1
|
Hervieu L, Groo AC, Bellien J, Guerrot D, Malzert-Fréon A. Glucuronidation of orally administered drugs and the value of nanocarriers in strategies for its overcome. Pharmacol Ther 2024; 266:108773. [PMID: 39647710 DOI: 10.1016/j.pharmthera.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The gastrointestinal tract (GIT) plays a pivotal role in the absorption of orally administered drugs, with the small intestine serving as the primary site due to its extensive surface area and specialized cell types, including enterocytes and M cells. After oral administration, drugs are generally transported via the portal vein to the liver, where they undergo first-pass metabolism. This process involves various enzymatic reactions, including glucuronidation, facilitated by uridine diphosphate-glucuronosyltransferase (UGT), a major phase 2 reaction in mammalian metabolism. UGTs conjugate glucuronic acid to a wide array of endogenous and exogenous substrates, enhancing their solubility and excretion, but significantly affecting the bioavailability and therapeutic efficacy of drugs. UGT enzymes are ubiquitously distributed across tissues, prominently in the liver, but also in the GIT, kidneys, brain, and other organs where they play crucial roles in xenobiotic metabolism. Species-specific differences in UGT expression and activity impact the selection of animal models for pharmacological studies. Various experimental models - ranging from computational simulations (in silico) to laboratory experiments (in vitro) and animal studies (in vivo) - are employed throughout drug discovery and development to evaluate drug metabolism, including UGT activity. Effective strategies to counter pre-systemic metabolism are critical for improving drug bioavailability. This review explores several approaches including prodrugs, co-administration of specific molecules or use of inhibiting excipients in formulations. Strategies incorporating these excipients in nanoformulations demonstrate notable increases in drug absorption and bioavailability. This review highlights the importance of targeted delivery systems and excipient selection in overcoming metabolic barriers, aiming to optimize drug efficacy and patient outcomes.
Collapse
Affiliation(s)
- Laura Hervieu
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France; Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France
| | - Anne-Claire Groo
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France
| | - Jérémy Bellien
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Pharmacology Department, Rouen University Hospital, 76000 Rouen, France
| | - Dominique Guerrot
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Nephrology Department, Rouen University Hospital, 76000 Rouen, France
| | | |
Collapse
|
2
|
Beaumont P, Amintas S, Krisa S, Courtois A, Richard T, Eseberri I, Portillo MP. Glucuronide metabolites of trans-ε-viniferin decrease triglycerides accumulation in an in vitro model of hepatic steatosis. J Physiol Biochem 2024; 80:685-696. [PMID: 39085719 PMCID: PMC11502592 DOI: 10.1007/s13105-024-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Trans-ε-viniferin, a resveratrol dimer found mainly in grapevine wood, has shown protective capacities against hepatic steatosis in vivo. Nevertheless, this compound is very poorly bioavailable. Thus, the aim of the present study is to determine the potential anti-steatotic properties of 1 and 10 µM of trans-ε-viniferin and its four glucuronide metabolites in AML-12 cells treated with palmitic acid as an in vitro model of hepatic steatosis. The effect of the molecules in cell viability and triglyceride accumulation, and the underlying mechanisms of action by Real-Time PCR and Western Blot were analysed, as well as the quantification of trans-ε-viniferin and the identified bioactive metabolite inside cells and their incubation media. Interestingly, we were able to determine the triglyceride-lowering property of one of the glucuronides (trans-ε-viniferin-2-glucuronide), which acts on de novo lipogenesis, fatty acid uptake and triglyceride assembly. The glucuronides of trans-ε-viniferin would therefore be partly responsible for the in vivo observed anti-steatotic properties of the parent compound.
Collapse
Affiliation(s)
- Pauline Beaumont
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
| | - Samuel Amintas
- INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France
- Service de Biologie Des Tumeurs Et Tumorothèque, CHU de Bordeaux, Bordeaux, France
| | - Stéphanie Krisa
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
| | - Arnaud Courtois
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
- Centre Antipoison Et de Toxicovigilance de Nouvelle Aquitaine, Bâtiment UNDR, CHU de Bordeaux, 33076, Bordeaux, France
| | - Tristan Richard
- UMR 1366, Univ. Bordeaux, Bordeaux INP, INRAE, ISVV, 33140, Villenave d'Ornon, OENO, France
- UMR 1366, Bordeaux Sciences Agro, Bordeaux INP, INRAE, ISVV, 33170, Gradignan, OENO, France
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, 01009, Vitoria-Gasteiz, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Maria P Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, 01009, Vitoria-Gasteiz, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
3
|
Kongratanapasert T, Boonyarattanasoonthorn T, Supannapan K, Hongeng S, Khemawoot P. Oral Bioavailability, Tissue Distribution, Metabolism, and Excretion of Panduratin A from Boesenbergia rotunda Extract in Healthy Rats. Drug Des Devel Ther 2024; 18:2905-2917. [PMID: 39011542 PMCID: PMC11249109 DOI: 10.2147/dddt.s453847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Background Our previous studies in vitro and in vivo have shown anti-severe acute respiratory syndrome coronavirus 2 activity of fingerroot extract (Boesenbergia rotunda) and its phytochemical panduratin A. Aim of Study Therefore, the objective of this study was to determine the pharmacokinetic profiles of panduratin A, as a pure compound and in fingerroot extract, in rats. Materials and Methods Male rats were randomly divided into four groups. Rats underwent intravenous administration of 4.5 mg/kg panduratin A, a single oral administration of 45 mg/kg panduratin A, or a multiple oral administration of 45 mg/kg panduratin A-consisted fingerroot extract for 7 consecutive days. The concentrations of panduratin A in plasma, tissues, and excreta were measured by using LCMS with a validated method. Results The rats showed no change in health status after receiving all test preparations. The absolute oral bioavailability of panduratin A administered as pure panduratin A and fingerroot extract were approximately 9% and 6%, respectively. The peak concentrations for the single oral doses of 45 mg/kg panduratin A and fingerroot extract, were 4833 ± 659 and 3269 ± 819 µg/L, respectively. Panduratin A was mostly distributed in gastrointestinal organs, with the highest tissue-to-plasma ratio in the stomach. Approximately 20-30% of unchanged panduratin A from the administered dose was detected in feces while a negligible amount was found in urine. The major metabolites of administered panduratin A were identified in feces as oxidation and dioxidation products. Conclusion Panduratin A from fingerroot extract showed low oral bioavailability, good tissue distribution, and partially biotransformed before excretion via feces. These findings will assist in developing fingerroot extract as a phytopharmaceutical product for COVID-19 treatment.
Collapse
Affiliation(s)
- Teetat Kongratanapasert
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| |
Collapse
|
4
|
Hemmer S, Wagmann L, Pulver B, Westphal F, Meyer MR. In Vitro and In Vivo Toxicometabolomics of the Synthetic Cathinone PCYP Studied by Means of LC-HRMS/MS. Metabolites 2022; 12:metabo12121209. [PMID: 36557246 PMCID: PMC9783153 DOI: 10.3390/metabo12121209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Synthetic cathinones are one important group amongst new psychoactive substances (NPS) and limited information is available regarding their toxicokinetics and -dynamics. Over the past few years, nontargeted toxicometabolomics has been increasingly used to study compound-related effects of NPS to identify important exogenous and endogenous biomarkers. In this study, the effects of the synthetic cathinone PCYP (2-cyclohexyl-1-phenyl-2-(1-pyrrolidinyl)-ethanone) on in vitro and in vivo metabolomes were investigated. Pooled human-liver microsomes and blood and urine of male Wistar rats were used to generate in vitro and in vivo data, respectively. Samples were analyzed by liquid chromatography and high-resolution mass spectrometry using an untargeted metabolomics workflow. Statistical evaluation was performed using univariate and multivariate statistics. In total, sixteen phase I and one phase II metabolite of PCYP could be identified as exogenous biomarkers. Five endogenous biomarkers (e.g., adenosine and metabolites of tryptophan metabolism) related to PCYP intake could be identified in rat samples. The present data on the exogenous biomarker of PCYP are crucial for setting up analytical screening procedures. The data on the endogenous biomarker are important for further studies to better understand the physiological changes associated with cathinone abuse but may also serve in the future as additional markers for an intake.
Collapse
Affiliation(s)
- Selina Hemmer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Benedikt Pulver
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116 Kiel, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116 Kiel, Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Kobayashi K, Deguchi T, Abe S, Kajitani N, Kazuki K, Takehara S, Nakamura K, Kurihara A, Oshimura M, Kazuki Y. Analysis of in vitro and in vivo metabolism of zidovudine and gemfibrozil in trans-chromosomic mouse line expressing human UGT2 enzymes. Pharmacol Res Perspect 2022; 10:e01030. [PMID: 36424908 PMCID: PMC9692130 DOI: 10.1002/prp2.1030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze the conjugation of various substrates with sugars. Since the UGT2 family forms a large cluster spanning 1.5 Mb, transgenic mouse lines carrying the entire human UGT2 family have not been constructed because of limitations in conventional cloning techniques. Therefore, we made a humanized mouse model for UGT2 by chromosome engineering technologies. The results showed that six UGT2 isoforms examined were expressed in the liver of adult humanized UGT2 (hUGT2) mice. Thus, the functions of human UGT2B7 in the liver of hUGT2 mice were evaluated. Glucuronide of azidothymidine (AZT, zidovudine), a typical UGT2B7 substrate, was formed in the liver microsomes of hUGT2 mice but not in the liver microsomes of wild-type and Ugt2-knockout mice. When AZT was intravenously administered, AZT glucuronide was detected in the bile and urine of hUGT2 mice, but it was not detected in the bile and urine of wild-type and Ugt2-knockout mice. These results indicated that the hUGT2 mice express functional human UGT2B7 in the liver. This finding was also confirmed by using gemfibrozil as an alternative UGT2B7 substrate. Gemfibrozil glucuronide was formed in the liver microsomes of hUGT2 mice and was mainly excreted in the bile of hUGT2 mice after intravenous dosing of gemfibrozil. This hUGT2 mouse model will enable improved predictions of pharmacokinetics, urinary and biliary excretion and drug-drug interactions mediated by human UGT2, at least UGT2B7, in drug development research and basic research.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyose, TokyoJapan
| | - Tsuneo Deguchi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd.Chuo‐ku, TokyoJapan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC)Tottori UniversityYonago, TottoriJapan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC)Tottori UniversityYonago, TottoriJapan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC)Tottori UniversityYonago, TottoriJapan
| | - Shoko Takehara
- Chromosome Engineering Research Center (CERC)Tottori UniversityYonago, TottoriJapan
| | - Kazuomi Nakamura
- Advanced Medicine, Innovation and Clinical Research CenterTottori University HospitalYonago, TottoriJapan
| | - Atsushi Kurihara
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd.Chuo‐ku, TokyoJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC)Tottori UniversityYonago, TottoriJapan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC)Tottori UniversityYonago, TottoriJapan,Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of MedicineTottori UniversityYonagi, TottoriJapan
| |
Collapse
|
6
|
Konorev D, Yao L, Turesky RJ. Multi-DNA Adduct and Abasic Site Quantitation In Vivo by Nano-Liquid Chromatography/High-Resolution Orbitrap Tandem Mass Spectrometry: Methodology for Biomonitoring Colorectal DNA Damage. Chem Res Toxicol 2022; 35:1519-1532. [PMID: 36066083 PMCID: PMC9665354 DOI: 10.1021/acs.chemrestox.2c00177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidemiological and mechanistic studies suggest that processed and red meat consumption and tobacco smoking are associated with colorectal cancer (CRC) risk. Several classes of carcinogens, including N-nitroso compounds (NOCs) in processed meats and heterocyclic aromatic amines (HAAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled meats and tobacco smoke, undergo metabolism to reactive intermediates that may form mutation-inducing DNA adducts in the colorectum. Heme iron in red meat may contribute to oxidative DNA damage and endogenous NOC formation. However, the chemicals involved in colorectal DNA damage and the paradigms of CRC etiology remain unproven. There is a critical need to establish physicochemical methods for identifying and quantitating DNA damage induced by genotoxicants in the human colorectum. We established robust nano-liquid chromatography/high-resolution accurate mass Orbitrap tandem mass spectrometry (LC/HRAMS2) methods to measure DNA adducts of nine meat and tobacco-associated carcinogens and lipid peroxidation products in the liver, colon, and rectum of carcinogen-treated rats employing fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissues. Some NOCs form O6-carboxymethyl-2'-deoxyguanosine, O6-methyl-2'-deoxyguanosine, and unstable quaternary N-linked purine/pyrimidine adducts, which generate apurinic/apyrimidinic (AP) sites. AP sites were quantitated following derivatization with O-(pyridin-3-yl-methyl)hydroxylamine. DNA adduct quantitation was conducted with stable isotope-labeled internal standards, and method performance was validated for accuracy and reproducibility. Limits of quantitation ranged from 0.1 to 1.1 adducts per 108 bases using 3 μg of DNA. Adduct formation in animals ranged from ∼1 in 108 to ∼1 in 105 bases, occurring at comparable levels in fresh-frozen and FFPE specimens for most adducts. AP sites increased by 25- to 75-fold in the colorectum and liver, respectively. Endogenous lipid peroxide-derived 3-(2-deoxy-β-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) and 6-oxo-M1dG adduct levels were not increased by carcinogen dosing but increased in FFPE tissues. Human biomonitoring studies can implement LC/HRAMS2 assays for DNA adducts and AP sites outlined in this work to advance our understanding of CRC etiology.
Collapse
Affiliation(s)
- Dmitri Konorev
- Masonic Cancer Center, University of Minnesota,
Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota,
Minneapolis, MN 55455
| | - Lihua Yao
- Masonic Cancer Center, University of Minnesota,
Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota,
Minneapolis, MN 55455
| | - Robert. J. Turesky
- Masonic Cancer Center, University of Minnesota,
Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota,
Minneapolis, MN 55455
| |
Collapse
|
7
|
Ikuta H, Shimada H, Sakamoto K, Nakamura R, Kawase A, Iwaki M. Species differences in liver microsomal hydrolysis of acyl glucuronide in humans and rats. Xenobiotica 2022; 52:653-660. [PMID: 36190839 DOI: 10.1080/00498254.2022.2131484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl glucuronides (AGs) are known as one of the causes of idiosyncratic drug toxicity (IDT). Although AGs can be enzymatically hydrolysed by β-glucuronidase and esterase, much information on their characteristics and species differences is lacking. This study was aimed to clarify species differences in AG hydrolysis between human and rat liver microsomes (HLM and RLM).To evaluate the AG hydrolysis profile, and the contribution of β-glucuronidase and esterase towards AG hydrolysis in HLM and RLM, nonsteroidal anti-inflammatory drugs (NSAIDs) were used. AGs were incubated with 0.1 M Tris-HCl buffer (pH 7.4) and 0.3 mg/mL HLM or RLM in the absence or presence of β-glucuronidase inhibitor, D-saccharic acid 1,4-lactone (D-SL) and esterase inhibitor, phenylmethylsulfonyl fluoride (PMSF).AGs of mefenamic acid (MEF-AG) and etodolac (ETO-AG) showed significantly higher AG hydrolysis rates in RLM than in HLM. Esterases were found to serve as AG hydrolases dominantly in HLM, whereas both esterases and β-glucuronidase equally contribute to AG hydrolysis in RLM. However, MEF-AG and ETO-AG were hydrolysed only by β-glucuronidase.We demonstrated for the first time that the activity of AG hydrolases towards NSAID-AGs differs between humans and rats.
Collapse
Affiliation(s)
| | | | | | - Rena Nakamura
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | | | - Masahiro Iwaki
- Faculty of Pharmacy, Kindai University, Osaka, Japan.,Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan.,Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
8
|
Chen Y, Wang WQ, Jia XL, Wang CH, Yang L, Wang ZT, Xiong AZ. Firm evidence for the detoxification of senecionine-induced hepatotoxicity via N-glucuronidation in UGT1A4–humanized transgenic mice. Food Chem Toxicol 2022; 165:113185. [DOI: 10.1016/j.fct.2022.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
|
9
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
|
10
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Guo Z, Liu M, Meng J, Xue Y, Huang Q, Zheng Y, Wu Y, Chen Z, Yu J, Zhong D, Li G, Chen X, Diao X. Mechanistic study on the species differences in excretion pathway of HR011303 in human and rats. Drug Metab Dispos 2021; 50:809-818. [PMID: 34862251 DOI: 10.1124/dmd.121.000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Excretion of [14C]HR011303-derived radioactivity showed significant species difference. Urine (81.50% of dose) was the main excretion route in healthy male subjects, whereas feces (87.16% of dose) was the main excretion route in rats. To further elucidate the underlying cause for excretion species differences of HR011303, studies were conducted to uncover its metabolism and excretion mechanism. M5, a glucuronide metabolite of HR011303, is the main metabolite in humans and rats. Results of rat microsomes incubation study suggested that HR011303 was metabolized to M5 in the rat liver. According to previous studies, M5 is produced in both human liver and kidney microsomes. We found M5 in human liver can be transported to the blood by multidrug resistance-associated protein (MRP) 3 and then the majority of M5 can be hydrolyzed to HR011303. HR011303 enters the human kidney or liver through passive diffusion, whereas M5 is taken up through organic anion transporter (OAT) 3, organic anion-transporting polypeptide (OATP) 1B1, and OATP1B3. When HR011303 alone was present, it can be metabolized to M5 in both sandwich-cultured rat hepatocytes (SCRH) and sandwich-cultured human hepatocytes (SCHH) and excreted into bile as M5 in SCRH. Using transporter inhibitors in sandwich-cultured model and membrane vesicles that expressing MRP2 or Mrp2, we found M5 was substance of MRP2/Mrp2 and the bile efflux of M5 mainly mediated by MRP2/Mrp2. Considering the significant role of MRP3/Mrp3 and MRP2/Mrp2 in the excretion of glucuronides, the competition between them for M5 was possibly the determinant for the different excretion routes in humans and rats. Significance Statement Animal experiments are necessary to predict dosage and safety of candidate drugs prior to clinical trials. However, extrapolation results often differ from actual situation. For HR011303, excretory pathways exhibited a complete reversal, through urine in humans and feces in rats. Such phenomena have been observed in several drugs, but no in-depth studies have been conducted to date. In the present study, the excretion species differences of HR011303 can be explained by the competition for M5 between MRP2/Mrp2 and MRP3/Mrp3.
Collapse
Affiliation(s)
- Zitao Guo
- Shanghai Institute of Materia Medica, China
| | - Mengling Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jian Meng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Qi Huang
- Jiangsu Hengrui Medicine Co. Ltd., China
| | - Yuandong Zheng
- DMPK, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Yali Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Zhendong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Dafang Zhong
- Center for Drug Metabolism and Pharmacokinet, China
| | - Guangze Li
- Jiangsu Hengrui Medicine Co. Ltd., China
| | | | - Xingxing Diao
- DMPK, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
12
|
Kronfol MM, Abudahab S, Dozmorov MG, Jahr FM, Halquist MS, McRae M, Wijesinghe DS, Price ET, Slattum PW, McClay JL. Histone acetylation at the sulfotransferase 1a1 gene is associated with its hepatic expression in normal aging. Pharmacogenet Genomics 2021; 31:207-214. [PMID: 34320608 PMCID: PMC8490294 DOI: 10.1097/fpc.0000000000000443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Phase II drug metabolism is poorly studied in advanced age and older adults may exhibit significant variability in their expression of phase II enzymes. We hypothesized that age-related changes to epigenetic regulation of genes involved in phase II drug metabolism may contribute to these effects. METHODS We examined published epigenome-wide studies of human blood and identified the SULT1A1 and UGT1A6 genes as the top loci showing epigenetic changes with age. To assess possible functional alterations with age in the liver, we assayed DNA methylation (5mC) and histone acetylation changes around the mouse homologs Sult1a1 and Ugt1a6 in liver tissue from mice aged 4-32 months. RESULTS Our sample shows a significant loss of 5mC at Sult1a1 (β = -1.08, 95% CI [-1.8, -0.2], SE = 0.38, P = 0.011), mirroring the loss of 5mC with age observed in human blood DNA at the same locus. We also detected increased histone 3 lysine 9 acetylation (H3K9ac) with age at Sult1a1 (β = 0.11, 95% CI [0.002, 0.22], SE = 0.05, P = 0.04), but no change to histone 3 lysine 27 acetylation (H3K27ac). Sult1a1 gene expression is significantly positively associated with H3K9ac levels, accounting for 23% of the variation in expression. We did not detect any significant effects at Ugt1a6. CONCLUSIONS Sult1a1 expression is under epigenetic influence in normal aging and this influence is more pronounced for H3K9ac than DNA methylation or H3K27ac in this study. More generally, our findings support the relevance of epigenetics in regulating key drug-metabolizing pathways. In the future, epigenetic biomarkers could prove useful to inform dosing in older adults.
Collapse
Affiliation(s)
- Mohamad M. Kronfol
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Sara Abudahab
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail G. Dozmorov
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Fay M. Jahr
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew S. Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Dayanjan S. Wijesinghe
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Elvin T. Price
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Geriatric Pharmacotherapy Program, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Institute for Inclusion, Inquiry and Innovation: Health and Wellness in Aging Populations Core, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia W. Slattum
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Geriatric Pharmacotherapy Program, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- Institute for Inclusion, Inquiry and Innovation: Health and Wellness in Aging Populations Core, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph L. McClay
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
13
|
Gilmore JC, Serghides L, Bendayan R. Differential effects of antiretroviral drug toxicity in male versus female children who are HIV-exposed but uninfected. AIDS 2021; 35:1-14. [PMID: 33048885 DOI: 10.1097/qad.0000000000002707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
: In recent years, widespread use of antiretroviral therapy (ART) during pregnancy has been increasingly effective in reducing risk of vertical transmission of HIV, with over 80% of pregnant women living with HIV now accessing ART, and a 41% reduction in new infections in children between 2010 and 2018. Despite these strides, the developmental toxicity of widely administered antiretroviral drugs (ARVs) remains poorly described and existing literature often fails to account for fetal and infant sex as a variable. Recent reports have identified associations between in-utero exposure to commonly used antiretroviral regimens and alteration in neurodevelopment, growth, and metabolism amongst children who are HIV-exposed but uninfected, with findings of sex differences in the prevalence and severity of ARV toxicity. These differences are potentially explained by variable exposure to ARV drugs in utero or exacerbation of existing sex-linked risk factors. Fetal ARV exposure is mediated by placental and fetal drug transporters and metabolic enzymes, which may contribute to the manifestation of sex differences. Existing evidence of sex differences in ARV toxicity in fetal development is concerning, and demands further research to guide optimal treatment options for maternal health and prevention of vertical HIV transmission.
Collapse
Affiliation(s)
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network (UHN)
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto
| |
Collapse
|
14
|
Hu M, Li Y, You F, Bai J, Fan X, Zhao S, Sun Y, Wang B, Hu J, Li Y. Comparison and identification of metabolic profiling of bicyclol in rats, dogs and humans in vitro and in vivo. Eur J Pharm Sci 2020; 154:105518. [PMID: 32818657 DOI: 10.1016/j.ejps.2020.105518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
Abstract
Bicyclol, a novel hepatoprotective agent, has been widely used to treat chronic viral hepatitis and drug-induced liver injury (DILI). However, its metabolic characteristics remains to be explored, especially in humans. The current study aimed to identify major metabolites and specific metabolizing enzymes involved in bicyclol metabolism in vitro and in vivo using high performance liquid chromatography coupled with Q-Exactive orbitrap mass spectrometry (HPLC-Q-Exactive Orbitrap/MS). After incubation with liver microsomes and oral administration to rats, dogs and humans, a total of nine metabolites of bicyclol were identified including M1 (methyl ester hydrolysate product), M2-M3 (demethylated bicyclol), M4-M5 (demethoxy or dehydroxymethyl bicyclol), M6 (glucuronidated bicyclol) and M7-M9 (glucuronide conjugates of metabolites). Among these metabolites, M2 and M3 were the major phase I metabolites mainly mediated by CYP2C19 and CYP3A4, while M6 was the dominant phase II metabolite primarily catalyzed by UGT2B4. In this study, species-related metabolic difference among rats, dogs and humans were observed. In humans and dogs, M6 (glucuronidated bicyclol) was the most abundant circulating metabolite (higher than the parent drug) in the blood after oral administration, while the parent drug was the highest in rats. M4 and M5 were rats-specific metabolites whereas M1 and M9 were absent in dogs in vivo. The metabolism of bicyclol was demonstrated as demethylation and glucuronidation mediated by multiple drug metabolizing enzymes in different species. Our findings systematically elucidated the metabolic sites and routes of bicyclol in human for the first time, which may be helpful for rational combined application in clinic and further study of metabolites-related efficacy or toxicity.
Collapse
Affiliation(s)
- Minwan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yang Li
- Beijing Union Pharmaceutical Facroty, Beijing, 102600, China
| | - Feng You
- Beijing Union Pharmaceutical Facroty, Beijing, 102600, China
| | - Jie Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoqing Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengyu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Xu L, Zheng R, Xie P, Guo Q, Ji H, Li T. Dysregulation of UDP-glucuronosyltransferases in CCl 4 induced liver injury rats. Chem Biol Interact 2020; 325:109115. [PMID: 32380060 DOI: 10.1016/j.cbi.2020.109115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are a family of phase II drug metabolizing enzymes that catalyze glucuronidation of numerous endogenous and exogenous substrates. Carbon tetrachloride (CCl4) is widely used to develop liver injuries mimicking human liver diseases. However, effects of CCl4 on the expression and activities of UGTs and the mechanism have not been fully elucidated. The present study aims to elucidate the dysregulation patterns of major UGTs induced by CCl4. Biochemical and histopathological results showed that CCl4 exerted hepatotoxicity in rats. The mRNA levels of UGTs were all significantly reduced in acute liver injury rats. However, mRNA levels of UGT1A1, 1A6, 2B1 and 2B2 were up-regulated while the UGT2B3, 2B6 and 2B12 levels were reduced in chronic CCl4-induced liver fibrosis rats. The protein expression of UGT1A1, 1A6 and 2B were decreased in acute liver injury rats. UGT1A1 and 1A6 proteins were increased, whereas UGT2B protein was reduced in liver fibrosis rats. In addition, CCl4 inhibited the enzyme activities of UGTs in rats. Moreover, the dysregulation of UGTs was accompanied by the decreased mRNA expression of Nrf2, CAR, FXR, PXR, PPAR-α and their corresponding target genes, except for Nrf2, HO-1, AhR and CYP1A1 in liver fibrosis rats. These findings suggest that dysregulation of UGTs under CCl4 exposure is isoform-specific, which could have a complex impact on drug efficacy and endogenous metabolism. Different exposure durations of CCl4 (single vs multiple doses) could have differential effects on rat hepatic UGTs expression.
Collapse
Affiliation(s)
- Lijie Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Peng Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Hui Ji
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Tingting Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
16
|
Mutlu E, Gibbs ST, South N, Pierfelice J, Burback B, Germolec D, Waidyanatha S. Comparative toxicokinetics of Trans-resveratrol and its major metabolites in Harlan Sprague Dawley rats and B6C3F1/N mice following oral and intravenous administration. Toxicol Appl Pharmacol 2020; 394:114962. [PMID: 32205187 PMCID: PMC7398575 DOI: 10.1016/j.taap.2020.114962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
Trans-resveratrol (RES) is a naturally occurring stilbene found in numerous plants and foods. Due to its widespread human exposure and lack of toxicity and carcinogenicity data, RES was nominated to the National Toxicology Program for testing. To aid the toxicology studies, the dose, sex, and species differences in RES toxicokinetics was investigated in Harlan Sprague Dawley rats and B6C3F1/N mice following single intravenous (IV) (10 mg/kg) or oral gavage administration (312.5, 625, and 1250 mg/kg and 625, 1250, and 2500 mg/kg in rats and mice, respectively). Following IV and gavage administration, systemic exposure of RES based on AUC was trans-resveratrol-3-O-β-D-glucuronide (R3G)> > trans-resveratrol-3-sulfate (R3S) > RES in both species. Following gavage administration Tmax_predicted values were ≤ 263 min for both species and sexes. RES elimination half-life was longer in rats than mice, and shortest in male mice. Clearance was slower in mice with no apparent sex difference in both species. In both rats and mice, following gavage administration AUC increased proportionally to the dose. After gavage administration, enterohepatic recirculation of RES was observed in both rats and mice with secondary peaks occurring around 640 min in the concentration-time profiles. RES was rapidly metabolized to R3S and R3G in both species. Extensive first pass conjugation and metabolism resulted in low levels of the parent compound RES which was confirmed by the low estimates for bioavailability. The bioavailability of RES was low, ~12-31% and ~2-6% for rats and mice, respectively, with no apparent difference between sexes.
Collapse
Affiliation(s)
- Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America.
| | - Seth T Gibbs
- Battelle, Columbus, OH, United States of America
| | | | | | | | - Dori Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| |
Collapse
|
17
|
Gabel F, Aubry AS, Hovhannisyan V, Chavant V, Weinsanto I, Maduna T, Darbon P, Goumon Y. Unveiling the Impact of Morphine on Tamoxifen Metabolism in Mice in vivo. Front Oncol 2020; 10:25. [PMID: 32154159 PMCID: PMC7046683 DOI: 10.3389/fonc.2020.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Tamoxifen is used to treat breast cancer and cancer recurrences. After administration, tamoxifen is converted into two more potent antitumor compounds, 4OH-tamoxifen and endoxifen by the CYP3A4/5 and 2D6 enzymes in human. These active compounds are inactivated by the same UDP-glucuronosyltransferase isoforms as those involved in the metabolism of morphine. Importantly, cancer-associated pain can be treated with morphine, and the common metabolic pathway of morphine and tamoxifen suggests potential clinically relevant interactions. Methods: Mouse liver microsomes were used to determine the impact of morphine on 4OH-tamoxifen metabolism in vitro. For in vivo experiments, female mice were first injected with tamoxifen alone and then with tamoxifen and morphine. Blood was collected, and LC-MS/MS was used to quantify tamoxifen, 4OH-tamoxifen, N-desmethyltamoxifen, endoxifen, 4OH-tamoxifen-glucuronide, and endoxifen-glucuronide. Results:In vitro, we found increased Km values for the production of 4OH-tamoxifen-glucuronide in the presence of morphine, suggesting an inhibitory effect on 4OH-tamoxifen glucuronidation. Conversely, in vivo morphine treatment decreased 4OH-tamoxifen levels in the blood while dramatically increasing the formation of inactive metabolites 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Conclusions: Our findings emphasize the need for caution when extrapolating results from in vitro metabolic assays to in vivo drug metabolism interactions. Importantly, morphine strongly impacts tamoxifen metabolism in mice. It suggests that tamoxifen efficiency could be reduced when both drugs are co-administered in a clinical setting, e.g., to relieve pain in breast cancer patients. Further studies are needed to assess the potential for tamoxifen-morphine metabolic interactions in humans.
Collapse
Affiliation(s)
- Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Anne-Sophie Aubry
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Volodya Hovhannisyan
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Virginie Chavant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France.,Mass Spectrometry Facilities of the CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Ivan Weinsanto
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Tando Maduna
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Pascal Darbon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France.,Mass Spectrometry Facilities of the CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
18
|
Cheng Y, Tang S, Chen A, Zhang Y, Liu M, Wang X. Evaluation of the inhibition risk of shikonin on human and rat UDP-glucuronosyltransferases (UGT) through the cocktail approach. Toxicol Lett 2019; 312:214-221. [PMID: 31128210 DOI: 10.1016/j.toxlet.2019.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023]
Abstract
Shikonin, a natural red colorant, is widely used for food garnishment and cosmetic ingredient in the world. Shikonin also possesses a variety of pharmacological actions, including anti-inflammation and anti-cancer activities. However, little is known about its effects on the UDP-glucuronosyltransferases (UGT) activity. Therefore, the aim of this study was to evaluate the effect of shikonin on the UGT1A1, UGT1A3, UGT1A6, UGT1A9 and UGT2B7 activities via the human and rat liver microsomal assay and cocktail approach. The results showed shikonin inhibited human and rat liver microsomal UGT activity only in a dose-dependent manner. The further enzyme kinetic studies demonstrated that shikonin was not only a competitive inhibitor of human UGT1A1, UGT1A9, and UGT2B7, but also presented competitive inhibition on rat UGT1A1 and AZTG reactions. In conclusion, shikonin as a reversible inhibitor of UGT enzyme has a high-risk potential to cause the possible toxicity, especially drug-drug or food-drug interactions.
Collapse
Affiliation(s)
- Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuowen Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, United States
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
19
|
Kutsukake T, Furukawa Y, Ondo K, Gotoh S, Fukami T, Nakajima M. Quantitative Analysis of UDP-Glucuronosyltransferase Ugt1a and Ugt2b mRNA Expression in the Rat Liver and Small Intestine: Sex and Strain Differences. Drug Metab Dispos 2018; 47:38-44. [DOI: 10.1124/dmd.118.083287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
|
20
|
Xia YL, Dou TY, Lv X, Ge GB. In vitro characterization of the glucuronidation pathways of licochalcone A mediated by human UDP-glucuronosyltransferases. Xenobiotica 2018; 49:671-677. [DOI: 10.1080/00498254.2018.1495345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang-Liu Xia
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Xia Lv
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Weinsanto I, Laux-Biehlmann A, Mouheiche J, Maduna T, Delalande F, Chavant V, Gabel F, Darbon P, Charlet A, Poisbeau P, Lamshöft M, Van Dorsselaer A, Cianferani S, Parat MO, Goumon Y. Stable isotope-labelled morphine to study in vivo central and peripheral morphine glucuronidation and brain transport in tolerant mice. Br J Pharmacol 2018; 175:3844-3856. [PMID: 30051501 DOI: 10.1111/bph.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic administration of medication can significantly affect metabolic enzymes leading to physiological adaptations. Morphine metabolism in the liver has been extensively studied following acute morphine treatment, but such metabolic processes in the CNS are poorly characterized. Long-term morphine treatment is limited by the development of tolerance, resulting in a decrease of its analgesic effect. Whether or not morphine analgesic tolerance affects in vivo brain morphine metabolism and blood-brain barrier (BBB) permeability remains a major question. Here, we have attempted to characterize the in vivo metabolism and BBB permeability of morphine after long-term treatment, at both central and peripheral levels. EXPERIMENTAL APPROACH Male C57BL/6 mice were injected with morphine or saline solution for eight consecutive days in order to induce morphine analgesic tolerance. On the ninth day, both groups received a final injection of morphine (85%) and d3-morphine (morphine bearing three 2 H; 15%, w/w). Mice were then killed and blood, urine, brain and liver samples were collected. LC-MS/MS was used to quantify morphine, its metabolite morphine-3-glucuronide (M3G) and their respective d3-labelled forms. KEY RESULTS We found no significant differences in morphine CNS uptake and metabolism between control and tolerant mice. Interestingly, d3-morphine metabolism was decreased compared to morphine without any interference with our study. CONCLUSIONS AND IMPLICATIONS Our data suggests that tolerance to the analgesic effects of morphine is not linked to increased glucuronidation to M3G or to altered global BBB permeability of morphine.
Collapse
Affiliation(s)
- Ivan Weinsanto
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexis Laux-Biehlmann
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Tando Maduna
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - François Delalande
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Virginie Chavant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pascal Darbon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexandre Charlet
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marc Lamshöft
- Institute of Environmental Research, University of Technology Dortmund, Dortmund, Germany
| | - Alain Van Dorsselaer
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Sarah Cianferani
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marie-Odile Parat
- School of Pharmacy, University of Queensland, Woolloongabba, Australia.,Outcomes Research Consortium, Cleveland, OH, USA
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
22
|
He L, Xu J, Wang Q, Zhang Y, Qin Z, Yu Y, Qian Z, Yao Z, Yao X. Glucuronidation of [6]-shogaol, [8]-shogaol and [10]-shogaol by human tissues and expressed UGT enzymes: identification of UGT2B7 as the major contributor. RSC Adv 2018; 8:41368-41375. [PMID: 35559294 PMCID: PMC9091938 DOI: 10.1039/c8ra08466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Shogaols, mainly [6]-shogaol (6S), [8]-shogaol (8S) and [10]-shogaol (10S), the predominant and characteristic pungent phytochemicals in ginger, are responsible for most of its beneficial effects. However, poor oral bioavailability owing to extensive glucuronidation limits their application. The present study aimed to characterize the glucuronidation pathways of 6S, 8S and 10S by using pooled human liver microsomes (HLM), human intestine microsomes (HIM) and recombinant human UDP-glucosyltransferases (UGTs). The rates of glucuronidation were determined by incubating shogaols with uridine diphosphate glucuronic acid-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Reaction phenotyping assays, activity correlation analyses and relative activity factors were performed to identify the main UGT isoforms. As a result, one mono-4′-O-glucuronide was detected after incubating each shogaol with HLM and HIM. Enzymes kinetic analysis demonstrated that glucuronidation of shogaols consistently displayed the substrate inhibition profile, and the liver showed higher metabolic activity for shogaols (CLint = 1.37–2.87 mL min−1 mg−1) than the intestine (CLint = 0.67–0.85 mL min−1 mg−1). Besides, reaction phenotyping assays revealed that UGT2B7 displayed the highest catalytic ability (CLint = 0.47–1.17 mL min−1 mg−1) among all tested UGTs. In addition, glucuronidation of shogaols was strongly correlated with AZT glucuronidation (r = 0.886, 0.803 and 0.871 for glucuronidation of 6S, 8S and 10S, respectively; p < 0.01) in a bank of individual HLMs (n = 9). Furthermore, UGT2B7 contributed to 40.8%, 34.2% and 36.0% for the glucuronidation of 6S, 8S and 10S in HLM, respectively. Taken altogether, shogaols were efficiently metabolized through the glucuronidation pathway, and UGT2B7 was the main contributor to their glucuronidation. The glucuronidation pathways of shogaols ([6]-shogaol, [8]-shogaol and [10]-shogaol) were characterized in human tissues and recombinant human UDP-glucosyltransferases, and UGT2B7 was identified as the main contributor to their glucuronidation.![]()
Collapse
Affiliation(s)
- Liangliang He
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Jinjin Xu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Qi Wang
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Key Laboratory of State Administration of Traditional Chinese Medicine
| | - Yezi Zhang
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Zifei Qin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Department of Pharmacy
| | - Yang Yu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine
- Sunshine Lake Pharma Co., LTD
- Dongguan
- P. R. China
| | - Zhihong Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xinsheng Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|
23
|
Fujiwara R, Yoda E, Tukey RH. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans. Drug Metab Pharmacokinet 2017; 33:9-16. [PMID: 29079228 DOI: 10.1016/j.dmpk.2017.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Asai Y, Sakakibara Y, Kondo M, Nadai M, Katoh M. Species and Tissue Differences in β-Estradiol 17-Glucuronidation. Biol Pharm Bull 2017; 40:1754-1758. [PMID: 28966247 DOI: 10.1248/bpb.b17-00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferase (UGT) is expressed in the liver and extrahepatic tissues. One of the major metabolic pathways of β-estradiol (E2) is glucuronidation at the 17-hydroxy position by UGTs. This study was performed to determine E2 17-glucuronidation kinetics in human and rodent liver, small intestine, and kidney microsomes and to clarify the species and tissue differences. In the human liver and small intestine, Eadie-Hofstee plots exhibited biphasic kinetics, suggesting that E2 17-glucuronide (E17G) formation was catalyzed by more than two UGT isoforms in both tissues. The Km values for E17G formation by the high-affinity enzymes in the human liver and small intestine were 1.79 and 1.12 µM, respectively, and corresponding values for the low-affinity enzymes were 3.72 and 11.36 µM, respectively. Meanwhile, E17G formation in the human kidney was fitted to the Hill equation (S50=1.73 µM, n=1.63), implying that the UGT isoform catalyzing E17G formation in the kidney differed from that in the liver and small intestine. The maximum clearance for E17G formation in the human kidney was higher than the intrinsic clearance in the liver. E17G formation in the rat liver and kidney exhibited biphasic kinetics, whereas that in the small intestine was fitted to the Hill equation. In mice, all 3 tissues exhibited biphasic kinetics. In conclusion, we reported species and tissue differences in E2 17-glucuronidation, which occurred not only in the human liver but also in the extrahepatic tissues particularly the kidney.
Collapse
Affiliation(s)
- Yuki Asai
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| | | | - Miyabi Kondo
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| | - Masayuki Nadai
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| | - Miki Katoh
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| |
Collapse
|
25
|
Lin M, Ly J, Takahashi R, Chen J, Deese A, Robinson SJ, Kolesnikov A, Wong S, Wang X, Chang JH. Characterizing the in vitro species differences in N-glucuronidation of a potent pan-PIM inhibitor GNE-924 containing a 3,5-substituted 6-azaindazole. Xenobiotica 2017; 48:1021-1027. [PMID: 28845725 DOI: 10.1080/00498254.2017.1373312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Glucuronidation of amines has been shown to exhibit large species differences, where the activity is typically more pronounced in human than in many preclinical species such as rat, mouse, dog and monkey. The purpose of this work was to characterize the in vitro glucuronidation of GNE-924, a potent pan-PIM inhibitor, to form M1 using liver microsomes (LM) and intestinal microsomes (IM). 2. M1 formation kinetics varied highly across species and between liver and intestinal microsomes. In LM incubations, rat exhibited the highest rate of M1 formation (CLint,app) at 140 ± 10 µL/min/mg protein, which was approximately 30-fold higher than human. In IM incubations, mouse exhibited the highest CLint,app at 484 ± 40 µL/min/mg protein, which was >1000-fold higher than human. In addition, CLint,app in LM was markedly higher than IM in human and monkey. In contrast, CLint,app in IM was markedly higher than LM in dog and mouse. 3. Reaction phenotyping indicated that UGT1A1, UGT1A3, UGT1A9, UGT2B4 and the intestine-specific UGT1A10 contributed to the formation of M1. 4. This is one of the first reports showing that N-glucuronidation activity is significantly greater in multiple preclinical species than in humans, and suggests that extensive intestinal N-glucuronidation may limit the oral exposure of GNE-924.
Collapse
Affiliation(s)
- Molly Lin
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Justin Ly
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Ryan Takahashi
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - John Chen
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Alan Deese
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Sarah J Robinson
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Aleksandr Kolesnikov
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Susan Wong
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Xiaojing Wang
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Jae H Chang
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| |
Collapse
|
26
|
Wang P, Zhao Y, Zhu Y, Sang S. Glucuronidation and its impact on the bioactivity of [6]-shogaol. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University; North Carolina Research Campus; Kannapolis NC USA
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University; North Carolina Research Campus; Kannapolis NC USA
| | - Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University; North Carolina Research Campus; Kannapolis NC USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University; North Carolina Research Campus; Kannapolis NC USA
| |
Collapse
|
27
|
Zhou X, Zheng Z, Xu C, Wang J, Min M, Zhao Y, Wang X, Gong Y, Yin J, Guo M, Guo D, Zheng J, Zhang B, Yin X. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer. J Pharm Sci 2017; 106:2152-2162. [PMID: 28479355 DOI: 10.1016/j.xphs.2017.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023]
Abstract
The progression of breast cancer is closely related to the levels of estrogens within the body. UDP-glucuronosyltransferase (UGT) is an important class of phase II metabolizing enzymes, playing a pivotal role in detoxifying steroid hormone. In the present study, we aim at uncovering the potential dysregulation pattern of UGT and its role in estrogen metabolism and in the pathogenesis of breast cancer. Female Sprague-Dawley rats were treated with 100 mg/kg dimethylbenz(a)anthracene (DMBA) to induce breast cancer. Our results showed that the expression and activity of UGT in mammary tissues were downregulated significantly in DMBA rats. Consistent with this, levels of estradiol, 4-hydroxylated estradiol, and 2-hydroxylated estradiol were increased in both mammary tissues and serum, supporting a notable accumulation of toxic estrogen species in the target tissue of breast cancer. In addition, we also observed the decreased cell migration, cell proliferation, and DNA damage in UGT-transfected MCF-7 cells, suggesting a protective role of UGT against estrogen-induced mammary carcinogenesis. Taken together, these results indicated that accumulation of estrogens induced by UGT deficiency is a critical factor to induce the development of breast cancer. UGT contributes to estrogen elimination, and its glucuronidation capacity influences the estrogen signaling pathway and the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqiang Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chang Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Juan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Mengjun Min
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yun Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yinhan Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jiale Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Meng Guo
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China.
| |
Collapse
|
28
|
Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine. Pharmacol Res 2017; 121:169-183. [PMID: 28479371 DOI: 10.1016/j.phrs.2017.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are the primary phase II enzymes catalyzing the conjugation of glucuronic acid to the xenobiotics with polar groups for facilitating their clearance. The UGTs belong to a superfamily that consists of diverse isoforms possessing distinct but overlapping metabolic activity. The abnormality or deficiency of UGTs in vivo is highly associated with some diseases, efficacy and toxicity of drugs, and precisely therapeutic personality. Despite the great effects and fruitful results achieved, to date, the expression and functions of individual UGTs have not been well clarified, the inconsistency of UGTs is often observed in human and experimental animals, and the complex regulation factors affecting UGTs have not been systematically summarized. This article gives an overview of updated reports on UGTs involving the various regulatory factors in terms of the genetic, environmental, pathological, and physiological effects on the functioning of individual UGTs, in turn, the dysfunction of UGTs induced disease risk and endo- or xenobiotic metabolism-related toxicity. The complex cross-talk effect of UGTs with internal homeostasis is systematically summarized and discussed in detail, which would be of great importance for personalized precision medicine.
Collapse
Affiliation(s)
- Na Yang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Liao
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
29
|
Xie N, Gomes FP, Deora V, Gregory K, Vithanage T, Nassar ZD, Cabot PJ, Sturgess D, Shaw PN, Parat MO. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice. Brain Behav Immun 2017; 61:244-258. [PMID: 27939249 DOI: 10.1016/j.bbi.2016.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we quantified the ability of opioids present in biological samples to activate the μ-opioid receptor and TLR4 using cell-based assays. Each assay was standardised, in the presence of plasma, using morphine, its μ receptor-active metabolite morphine-6 glucuronide (M6G) and its μ receptor-inactive, but TLR4-active metabolite morphine-3 glucuronide (M3G). Specificity was verified using antagonists. Morphine- and M6G-spiked plasma samples exhibited μ receptor activation, which M3G-spiked plasma lacked. In contrast, M3G showed moderate but consistent activation of TLR-4. Plasma samples were collected at a number of time points from mice administered morphine (1 or 10mg/kg every 12h for 3days) or saline. Morphine administration led to intermittent μ receptor activation, reversed by μ receptor antagonists, and to TRL4 activation at time points where M3G is measured in plasma. Interestingly, this protocol of morphine administration also led to TLR4-independent NF-κB activation, at time points where M3G was not detected, presumably via elevation of circulating cytokines including, but not limited to, TNFα. Circulating TNFα was increased after three days of morphine administration, and TNFα mRNA elevated in the spleen of morphine-treated mice.
Collapse
Affiliation(s)
- Nan Xie
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fabio P Gomes
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vandana Deora
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kye Gregory
- Mater Research Institute (MRI-UQ), The University of Queensland, Brisbane, Australia
| | - Tharindu Vithanage
- Mater Research Institute (MRI-UQ), The University of Queensland, Brisbane, Australia
| | - Zeyad D Nassar
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David Sturgess
- Mater Research Institute (MRI-UQ), The University of Queensland, Brisbane, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
30
|
Shen ZW, Luo MY, Hu HH, Zhou H, Jiang HD, Yu LS, Zeng S. Screening and verifying potential NTCP inhibitors from herbal medicinal ingredients using the LLC-PK1 cell model stably expressing human NTCP. Chin J Nat Med 2017; 14:549-60. [PMID: 27507206 DOI: 10.1016/s1875-5364(16)30065-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 12/13/2022]
Abstract
NTCP is specifically expressed on the basolateral membrane of hepatocytes, participating in the enterohepatic circulation of bile salts, especially conjugated bile salts, to maintain bile salts homeostasis. In addition, recent studies have found that NTCP is a functional receptor of HBV and HDV. Therefore, it is important to study the interaction between drugs and NTCP and identify the inhibitors/substrates of NTCP. In the present study, a LLC-PK1 cell model stably expressing human NTCP was established, which was simple and suitable for high throughput screening, and utilized to screen and verify the potential inhibitors of NTCP from 102 herbal medicinal ingredients. The results showed that ginkgolic acid (GA) (13 : 0), GA (15 : 1), GA (17 : 1), erythrosine B, silibinin, and emodin have inhibitory effects on NTCP uptake of TCNa in a concentration-dependent manner. Among them, GA (13 : 0) and GA (15 : 1) exhibited the stronger inhibitory effects, with IC50 values being less than 8.3 and 13.5 μmol·L(-1), respectively, than the classical inhibitor, cyclosporin A (CsA) (IC50 = 20.33 μmol·L(-1)). Further research demonstrated that GA (13 : 0), GA (15 : 1), GA (17 : 1), silibinin, and emodin were not substrates of NTCP. These findings might contribute to a better understanding of the disposition of the herbal ingredients in vivo, especially in biliary excretion.
Collapse
Affiliation(s)
- Zhuo-Wei Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng-Yue Luo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hai-Hong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui-Di Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu-Shan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Sakakibara Y, Katoh M, Imai K, Kondo Y, Asai Y, Ikushiro SI, Nadai M. Expression of UGT1A subfamily in rat brain. Biopharm Drug Dispos 2017; 37:314-9. [PMID: 27061716 DOI: 10.1002/bdd.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase (UGT) is an enzyme that catalyses a major phase II reaction in drug metabolism. Glucuronidation occurs mainly in the liver, but UGTs are also expressed in extrahepatic tissues, where they play an important role in local metabolism. UGT1A isoforms catalyse the glucuronidation of several drugs, neurotransmitters and neurosteroids that exert pharmacological and physiological effects on the brain. The aim of the current study was to determine UGT1A mRNA expression levels and glucuronidation activities in different regions of the rat brain (namely the cerebellum, frontal cortex, parietal cortex, piriform cortex, hippocampus, medulla oblongata, olfactory bulb, striatum and thalamus). It was found that all UGT1A isoforms were expressed in all the nine regions, but their expression levels differed between the regions. The difference between the regions of the brain where the mRNA levels were highest and those where they were lowest ranged between 2.1- to 7.8-fold. Glucuronidation activities were measured using the UGT substrates such as mycophenolic acid, p-nitrophenol and umbelliferone. Glucuronidation activity was detected in all nine regions of the brain. Activity levels differed between the regions, and were highest in the cerebellum, medulla oblongata and olfactory bulb. Differences in glucuronidation activity between regions with the highest rates and those with the lowest rates ranged from 5.3- to 10.1-fold. These results will contribute to our current understanding of the physiological and pharmacokinetic roles of drug-metabolizing enzymes in the brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Miki Katoh
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kuniyuki Imai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuya Kondo
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Asai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
32
|
Sakakibara Y, Katoh M, Kondo Y, Nadai M. Effects of β-Naphthoflavone on Ugt1a6 and Ugt1a7 Expression in Rat Brain. Biol Pharm Bull 2016; 39:78-83. [PMID: 26725430 DOI: 10.1248/bpb.b15-00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferase (UGT) catalyzes a major phase II reaction in a drug-metabolizing enzyme system. Although the UGT1A subfamily is expressed mainly in the liver, it is also expressed in the brain. The purpose of the present study was to elucidate the effect of β-naphthoflavone (BNF), one of the major inducers of drug-metabolizing enzymes, on Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation in the rat brain. Eight-week-old male Sprague-Dawley rats were treated intraperitoneally with BNF (80 mg/kg), once daily for 7 d. Ugt1a6 and Ugt1a7 mRNA expression increased in the cerebellum and hippocampus (Ugt1a6: 2.1- and 2.3-fold, respectively; Ugt1a7: 1.7- and 2.8-fold, respectively); acetaminophen glucuronidation also increased in the same regions by 4.1- and 2.7-fold, respectively. BNF induced Ugt1a6 and Ugt1a7 mRNA expression and their glucuronidation, and the degree of induction differed among 9 regions. BNF also upregulated CYP1A1, CYP1A2, and CYP1B1 mRNAs in the rat brain. Since the aryl hydrocarbon receptor signaling pathway was activated by BNF, it is indicated that Ugt1a6 and Ugt1a7 were induced via AhR in the rat brain. This study clarified that Ugt1a6 and Ugt1a7 mRNA expression and their enzyme activities were altered by BNF, suggesting that these changes may lead to alteration in the pharmacokinetics of UGT substrate in rat brain.
Collapse
|
33
|
Zhou X, Rougée LRA, Bedwell DW, Cramer JW, Mohutsky MA, Calvert NA, Moulton RD, Cassidy KC, Yumibe NP, Adams LA, Ruterbories KJ. Difference in the Pharmacokinetics and Hepatic Metabolism of Antidiabetic Drugs in Zucker Diabetic Fatty and Sprague-Dawley Rats. ACTA ACUST UNITED AC 2016; 44:1184-92. [PMID: 27217490 DOI: 10.1124/dmd.116.070623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022]
Abstract
The Zucker diabetic fatty (ZDF) rat, an inbred strain of obese Zucker fatty rat, develops early onset of insulin resistance and displays hyperglycemia and hyperlipidemia. The phenotypic changes resemble human type 2 diabetes associated with obesity and therefore the strain is used as a pharmacological model for type 2 diabetes. The aim of the current study was to compare the pharmacokinetics and hepatic metabolism in male ZDF and Sprague-Dawley (SD) rats of five antidiabetic drugs that are known to be cleared via various mechanisms. Among the drugs examined, metformin, cleared through renal excretion, and rosiglitazone, metabolized by hepatic cytochrome P450 2C, did not exhibit differences in the plasma clearance in ZDF and SD rats. In contrast, glibenclamide, metabolized by hepatic CYP3A, canagliflozin, metabolized mainly by UDP-glucuronosyltransferases (UGT), and troglitazone, metabolized by sulfotransferase and UGT, exhibited significantly lower plasma clearance in ZDF than in SD rats after a single intravenous administration. To elucidate the mechanisms for the difference in the drug clearance, studies were performed to characterize the activity of hepatic drug-metabolizing enzymes using liver S9 fractions from the two strains. The results revealed that the activity for CYP3A and UGT was decreased in ZDF rats using the probe substrates, and decreased unbound intrinsic clearance in vitro for glibenclamide, canagliflozin, and troglitazone was consistent with lower plasma clearance in vivo. The difference in pharmacokinetics of these two strains may complicate pharmacokinetic/pharmacodynamic correlations, given that ZDF is used as a pharmacological model, and SD rat as the pharmacokinetics and toxicology strain.
Collapse
Affiliation(s)
- Xin Zhou
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Luc R A Rougée
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - David W Bedwell
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Jeff W Cramer
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Michael A Mohutsky
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Nathan A Calvert
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Richard D Moulton
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Kenneth C Cassidy
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Nathan P Yumibe
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Lisa A Adams
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Kenneth J Ruterbories
- Drug Disposition (X.Z., L.R.A.R., D.W.B., J.W.C., M.A.M., N.A.C., R.D.M., K.C.C., N.P.Y., K.J.R.) and Tailoring Therapeutics (L.A.A.), Lilly Research Laboratories, Indianapolis, Indiana
| |
Collapse
|
34
|
Sakakibara Y, Katoh M, Kawayanagi T, Nadai M. Species and tissue differences in serotonin glucuronidation. Xenobiotica 2015; 46:605-611. [PMID: 26526550 DOI: 10.3109/00498254.2015.1101509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Serotonin is a UGT1A6 substrate that is mainly found in the extrahepatic tissues where some UGT1As are expressed. The aim of the present study was to characterize serotonin glucuronidation in various tissues of humans and rodents. 2. Serotonin glucuronidation in the human liver and kidney fitted to the Michaelis-Menten model, and the Km values were similar to that of recombinant UGT1A6. However, serotonin glucuronidation in the human intestine fitted to the Hill equation, indicating that it is likely catalyzed not only by UGT1A6, but also by another UGT1A isoform. Serotonin glucuronidation in the rat liver, intestine and kidney fitted well to the Michaelis-Menten model and exhibited monophasic kinetics in the kidney, but biphasic kinetics in the liver and intestine. Furthermore, serotonin glucuronidation in the rat brain fitted best to the Hill equation. Serotonin glucuronidation in the mouse tissues fitted to the Michaelis-Menten model and exhibited monophasic kinetics in the liver and intestine microsomes, but biphasic kinetics in the kidney and brain microsomes. 3. In conclusion, we clarified that tissue and species differences exist in serotonin glucuronidation. It is necessary to take these potential differences into account when considering the pharmacodynamics and pharmacokinetics of serotonin.
Collapse
Affiliation(s)
- Yukiko Sakakibara
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Miki Katoh
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Taisho Kawayanagi
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| | - Masayuki Nadai
- a Department of Pharmaceutics , Faculty of Pharmacy, Meijo University , Nagoya , Japan
| |
Collapse
|
35
|
Xin H, Xia YL, Hou J, Wang P, He W, Yang L, Ge GB, Xu W. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in-vitro glucuronidation of arctigenin. J Pharm Pharmacol 2015; 67:1673-81. [PMID: 26407805 DOI: 10.1111/jphp.12483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
Abstract
Objectives
This study aimed to characterize the glucuronidation pathway of arctigenin (AR) in human liver microsomes (HLM) and human intestine microsomes (HIM).
Methods
HLM and HIM incubation systems were employed to catalyse the formation of AR glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards AR was screened. A combination of chemical inhibition assay and kinetic analysis was used to determine the UGT isoforms involved in the glucuronidation of AR in HLM and HIM.
Key findings
AR could be extensively metabolized to one mono-glucuronide in HLM and HIM. The mono-glucuronide was biosynthesized and characterized as 4′-O-glucuronide. UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7 and 2B17 participated in the formation of 4′-O-G, while UGT2B17 demonstrated the highest catalytic activity in this biotransformation. Both kinetic analysis and chemical inhibition assays demonstrated that UGT1A9, UGT2B7 and UGT2B17 played important roles in AR-4′-O-glucuronidation in HLM. Furthermore, HIM demonstrated moderate efficiency for AR-4′-O-glucuronidation, implying that AR may undergo a first-pass metabolism during the absorption process.
Conclusion
UGT1A9, UGT2B7 and UGT2B17 were the major isoforms responsible for the 4′-O-glucuronidation of AR in HLM, while UGT2B7 and UGT2B17 were the major contributors to this biotransformation in HIM.
Collapse
Affiliation(s)
- Hong Xin
- Department of Integrated Traditional and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang-Liu Xia
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jie Hou
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Ping Wang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei He
- Department of Integrated Traditional and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guang-Bo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Xu
- Department of Integrated Traditional and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Saengtienchai A, Ikenaka Y, Darwish WS, Nakayama SMM, Mizukawa H, Ishizuka M. Characterization and tissue distribution of conjugated metabolites of pyrene in the rat. J Vet Med Sci 2015; 77:1261-7. [PMID: 26028020 PMCID: PMC4638293 DOI: 10.1292/jvms.14-0632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyrene (PY) is a polycyclic aromatic hydrocarbon (PAH) that is often used as a biomarker
for human and wildlife exposure to PAHs. As the metabolites of PAHs, similar to their
parent compounds, pose public health risks, it is necessary to study their characteristics
and tissue-specific distribution. The present study was performed to experimentally
characterize PY metabolites and analyze the tissue-specific distribution of the conjugated
metabolites after oral administration of PY to rats. PY metabolites, such as
pyrenediol-disulfate (PYdiol-diS), pyrenediol-sulfate (PYdiol-S), pyrene-1-sufate (PYOS),
pyrene-1-glucuronide (PYOG) and 1-hydroxypyrene (PYOH), were detected in rat urine.
Although glucuronide conjugate was the predominant metabolite, the metabolite composition
varied among tissues. Interestingly, the proportion of PYOH was high in the large
intestine. Furthermore, PYOH was the only PY metabolite detected in feces.
Collapse
Affiliation(s)
- Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Deliv Transl Res 2015; 4:344-52. [PMID: 25422796 DOI: 10.1007/s13346-014-0199-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In spite of its well-documented anticancer chemopreventive and therapeutic activity, the clinical development of curcumin has been limited by its poor oral bioavailability. Curcumin has low aqueous solubility and undergoes extensive first pass metabolism following oral dosing. We hypothesized that oral bioavailability of curcumin can be enhanced by increasing its absorption and decreasing its metabolic clearance simultaneously. To test this hypothesis, we formulated curcumin with naturally occurring UGT inhibitors (piperine, quercetin, tangeretin, and silibinin) in a self-microemulsifying drug delivery system (SMEDDS). Mouse liver microsome studies showed that silibinin and quercetin inhibited curcumin glucuronidation effectively. When dosed orally in mice, the SMEDDS containing curcumin alone increased curcumin glucuronide concentrations in plasma without significantly affecting parent drug concentration. Of the four inhibitors examined in vivo, silibinin significantly improved the Cmax (0.15 μM vs. 0.03 μM for curcumin SMEDDS) and the overall bioavailability (3.5-fold vs. curcumin SMEDDS) of curcumin. Previous studies have shown that silibinin has anticancer activity as well. Thus, co-delivery of silibinin with curcumin in SMEDDS represents a novel and promising approach to improve curcumin bioavailability.
Collapse
|
38
|
Lee SY, Lee JY, Kim YM, Kim SK, Oh SJ. Expression of hepatic cytochrome P450s and UDP-glucuronosyltransferases in PXR and CAR double humanized mice treated with rifampicin. Toxicol Lett 2015; 235:107-15. [PMID: 25835148 DOI: 10.1016/j.toxlet.2015.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/23/2023]
Abstract
Nuclear receptor humanized mice models have been developed to predict regulation of drug metabolizing enzyme by xenobiotics. However, limited information is available concerning xenobiotic-induced regulation of drug metabolizing enzymes in multiple nuclear receptor humanized mice. The present study investigated the hepatic regulation of cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) in the pregnane X receptor (PXR) and the constitutive androstane receptor double humanized mice treated with rifampicin (RIF; 10mg/kg) for 4 days. RIF increased hepatic microsomal protein and total CYP contents, and CYP reductase activity in the humanized mice, but not in normal mice. Moreover, hepatic induction of Cyp2b10, Cyp2c, and Cyp3a11 were observed only in the RIF-treated humanized mice, suggesting that the humanized mice are sensitive to RIF with respect to the regulation of the hepatic CYP system. Hepatic UGT activities using estradiol, serotonin, and mefenamic acid, but not chenodeoxycholic acid as substrates, increased in the RIF-treated humanized mice, and the glucuronidation activities of estradiol and chenodeoxycholic acid increased in RIF-treated normal mice. These results raise the possibility that a PXR-independent mechanism may be involved in hepatic regulation of UGTs by RIF.
Collapse
Affiliation(s)
- Sang Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy, Hanyang University, Ansan, Gyeonggido 426-791 Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, 685-1 Yangcheong-ri, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
39
|
Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30:30-51. [DOI: 10.1016/j.dmpk.2014.12.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
|
40
|
Wang H, Yan T, Xie Y, Zhao M, Che Y, Zhang J, Liu H, Cao L, Cheng X, Xie Y, Li F, Qi Q, Wang G, Hao H. Mechanism-based inhibitory and peroxisome proliferator-activated receptor α-dependent modulating effects of silybin on principal hepatic drug-metabolizing enzymes. Drug Metab Dispos 2015; 43:444-54. [PMID: 25587127 DOI: 10.1124/dmd.114.061622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Silybin, a major pharmacologically active compound in silymarin, has been widely used in combination with other prescriptions in the clinic to treat hepatitis and a host of other diseases. Previous studies suggested that silybin is a potential inhibitor of multiple drug-metabolizing enzymes (DMEs); however, the in vitro to in vivo translation and the mechanisms involved remain established. The aim of this study was to provide a mechanistic understanding of the regulatory effects of silybin on principal DMEs. Silybin (50 or 150 mg/kg/d) was administered to mice for a consecutive 14 days. The plasma and hepatic exposure of silybin were detected; the mRNA, protein levels, and enzyme activities of principal DMEs were determined. The results demonstrated that the enzyme activities of CYP1A2, CYP2C, CYP3A11, and UGT1A1 were significantly repressed, whereas little alteration of the mRNA and protein levels was observed. Silybin inhibits these DMEs in a mechanism-based and/or substrate-competitive manner. More importantly, silybin was found to be a weak agonist of peroxisome proliferator-activated receptor (PPAR)α, as evidenced from the molecular docking, reporter gene assay, and the targeting gene expression analysis. However, silybin could significantly compromise the activation of PPARα by fenofibrate, characterized with significantly repressed expression of PPARα targeting genes, including L-FABP, ACOX1, and UGT1A6. This study suggests that silybin, despite its low bioavailability, may inhibit enzyme activities of multiple DMEs in a mechanism-based mode, and more importantly, may confer significant drug-drug interaction with PPARα agonists via the repression of PPARα activation in a competitive mode.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Tingting Yan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yuan Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yuan Che
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Huiying Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Xuefang Cheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yang Xie
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Feiyan Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Qu Qi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
41
|
PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nat Commun 2014; 5:4573. [PMID: 25183423 PMCID: PMC4164778 DOI: 10.1038/ncomms5573] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Bile acids play a pivotal role in the pathological development of inflammatory bowel disease (IBD). However, the mechanism of bile acid dysregulation in IBD remains unanswered. Here we show that intestinal peroxisome proliferator-activated receptor α (PPARα)-UDP-glucuronosyltransferases (UGTs) signalling is an important determinant of bile acid homeostasis. Dextran sulphate sodium (DSS)-induced colitis leads to accumulation of bile acids in inflamed colon tissues via activation of the intestinal peroxisome PPARα-UGTs pathway. UGTs accelerate the metabolic elimination of bile acids, and thereby decrease their intracellular levels in the small intestine. Reduced intracellular bile acids results in repressed farnesoid X receptor (FXR)-FGF15 signalling, leading to upregulation of hepatic CYP7A1, thus promoting the de novo bile acid synthesis. Both knockout of PPARα and treatment with recombinant FGF19 markedly attenuate DSS-induced colitis. Thus, we propose that intestinal PPARα-UGTs and downstream FXR-FGF15 signalling play vital roles in control of bile acid homeostasis and the pathological development of colitis. Bile acids have been linked to the development of inflammatory bowel diseases, such as colitis. Here the authors show that bile acid levels in mice are controlled by a circular feedback system involving the nuclear receptors PPARα and FXR, and that this system is dysregulated in colitis.
Collapse
|
42
|
El-Sheikh AAK, Koenderink JB, Wouterse AC, van den Broek PHH, Verweij VGM, Masereeuw R, Russel FGM. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res 2014; 164:46-56. [PMID: 24486136 DOI: 10.1016/j.trsl.2014.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The current study was designed to unravel the renal excretory pathway of MPA and MPAG, and their potential drug-drug interactions. The role of multidrug resistance protein (MRP) 2 and MRP4 in MPA disposition was studied using human embryonic kidney 293 (HEK293) cells overexpressing the human transporters, and in isolated, perfused kidneys of Mrp2-deficient rats and Mrp4-deficient mice. Using these models, we identified MPA as substrate of MRP2 and MRP4, whereas its MPAG appeared to be a substrate of MRP2 only. CsA inhibited MPAG transport via MRP2 for 50% at 8 μM (P < 0.05), whereas Tac had no effect. This was confirmed by cell survival assays, showing a 10-fold increase in MPA cytotoxicity (50% reduction in cell survival changed from 12.2 ± 0.3 μM to 1.33 ± 0.01 μM by MPA + CsA; P < 0.001) and in perfused kidneys, showing a 50% reduction in MPAG excretion (P < 0.05). The latter effect was observed in Mrp2-deficient animals as well, supporting the importance of Mrp2 in MPAG excretion. CsA, but not Tac, inhibited MPA glucuronidation by rat kidney homogenate and human uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferase 1A9 (P < 0.05 and P < 0.01, respectively). We conclude that MPA is a substrate of both MRP2 and MRP4, but MRP2 is the main transporter involved in renal MPAG excretion. In conclusion, CsA, but not Tac, influences MPA clearance by inhibiting renal MPA glucuronidation and MRP2-mediated MPAG secretion.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Alfons C Wouterse
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Vivienne G M Verweij
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
43
|
Higashi E, Ando A, Iwano S, Murayama N, Yamazaki H, Miyamoto Y. Hepatic microsomal UDP-glucuronosyltransferase (UGT) activities in the microminipig. Biopharm Drug Dispos 2014; 35:313-20. [DOI: 10.1002/bdd.1898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Eriko Higashi
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories; Toray Industries, Inc.; 6-10-1 Tebiro Kamakura Kanagawa 248-8555 Japan
| | - Akihiro Ando
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories; Toray Industries, Inc.; 6-10-1 Tebiro Kamakura Kanagawa 248-8555 Japan
| | - Shunsuke Iwano
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories; Toray Industries, Inc.; 6-10-1 Tebiro Kamakura Kanagawa 248-8555 Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; 3-3165 Higashi-tamagawa Gakuen Machida Tokyo 194-8543 Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; 3-3165 Higashi-tamagawa Gakuen Machida Tokyo 194-8543 Japan
| | - Yohei Miyamoto
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories; Toray Industries, Inc.; 6-10-1 Tebiro Kamakura Kanagawa 248-8555 Japan
| |
Collapse
|
44
|
Kutsuno Y, Itoh T, Tukey RH, Fujiwara R. Glucuronidation of drugs and drug-induced toxicity in humanized UDP-glucuronosyltransferase 1 mice. Drug Metab Dispos 2014; 42:1146-52. [PMID: 24764149 DOI: 10.1124/dmd.114.057083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans.
Collapse
Affiliation(s)
- Yuki Kutsuno
- School of Pharmacy, Kitasato University, Tokyo, Japan (Y.K., T.I., R.F.); and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University, Tokyo, Japan (Y.K., T.I., R.F.); and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Robert H Tukey
- School of Pharmacy, Kitasato University, Tokyo, Japan (Y.K., T.I., R.F.); and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Ryoichi Fujiwara
- School of Pharmacy, Kitasato University, Tokyo, Japan (Y.K., T.I., R.F.); and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| |
Collapse
|
45
|
Berry LM, Liu J, Colletti A, Krolikowski P, Zhao Z, Teffera Y. Species Difference in Glucuronidation Formation Kinetics with a Selective mTOR Inhibitor. Drug Metab Dispos 2014; 42:707-17. [DOI: 10.1124/dmd.113.054809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
46
|
Xia YL, Liang SC, Zhu LL, Ge GB, He GY, Ning J, Lv X, Ma XC, Yang L, Yang SL. Identification and Characterization of Human UDP-glucuronosyltransferases Responsible for the Glucuronidation of Fraxetin. Drug Metab Pharmacokinet 2014; 29:135-40. [DOI: 10.2133/dmpk.dmpk-13-rg-059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Almási A, Bojcsev S, Fischer T, Simon H, Perjési P, Fischer E. Metabolic enzyme activities and drug excretion in the small intestine and in the liver in the rat. ACTA ACUST UNITED AC 2013; 100:478-88. [DOI: 10.1556/aphysiol.100.2013.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Zhang L, Chu X, Wang H, Xie H, Guo C, Cao L, Zhou X, Wang G, Hao H. Dysregulations of UDP-glucuronosyltransferases in rats with valproic acid and high fat diet induced fatty liver. Eur J Pharmacol 2013; 721:277-85. [PMID: 24056123 DOI: 10.1016/j.ejphar.2013.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/29/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022]
Abstract
Both high fat diet (HFD) and valproic acid (VPA) interfere with mitochondrial β-oxidation of fatty acids, which subsequently triggers microvesicular fatty liver and hepatic dysfunction. UDP-glucuronosyltransferases, the major phase II drug metabolism enzymes, play a pivotal role in detoxifying various exogenous and endogenous compounds. This study aimed to investigate the dysregulation patterns of major UDP-glucuronosyltransferases (UGTs) induced by VPA and/or HFD. Biochemical and histopathological results showed that chronic treatments of VPA and HFD induced fatty liver and liver dysfunction in a synergistic manner. VPA upregulated the mRNA levels of UGT1A1, 1A6, 1A7, and UGT2B1. Notably, the protein expression and enzymatic activity of UGT1A6 were significantly increased in rats treated with HFD or VPA alone, and were further enhanced by HFD and VPA co-treatment. This dysregulation pattern was largely recapitulated in the in vitro HepG2 cells assay by using VPA and oleic acid treatment. Moreover, the induction of UGTs was accompanied by the increased expression of constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα). In line with the up-regulation of UGT1A1 and UGT1A6, urine recovery of VPA glucuronide (VPA-G) was sharply increased by VPA treatment, and the co-treatment of HFD further aggravated this change. Since VPA is necessarily prescribed for long-term and the prevalence of HFD life style nowadays, the combined effect of HFD and VPA on disturbing UGTs should take concerns in the clinics.
Collapse
Affiliation(s)
- Lifang Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kutsuno Y, Sumida K, Itoh T, Tukey RH, Fujiwara R. Glucuronidation of drugs in humanized UDP-glucuronosyltransferase 1 mice: Similarity with glucuronidation in human liver microsomes. Pharmacol Res Perspect 2013; 1:e00002. [PMID: 25505556 PMCID: PMC4184567 DOI: 10.1002/prp2.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 12/11/2022] Open
Abstract
Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various endogenous and exogenous substrates. Among 19 functional human UGTs, UGT1A family enzymes largely contribute to the metabolism of clinically used drugs. While the UGT1A locus is conserved in mammals such as humans, mice, and rats, species differences in drug glucuronidation have been reported. Recently, humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) have been developed. To evaluate the usefulness of hUGT1 mice to predict human glucuronidation of drugs, UGT activities, and inhibitory effects on UGTs were examined in liver microsomes of hUGT1 mice as well as in those of wild-type mice and humans. Furosemide acyl-glucuronidation was sigmoidal and best fitted to the Hill equation in hUGT1 mice and human liver microsomes, while it was fitted to the substrate inhibition equation in mouse liver microsomes. Kinetic parameters of furosemide glucuronidation were very similar between hUGT1 mice and human liver microsomes. The kinetics of S-naproxen acyl-glucuronidation and inhibitory effects of compounds on furosemide glucuronidation in hUGT1 liver microsomes were also slightly, but similar to those in human liver microsomes, rather than in wild-type mice. While wild-type mice lack imipramine and trifluoperazine N-glucuronidation potential, hUGT1 mice showed comparable N-glucuronidation activity to that of humans. Our data indicate that hUGT1 mice are promising tools to predict not only in vivo human drug glucuronidation but also potential drug-drug interactions.
Collapse
Affiliation(s)
- Yuki Kutsuno
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kyohei Sumida
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego La Jolla, California
| | - Ryoichi Fujiwara
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
50
|
Vamathevan JJ, Hall MD, Hasan S, Woollard PM, Xu M, Yang Y, Li X, Wang X, Kenny S, Brown JR, Huxley-Jones J, Lyon J, Haselden J, Min J, Sanseau P. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development. Toxicol Appl Pharmacol 2013; 270:149-57. [DOI: 10.1016/j.taap.2013.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
|