or lower, activity against a specified pharmacological target than one of its major metabolites. Prodrugs can be used to improve drug delivery or pharmacokinetics, to decrease toxicity, or to target the drug to specific cells or tissues. Ester and phosphate hydrolysis are widely used in prodrug design because of their simplicity, but such approaches are relatively ineffective for targeting drugs to specific sites. The activation of prodrugs by the cytochrome P450 system provides a highly versatile approach to prodrug design that is particularly adaptable for targeting drug activation to the liver, to tumors or to hypoxic tissues.
Collapse
Affiliation(s)
- Paul R Ortiz de Montellano
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
46
|
Biotransformation and biocatalysis: roles and applications in the discovery of antimalarials. Future Med Chem 2012; 4:2325-36. [DOI: 10.4155/fmc.12.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several strategies to discover new antimalarials have been proposed to augment and complement the conventional drug-discovery paradigm. One approach, which has not yet been fully exploited, is the use of drug biotransformation to identify new active molecules. This concept rests on the use of the biotransformation of drugs to their pharmacologically active metabolites. This approach has been used successfully in human chemotherapy, with the discovery and development of several metabolite-based drugs. This review looks at the contribution that biotransformations can play in antimalarial drug discovery.
Collapse
|
47
|
Yamazoe Y, Ito K, Yoshinari K. Construction of a CYP2E1-template system for prediction of the metabolism on both site and preference order. Drug Metab Rev 2012; 43:409-39. [PMID: 22017508 DOI: 10.3109/03602532.2011.624103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have constructed an in silico system for the prediction of CYP2E1-mediated reaction using a two-dimensional template derived from substrate structures. Although CYP2E1 prefers small-size molecules for the substrates, the enzyme mediates oxidations of large-size molecules, such as benzo[a]pyrene. Overlays of these substrates, to assemble their sites of oxidation into a specific area, suggested a range of regions frequently occupied. The region, having a benzo[a]pyrene-like shape, was thus used as a CYP2E1 template. In this system, atoms in substrates, except for hydrogen atoms, were placed on corners of honeycomb structures of the template after having expanded the structures. Using published data for the metabolism on more than 80 substrates of CYP2E1, the core template was further refined to verify the adjacent area and to define the relative contribution of template positions for the catalysis. The positions on the template were classified into four different point (0-3) groups, depending on relative usage. In addition, we set independent points (-5 to 3) for specific positions to incorporate three-dimensional or functional information. Total scores from both position-occupancy and -function points were calculated for all the orientations of possible conformers of test substrates, and the scores were found to predict the relative abundance (i.e., order) as well as the regioselectivity of human CYP2E1 reactions with high fidelities.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | | | | |
Collapse
|
48
|
Thuita JK, Wang MZ, Kagira JM, Denton CL, Paine MF, Mdachi RE, Murilla GA, Ching S, Boykin DW, Tidwell RR, Hall JE, Brun R. Pharmacology of DB844, an orally active aza analogue of pafuramidine, in a monkey model of second stage human African trypanosomiasis. PLoS Negl Trop Dis 2012; 6:e1734. [PMID: 22848769 PMCID: PMC3404106 DOI: 10.1371/journal.pntd.0001734] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Novel drugs to treat human African trypanosomiasis (HAT) are still urgently needed despite the recent addition of nifurtimox-eflornithine combination therapy (NECT) to WHO Model Lists of Essential Medicines against second stage HAT, where parasites have invaded the central nervous system (CNS). The pharmacology of a potential orally available lead compound, N-methoxy-6-{5-[4-(N-methoxyamidino) phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated in a vervet monkey model of second stage HAT, following promising results in mice. DB844 was administered orally to vervet monkeys, beginning 28 days post infection (DPI) with Trypanosoma brucei rhodesiense KETRI 2537. DB844 was absorbed and converted to the active metabolite 6-[5-(4-phenylamidinophenyl)-furanyl-2-yl]-nicotinamide (DB820), exhibiting plasma C(max) values of 430 and 190 nM for DB844 and DB820, respectively, after the 14th dose at 6 mg/kg qd. A 100-fold reduction in blood trypanosome counts was observed within 24 h of the third dose and, at the end of treatment evaluation performed four days post the last drug dose, trypanosomes were not detected in the blood or cerebrospinal fluid of any monkey. However, some animals relapsed during the 300 days of post treatment monitoring, resulting in a cure rate of 3/8 (37.5%) and 3/7 (42.9%) for the 5 mg/kg×10 days and the 6 mg/kg×14 days dose regimens respectively. These DB844 efficacy data were an improvement compared with pentamidine and pafuramidine both of which were previously shown to be non-curative in this model of CNS stage HAT. These data show that synthesis of novel diamidines with improved activity against CNS-stage HAT was possible.
Collapse
Affiliation(s)
- John K. Thuita
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Michael Z. Wang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - John M. Kagira
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Cathrine L. Denton
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mary F. Paine
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raymond E. Mdachi
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Grace A. Murilla
- Trypanosomiasis Research Centre, Kenya Agricultural Research Institute (TRC-KARI), Kikuyu, Kenya
| | - Shelley Ching
- SVC Associates, Inc., Apex, North Carolina, United States of America
| | - David W. Boykin
- Chemistry Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard R. Tidwell
- Pathology Department, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - James E. Hall
- Pathology Department, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Reto Brun
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Cali JJ, Ma D, Wood MG, Meisenheimer PL, Klaubert DH. Bioluminescent assays for ADME evaluation: dialing in CYP selectivity with luminogenic substrates. Expert Opin Drug Metab Toxicol 2012; 8:1115-30. [DOI: 10.1517/17425255.2012.695345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Kotthaus J, Kotthaus J, Schade D, Schwering U, Hungeling H, Müller-Fielitz H, Raasch W, Clement B. New prodrugs of the antiprotozoal drug pentamidine. ChemMedChem 2011; 6:2233-42. [PMID: 21984033 DOI: 10.1002/cmdc.201100422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 12/23/2022]
Abstract
Pentamidine is an effective antimicrobial agent that is approved for the treatment of African trypanosomiasis but suffers from poor oral bioavailability and central nervous system (CNS) penetration. This work deals with the development and systematic characterisation of new prodrugs of pentamidine. For this reason, numerous prodrugs that use different prodrug principles were synthesised and examined in vitro and in vivo. Another objective of the study was the determination of permeability of the different pentamidine prodrugs. While some of the prodrug principles applied in this study are known, such as the conversion of the amidine functions into amidoximes or the O-alkylation of amidoximes with a carboxymethyl residue, others were developed more recently and are described here for the first time. These newly developed methods aim to increase the affinity of the prodrug for the transporters and mediate an active uptake via carrier systems by conjugation of amidoximes with compounds that improve the overall solubility of the prodrug. The different principles chosen resulted in several pentamidine prodrugs with various advantages. The objective of this investigation was the systematic characterisation and evaluation of eight pentamidine prodrugs in order to identify the most appropriate strategy to improve the properties of the parent drug. For this reason, all prodrugs were examined with respect to their solubility, stability, enzymatic activation, distribution, CNS delivery, and oral bioavailability. The results of this work have allowed reliable conclusions to be drawn regarding the best prodrug principle for the antiprotozoal drug pentamidine.
Collapse
Affiliation(s)
- Joscha Kotthaus
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76-78, 24118 Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|