1
|
Buhrow SA, Koubek EJ, Goetz MP, Ames MM, Reid JM. Development and validation of a liquid chromatography-mass spectrometry assay for quantification of Z- and E- isomers of endoxifen and its metabolites in plasma from women with estrogen receptor positive breast cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123654. [PMID: 37004493 PMCID: PMC10249430 DOI: 10.1016/j.jchromb.2023.123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
The selective estrogen receptor modifier tamoxifen (TAM) is widely used for the treatment of women with estrogen receptor positive (ER+ ) breast cancer. Endoxifen (ENDX) is a potent, active metabolite of TAM and is important for TAM's clinical activity. While multiple papers have been published regarding TAM metabolism, few studies have examined or quantified the metabolism of ENDX. To quantify ENDX and its metabolites in patient plasma samples, we have developed and validated a rapid, sensitive, and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of the E- and Z-isomers of ENDX (0.5-500 ng/ml) and the ENDX metabolites norendoxifen (1-500 and 0.5-500 ng/ml E and Z, respectfully), ENDX catechol (3.075-307.5 and 1.92-192 ng/ml E and Z, respectfully), 4'-hydroxy ENDX (0.33-166.5 and 0.33-333.5 ng/ml E and Z, respectfully), ENDX methoxycatechol (0.3-300 and 0.2-200 ng/ml E and Z, respectfully), and ENDX glucuronide (2-200 and 3-300 ng/ml E and Z, respectfully) in human plasma. Chromatographic separation was accomplished on a HSS T3 precolumn attached to an Poroshell 120 EC-C18 analytical column using 0.1 % formic acid/water and 0.1 % formic acid/methanol as eluents followed by MS/MS detection. The analytical run time was 6.5 min. Standard curves were linear (R2 ≥ 0.98) over the concentration ranges. The intra- and inter-day precision and accuracy, determined at high-, middle-, and low-quality control concentrations for all analytes, were within the acceptable range of 85 % and 115 %. The average percent recoveries were all above 90 %. The method was successfully applied to clinical plasma samples from a Phase I study of daily oral Z-ENDX.
Collapse
Affiliation(s)
- Sarah A Buhrow
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Emily J Koubek
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Pharmacology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Matthew M Ames
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Pharmacology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Joel M Reid
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Pharmacology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
2
|
Ávila-Gálvez MÁ, González-Sarrías A, Martínez-Díaz F, Abellán B, Martínez-Torrano AJ, Fernández-López AJ, Giménez-Bastida JA, Espín JC. Disposition of Dietary Polyphenols in Breast Cancer Patients' Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol Nutr Food Res 2021; 65:e2100163. [PMID: 33939887 DOI: 10.1002/mnfr.202100163] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Indexed: 02/06/2023]
Abstract
SCOPE Some polyphenol-derived metabolites reach human breast cancer (BC) tissues at concentrations that induce cell senescence. However, this is unknown for isoflavones, curcuminoids, and lignans. Here, their metabolic profiling in normal (NT) and malignant (MT) mammary tissues of newly-diagnosed BC patients and the tissue-occurring metabolites' anticancer activity are evaluated. METHODS AND RESULTS Patients (n = 26) consumed 3 capsules/day (turmeric, red clover, and flaxseed extracts plus resveratrol; 296.4 mg phenolics/capsule) from biopsy-confirmed diagnosis to surgery (5 ± 2 days) or did not consume capsules (n = 13). NT and MT, blood, and urine are analyzed by UPLC-QTOF-MS using targeted metabolomics. Anticancer activity was tested in MCF-7 and MDA-MB-231 BC cells. Mainly phase-II metabolites were detected (108, 84, 49, and 47 in urine, plasma, NT, and MT, respectively). Total metabolite concentrations reached 10.7 ± 11.1 and 2.5 ± 2.4 µmol L-1 in NT and MT, respectively. Free curcumin, but not its glucuronide, was detected in the tissues (1.1 ± 1.8 and 0.2 ± 0.2 µmol L-1 in NT and MT, respectively). Breast tissue-occurring metabolites' antiproliferation was mainly exerted in p53-wild-type MCF-7 cells by curcuminoids through cell cycle arrest, senescence, and apoptosis induction via p53/p21 induction, while isoflavone-derived metabolites exerted estrogenic-like activity. CONCLUSION Curcuminoids could be coadjuvants that might help fight BC upon regular consumption.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Francisco Martínez-Díaz
- Anatomical Pathology Service, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, Murcia, 30003, Spain
| | - Beatriz Abellán
- Surgery Service, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios, Murcia, 30003, Spain
| | | | | | - Juan Antonio Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
3
|
Daniyal A, Santoso I, Gunawan NHP, Barliana MI, Abdulah R. Genetic Influences in Breast Cancer Drug Resistance. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:59-85. [PMID: 33603458 PMCID: PMC7882715 DOI: 10.2147/bctt.s284453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in adult women aged 20 to 50 years. The therapeutic regimens that are commonly recommended to treat breast cancer are human epidermal growth factor receptor 2 (HER2) targeted therapy, endocrine therapy, and systemic chemotherapy. The selection of pharmacotherapy is based on the characteristics of the tumor and its hormone receptor status, specifically, the presence of HER2, progesterone receptors, and estrogen receptors. Breast cancer pharmacotherapy often gives different results in various populations, which may cause therapeutic failure. Different types of congenital drug resistance in individuals can cause this. Genetic polymorphism is a factor in the occurrence of congenital drug resistance. This review explores the relationship between genetic polymorphisms and resistance to breast cancer therapy. It considers studies published from 2010 to 2020 concerning the relationship of genetic polymorphisms and breast cancer therapy. Several gene polymorphisms are found to be related to longer overall survival, worse relapse-free survival, higher pathological complete response, and increased disease-free survival in breast cancer patients. The presence of these gene polymorphisms can be considered in the treatment of breast cancer in order to shape personalized therapy to yield better results.
Collapse
Affiliation(s)
- Adhitiya Daniyal
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ivana Santoso
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Nadira Hasna Putri Gunawan
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa Intan Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
4
|
Baurley JW, Kjærsgaard A, Zwick ME, Cronin-Fenton DP, Collin LJ, Damkier P, Hamilton-Dutoit S, Lash TL, Ahern TP. Bayesian Pathway Analysis for Complex Interactions. Am J Epidemiol 2020; 189:1610-1622. [PMID: 32639515 DOI: 10.1093/aje/kwaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Modern epidemiologic studies permit investigation of the complex pathways that mediate effects of social, behavioral, and molecular factors on health outcomes. Conventional analytical approaches struggle with high-dimensional data, leading to high likelihoods of both false-positive and false-negative inferences. Herein, we describe a novel Bayesian pathway analysis approach, the algorithm for learning pathway structure (ALPS), which addresses key limitations in existing approaches to complex data analysis. ALPS uses prior information about pathways in concert with empirical data to identify and quantify complex interactions within networks of factors that mediate an association between an exposure and an outcome. We illustrate ALPS through application to a complex gene-drug interaction analysis in the Predictors of Breast Cancer Recurrence (ProBe CaRe) Study, a Danish cohort study of premenopausal breast cancer patients (2002-2011), for which conventional analyses severely limit the quality of inference.
Collapse
|
5
|
Fonseca TG, Carriço T, Fernandes E, Abessa DMS, Tavares A, Bebianno MJ. Impacts of in vivo and in vitro exposures to tamoxifen: Comparative effects on human cells and marine organisms. ENVIRONMENT INTERNATIONAL 2019; 129:256-272. [PMID: 31146160 DOI: 10.1016/j.envint.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tamoxifen (TAM) is a first generation-SERM administered for hormone receptor-positive (HER+) breast cancer in both pre- and post-menopausal patients and may undergo metabolic activation in organisms that share similar receptors and thus face comparable mechanisms of response. The present study aimed to assess whether environmental trace concentrations of TAM are bioavailable to the filter feeder M. galloprovincialis (100 ng L-1) and to the deposit feeder N. diversicolor (0.5, 10, 25 and 100 ng L-1) after 14 days of exposure. Behavioural impairment (burrowing kinetic), neurotoxicity (AChE activity), endocrine disruption by alkali-labile phosphate (ALP) content, oxidative stress (SOD, CAT, GPXs activities), biotransformation (GST activity), oxidative damage (LPO) and genotoxicity (DNA damage) were assessed. Moreover, this study also pertained to compare TAM cytotoxicity effects to mussels and targeted human (i.e. immortalized retinal pigment epithelium - RPE; and human transformed endothelial cells - HeLa) cell lines, in a range of concentrations from 0.5 ng L-1 to 50 μg L-1. In polychaetes N. diversicolor, TAM exerted remarkable oxidative stress and damage at the lowest concentration (0.5 ng L-1), whereas significant genotoxicity was reported at the highest exposure level (100 ng L-1). In mussels M. galloprovincialis, 100 ng L-1 TAM caused endocrine disruption in males, neurotoxicity, and an induction in GST activity and LPO byproducts in gills, corroborating in genotoxicity over the exposure days. Although cytotoxicity assays conducted with mussel haemocytes following in vivo exposure was not effective, in vitro exposure showed to be a feasible alternative, with comparable sensitivity to human cell line (HeLa).
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - T Carriço
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - E Fernandes
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - A Tavares
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
6
|
Lan B, Ma F, Han M, Chen S, Wang W, Li Q, Fan Y, Luo Y, Cai R, Wang J, Yuan P, Zhang P, Li Q, Xu B. The Effect of Polymorphism in UGT1A4 on Clinical Outcomes of Adjuvant Tamoxifen Therapy for Patients With Breast Cancer in China. Clin Breast Cancer 2019; 19:e370-e375. [DOI: 10.1016/j.clbc.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 11/30/2022]
|
7
|
Itzel F, Jewell KS, Leonhardt J, Gehrmann L, Nielsen U, Ternes TA, Schmidt TC, Tuerk J. Comprehensive analysis of antagonistic endocrine activity during ozone treatment of hospital wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1443-1454. [PMID: 29929255 DOI: 10.1016/j.scitotenv.2017.12.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 06/08/2023]
Abstract
To reduce the discharge of micropollutants, advanced wastewater treatment methods were investigated in the last years. Estrogenic effects were found to be reduced by ozonation. These activities are usually measured using genetically modified cell-based tests. As these bioassays are representing a sum parameter, also inhibitory effects such as antagonistic effects need to be further investigated as they are potentially reducing the detected activities. Therefore, a direct comparison of chemical target analysis and biological equivalent concentrations measured by bioassays is often difficult. To investigate the fate of antagonistic activities and their role in mixtures with agonistic activities, two hospital wastewater treatment plants were studied after different treatment steps. Thereby highly enriched samples were analyzed by a combination of bioassays with chemical target and non-target analyses. In order to achieve an in-depth characterization of the antagonistic activities a fractionation of the enriched samples was performed. To identify relevant compounds an effect directed identification approach was used by combining high-resolution mass spectrometry and bioassays. The results showed a high reduction for estrogene and androgene activities. However, a constant antagonistic activity after membrane bioreactor and ozone treatment was observed. A reduction of the antagonistic activity was observed after passing an activated carbon filter. The fractionation approach showed a specific finger-print of each sample of the different treatment steps. Hereby we could show that the composition of agonistic and antagonistic active compounds is changing after each treatment step while the overall measured activity stays the same. Using fractionation and the combination of bioassays the number of relevant features detected by chemical non-target screening could be reduced by >85%. As a result the phosphorous flame retardant TCEP could be identified as anti-estrogene active. Future research should be done to identify more antagonistic active compounds and potentially active transformation products after ozone treatment.
Collapse
Affiliation(s)
- Fabian Itzel
- Institut für Energie - und Umwelttechnik e. V., (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; University of Duisburg-Essen, Instrumental Analytical Chemistry, Universitätsstrasse 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Kevin S Jewell
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Juri Leonhardt
- Institut für Energie - und Umwelttechnik e. V., (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Linda Gehrmann
- Institut für Energie - und Umwelttechnik e. V., (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Ulf Nielsen
- DHI Urban Water, Agern Alle 5, 2970 Horsholm, Denmark
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Torsten C Schmidt
- University of Duisburg-Essen, Instrumental Analytical Chemistry, Universitätsstrasse 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany; IWW Water Centre, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
| | - Jochen Tuerk
- Institut für Energie - und Umwelttechnik e. V., (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany.
| |
Collapse
|
8
|
Knoop O, Itzel F, Tuerk J, Lutze HV, Schmidt TC. Endocrine effects after ozonation of tamoxifen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:71-78. [PMID: 29202370 DOI: 10.1016/j.scitotenv.2017.11.286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Ozonation is used as additional wastewater treatment option to remove recalcitrant micropollutants. It also removes the estrogenic activity found in wastewater but not always the anti-estrogenic activity. This can be explained by an incomplete removal of anti-estrogenic micropollutants or by formation of transformation products (TPs) which retain the activity. The present study investigates the degradation of the anti-estrogenic pharmaceutical tamoxifen in pure water, regarding TP formation and related anti-estrogenic effect using Arxula adeninivorans yeast estrogen screen (A-YES). In total, five transformation products were detected: three N-oxides and two further products (TP 270 and TP 388). For the transformation product TP 270 a correlation of the extent of formation with an increase of the anti-estrogenic activity was determined, demonstrating that transformation products from ozonation can be more active in a bioassay than the parent compounds. Our study shows also that the transformation of tamoxifen to N-oxides reduces the anti-estrogenic activity. The reactivity of amines towards ozone typically increases with pH, since only deprotonated amines react with ozone. Hence, removal of the endocrine activity by N-oxide formation may be disfavored at low pH.
Collapse
Affiliation(s)
- Oliver Knoop
- Instrumental Analytical Chemistry, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany; Centre for Aquatic and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Fabian Itzel
- Centre for Aquatic and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Jochen Tuerk
- Centre for Aquatic and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Holger V Lutze
- Instrumental Analytical Chemistry, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany; Centre for Aquatic and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany; IWW Water Centre, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany; Centre for Aquatic and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany; IWW Water Centre, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany.
| |
Collapse
|
9
|
Azuma T, Ishida M, Hisamatsu K, Yunoki A, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y. A method for evaluating the pharmaceutical deconjugation potential in river water environments. CHEMOSPHERE 2017; 180:476-482. [PMID: 28431385 DOI: 10.1016/j.chemosphere.2017.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 05/25/2023]
Abstract
A new enzymatic assay method that uses deconjugation enzymes was developed to evaluate the presence and extent of conjugated pharmaceuticals in the form of glucuronide conjugates or sulphate conjugates in river environments. First, acetaminophen glucuronide (Ace Glu) and acetaminophen sulphate (Ace Sul) were used as model conjugated pharmaceuticals to determine the appropriate combination of deconjugation enzymes and reaction conditions, including temperature, duration and pH. Next, we applied the defined method to 19 pharmaceuticals grouped into nine therapeutic classes that were chosen based on previously detected levels and frequencies in sewage and river water. The enzymatic decomposition profile varied widely depending upon the enzyme preparations available. The effect of the water reaction temperature was small between 5 and 40 °C, and the reaction proceeded in for both glucuronide conjugates and sulphate conjugates at an approximately neutral pH (corresponding to usual river water conditions) within 1 h. Application of the method to environmental samples showed that some pharmaceuticals were present in both glucuronide conjugate and sulphate conjugated forms, although glucuronide conjugates were the primary forms in the river water environment. Water treatment systems at sewage treatment plants were found to be effective for the removal of these conjugated compounds. The present results should be valuable in the environmental risk assessment of conjugated pharmaceuticals and in keeping river environments clean. To the best of our knowledge, this is the first report that enables the evaluation of the pharmaceutical deconjugation potential in a river environment.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Mao Ishida
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kanae Hisamatsu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ayami Yunoki
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kana Otomo
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mari Kunitou
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Shimizu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kaori Hosomaru
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shiori Mikata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
10
|
Alsharif FM, Dave K, Samy AM, Saleh KI, Amin MA, Perumal O. Influence of Hydroalcoholic Vehicle on In Vitro Transport of 4-Hydroxy Tamoxifen Through the Mammary Papilla (Nipple). AAPS PharmSciTech 2017; 18:1366-1373. [PMID: 27506565 DOI: 10.1208/s12249-016-0608-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023] Open
Abstract
Majority of breast cancers originate from epithelial cells in the duct and lobules in the breast. Current systemic treatments for breast cancer are associated with significant systemic side effects, thus warranting localized drug delivery approaches. The aim of this study was to investigate the influence of hydroalcoholic vehicle on topical delivery of 4-hydroxy tamoxifen (4-HT) through the mammary papilla (nipple). The in vitro permeability of 4-HT through porcine mammary papilla was studied using different hydroalcoholic vehicles (0, 33.33, and 66.66% alcohol). Nile red was used as a model lipophilic dye to characterize the drug transport pathway in the mammary papilla. The penetration of 4-HT through the mammary papilla increased with increase in alcohol concentration in the vehicle. The solubility of 4-HT was enhanced by increasing alcohol concentration in the vehicle. On the other hand, the epidermis/vehicle partition coefficient decreased with increase in alcohol concentration. The mammary papilla served as a depot and slowly released 4-HT into the receptor medium. Highest drug penetration was observed with saturated drug solution in 66.66% alcohol, and 4-HT levels were comparable to IC50 value of 4-HT. Results from this study demonstrate the possibility of using mammary papilla as a potential route for direct delivery of 4-HT to the breast.
Collapse
|
11
|
Mills LJ, Henderson WM, Jayaraman S, Gutjahr-Gobell RE, Zaroogian GE, Horowitz DB, Laws SC. Approaches for predicting effects of unintended environmental exposure to an endocrine active pharmaceutical, tamoxifen. ENVIRONMENTAL TOXICOLOGY 2016; 31:1834-1850. [PMID: 26303313 DOI: 10.1002/tox.22184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Tamoxifen is an endocrine-active pharmaceutical (EAP) that is used world-wide. Because tamoxifen is a ubiquitous pharmaceutical and interacts with estrogen receptors, a case study was conducted with this compound to (1) determine effects on reproductive endpoints in a nontarget species (i.e., a fish), (2) compare biologically-active metabolites across species, (3) assess whether in vitro assays predict in vivo results, and (4) investigate metabolomic profiles in tamoxifen-treated fish to better understand the biological mechanisms of tamoxifen toxicity. In reproductive assays, tamoxifen exposure caused a significant reduction in egg production and significantly increased ovarian aromatase activity in spawning adult cunner fish (Tautogolabrus adspersus). In plasma from tamoxifen-exposed cunner, the predominant metabolite was 4-hydroxytamoxifen, while in rats it was N-desmethyltamoxifen. Because 4-hydroxytamoxifen is a more biologically active metabolite than N-desmethyltamoxifen, this difference could result in a different level of risk for the two species. The results of in vitro assays with fish hepatic microsomes to assess tamoxifen metabolism did not match in vivo results, indicating probable differences in excretion of tamoxifen metabolites in fish compared with rats. For the first time, a complete in vitro characterization of the metabolism of tamoxifen using fish microsomes is presented. Furthermore, a metabolomic investigation of cunner gonad extracts demonstrates that tamoxifen alters the biochemical profile in this nontarget species. Understanding the consequence of tamoxifen exposure in nontarget species, and assessing the discrepancies between sex- and species-mediated endpoints, is a step toward understanding how to accurately assess the risks posed by EAPs, such as tamoxifen, in the aquatic environment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1834-1850, 2016.
Collapse
Affiliation(s)
- Lesley J Mills
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (U.S. EPA), Narragansett, Rhode Island, 02882, USA
| | - W Matthew Henderson
- Ecosystems Research Division, National Exposure Research Laboratory (NERL), ORD, U.S. EPA, Athens, Georgia, 30605, USA
| | - Saro Jayaraman
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (U.S. EPA), Narragansett, Rhode Island, 02882, USA
| | - Ruth E Gutjahr-Gobell
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (U.S. EPA), Narragansett, Rhode Island, 02882, USA
| | - Gerald E Zaroogian
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (U.S. EPA), Narragansett, Rhode Island, 02882, USA
| | - Doranne Borsay Horowitz
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (U.S. EPA), Narragansett, Rhode Island, 02882, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, 27711, USA
| |
Collapse
|
12
|
Henderson SL, Teft WA, Kim RB. Profound reduction in tamoxifen active metabolite endoxifen in a breast cancer patient treated with rifampin prior to initiation of an anti-TNFα biologic for ulcerative colitis: a case report. BMC Cancer 2016; 16:304. [PMID: 27169677 PMCID: PMC4864908 DOI: 10.1186/s12885-016-2342-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tamoxifen, a common anti-estrogen breast cancer medication, is a prodrug that undergoes bioactivation via cytochrome P450 enzymes, CYP2D6 and to a lesser degree, CYP3A4 to form the active metabolite endoxifen. With an increasing use of oral anti-cancer drugs, the risk for drug-drug interactions mediated by enzyme inhibitors and inducers may also be expected to increase. Here we report the first case demonstrating a potent drug-drug interaction in a real-world clinical setting between tamoxifen and rifampin in a breast cancer patient being treated concurrently for ulcerative colitis. CASE PRESENTATION We describe a patient on adjuvant tamoxifen therapy for breast cancer that was prescribed rifampin for TB prophylaxis prior to initiation of an anti-tumor necrosis factor (TNF)-α agent due to worsening ulcerative colitis. This 39 year old Caucasian woman had been followed by our personalized medicine clinic where CYP2D6 genotyping and therapeutic monitoring of tamoxifen and endoxifen levels had been carried out. The patient, known to be a CYP2D6 intermediate metabolizer, had a previous history of therapeutic endoxifen levels. Upon admission to hospital for a major flare of her ulcerative colitis a clinical decision was made to initiate an anti-TNFα biological agent. Due to concerns regarding latent TB, rifampin as an anti-mycobacterial agent was initiated which the patient was only able tolerate for 10 days. Interestingly, her plasma endoxifen concentration measured 2 weeks after cessation of rifampin was sub-therapeutic at 15.8 nM and well below her previous endoxifen levels which exceeded 40 nM. CONCLUSION Rifampin should be avoided in patients on tamoxifen therapy for breast cancer unless continued tamoxifen efficacy can be assured through endoxifen monitoring. Drug-drug interactions can pose a significant risk of sub-therapeutic benefit in tamoxifen patients.
Collapse
Affiliation(s)
- Sara L Henderson
- Division of Clinical Pharmacology, Department of Medicine, 339 Windermere Road B9-130, London, ON, N6A 5A5, Canada.,Pharmacy Services London Health Sciences Centre, Western University, London, ON, Canada
| | - Wendy A Teft
- Division of Clinical Pharmacology, Department of Medicine, 339 Windermere Road B9-130, London, ON, N6A 5A5, Canada
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, 339 Windermere Road B9-130, London, ON, N6A 5A5, Canada.
| |
Collapse
|
13
|
Borgatta M, Waridel P, Decosterd LA, Buclin T, Chèvre N. Multigenerational effects of the anticancer drug tamoxifen and its metabolite 4-hydroxy-tamoxifen on Daphnia pulex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:21-29. [PMID: 26745289 DOI: 10.1016/j.scitotenv.2015.11.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Tamoxifen and its metabolite 4-hydroxy-tamoxifen (4OHTam) are two potent molecules that have anticancer properties on breast cancers. Their medical use is expected to increase with the increasing global cancer rate. After consumption, patients excrete tamoxifen and the 4OHTam metabolite into wastewaters, and tamoxifen has been already detected in wastewaters and natural waters. The concentrations of 4OHTam in waters have never been reported. A single study reported 4OHTam effects on the microcrustacean Daphnia pulex. The effects of tamoxifen and 4OHTam over more than two generations are unknown in aquatic invertebrates. The main goal of this study was to assess the long-term sensitivity of the microcrustacean D. pulex over four generations, based on size, reproduction, viability and the intrinsic rate of natural increase (r). Additional experiments were carried out to observe whether the effects of tamoxifen and 4OHTam were reversible in the next generation after descendants were withdrawn from chemical stress (i.e., recovery experiment), and whether the lowest test concentration of each chemical induced toxic effects when both concentrations were combined (i.e., mixture experiments). Our results showed that tamoxifen and 4OHTam induced the adverse effects at environmentally relevant concentrations. Tamoxifen and 4OHTam impaired size, viability, reproduction and the r in four generations of treated D. pulex, but these effects were not clearly magnified over generations. Tamoxifen was more potent than 4OHTam on D. pulex. When used in a mixture, the combination of tamoxifen and 4OHTam induced effects in offspring, whereas no effects were observed when these chemicals were tested individually. In the recovery experiment, the reproduction and size were reduced in offspring withdrawn from chemical exposures. Our results suggested that tamoxifen and its metabolite may be a relevant pharmaceutical to consider in risk assessment.
Collapse
Affiliation(s)
- Myriam Borgatta
- Institute of Earth Surface Dynamics, University of Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Laurent-Arthur Decosterd
- Division of Clinical Pharmacology and Toxicology, University Hospital Centre of the Canton of Vaud (CHUV), Switzerland
| | - Thierry Buclin
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Nathalie Chèvre
- Institute of Earth Surface Dynamics, University of Lausanne, Switzerland.
| |
Collapse
|
14
|
Zhong Q, Zhang C, Zhang Q, Miele L, Zheng S, Wang G. Boronic prodrug of 4-hydroxytamoxifen is more efficacious than tamoxifen with enhanced bioavailability independent of CYP2D6 status. BMC Cancer 2015; 15:625. [PMID: 26354796 PMCID: PMC4563833 DOI: 10.1186/s12885-015-1621-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/21/2015] [Indexed: 12/17/2022] Open
Abstract
Background Poor initial response to tamoxifen due to CYP2D6 polymorphism and adverse side effects are two clinical challenges in tamoxifen therapy. We report the development and preclinical testing of a boronic prodrug to orally deliver 4-OHT at therapeutically effective concentrations but at a fraction of the standard tamoxifen dose. Methods A mouse xenograft tumor model was used to investigate the efficacy of ZB497 in comparison with tamoxifen. Pharmacokinetic studies were conducted to evaluate the metabolism and bioavailability of the drug in mice. Drug and metabolites distribution in xenograft tumor tissues was determined by high performance liquid chromatography-tandem mass spectrometry. Results The boronic prodrug, ZB497, can not only be efficiently converted to 4-OHT in mice, but also afforded over 30 fold higher plasma concentrations of 4-OHT than in mice given either the same dose of 4-OHT or tamoxifen. Further, ZB497 was more effective than tamoxifen at lowered dosage in inhibiting the growth of xenograft tumors in mice. Consistent with these observations, ZB497 treated mice accumulated over 6 times higher total drug concentrations than tamoxifen treated mice. Conclusions Our study demonstrates that ZB497 effectively delivers a markedly increased plasma concentration of 4-OHT in mice. The boronic prodrug was shown to have far superior bioavailability of 4-OHT compared to tamoxifen or 4-OHT administration as measured by the area under the plasma concentration time curve (AUC), plasma peak concentrations, and drug accumulation in tumor tissues. Further, ZB497 proves to be a more efficacious hormone therapy than tamoxifen administered at a reduced dose in mice.
Collapse
Affiliation(s)
- Qiu Zhong
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125, USA.
| | - Changde Zhang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125, USA.
| | - Qiang Zhang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125, USA.
| | - Lucio Miele
- Department of Genetics and LSU Stanley Scott Cancer Center, LSU Health Sciences Center, 1 Drexel Dr., New Orleans, LA, 70112, USA.
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125, USA.
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125, USA.
| |
Collapse
|
15
|
Takagi M, Sakamoto M, Itoh T, Fujiwara R. Underlying mechanism of drug–drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8. Drug Metab Pharmacokinet 2015. [DOI: 10.1016/j.dmpk.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Borgatta M, Decosterd LA, Waridel P, Buclin T, Chèvre N. The anticancer drug metabolites endoxifen and 4-hydroxy-tamoxifen induce toxic effects on Daphnia pulex in a two-generation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:232-40. [PMID: 25817760 DOI: 10.1016/j.scitotenv.2015.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/18/2015] [Accepted: 03/09/2015] [Indexed: 05/17/2023]
Abstract
Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3 μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4 μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.
Collapse
Affiliation(s)
- Myriam Borgatta
- Institute of Earth Surface Dynamics, University of Lausanne, Switzerland.
| | - Laurent-Arthur Decosterd
- Division of Clinical Pharmacology and Toxicology, University Hospital Centre of the Canton of Vaud (CHUV), Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Centre for Integrative Genomics, University of Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology and Toxicology, University Hospital Centre of the Canton of Vaud (CHUV), Switzerland
| | - Nathalie Chèvre
- Institute of Earth Surface Dynamics, University of Lausanne, Switzerland
| |
Collapse
|
17
|
Zhang C, Zhong Q, Zhang Q, Zheng S, Miele L, Wang G. Boronic prodrug of endoxifen as an effective hormone therapy for breast cancer. Breast Cancer Res Treat 2015; 152:283-91. [PMID: 26071758 PMCID: PMC4524496 DOI: 10.1007/s10549-015-3461-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/05/2015] [Indexed: 11/25/2022]
Abstract
As a prodrug, tamoxifen is activated by the P450 enzyme CYP2D6 that is responsible for converting it to the active metabolites, 4-hydroxytamoxifen and endoxifen. Patients with genetic polymorphisms of CYP2D6 may not receive the full benefit of tamoxifen therapy. There is increasing evidence that poor metabolizer patients have lower plasma concentrations of endoxifen and suffer worse disease outcome, although some clinical studies reported no correlation between CYP2D6 polymorphism and tamoxifen therapy outcome. Endoxifen is currently undergoing clinical trials as a potentially improved and more potent SERM (Selective Estrogen Receptor Modulator) for endocrine therapy that is independent of CYP2D6 status in patients. However, direct administration of endoxifen may present the problem of low bioavailability due to its rapid first-pass metabolism via O-glucuronidation. We have designed and synthesized ZB483, a boronic prodrug of endoxifen suitable for oral administration with greatly enhanced bioavailability by increasing the concentration of endoxifen in mouse blood. Our study demonstrated that ZB483 potently inhibited growth of ER+ breast cancer cells in vitro and was efficiently converted to endoxifen in cell culture media by oxidative deboronation. This metabolic conversion is equally efficient in vivo as indicated in the pharmacokinetic study in mice. Moreover, when administered at the same dose, oral ZB483 afforded a 30- to 40-fold higher plasma level of endoxifen in mice than oral administration of endoxifen. The significantly enhanced bioavailability of endoxifen conferred by the boronic prodrug was further validated in an in vivo efficacy study. ZB483 was demonstrated to be more efficacious than endoxifen in inhibiting xenograft tumor growth in mice at equal dosage but more so at lower dosage. Together, these preclinical studies demonstrate that ZB483 is a promising endocrine therapy agent with markedly enhanced bioavailability in systemic circulation and superior efficacy compared to endoxifen.
Collapse
Affiliation(s)
- Changde Zhang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | | | | | | | | | | |
Collapse
|
18
|
Binkhorst L, Kloth JSL, de Wit AS, de Bruijn P, Lam MH, Chaves I, Burger H, van Alphen RJ, Hamberg P, van Schaik RHN, Jager A, Koch BCP, Wiemer EAC, van Gelder T, van der Horst GTJ, Mathijssen RHJ. Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Breast Cancer Res Treat 2015; 152:119-128. [PMID: 26050156 PMCID: PMC4469299 DOI: 10.1007/s10549-015-3452-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/25/2015] [Indexed: 11/29/2022]
Abstract
The anti-estrogen tamoxifen is characterized by a large variability in response, partly due to pharmacokinetic differences. We examined circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Pharmacokinetic analysis was performed in mice, dosed at six different times (24-h period). Tissue samples were used for mRNA expression analysis of drug-metabolizing enzymes. In patients, a cross-over study was performed. During three 24-h periods, after tamoxifen dosing at 8 a.m., 1 p.m., and 8 p.m., for at least 4 weeks, blood samples were collected for pharmacokinetic measurements. Differences in tamoxifen pharmacokinetics between administration times were assessed. The mRNA expression of drug-metabolizing enzymes showed circadian variation in mouse tissues. Tamoxifen exposure seemed to be highest after administration at midnight. In humans, marginal differences were observed in pharmacokinetic parameters between morning and evening administration. Tamoxifen C(max )and area under the curve (AUC)0-8 h were 20 % higher (P < 0.001), and tamoxifen t(max) was shorter (2.1 vs. 8.1 h; P = 0.001), indicating variation in absorption. Systemic exposure (AUC0-24 h) to endoxifen was 15 % higher (P < 0.001) following morning administration. The results suggest that dosing time is of marginal influence on tamoxifen pharmacokinetics. Our study was not designed to detect potential changes in clinical outcome or toxicity, based on a difference in the time of administration. Circadian rhythm may be one of the many determinants of the interpatient and intrapatient pharmacokinetic variability of tamoxifen.
Collapse
Affiliation(s)
- Lisette Binkhorst
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands. .,Department of Hospital Pharmacy, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands.
| | - Jacqueline S L Kloth
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Annelieke S de Wit
- Department of Genetics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Mei H Lam
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Ines Chaves
- Department of Genetics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Herman Burger
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Robbert J van Alphen
- Department of Internal Medicine, TweeSteden Ziekenhuis, P.O. Box 90107, 5000 LA, Tilburg, Netherlands
| | - Paul Hamberg
- Department of Internal Medicine, Sint Franciscus Gasthuis, P.O. Box 10900, 3004 BA, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| |
Collapse
|
19
|
Chanawong A, Hu DG, Meech R, Mackenzie PI, McKinnon RA. Induction of UDP-glucuronosyltransferase 2B15 gene expression by the major active metabolites of tamoxifen, 4-hydroxytamoxifen and endoxifen, in breast cancer cells. Drug Metab Dispos 2015; 43:889-97. [PMID: 25795461 DOI: 10.1124/dmd.114.062935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/19/2015] [Indexed: 11/22/2022] Open
Abstract
We previously reported upregulation of UGT2B15 by 17β-estradiol in breast cancer MCF7 cells via binding of the estrogen receptor α (ERα) to an estrogen response unit (ERU) in the proximal UGT2B15 promoter. In the present study, we show that this ERα-mediated upregulation was significantly reduced by two ER antagonists (fulvestrant and raloxifene) but was not affected by a third ER antagonist, 4-hydroxytamoxifen (4-OHTAM), a major active tamoxifen (TAM) metabolite. Furthermore, we found that, similar to 17β-estradiol, 4-OHTAM and endoxifen (another major active TAM metabolite) elevated UGT2B15 mRNA levels, and that this stimulation was significantly abrogated by fulvestrant. Further experiments using 4-OHTAM revealed a critical role for ERα in this regulation. Specifically; knockdown of ERα expression by anti-ERα small interfering RNA reduced the 4-OHTAM-mediated induction of UGT2B15 expression; 4-OHTAM activated the wild-type but not the ERU-mutated UGT2B15 promoter; and chromatin immunoprecipitation assays showed increased ERα occupancy at the UGT2B15 ERU in MCF7 cells upon exposure to 4-OHTAM. Together, these data indicate that both 17β-estradiol and the antiestrogen 4-OHTAM upregulate UGT2B15 in MCF7 cells via the same ERα-signaling pathway. This is consistent with previous observations that both 17β-estradiol and TAM upregulate a common set of genes in MCF7 cells via the ER-signaling pathway. As 4-OHTAM is a UGT2B15 substrate, the upregulation of UGT2B15 by 4-OHTAM in target breast cancer cells is likely to enhance local metabolism and inactivation of 4-OHTAM within the tumor. This represents a potential mechanism that may reduce TAM therapeutic efficacy or even contribute to the development of acquired TAM resistance.
Collapse
Affiliation(s)
- Apichaya Chanawong
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
20
|
Borgatta M, Hernandez C, Decosterd LA, Chèvre N, Waridel P. Shotgun Ecotoxicoproteomics of Daphnia pulex: Biochemical Effects of the Anticancer Drug Tamoxifen. J Proteome Res 2014; 14:279-91. [DOI: 10.1021/pr500916m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Myriam Borgatta
- Institute
of Earth Surface Dynamics, Géopolis, University of Lausanne, 1015 Lausanne, Switzerland
| | - Céline Hernandez
- Protein
Analysis Facility, Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Arthur Decosterd
- Division
of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
| | - Nathalie Chèvre
- Institute
of Earth Surface Dynamics, Géopolis, University of Lausanne, 1015 Lausanne, Switzerland
| | - Patrice Waridel
- Protein
Analysis Facility, Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
An UPLC–MS/MS method for separation and accurate quantification of tamoxifen and its metabolites isomers. J Pharm Biomed Anal 2014; 100:254-261. [DOI: 10.1016/j.jpba.2014.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 11/22/2022]
|
22
|
Fujiwara R, Itoh T. Extensive protein interactions involving cytochrome P450 3A4: a possible contributor to the formation of a metabolosome. Pharmacol Res Perspect 2014; 2:e00053. [PMID: 25505604 PMCID: PMC4186418 DOI: 10.1002/prp2.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 11/15/2022] Open
Abstract
Cytochrome P450 (CYP) 3A4 is a membrane protein that catalyzes hydroxylation of endogenous and exogenous substrates. Protein–protein interaction is a crucial factor that regulates the function of enzymes. However, protein–protein interactions involving human CYPs have not been fully understood. In this study, extensive protein–protein interactions involving CYP3A4 were determined by a shotgun analysis of immunoprecipitate utilizing anti-CYP3A4 antibody. Our shotgun analysis revealed that 149 proteins were immunoprecipitated with anti-CYP3A4 antibody in human liver microsomes. We further determined that 51 proteins of 149 proteins were specifically immunoprecipitated with the anti-CYP3A4 antibody. Our analysis demonstrated that other CYP isoforms are interacting with CYP3A4, which is in agreement with previous findings. Based on our current and previous findings, we propose that drug-metabolizing enzymes such as CYP3A4 and UDP-glucuronosyltransferase 2B7 form a metabolosome, which is a functional unit of metabolism consisting of multiple metabolism-related proteins.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
23
|
Extraction of tamoxifen and its metabolites from formalin-fixed, paraffin-embedded tissues: an innovative quantitation method using liquid chromatography and tandem mass spectrometry. Cancer Chemother Pharmacol 2014; 73:475-84. [PMID: 24414550 PMCID: PMC3931943 DOI: 10.1007/s00280-013-2346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 10/31/2013] [Indexed: 12/29/2022]
Abstract
PURPOSE Tamoxifen is a key therapeutic option for breast cancer treatment. Understanding its complex metabolism and pharmacokinetics is important for dose optimization. We examined the possibility of utilizing archival formalin-fixed paraffin-embedded (FFPE) tissue as an alternative sample source for quantification since well-annotated retrospective samples were always limited. METHODS Six 15 μm sections of FFPE tissues were deparaffinized with xylene and purified using solid-phase extraction. Tamoxifen and its metabolites were separated and detected by liquid chromatography-tandem mass spectrometry using multiple-reaction monitoring. RESULTS This method was linear between 0.4 and 200 ng/g for 4-hydroxy-tamoxifen and endoxifen, and 4-2,000 ng/g for tamoxifen and N-desmethyl-tamoxifen. Inter- and intra-assay precisions were <9 %, and mean accuracies ranged from 81 to 106 %. Extraction recoveries were between 83 and 88 %. The validated method was applied to FFPE tissues from two groups of patients, who received 20 mg/day of tamoxifen for >6 months, and were classified into breast tumor recurrence and non-recurrence. Our preliminary data show that levels of tamoxifen metabolites were significantly lower in patients with recurrent cancer, suggesting that inter-individual variability in tamoxifen metabolism might partly account for the development of cancer recurrence. Nevertheless, other causes such as non-compliance or stopping therapy of tamoxifen could possibly lead to the concentration differences. CONCLUSIONS The ability to successfully study tamoxifen metabolism in such tissue samples will rapidly increase our knowledge of how tamoxifen's action, metabolism and tissue distribution contribute to breast cancer control. However, larger population studies are required to understand the underlying mechanism of tamoxifen metabolism for optimization of its treatment.
Collapse
|
24
|
Fujiwara R, Itoh T. Extensive Protein-Protein Interactions Involving UDP-glucuronosyltransferase (UGT) 2B7 in Human Liver Microsomes. Drug Metab Pharmacokinet 2014; 29:259-65. [DOI: 10.2133/dmpk.dmpk-13-rg-096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Sun D, Jones NR, Manni A, Lazarus P. Characterization of raloxifene glucuronidation: potential role of UGT1A8 genotype on raloxifene metabolism in vivo. Cancer Prev Res (Phila) 2013; 6:719-30. [PMID: 23682072 DOI: 10.1158/1940-6207.capr-12-0448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Raloxifene is a second-generation selective estrogen receptor modulator used for the prevention and treatment of osteoporosis and the prevention of breast cancer in postmenopausal women. Raloxifene is extensively metabolized by glucuronidation to form raloxifene-6-glucuronide (ral-6-Gluc) and raloxifene-4'-glucuronide (ral-4'-Gluc). The goal of the present study was to determine whether functional polymorphisms in active UGTs could play a role in altered raloxifene glucuronidation in vivo. Using homogenates from HEK293 UGT-overexpressing cell lines, raloxifene was shown to be glucuronidated primarily by the hepatic UGTs 1A1 and 1A9 and the extra-hepatic UGTs 1A8 and 1A10; no detectable raloxifene glucuronidation activity was found for UGT2B enzymes. Functional UGT1A1 transcriptional promoter genotypes were significantly (Ptrend = 0.005) associated with ral-6-Gluc formation in human liver microsomes, and, consistent with the decreased raloxifene glucuronidation activities observed in vitro with cell lines overexpressing UGT1A8 variants, the UGT1A8*2 variant was significantly (P = 0.023) correlated with total raloxifene glucuronide formation in human jejunum homogenates. While ral-4'-Gluc exhibited 1:100th the anti-estrogenic activity of raloxifene itself as measured by binding to the estrogen receptor, raloxifene glucuronides comprised about 99% of the circulating raloxifene dose in raloxifene-treated subjects, with ral-4'-Gluc comprising ~70% of raloxifene glucuronides. Plasma ral-6-Gluc (Ptrend = 0.0025), ral-4'-Gluc (Ptrend = 0.001), and total raloxifene glucuronides (Ptrend = 0.001) were increased in raloxifene-treated subjects who were predicted slow metabolizers [UGT1A8 (*1/*3)] versus intermediate metabolizers [UGT1A8 (*1/*1) or UGT1A8 (*1/*2)] versus fast metabolizers [UGT1A8 (*2/*2). These data suggest that raloxifene metabolism may be dependent on UGT1A8 genotype and that UGT1A8 genotype may play an important role in overall response to raloxifene.
Collapse
Affiliation(s)
- Dongxiao Sun
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | |
Collapse
|
26
|
Date S, Mizuno H, Tsuyama N, Harada T, Masujima T. Direct drug metabolism monitoring in a live single hepatic cell by video mass spectrometry. ANAL SCI 2012; 28:201-3. [PMID: 22451357 DOI: 10.2116/analsci.28.201] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The metabolism of anti-breast cancer drug, tamoxifen, in a single human hepatocellular carcinoma cell, HepG2, was directly monitored by a video-mass spectroscope. The cytoplasm, a vacuole or nucleus of the cell was directly sucked by a nano-spray tip under a video-microscope, and then was introduced into a mass spectrometer. Unchanged drug molecules were found in cytoplasm and a vacuole, but the metabolites were only found in the cytoplasm. This direct detection of drug metabolites in a live single cell is useful for speedy drug metabolism monitoring.
Collapse
Affiliation(s)
- Sachiko Date
- Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
27
|
Abstract
Tamoxifen undergoes biotransformation into several metabolites, including endoxifen. Differences in metabolism contribute to the interindividual variability in endoxifen concentrations, potentially affecting treatment efficacy. We evaluated the effects of cytochrome P450 (CYP) induction by rifampicin on the exposure levels of tamoxifen and its metabolites and found that coadministration of rifampicin resulted in markedly reduced (up to 86%, P ≤ 0.040) concentrations of tamoxifen and its metabolites. Given the extensive metabolism undergone by tamoxifen, several factors may have contributed to this effect. Similar drug-drug interactions may exist between tamoxifen and other strong CYP inducers.
Collapse
|
28
|
Besse JP, Latour JF, Garric J. Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? ENVIRONMENT INTERNATIONAL 2012; 39:73-86. [PMID: 22208745 DOI: 10.1016/j.envint.2011.10.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
This study considers the implications and research needs arising from anticancer (also referred to as antineoplastic) drugs being released into the aquatic environment, for the entire therapeutic classes used: cytotoxic, cytostatic and endocrine therapy drugs. A categorization approach, based on French consumption amounts, allowed to highlight parent molecules and several metabolites on which further occurrence and ecotoxicological studies should be conducted. Investigations of consumption trends at a national and a local scale show an increase in the use of anticancer drugs between 2004 and 2008, thus leading to increased levels released in the environment. It therefore appears necessary to continue surveying their presence in surface waters and in wastewater treatment plant (WWTP) effluents. Furthermore, due to the rise of anticancer home treatments, most of the prescribed molecules are now available in town pharmacies. Consequently, hospital effluents are no longer the main expected entry route of anticancer drugs into the aquatic environment. Concerning ecotoxicological risks, current knowledge remains insufficient to support a definitive conclusion. Risk posed by cytotoxic molecules is still not well documented and it is not possible to conclude on their long-term effects on non-target organisms. To date, ecotoxicological effects have been assessed using standardized or in vitro assays. Such tests however may not be suitable for anticancer drugs, and further work should focus on full-life cycle or even multigenerational tests. Environmental significance (i.e. occurrence and effects) of cytostatics (protein kinases inhibitors and monoclonal antibodies), if any, is not documented. Protein kinases inhibitors, in particular, deserve further investigation due to their universal mode of action. Finally, concerning endocrine therapy drugs, molecules such as antiestrogen Tamoxifen and its active metabolites, could be of concern. Overall, to accurately assess the ecotoxicological risk of anticancer drugs, we discuss the need to break away from tests on isolated molecules and to test effects of mixtures at the low ng.l(-1) range.
Collapse
Affiliation(s)
- Jean-Philippe Besse
- Cemagref, UR Milieux Aquatiques Ecologie et Pollution (MAEP), Laboratoire d'écotoxicologie/Laboratoire d'analyses physico-chimiques des milieux aquatiques, 3 bis quai Chauveau, CP 220, F-69226 Lyon, France.
| | | | | |
Collapse
|
29
|
Ahern TP, Christensen M, Cronin-Fenton DP, Lunetta KL, Søiland H, Gjerde J, Garne JP, Rosenberg CL, Silliman RA, Sørensen HT, Lash TL, Hamilton-Dutoit S. Functional polymorphisms in UDP-glucuronosyl transferases and recurrence in tamoxifen-treated breast cancer survivors. Cancer Epidemiol Biomarkers Prev 2011; 20:1937-43. [PMID: 21750172 DOI: 10.1158/1055-9965.epi-11-0419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tamoxifen is oxidized by cytochrome-P450 enzymes (e.g., CYP2D6) to two active metabolites, which are eliminated via glucuronidation by UDP-glucuronosyl transferases (UGT). We measured the association between functional polymorphisms in key UGTs (UGT2B15*2, UGT2B7*2, and UGT1A8*3) and the recurrence rate among breast cancer survivors. METHODS We used the Danish Breast Cancer Cooperative Group registry to identify 541 cases of recurrent breast cancer among women with estrogen receptor-positive tumors treated with tamoxifen for at least 1 year (ER(+)/TAM(+)), and 300 cases of recurrent breast cancer among women with estrogen receptor-negative tumors who were not treated with tamoxifen (ER(-)/TAM(-)). We matched one control to each case on ER status, menopausal status, stage, calendar period, and county. UGT polymorphisms were genotyped from archived primary tumors. We estimated the recurrence OR for the UGT polymorphisms by using logistic regression models, with and without stratification on CYP2D6*4 genotype. RESULTS No UGT polymorphism was associated with breast cancer recurrence in either the ER(+)/TAM(+) or ER(-)/TAM(-) groups [in the ER(+)/TAM(+) group, compared with two normal alleles: adjusted OR for two UGT2B15*2 variant alleles = 1.0 (95% CI, 0.70-1.5); adjusted OR for two UGT2B7*2 variant alleles = 0.96 (95% CI, 0.65-1.4); adjusted OR for one or two UGT1A8*3 variant alleles = 0.95 (0.49-1.9)]. Associations were similar within strata of CYP2D6*4 genotype. CONCLUSIONS Functional polymorphisms in key tamoxifen-metabolizing enzymes were not associated with breast cancer recurrence risk. IMPACT Our results do not support the genotyping of key metabolic enzyme polymorphisms to predict response to tamoxifen therapy.
Collapse
Affiliation(s)
- Thomas P Ahern
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu B, Kulkarni K, Basu S, Zhang S, Hu M. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 2011; 100:3655-81. [PMID: 21484808 DOI: 10.1002/jps.22568] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 12/11/2022]
Abstract
Glucuronidation mediated by UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates efficient elimination of numerous endobiotics and xenobiotics, including phenolics. UGT genetic deficiency and polymorphisms or inhibition of glucuronidation by concomitant use of drugs are associated with inherited physiological disorders or drug-induced toxicities. Moreover, extensive glucuronidation can be a barrier to oral bioavailability as the first-pass glucuronidation (or premature clearance by UGTs) of orally administered agents usually results in the poor oral bioavailability and lack of efficacies. This review focused on the first-pass glucuronidation of phenolics including natural polyphenols and pharmaceuticals. The complexity of UGT-mediated metabolism of phenolics is highlighted with species-, gender-, organ- and isoform-dependent specificity, as well as functional compensation between UGT1A and 2B subfamily. In addition, recent advances are discussed with respect to the mechanisms of enzymatic actions, including the important properties such as binding pocket size and phosphorylation requirements.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK. Acyl glucuronides: the good, the bad and the ugly. Biopharm Drug Dispos 2011; 31:367-95. [PMID: 20830700 DOI: 10.1002/bdd.720] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response.
Collapse
Affiliation(s)
- Sophie L Regan
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3GE, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Bolca S, Li J, Nikolic D, Roche N, Blondeel P, Possemiers S, De Keukeleire D, Bracke M, Heyerick A, van Breemen RB, Depypere H. Disposition of hop prenylflavonoids in human breast tissue. Mol Nutr Food Res 2010; 54 Suppl 2:S284-94. [PMID: 20486208 DOI: 10.1002/mnfr.200900519] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hop-derived products may contain xanthohumol (XN), isoxanthohumol (IX), and the potent phytoestrogen 8-prenylnaringenin (8-PN). To evaluate the potential health effects of these prenylflavonoids on breast tissue, their concentration, nature of metabolites, and biodistribution were assessed and compared with 17beta-estradiol (E(2)) exposure. In this dietary intervention study, women were randomly allocated to hop (n=11; 2.04 mg XN, 1.20 mg IX, and 0.1 mg 8-PN per supplement) or control (n=10). After a run-in of >or=4 days, three supplements were taken daily for 5 days preceding an aesthetic breast reduction. Blood and breast biopsies were analyzed using HPLC-ESI-MS/MS. Upon hop administration, XN and IX concentrations ranged between 0.72 and 17.65 nmol/L and 3.30 and 31.50 nmol/L, and between 0.26 and 5.14 pmol/g and 1.16 and 83.67 pmol/g in hydrolyzed serum and breast tissue, respectively. 8-PN however, was only detected in samples of moderate and strong 8-PN producers (0.43-7.06 nmol/L and 0.78-4.83 pmol/g). Phase I metabolism appeared to be minor (approximately 10%), whereas extensive glucuronidation was observed (> 90%). Total prenylflavonoids showed a breast adipose/glandular tissue distribution of 38/62 and their derived E(2)-equivalents were negligible compared with E(2) in adipose (384.6+/-118.8 fmol/g, p=0.009) and glandular (241.6+/-93.1 fmol/g, p<0.001) tissue, respectively. Consequently, low doses of prenylflavonoids are unlikely to elicit estrogenic responses in breast tissue.
Collapse
Affiliation(s)
- Selin Bolca
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University-UGent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
An ultra performance liquid chromatography–tandem MS assay for tamoxifen metabolites profiling in plasma: First evidence of 4′-hydroxylated metabolites in breast cancer patients. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:3402-14. [DOI: 10.1016/j.jchromb.2010.10.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 11/23/2022]
|
34
|
Teunissen S, Rosing H, Schinkel A, Schellens J, Beijnen J. Bioanalytical methods for determination of tamoxifen and its phase I metabolites: A review. Anal Chim Acta 2010; 683:21-37. [DOI: 10.1016/j.aca.2010.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
35
|
Ahern TP, Christensen M, Cronin-Fenton DP, Lunetta KL, Rosenberg CL, Sørensen HT, Lash TL, Hamilton-Dutoit S. Concordance of metabolic enzyme genotypes assayed from paraffin-embedded, formalin-fixed breast tumors and normal lymphatic tissue. Clin Epidemiol 2010; 2:241-6. [PMID: 21152250 PMCID: PMC2998813 DOI: 10.2147/clep.s13811] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives Translational epidemiology studies often use archived tumor specimens to evaluate genetic hypotheses involving cancer outcomes. When the exposure of interest is a germline polymorphism, a key concern is whether the genotype assayed from tumor-derived DNA is representative of the germline. We evaluated the concordance between breast tumor-derived and normal lymph node-derived genotypes for three polymorphic tamoxifen-metabolizing enzymes. Methods We assayed paired DNA samples extracted from archived tumor and normal lymph node tissues from 106 breast cancer patients. We used TaqMan assays to determine the genotypes of three enzyme variants hypothesized to modify tamoxifen effectiveness, ie, CYP2D6*4, UGT2B15*2, and UGT1A8*2. We assessed genotype agreement between the two DNA sources by calculating the percent agreement and the weighted kappa statistic. Results We successfully obtained genotypes for CYP2D6*4, UGT2B15*2, and UGT1A8*2 in 99%, 100%, and 84% of the paired samples, respectively. Genotype concordance was perfect for the CYP2D6*4 and UGT1A8*2 variants (weighted kappa for both = 1.00; 95% confidence interval [CI] 1.00, 1.00). For UGT2B15*2, one pair out of 106 gave a discordant result that persisted over several assay repeats. Conclusions We observed strong agreement between DNA from breast tumors and normal lymphatic tissue in the genotyping of polymorphisms in three tamoxifen-metabolizing enzymes. Genotyping DNA extracted from tumor tissue avoids the time-consuming practice of microdissecting adjacent normal tissue when other normal tissue sources are not available. Therefore, the demonstrated reliability of tumor-derived DNA allows resources to be spent instead on increasing sample size or the number of polymorphisms examined.
Collapse
Affiliation(s)
- Thomas P Ahern
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lazarus P, Sun D. Potential role of UGT pharmacogenetics in cancer treatment and prevention: focus on tamoxifen and aromatase inhibitors. Drug Metab Rev 2010; 42:182-94. [PMID: 19821643 DOI: 10.3109/03602530903208652] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tamoxifen (TAM) is a selective estrogen-receptor modulator that is widely used in the prevention and treatment of estrogen-receptor-positive breast cancer. Its use has significantly contributed to a decline in breast cancer mortality, since breast cancer patients treated with TAM for 5 years exhibit a 30-50% reduction in both the rate of disease recurrence after 10 years of patient follow-up and in the occurrence of contralateral breast cancer. However, in patients treated with TAM, there is substantial interindividual variability in the development of resistance to TAM therapy and in the incidence of TAM-induced adverse events, including deep-vein thrombosis, hot flashes, and the development of endometrial cancer. Aromatase inhibitors (AIs) have emerged as a viable alternative to TAM, working by inhibiting aromatase activity and blocking estrone/estrodiol biosynthesis in postmenopausal women. The current third-generation AIs, anastrozole, exemestane, and letrozole, were used initially for the treatment of metastatic breast cancer, demonstrating similar or greater benefit but less toxicity, compared with TAM, and are now being employed as adjuvant treatment for early breast cancer in postmenopausal women. This article will focus on the UDP-glucuronosyltransferases, a family of metabolizing enzymes that play an important role in the deactivation and clearance of TAM, anastrazole, and exemestane, and how interindividual differences in these enzymes may play a role in patient response to these agents.
Collapse
Affiliation(s)
- Philip Lazarus
- Departments of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
37
|
Ramírez J, Ratain MJ, Innocenti F. Uridine 5'-diphospho-glucuronosyltransferase genetic polymorphisms and response to cancer chemotherapy. Future Oncol 2010; 6:563-85. [PMID: 20373870 PMCID: PMC3102300 DOI: 10.2217/fon.10.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmacogenetics aims to elucidate how genetic variation affects the efficacy and side effects of drugs, with the ultimate goal of personalizing medicine. Clinical studies of the genetic variation in the uridine 5'-diphosphoglucuronosyltransferase gene have demonstrated how reduced-function allele variants can predict the risk of severe toxicity and help identify cancer patients who could benefit from reduced-dose schedules or alternative chemotherapy. Candidate polymorphisms have also been identified in vitro, although the functional consequences of these variants still need to be tested in the clinical setting. Future approaches in uridine 5'-diphosphoglucuronosyltransferase pharmacogenetics include genetic testing prior to drug treatment, genotype-directed dose-escalation studies, study of genetic variation at the haplotype level and genome-wide studies.
Collapse
Affiliation(s)
- Jacqueline Ramírez
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2451, Fax: +1 773 702 9268,
| | - Mark J Ratain
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 702 4400, Fax: +1 773 702 3969,
| | - Federico Innocenti
- Department of Medicine, Committee on Clinical Pharmacology & Pharmacogenomics, Cancer Research Center, The University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL, USA 60637, Tel.: +1 773 834 2452, Fax: +1 773 702 9268,
| |
Collapse
|
38
|
Bolca S, Urpi-Sarda M, Blondeel P, Roche N, Vanhaecke L, Possemiers S, Al-Maharik N, Botting N, De Keukeleire D, Bracke M, Heyerick A, Manach C, Depypere H. Disposition of soy isoflavones in normal human breast tissue. Am J Clin Nutr 2010; 91:976-84. [PMID: 20164315 DOI: 10.3945/ajcn.2009.28854] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite decades of research on the relation between soy and breast cancer, questions regarding the absorption, metabolism, and distribution of isoflavones in breast tissue largely remain unanswered. OBJECTIVE We evaluated the potential health effects of isoflavone consumption on normal breast tissue; isoflavone concentrations, metabolites, and biodistribution were investigated and compared with 17beta-estradiol exposure. DESIGN In this dietary intervention study, healthy women were randomly allocated to a soy milk (n = 11; 16.98-mg genistein and 5.40-mg daidzein aglycone equivalents per dose), soy supplement (n = 10; 5.27-mg genistein and 17.56-mg daidzein aglycone equivalents per dose), or control (n = 10) group. After a run-in period > or = 4 d, 3 doses of soy milk or soy supplements were taken daily for 5 d before an esthetic breast reduction. Blood and breast biopsies were collected during surgery and analyzed with liquid chromatography-tandem mass spectrometry. RESULTS After soy administration, genistein and total daidzein concentrations, which were expressed as aglycone equivalents, ranged from 135.1 to 2831 nmol/L and 105.1 to 1397 nmol/L, respectively, in hydrolyzed serum and from 92.33 to 493.8 pmol/g and 22.15 to 770.8 pmol/g, respectively, in hydrolyzed breast tissue. The major metabolites identified in nonhydrolyzed samples were genistein-7-O-glucuronide and daidzein-7-O-glucuronide, with an overall glucuronidation of 98%. Total isoflavones showed a breast adipose/glandular tissue distribution of 40:60, and their mean (+/-SEM) derived 17beta-estradiol equivalents toward estrogen receptor beta were 21 +/- 4-fold and 40 +/- 10-fold higher than the 17beta-estradiol concentrations in adipose (0.283 +/- 0.089 pmol/g, P < 0.001) and glandular (0.246 +/- 0.091 pmol/g, P = 0.001) fractions, respectively. CONCLUSION After intake of soy milk and soy supplements, isoflavones reach exposure levels in breast tissue at which potential health effects may occur.
Collapse
Affiliation(s)
- Selin Bolca
- Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering and the Laboratory of Experimental Cancer Research, Department of Experimental Cancer Research, Radiotherapy and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Koh M, Park SB. Computer-aided design and synthesis of tetra-aryl-substituted alkenes and their bioevaluation as a selective modulator of estrogen-related receptor γ. Mol Divers 2010; 15:69-81. [DOI: 10.1007/s11030-010-9224-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/12/2010] [Indexed: 12/13/2022]
|
40
|
Teunissen S, Rosing H, Koornstra R, Linn S, Schellens J, Schinkel A, Beijnen J. Development and validation of a quantitative assay for the analysis of tamoxifen with its four main metabolites and the flavonoids daidzein, genistein and glycitein in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2519-29. [DOI: 10.1016/j.jchromb.2009.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/17/2009] [Accepted: 06/21/2009] [Indexed: 11/26/2022]
|
41
|
Lazarus P, Blevins-Primeau AS, Zheng Y, Sun D. Potential role of UGT pharmacogenetics in cancer treatment and prevention: focus on tamoxifen. Ann N Y Acad Sci 2009; 1155:99-111. [PMID: 19250197 DOI: 10.1111/j.1749-6632.2009.04114.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tamoxifen (TAM) is a selective estrogen receptor modulator that is widely used in the prevention and treatment of estrogen receptor-positive (ER(+)) breast cancer. Its use has significantly contributed to a decline in breast cancer mortality, since breast cancer patients treated with TAM for 5 years exhibit a 30-50% reduction in both the rate of disease recurrence after 10 years of patient follow-up and occurrence of contralateral breast cancer. However, in patients treated with TAM there is substantial interindividual variability in the development of resistance to TAM therapy, and in the incidence of TAM-induced adverse events, including deep vein thrombosis, hot flashes, and the development of endometrial cancer. This article will focus on the UDP glucuronosyltransferases, a family of metabolizing enzymes that are responsible for the deactivation and clearance of TAM and TAM metabolites, and how interindividual differences in these enzymes may play a role in patient response to TAM.
Collapse
Affiliation(s)
- Philip Lazarus
- Cancer Control and Population Sciences Program, Penn State Cancer Institute, Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
42
|
Blevins-Primeau AS, Sun D, Chen G, Sharma AK, Gallagher CJ, Amin S, Lazarus P. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites. Cancer Res 2009; 69:1892-900. [PMID: 19244109 DOI: 10.1158/0008-5472.can-08-3708] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tamoxifen (TAM) is a selective estrogen receptor modulator widely used in the prevention and treatment of breast cancer. A major mode of metabolism of the major active metabolites of TAM, 4-OH-TAM and endoxifen, is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To examine whether polymorphisms in the UGT enzymes responsible for the glucuronidation of active TAM metabolites play an important role in interindividual differences in TAM metabolism, cell lines overexpressing wild-type or variant UGTs were examined for their activities against TAM metabolites in vitro. For variants of active extrahepatic UGTs, the UGT1A8(173Ala/277Tyr) variant exhibited no detectable glucuronidation activity against the trans isomers of either 4-OH-TAM or endoxifen. Little or no difference in TAM glucuronidating activity was observed for the UGT1A8(173Gly/277Cys) or UGT1A10(139Lys) variants compared with their wild-type counterparts. For active hepatic UGTs, the UGT2B7(268Tyr) variant exhibited significant (P < 0.01) 2- and 5-fold decreases in activity against the trans isomers of 4-OH-TAM and endoxifen, respectively, compared with wild-type UGT2B7(268His). In studies of 111 human liver microsomal specimens, the rate of O-glucuronidation against trans-4-OH-TAM and trans-endoxifen was 28% (P < 0.001) and 27% (P = 0.002) lower, respectively, in individuals homozygous for the UGT2B7 Tyr(268)Tyr genotype compared with subjects with the UGT2B7 His(268)His genotype, with a significant (P < 0.01) trend of decreasing activity against both substrates with increasing numbers of the UGT2B7(268His) allele. These results suggest that functional polymorphisms in TAM-metabolizing UGTs, including UGT2B7 and potentially UGT1A8, may be important in interindividual variability in TAM metabolism and response to TAM therapy.
Collapse
|