1
|
Rougée LRA, Bedwell DW, Hansen K, Abraham TL, Hall SD. Impact of Heterotropic Allosteric Modulation on the Time-Dependent Inhibition of Cytochrome P450 3A4. Drug Metab Dispos 2023; 51:1372-1380. [PMID: 37524542 DOI: 10.1124/dmd.123.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The current study was designed to investigate the influence of allosteric effectors on the metabolism of the prototypical cytochrome P450 (CYP) 3A4 substrate midazolam (MDZ), and on the determination in vitro time-dependent inhibition (TDI) of CYP3A4 using human liver microsomes (HLM). As the concentration of midazolam increased to 250 µM in HLMs, homotropic cooperativity resulted in a decrease in the 1'-hydroxymidazolam to 4-hydroxymidazolam ratio to a maximum of 1.1. The presence of varying concentrations of testosterone, progesterone (PGS), or carbamazepine (CBZ) in HLMs with MDZ could recapitulate the effect of homotropic cooperativity such that the formation rates of the 1'hydroxymidazolam and 4-hydroxymidazolam were equal even at low concentrations of MDZ. The presence of PGS (10 or 100 µM) and CBZ (100 or 1000 µM) in in vitro TDI determination of four known CYP3A4 time-dependent inactivators (clarithromycin, troleandomycin, mibefradil, raloxifene) simultaneously decreased potency and inactivation rate constant, resulting in fold changes in inactivation efficiency on average of 1.6-fold and 13-fold for the low and high concentrations of allosteric modulator tested, respectively. The formation of a metabolic-intermediate complex (MIC) for clarithromycin and troleandomycin decreased in the presence of the allosteric modulators in a concentration-dependent manner, reaching a new steady state formation that could not be overcome with increased incubation time. Maximum reduction of the MIC formed by clarithromycin was up to ∼91%, while troleandomycin MIC decreased up to ∼31%. These findings suggest that the absence of endogenous allosteric modulators may contribute to the poor translation of HLM-based drug-drug interaction predictions. SIGNIFICANCE STATEMENT: The reported overprediction of in vitro human liver microsome time-dependent inhibition of CYP3A4 and observed drug interactions in vivo remains an issue in drug development. We provide characterization of allosteric modulators on the CYP3A4 metabolism of the prototypical substrate midazolam, demonstrating the ability of the modulators to recapitulate the homotropic cooperativity of midazolam. Furthermore, we demonstrate that allosteric heterotropic cooperativity of CYP3A4 can impact the time-dependent inhibition kinetics of known mechanisms-based inhibitors, providing a potential mechanism to explain the overprediction.
Collapse
Affiliation(s)
- Luc R A Rougée
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - David W Bedwell
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Kasi Hansen
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Trent L Abraham
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
2
|
Ramsden D, Perloff ES, Whitcher-Johnstone A, Ho T, Patel R, Kozminski KD, Fullenwider CL, Zhang JG. Predictive In Vitro-In Vivo Extrapolation for Time Dependent Inhibition of CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2D6 Using Pooled Human Hepatocytes, Human Liver Microsomes, and a Simple Mechanistic Static Model. Drug Metab Dispos 2021; 50:114-127. [PMID: 34789487 DOI: 10.1124/dmd.121.000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Inactivation of Cytochrome P450 (CYP450) enzymes can lead to significant increases in exposure of co-medicants. The majority of reported in vitro to in vivo extrapolation (IVIVE) data have historically focused on CYP3A4 leaving the assessment of other CYP isoforms insubstantial. To this end, the utility of human hepatocytes (HHEP) and microsome (HLM) to predict clinically relevant DDIs was investigated with a focus on CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2D6. Evaluation of IVIVE for CYP2B6 was limited to only weak inhibition. A search of the University of Washington Drug-Drug Interaction Database was conducted to identify a clinically relevant weak, moderate and strong inhibitor for selective substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2D6, resulting in 18 inhibitors for in vitro characterization against 119 clinical interaction studies. Pooled human hepatocytes and HLM were pre-incubated with increasing concentrations of inhibitors for designated timepoints. Time dependent inhibition (TDI) was detected in HLM for four moderate/strong inhibitors suggesting that some optimization of incubation conditions (i.e. lower protein concentrations) is needed to capture weak inhibition. Clinical risk assessment was conducted by incorporating the in vitro derived kinetic parameters kinact and KI into static equations recommended by regulatory authorities. Significant overprediction was observed when applying the basic models recommended by regulatory agencies. Mechanistic static models (MSM), which consider the fraction of metabolism through the impacted enzyme, using the unbound hepatic inlet concentration lead to the best overall prediction accuracy with 92% and 85% of data from HHEPs and HLM, respectively, within 2-fold of the observed value. Significance Statement Collectively, the data demonstrate that coupling time-dependent inactivation parameters derived from pooled human hepatocytes and HLM with a mechanistic static model provides an easy and quantitatively accurate means to determine clinical DDI risk from in vitro data. Weak and moderate inhibitors did not show TDI under standard incubation conditions using HLM and optimization of incubation conditions is warranted. Recommendations are made with respect to input parameters for IVIVE of TDI with non-CYP3A enzymes using available data from HLM and HHEPs.
Collapse
Affiliation(s)
| | - Elke S Perloff
- Corning Gentest Contract Research Services, United States
| | | | - Thuy Ho
- Corning Gentest Contract Research Services, United States
| | - Reena Patel
- Corning Gentest Contract Research Services, United States
| | - Kirk D Kozminski
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals Limited, United States
| | | | - J George Zhang
- Corning Gentest Contract Research Services, United States
| |
Collapse
|
3
|
Eng H, Tseng E, Cerny MA, Goosen TC, Obach RS. Cytochrome P450 3A Time-Dependent Inhibition Assays Are Too Sensitive for Identification of Drugs Causing Clinically Significant Drug-Drug Interactions: A Comparison of Human Liver Microsomes and Hepatocytes and Definition of Boundaries for Inactivation Rate Constants. Drug Metab Dispos 2021; 49:442-450. [PMID: 33811106 DOI: 10.1124/dmd.121.000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Time-dependent inhibition (TDI) of CYP3A is an important mechanism underlying numerous drug-drug interactions (DDIs), and assays to measure this are done to support early drug research efforts. However, measuring TDI of CYP3A in human liver microsomes (HLMs) frequently yields overestimations of clinical DDIs and thus can lead to the erroneous elimination of many viable drug candidates from further development. In this investigation, 50 drugs were evaluated for TDI in HLMs and suspended human hepatocytes (HHEPs) to define appropriate boundary lines for the TDI parameter rate constant for inhibition (kobs) at a concentration of 30 µM. In HLMs, a kobs value of 0.002 minute-1 was statistically distinguishable from control; however, many drugs show kobs greater than this but do not cause DDI. A boundary line defined by the drug with the lowest kobs that causes a DDI (diltiazem) was established at 0.01 minute-1 Even with this boundary, of the 33 drugs above this value, only 61% cause a DDI (true positive rate). A corresponding analysis was done using HHEPs; kobs of 0.0015 minute-1 was statistically distinguishable from control, and the boundary was established at 0.006 minute-1 Values of kobs in HHEPs were almost always lower than those in HLMs. These findings offer a practical guide to the use of TDI data for CYP3A in early drug-discovery research. SIGNIFICANCE STATEMENT: Time-dependent inhibition of CYP3A is responsible for many drug interactions. In vitro assays are employed in early drug research to identify and remove CYP3A time-dependent inhibitors from further consideration. This analysis demonstrates suitable boundaries for inactivation rates to better delineate drug candidates for their potential to cause clinically significant drug interactions.
Collapse
Affiliation(s)
- Heather Eng
- Medicine Design, Pfizer Inc., Groton, Connecticut
| | - Elaine Tseng
- Medicine Design, Pfizer Inc., Groton, Connecticut
| | | | | | | |
Collapse
|
4
|
Abstract
Inhibition of a drug-metabolizing enzyme by the reversible interaction of a drug with the enzyme, thus decreasing the metabolism of another drug, is a major cause of clinically significant drug-drug interactions. This chapter defines the four reversible mechanisms of inhibition exhibited by drugs: competitive, noncompetitive, uncompetitive, and mixed competitive/noncompetitive. An in vitro procedure to determine the potential of a drug to be a reversible inhibitor is also provided. Finally, a number of examples of clinically significant drug-drug interactions resulting from reversible inhibition are described.
Collapse
|
5
|
Abstract
The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system(s) under investigation. As a consequence, the apparent kinetic parameters, such as Km or Ki, that are derived can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components which can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.
Collapse
Affiliation(s)
- Nigel J Waters
- Preclinical Development, Black Diamond Therapeutics, Cambridge, MA, USA
| | - R Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
6
|
Pham C, Nagar S, Korzekwa K. Numerical analysis of time-dependent inhibition kinetics: comparison between rat liver microsomes and rat hepatocyte data for mechanistic model fitting. Xenobiotica 2020. [PMID: 28644704 DOI: 10.1080/00498254.2017.1345020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Time-dependent inhibition (TDI) may confound drug interaction predictions. Recently, models were generated for an array of TDI kinetic schemes using numerical analysis of microsomal assays. Additionally, a distinct terminal inactivation step was identified for certain mechanism based inhibitors (MBI) following reversible metabolite intermediate complex (MIC) formation. Longer hepatocyte incubations potentially allow analysis of slow TDI and terminal inactivation. In the experiments presented here, we compared the quality of TDI parameterization by numerical analysis between hepatocyte and microsomal data. Rat liver microsomes (RLM), suspended rat hepatocytes (SRH) and sandwich-cultured rat hepatocytes (SCRH) were incubated with the prototypical CYP3A MBI troleandomycin and the substrate midazolam. Data from RLM provided a better model fit as compared to SRH. Increased CYP3A expression after dexamethasone (DEX) induction improved the fit for RLM and SRH. A novel sequential kinetic scheme, defining inhibitor metabolite production prior to MIC formation, improved the fit compared to direct MIC formation. Furthermore, terminal inactivation rate constants were parameterized for RLM and SRH samples with DEX-induced CYP3A. The low expression of CYP3A and experimental error in SCRH resulted in poor data for model fitting. Overall, RLM generated data better suited for elucidation of TDI mechanisms by numerical analysis.
Collapse
Affiliation(s)
- Chuong Pham
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
7
|
Chanteux H, Rosa M, Delatour C, Nicolaï J, Gillent E, Dell'Aiera S, Ungell AL. Application of Azamulin to Determine the Contribution of CYP3A4/5 to Drug Metabolic Clearance Using Human Hepatocytes. Drug Metab Dispos 2020; 48:778-787. [PMID: 32532738 DOI: 10.1124/dmd.120.000017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022] Open
Abstract
Early determination of CYP3A4/5 contribution to the clearance of new chemical entities is critical to inform on the risk of drug-drug interactions with CYP3A inhibitors and inducers. Several in vitro approaches (recombinant P450 enzymes, correlation analysis, chemical and antibody inhibition in human liver microsomes) are available, but they are usually labor-intensive and/or suffer from specific limitations. In the present study, we have validated the use of azamulin as a specific CYP3A inhibitor in human hepatocytes. Azamulin (3 µM) was found to significantly inhibit CYP3A4/5 (>90%), whereas other P450 enzymes were not affected (less than 20% inhibition). Because human hepatocytes were used as a test system, the effect of azamulin on other key drug-metabolizing enzymes (aldehyde oxidase, carboxylesterase, UGT, flavin monooxygenase, and sulfotransferase) was also investigated. Apart from some UGTs showing minor inhibition (∼20%-30%), none of these non-P450 enzymes were inhibited by azamulin. Use of CYP3A5-genotyped human hepatocyte batches in combination with CYP3cide demonstrated that azamulin (at 3 µM) inhibits both CYP3A4 and CYP3A5 enzymes. Finally, 11 compounds with known in vivo CYP3A4/5 contribution have been evaluated in this human hepatocyte assay. Results showed that the effect of azamulin on the in vitro intrinsic clearance of these known CYP3A4/5 substrates was predictive of the in vivo CYP3A4/5 contribution. Overall, the study showed that human hepatocytes treated with azamulin provide a fast and accurate estimation of CYP3A4/5 contribution in metabolic clearance of new chemical entities. SIGNIFICANCE STATEMENT: Accurate estimation of CYP3A4/5 contribution in drug clearance is essential to anticipate risk of drug-drug interactions and select the appropriate candidate for clinical development. The present study validated the use of azamulin as selective CYP3A4/5 inhibitor in suspended human hepatocytes and demonstrated that this novel approach provides a direct and accurate determination of the contribution of CYP3A4/5 (fraction metabolized by CYP3A4/5) in the metabolic clearance of new chemical entities.
Collapse
Affiliation(s)
| | - Maria Rosa
- UCB Biopharma SRL, Braine-l'Alleud, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
9
|
Tres F, Posada MM, Hall SD, Mohutsky MA, Taylor LS. The Effect of Promiscuous Aggregation on in Vitro Drug Metabolism Assays. Pharm Res 2019; 36:170. [PMID: 31654151 DOI: 10.1007/s11095-019-2713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/09/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Many bioactive molecules show a type of solution phase behavior, termed promiscuous aggregation, whereby at micromolar concentrations, colloidal drug-rich aggregates are formed in aqueous solution. These aggregates are known to be a major cause of false positives and false negatives in select enzymatic high-throughput screening assays. The goal of this study was to investigate the impact of drug-rich aggregates on in vitro drug screening metabolism assays. METHODS Cilnidipine was selected as an aggregate former and its impact on drug metabolism was evaluated against rCYP2D6, rCYP1A2, rCYP2C9 and human liver microsomes. RESULTS The cilnidipine aggregates were shown to non-specifically inhibit multiple cytochrome P450 enzymes with an IC50 comparable with the IC50 of potent model inhibitors. CONCLUSIONS This newly demonstrated mode of "promiscuous inhibition" is of great importance as it can lead to false positives during drug metabolism evaluations and thus it needs to be considered in the future to better predict in vivo drug-drug interactions.
Collapse
Affiliation(s)
- Francesco Tres
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Maria M Posada
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, 46285, USA
| | - Stephen D Hall
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, 46285, USA
| | - Michael A Mohutsky
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, 46285, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
10
|
Palacharla VRC, Chunduru P, Ajjala DR, Bhyrapuneni G, Nirogi R, Li AP. Development and Validation of a Higher-Throughput Cytochrome P450 Inhibition Assay with the Novel Cofactor-Supplemented Permeabilized Cryopreserved Human Hepatocytes (MetMax Human Hepatocytes). Drug Metab Dispos 2019; 47:1032-1039. [PMID: 31375472 DOI: 10.1124/dmd.119.088237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
Abstract
Here, we report the application of a novel hepatocyte system, the cofactor-supplemented permeabilized cryopreserved human hepatocytes [MetMax human hepatocytes (MMHHs)] in a higher-throughput 384-well plate assay for the evaluation of cytochrome P450 (P450) inhibition. The assay was created to develop physiologically relevant P450 inhibition information, taking advantage of the complete organelle composition and their associated drug-metabolizing enzymes of the MMHH but with the ease of use of human liver microsomes, including storage at -80°C instead of in liquid nitrogen, and thaw and use without centrifugation and microscopic evaluation as required for intact hepatocytes. Nine key P450 isoforms for drug metabolism (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were evaluated using multiple isoform-selective inhibitors. Results with MMHH were found to be comparable to those obtained with intact cryopreserved human hepatocytes (CHHs). Isoform-selective drug-metabolizing enzyme pathways evaluated were phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), amodiaquine N-deethylation (CYP2C8), diclofenac 4-hydroxylation (CYP2C9), s-mephenytoin 4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation and testosterone 6β-hydroxylation (CYP3A4). The Km values obtained with MMHHs were comparable with those reported in the literature for CHHs. Using substrate concentrations at or near Km values, the IC50 values for the standard inhibitors against the P450 activities were found to be comparable between MMHHs and CHHs, with 73% and 84% of values falling within 2-fold and 3-fold, respectively, from the line of unity. The results indicate that MMHHs can be an efficient experimental system for the evaluation of P450 inhibition in hepatocytes. SIGNIFICANCE STATEMENT: MetMax human hepatocytes (MMHHs) are cofactor-supplemented cryopreserved human hepatocytes with the complete drug-metabolizing enzyme pathways of the conventional hepatocytes but with the convenience of human liver microsomes, including storage at -80°C instead of in liquid nitrogen, and direct thaw and use without a need for centrifugation and microscopic examination. Here, we report the application of MMHH in a high-throughput assay in a 384-well plate format for the evaluation of cytochrome P450 (P450) inhibition. Our results show that data obtained with MMHH are similar to those with conventional hepatocytes, suggesting that the MMHH 384-well P450 inhibition assay can be used routinely for the evaluation of drug-drug interaction potential of new chemical entities in drug development.
Collapse
Affiliation(s)
- Veera Raghava Choudary Palacharla
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd., Jeedimetla, Hyderabad, India (V.R.C.P., G.B., R.N.); Bio-analysis, Suven Life Sciences Ltd., Pashamylaram, Medak, India (P.C., D.R.A.); and In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.)
| | - Prathyusha Chunduru
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd., Jeedimetla, Hyderabad, India (V.R.C.P., G.B., R.N.); Bio-analysis, Suven Life Sciences Ltd., Pashamylaram, Medak, India (P.C., D.R.A.); and In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.)
| | - Devender Reddy Ajjala
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd., Jeedimetla, Hyderabad, India (V.R.C.P., G.B., R.N.); Bio-analysis, Suven Life Sciences Ltd., Pashamylaram, Medak, India (P.C., D.R.A.); and In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.)
| | - Gopinadh Bhyrapuneni
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd., Jeedimetla, Hyderabad, India (V.R.C.P., G.B., R.N.); Bio-analysis, Suven Life Sciences Ltd., Pashamylaram, Medak, India (P.C., D.R.A.); and In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.)
| | - Ramakrishna Nirogi
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd., Jeedimetla, Hyderabad, India (V.R.C.P., G.B., R.N.); Bio-analysis, Suven Life Sciences Ltd., Pashamylaram, Medak, India (P.C., D.R.A.); and In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.)
| | - Albert P Li
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd., Jeedimetla, Hyderabad, India (V.R.C.P., G.B., R.N.); Bio-analysis, Suven Life Sciences Ltd., Pashamylaram, Medak, India (P.C., D.R.A.); and In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.)
| |
Collapse
|
11
|
In Vitro Assessment of Potential for CYP-Inhibition-Based Drug-Drug Interaction Between Vonoprazan and Clopidogrel. Eur J Drug Metab Pharmacokinet 2019; 44:217-227. [PMID: 30361928 DOI: 10.1007/s13318-018-0521-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES It was recently proposed that CYP-mediated drug-drug interactions (DDIs) of vonoprazan with clopidogrel and prasugrel can attenuate the antiplatelet actions of the latter two drugs. Clopidogrel is metabolized to the pharmacologically active metabolite H4 and its isomers by multiple CYPs, including CYP2C19 and CYP3A4. Therefore, to investigate the possibility of CYP-based DDIs, in vitro metabolic inhibition studies using CYP probe substrates or radiolabeled clopidogrel and human liver microsomes (HLMs) were conducted in this work. METHODS Reversible inhibition studies focusing on the effects of vonoprazan on CYP marker activities and the formation of the [14C]clopidogrel metabolite H4 were conducted with and without pre-incubation using HLMs. Time-dependent inhibition (TDI) kinetics were also measured. RESULTS It was found that vonoprazan is not a significant direct inhibitor of any CYP isoforms (IC50 ≥ 16 μM), but shows the potential for TDI of CYP2B6, CYP2C19, and CYP3A4/5. This TDI was weaker than the inhibition induced by the corresponding reference inhibitors ticlopidine, esomeprazole, and verapamil, based on the measured potencies (kinact/KI ratio and the R2 value). In a more direct in vitro experiment, vonoprazan levels of up to 10 µM (a 100-fold higher concentration than the plasma Cmax of 75.9 nM after taking 20 mg once daily for 7 days) did not suppress the formation of the active metabolite H4 or other oxidative metabolites of [14C]clopidogrel in a reversible or time-dependent manner. Additionally, an assessment of clinical trials and post-marketing data suggested no evidence of a DDI between vonoprazan and clopidogrel. CONCLUSIONS The body of evidence shows that the pharmacodynamic DDI reported between vonoprazan and clopidogrel is unlikely to be caused by the inhibition of CYP2B6, CYP2C19, or CYP3A4/5 by vonoprazan.
Collapse
|
12
|
Kimoto E, Vourvahis M, Scialis RJ, Eng H, Rodrigues AD, Varma MVS. Mechanistic Evaluation of the Complex Drug-Drug Interactions of Maraviroc: Contribution of Cytochrome P450 3A, P-Glycoprotein and Organic Anion Transporting Polypeptide 1B1. Drug Metab Dispos 2019; 47:493-503. [DOI: 10.1124/dmd.118.085241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
|
13
|
Ou Y, Xu Y, Gore L, Harvey RD, Mita A, Papadopoulos KP, Wang Z, Cutler RE, Pinchasik DE, Tsimberidou AM. Physiologically-based pharmacokinetic modelling to predict oprozomib CYP3A drug-drug interaction potential in patients with advanced malignancies. Br J Clin Pharmacol 2018; 85:530-539. [PMID: 30428505 DOI: 10.1111/bcp.13817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS Oprozomib is an oral, second-generation, irreversible proteasome inhibitor currently in clinical development for haematologic malignancies, including multiple myeloma and other malignancies. Oprozomib is a rare example of a small molecule drug that demonstrates cytochrome P450 (CYP) mRNA suppression. This unusual property elicits uncertainty regarding the optimal approach for predicting its drug-drug interaction (DDI) risk. The current study aims to understand DDI potential during early clinical development of oprozomib. METHODS To support early development of oprozomib (e.g. inclusion/exclusion criteria, combination study design), we used human hepatocyte data and physiologically-based pharmacokinetic (PBPK) modelling to predict its CYP3A4-mediated DDI potential. Subsequently, a clinical DDI study using midazolam as the substrate was conducted in patients with advanced malignancies. RESULTS The clinical DDI study enrolled a total of 21 patients, 18 with advanced solid tumours. No patient discontinued oprozomib due to a treatment-related adverse event. The PBPK model prospectively predicted oprozomib 300 mg would not cause a clinically relevant change in exposure to CYP3A4 substrates (≤30%), which was confirmed by the results of this clinical DDI study. CONCLUSIONS These results indicate oprozomib has a low potential to inhibit the metabolism of CYP3A4 substrates in humans. The study shows that cultured human hepatocytes are a more reliable system for DDI prediction than human liver microsomes for studying this class of compounds. Developing a PBPK model prior to a clinical DDI study has been valuable in supporting clinical development of oprozomib.
Collapse
Affiliation(s)
- Ying Ou
- Amgen Inc., South San Francisco, CA, USA
| | - Yang Xu
- Amgen Inc., Thousand Oaks, CA, USA
| | - Lia Gore
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R Donald Harvey
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Alain Mita
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Richard E Cutler
- Onyx Pharmaceuticals, Inc., an Amgen subsidiary, South San Francisco, CA, USA
| | | | | |
Collapse
|
14
|
Yadav J, Korzekwa K, Nagar S. Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A. Mol Pharm 2018; 15:1979-1995. [PMID: 29608318 PMCID: PMC5938745 DOI: 10.1021/acs.molpharmaceut.8b00129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Time-dependent inactivation (TDI) of cytochrome P450s (CYPs) is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to overpredict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human-liver microsomes. The inhibitors evaluated included troleandomycin (TAO), erythromycin (ERY), verapamil (VER), and diltiazem (DTZ) along with the primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (NDD). The complexities incorporated into the models included multiple-binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The resulting inactivation parameters were incorporated into static in vitro-in vivo correlation (IVIVC) models to predict clinical DDIs. For 77 clinically observed DDIs, with a hepatic-CYP3A-synthesis-rate constant of 0.000 146 min-1, the average fold difference between the observed and predicted DDIs was 3.17 for the standard replot method and 1.45 for the numerical method. Similar results were obtained using a synthesis-rate constant of 0.000 32 min-1. These results suggest that numerical methods can successfully model complex in vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
15
|
Umehara KI, Huth F, Won CS, Heimbach T, He H. Verification of a physiologically based pharmacokinetic model of ritonavir to estimate drug-drug interaction potential of CYP3A4 substrates. Biopharm Drug Dispos 2018; 39:152-163. [DOI: 10.1002/bdd.2122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ken-ichi Umehara
- PK Sciences, Novartis Institutes for BioMedical Research; CH-4002 Basel Switzerland
| | - Felix Huth
- PK Sciences, Novartis Institutes for BioMedical Research; CH-4002 Basel Switzerland
| | - Christina S. Won
- PK Sciences, Novartis Institutes for BioMedical Research; East Hanover NJ 07936 USA
| | - Tycho Heimbach
- PK Sciences, Novartis Institutes for BioMedical Research; East Hanover NJ 07936 USA
| | - Handan He
- PK Sciences, Novartis Institutes for BioMedical Research; East Hanover NJ 07936 USA
| |
Collapse
|
16
|
Colín-Lozano B, Estrada-Soto S, Chávez-Silva F, Gutiérrez-Hernández A, Cerón-Romero L, Giacoman-Martínez A, Almanza-Pérez JC, Hernández-Núñez E, Wang Z, Xie X, Cappiello M, Balestri F, Mura U, Navarrete-Vazquez G. Design, Synthesis and in Combo Antidiabetic Bioevaluation of Multitarget Phenylpropanoic Acids. Molecules 2018; 23:molecules23020340. [PMID: 29415496 PMCID: PMC6017591 DOI: 10.3390/molecules23020340] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022] Open
Abstract
We have synthesized a small series of five 3-[4-arylmethoxy)phenyl]propanoic acids employing an easy and short synthetic pathway. The compounds were tested in vitro against a set of four protein targets identified as key elements in diabetes: G protein-coupled receptor 40 (GPR40), aldose reductase (AKR1B1), peroxisome proliferator-activated receptor gama (PPARγ) and solute carrier family 2 (facilitated glucose transporter), member 4 (GLUT-4). Compound 1 displayed an EC50 value of 0.075 μM against GPR40 and was an AKR1B1 inhibitor, showing IC50 = 7.4 μM. Compounds 2 and 3 act as slightly AKR1B1 inhibitors, potent GPR40 agonists and showed an increase of 2 to 4-times in the mRNA expression of PPARγ, as well as the GLUT-4 levels. Docking studies were conducted in order to explain the polypharmacological mode of action and the interaction binding mode of the most active molecules on these targets, showing several coincidences with co-crystal ligands. Compounds 1–3 were tested in vivo at an explorative 100 mg/kg dose, being 2 and 3 orally actives, reducing glucose levels in a non-insulin-dependent diabetes mice model. Compounds 2 and 3 displayed robust in vitro potency and in vivo efficacy, and could be considered as promising multitarget antidiabetic candidates. This is the first report of a single molecule with these four polypharmacological target action.
Collapse
Affiliation(s)
- Blanca Colín-Lozano
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Fabiola Chávez-Silva
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | | | - Litzia Cerón-Romero
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| | - Julio Cesar Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Yucatán 97310, Mexico.
| | - Zhilong Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, (Z.W.).
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, (Z.W.).
| | - Mario Cappiello
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Francesco Balestri
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Umberto Mura
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Gabriel Navarrete-Vazquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
17
|
Kosaka M, Kosugi Y, Hirabayashi H. Risk Assessment Using Cytochrome P450 Time-Dependent Inhibition Assays at Single Time and Concentration in the Early Stage of Drug Discovery. J Pharm Sci 2017; 106:2839-2846. [DOI: 10.1016/j.xphs.2017.04.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
|
18
|
Sohlenius-Sternbeck AK, Meyerson G, Hagbjörk AL, Juric S, Terelius Y. A strategy for early-risk predictions of clinical drug-drug interactions involving the GastroPlus TM DDI module for time-dependent CYP inhibitors. Xenobiotica 2017; 48:348-356. [PMID: 28443803 DOI: 10.1080/00498254.2017.1323136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. A set of reference compounds for time-dependent inhibition (TDI) of cytochrome P450 with available literature data for kinact and KI was used to predict clinical implications using the GastroPlusTM software. Comparisons were made to in vivo literature interaction data. 2. The predicted AUC ratios (AUC+inhibitor/AUCcontrol) could be compared with the observed ratios from literature for all compounds with detailed information about in vivo administration, pharmacokinetics and in vivo interactions (N = 21). For this dataset, the difference between predicted and observed AUC ratios for interactions with midazolam was within twofold for all compounds except one (telaprevir, for which non-CYP-mediated metabolism likely plays a role after multiple dosing). 3. The sensitivity, specificity and accuracy of the GastroPlusTM predictions using a binary classification as no-to-weak interaction versus moderate-to-strong interaction for all compounds with available in vivo interaction data, were 80%, 82% and 81%, respectively (N = 31). 4. As a result of our evaluations of the DDI module in GastroPlusTM, we have implemented an early TDI risk assessment decision tree for our drug discovery projects involving in vitro screening and early GastroPlusTM predictions. Shifted IC50 values are determined and kinact/KI estimated (by using a regression line established with in house-shifted IC50 values and literature kinact/KI ratios), followed by GastroPlusTM predictions.
Collapse
|
19
|
Synthesis and In Vitro AMPK Activation of Cycloalkyl/Alkarylbiguanides with Robust In Vivo Antihyperglycemic Action. J CHEM-NY 2017. [DOI: 10.1155/2017/1212609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work describes the design, synthesis in one step, and the in vitro, in vivo, and in silico antidiabetic evaluation of a series of ten alicyclic and aromatic (alkyl +aryl: alkaryl)biguanides, analogues of metformin and phenformin. The design was conceived using isosteric replacement, chain-ring transformation, and lower and higher homologation strategies. All compounds were obtained as crystals and their structure was confirmed on the basis of their spectral data (NMR and mass spectra), and their purity was ascertained by microanalysis. Compounds were in vitro evaluated as activators of AMP-Activated Protein Kinase (AMPK). The results indicated that compounds 4, 5, and 6 showed similar or even better effect compared to metformin. Docking analysis was performed with regulatory subunit γ of AMPK, showing several interactions with nucleotide binding pocket. The in vivo evaluation of compounds 4–6 at a single dose of 50 mg/kg was performed in a murine experimental model of diabetes. The results showed an important and robust decrease of plasmatic glucose levels (−40%). Compound 6 was selected for an oral glucose tolerance test, showing an antihyperglycemic effect similar to metformin. The in vivo results indicated that compounds 4–6 may be effective in treating experimental T2DM.
Collapse
|
20
|
Templeton I, Ravenstijn P, Sensenhauser C, Snoeys J. A physiologically based pharmacokinetic modeling approach to predict drug-drug interactions between domperidone and inhibitors of CYP3A4. Biopharm Drug Dispos 2016; 37:15-27. [PMID: 26356245 DOI: 10.1002/bdd.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 08/29/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Domperidone is a dopamine receptor antagonist and a substrate of CYP3A4, hence there is a potential for CYP3A inhibition-based drug-drug interactions (DDI). A physiologically based pharmacokinetic model was developed to describe DDIs between domperidone and three different inhibitors of CYP3A4. Simcyp V13.1 was used to simulate human domperidone pharmacokinetics and DDIs. Inputs included domperidone chemical and physical properties (LogP, pKa, etc.), in vitro human liver microsomal data and pharmacokinetic parameters from single-dose intravenous clinical studies in healthy participants. The simulated mean maximum domperidone plasma concentration and AUC after single- and multiple-oral doses under diverse conditions were within 1.1-1.4 fold of the observed values. The simulated intestinal availability, hepatic availability and the fraction absorbed were 0.45 ± 0.14, 0.31 ± 0.10 and 0.89 ± 0.11, respectively, and comparable to observed in vivo values. The simulated ratios of AUC and C(max) in the presence of ketoconazole, erythromycin or itraconazole to baseline were consistent with the observed ratios. Simulated ketoconazole, erythromycin, itraconazole and C(max,ss) and AUC(ss) were within 1.5-fold of the observed values.
Collapse
Affiliation(s)
- Ian Templeton
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Paulien Ravenstijn
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Jan Snoeys
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
21
|
Yang X, Duan J, Fisher J. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults. PLoS One 2016; 11:e0164641. [PMID: 27723791 PMCID: PMC5056674 DOI: 10.1371/journal.pone.0164641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022] Open
Abstract
A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations.
Collapse
Affiliation(s)
- Xiaoxia Yang
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| | - John Duan
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jeffrey Fisher
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| |
Collapse
|
22
|
Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 2016; 48:405-33. [PMID: 27320797 DOI: 10.1080/03602532.2016.1195403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.
Collapse
Affiliation(s)
- Sung-Mi Kim
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - YongQiang Wang
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Noushin Nabavi
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Yi Liu
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Maria Almira Correia
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA ;,b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA ;,c Department of Bioengineering and Therapeutic Sciences , University of California San Francisco , San Francisco , CA , USA ;,d The Liver Center, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
23
|
Zetterberg C, Maltais F, Laitinen L, Liao S, Tsao H, Chakilam A, Hariparsad N. VX-509 (Decernotinib)-Mediated CYP3A Time-Dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions. Drug Metab Dispos 2016; 44:1286-95. [DOI: 10.1124/dmd.116.071100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
|
24
|
Pharmacological profile of N-(2,6-dichlorophenyl)-2-(4-methyl-1-piperidinyl)acetamide, a novel analogue of lidocaine. Life Sci 2016; 155:48-55. [PMID: 27181746 DOI: 10.1016/j.lfs.2016.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/21/2023]
Abstract
AIM N-(2,6-Dichlorophenyl)-2-(4-methyl-1-piperidinyl)acetamide (LIA), a lidocaine analogue, has potential applications in treating neuropathic pain. The aim of this work was to characterize the pharmacological activity of LIA related with central nervous system and cardiovascular activity. METHODS Anesthetic effect was tested in guinea pigs and mice. Ambulatory activity, anti-anxiety effect, sodium pentobarbital (PB)-induced hypnosis and pentylenetetrazol (PTZ)-induced seizures test were evaluated in mice to determine the possible central nervous system activity. The cardiovascular activities in vivo and ex vivo were analyzed in rats. KEY FINDINGS LIA (2%) presents, similar to lidocaine (2%), anesthetic activity on the corneal reflex, infiltration anesthesia and tail immersion test. LIA (1-100mg/kg, i.p.), similar to lidocaine (1-100mg/kg, i.p.), presents a dose-dependent sedative-hypnotic effect in mice. Both compounds did not produce anti-anxiety activity in mice. LIA did not prevent PTZ-induced seizures. However, LIA itself did not produce seizures at high doses in mice, as lidocaine does. LIA is a vasorelaxant compound for smooth muscle cells and presents hypotensive effect in vivo without increments to the heart rate significantly. SIGNIFICANCE High doses of lidocaine produce seizures and vasoconstriction. In this study, we found that LIA shares a similar pharmacological profile as lidocaine's but without the primary adverse effects of seizures and vasoconstriction.
Collapse
|
25
|
Navarrete-Vázquez G, Austrich-Olivares A, Godínez-Chaparro B, Hidalgo-Figueroa S, Estrada-Soto S, Hernández-Núñez E, Torres-Gómez H, Schepmann D, Wünsch B. Discovery of 2-(3,4-dichlorophenoxy)-N-(2-morpholin-4-ylethyl)acetamide: A selective σ1 receptor ligand with antinociceptive effect. Biomed Pharmacother 2016; 79:284-93. [PMID: 27044839 DOI: 10.1016/j.biopha.2016.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Compound 2-(3,4-dichlorophenoxy)-N-(2-morpholin-4-ylethyl)acetamide (1) was designed, prepared and the in vitro binding evaluation against σ1 and σ2 receptors was measured. Compound 1 showed high σ1 receptor affinity (Ki=42 nM) and it was 36-times more selective for σ1 than σ2 receptor. Also, it was performed a molecular docking of compound 1 into the ligand binding pocket homology model of σ1 receptor, showing a salt bridge between the ionized morpholine ring and Asp126, as well as important short contacts with residues Tyr120, His154 and Trp164. Ligand efficiency indexes and predicted toxicity analysis revealed an excellent intrinsic quality of 1. The antinociceptive effect of compound 1 was determined using the formalin test. The ipsilateral local peripheral (10-300 μg/paw) and intrathecal (100 μg/rat) administration of 1 produced a reduction in formalin-induced nociception. The in vivo results indicated that 1 may be effective in treating inflammatory pain.
Collapse
Affiliation(s)
- Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico.
| | - Amaya Austrich-Olivares
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México D.F., 04960, Mexico, Mexico
| | - Sergio Hidalgo-Figueroa
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico, Mexico
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, 97310 Yucatán, Mexico, Mexico
| | - Héctor Torres-Gómez
- Institute for Chemistry and Chemical Biology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland, Switzerland; Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany, Germany
| |
Collapse
|
26
|
Evaluation of Time Dependent Inhibition Assays for Marketed Oncology Drugs: Comparison of Human Hepatocytes and Liver Microsomes in the Presence and Absence of Human Plasma. Pharm Res 2016; 33:1204-19. [DOI: 10.1007/s11095-016-1865-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/21/2016] [Indexed: 01/29/2023]
|
27
|
Sprouse AA, van Breemen RB. Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements. Drug Metab Dispos 2016; 44:162-71. [PMID: 26438626 PMCID: PMC4727115 DOI: 10.1124/dmd.115.066902] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022] Open
Abstract
The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug-botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John's wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug-botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug-botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism.
Collapse
Affiliation(s)
- Alyssa A Sprouse
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois
| | - Richard B van Breemen
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois
| |
Collapse
|
28
|
Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification. Drug Metab Dispos 2015; 43:1823-37. [PMID: 26296709 DOI: 10.1124/dmd.115.065920] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022] Open
Abstract
Modeling and simulation of drug disposition has emerged as an important tool in drug development, clinical study design and regulatory review, and the number of physiologically based pharmacokinetic (PBPK) modeling related publications and regulatory submissions have risen dramatically in recent years. However, the extent of use of PBPK modeling by researchers, and the public availability of models has not been systematically evaluated. This review evaluates PBPK-related publications to 1) identify the common applications of PBPK modeling; 2) determine ways in which models are developed; 3) establish how model quality is assessed; and 4) provide a list of publically available PBPK models for sensitive P450 and transporter substrates as well as selective inhibitors and inducers. PubMed searches were conducted using the terms "PBPK" and "physiologically based pharmacokinetic model" to collect published models. Only papers on PBPK modeling of pharmaceutical agents in humans published in English between 2008 and May 2015 were reviewed. A total of 366 PBPK-related articles met the search criteria, with the number of articles published per year rising steadily. Published models were most commonly used for drug-drug interaction predictions (28%), followed by interindividual variability and general clinical pharmacokinetic predictions (23%), formulation or absorption modeling (12%), and predicting age-related changes in pharmacokinetics and disposition (10%). In total, 106 models of sensitive substrates, inhibitors, and inducers were identified. An in-depth analysis of the model development and verification revealed a lack of consistency in model development and quality assessment practices, demonstrating a need for development of best-practice guidelines.
Collapse
Affiliation(s)
- Jennifer E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Jingjing Yu
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | | | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Takagi M, Sakamoto M, Itoh T, Fujiwara R. Underlying mechanism of drug–drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8. Drug Metab Pharmacokinet 2015. [DOI: 10.1016/j.dmpk.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Li AP. Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOC(TM)) System. Toxicol Res 2015; 31:137-49. [PMID: 26191380 PMCID: PMC4505344 DOI: 10.5487/tr.2015.31.2.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/26/2022] Open
Abstract
Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045
| |
Collapse
|
31
|
Liu Y, Flynn TJ. CYP3A4 inhibition by Psoralea corylifolia and its major components in human recombinant enzyme, differentiated human hepatoma HuH-7 and HepaRG cells. Toxicol Rep 2015; 2:530-534. [PMID: 28962388 PMCID: PMC5598390 DOI: 10.1016/j.toxrep.2015.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 11/28/2022] Open
Abstract
Psoralea corylifolia, psoralen and isopsoralen are in vitro CYP3A4 inhibitors. CYP3A4 inhibition could happen at concentrations relevant to in vivo exposures. Multiple in vitro systems are needed when evaluating CYP3A4 inhibition.
Psoralea corylifolia (P. corylifolia) is a medicinal plant used primarily in herbal dietary supplements to treat skin diseases, such as vitiligo and psoriasis. Case reports of liver toxicity have recently emerged from its use, which often includes co-administration with other herbal products. In this study, CYP3A4 inhibition and hepatotoxicity of P. corylifolia and its major components were evaluated in human recombinant CYP3A4 enzyme, differentiated human hepatoma HuH-7 and HepaRG cells. LC/MS-TOF was used to identify the major components of P. corylifolia fruit methanol–water extract. P. corylifolia and its major bioactive components psoralen and isopsoralen were then incubated with human recombinant CYP3A4 (10 min) or differentiated HuH-7 and HepaRG cells (24 h) prior to CYP3A4 activity and cytotoxicity assays. P. corylifolia extract, psoralen, and isopsoralen concentration dependently inhibited CYP3A4 activity with different potency in the three in vitro systems. No cytotoxicity was observed at any concentration tested. In vitro CYP3A4 inhibition by P. corylifolia and its major components suggests potential drug–dietary supplement interactions that warrant further investigations in vivo.
Collapse
Affiliation(s)
- Yitong Liu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Thomas J Flynn
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
32
|
Sun J, Peng Y, Wu H, Zhang X, Zhong Y, Xiao Y, Zhang F, Qi H, Shang L, Zhu J, Sun Y, Liu K, Liu J, A J, Ho RJY, Wang G. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms. Drug Metab Dispos 2015; 43:713-24. [PMID: 25681130 DOI: 10.1124/dmd.114.060905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction.
Collapse
Affiliation(s)
- Jianguo Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Ying Peng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Hui Wu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Xueyuan Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Yunxi Zhong
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Yanan Xiao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Fengyi Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Huanhuan Qi
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Lili Shang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Jianping Zhu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Yue Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Ke Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Jinghan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Jiye A
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Rodney J Y Ho
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines (J.S., Y.P., H.W., X.Z., Y.Z., Y.X., F.Z., H.Q., L.S., J.Z., Y.S., K.L., J.A., G.W.), and Department of Natural Medicinal Chemistry (J.L.), China Pharmaceutical University, Nanjing, China; and Department of Pharmaceutics, University of Washington, Seattle, Washington (R.J.Y.H.)
| |
Collapse
|
33
|
Wang Y, Kim SM, Trnka MJ, Liu Y, Burlingame AL, Correia MA. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes. J Biol Chem 2014; 290:3308-32. [PMID: 25451919 DOI: 10.1074/jbc.m114.611525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate recruitment, an important step in CYP3A4 proteasomal degradation.
Collapse
Affiliation(s)
- YongQiang Wang
- From the Departments of Cellular and Molecular Pharmacology
| | - Sung-Mi Kim
- From the Departments of Cellular and Molecular Pharmacology
| | | | - Yi Liu
- From the Departments of Cellular and Molecular Pharmacology
| | | | - Maria Almira Correia
- From the Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco, San Francisco, California 94158-2517
| |
Collapse
|
34
|
Navarrete-Vázquez G, Torres-Gómez H, Hidalgo-Figueroa S, Ramírez-Espinosa JJ, Estrada-Soto S, Medina-Franco JL, León-Rivera I, Alarcón-Aguilar FJ, Almanza-Pérez JC. Synthesis, in vitro and in silico studies of a PPARγ and GLUT-4 modulator with hypoglycemic effect. Bioorg Med Chem Lett 2014; 24:4575-4579. [DOI: 10.1016/j.bmcl.2014.07.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
|
35
|
Korzekwa K, Tweedie D, Argikar UA, Whitcher-Johnstone A, Bell L, Bickford S, Nagar S. A numerical method for analysis of in vitro time-dependent inhibition data. Part 2. Application to experimental data. Drug Metab Dispos 2014; 42:1587-95. [PMID: 24939653 DOI: 10.1124/dmd.114.058297] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Time-dependent inhibition (TDI) of cytochrome P450 enzymes is an important cause of drug-drug interactions. The standard approach to characterize the kinetics of TDI is to determine the rate of enzyme loss, kobs, at various inhibitor concentrations, [I], and replot the kobs versus [I] to obtain the key kinetic parameters, KI and kinact. In our companion manuscript (Part 1; Nagar et al., 2014) in this issue of Drug Metabolism and Disposition, we used simulated datasets to develop and test a new numerical method to analyze in vitro TDI data. Here, we have applied this numerical method to five TDI datasets. Experimental datasets include the inactivation of CYP2B6, CYP2C8, and CYP3A4. None of the datasets exhibited Michaelis-Menten-only kinetics, and the numerical method allowed use of more complex models to fit each dataset. Quasi-irreversible as well as partial inhibition kinetics were observed and parameterized. Three datasets required the use of a multiple-inhibitor binding model. The mechanistic and clinical implications provided by these analyses are discussed. Together with the results in Part 1, we have developed and applied a new numerical method for analysis of in vitro TDI data. This method appears to be generally applicable to model in vitro TDI data with atypical and complex kinetic schemes.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (K.K., S.N.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.T., A.W.-J.); and Analytical Sciences and Imaging (U.A.A.) and Metabolism and Pharmacokinetics (L.B., S.B.), Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts
| | - Donald Tweedie
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (K.K., S.N.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.T., A.W.-J.); and Analytical Sciences and Imaging (U.A.A.) and Metabolism and Pharmacokinetics (L.B., S.B.), Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts
| | - Upendra A Argikar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (K.K., S.N.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.T., A.W.-J.); and Analytical Sciences and Imaging (U.A.A.) and Metabolism and Pharmacokinetics (L.B., S.B.), Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts
| | - Andrea Whitcher-Johnstone
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (K.K., S.N.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.T., A.W.-J.); and Analytical Sciences and Imaging (U.A.A.) and Metabolism and Pharmacokinetics (L.B., S.B.), Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts
| | - Leslie Bell
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (K.K., S.N.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.T., A.W.-J.); and Analytical Sciences and Imaging (U.A.A.) and Metabolism and Pharmacokinetics (L.B., S.B.), Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts
| | - Shari Bickford
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (K.K., S.N.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.T., A.W.-J.); and Analytical Sciences and Imaging (U.A.A.) and Metabolism and Pharmacokinetics (L.B., S.B.), Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (K.K., S.N.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut (D.T., A.W.-J.); and Analytical Sciences and Imaging (U.A.A.) and Metabolism and Pharmacokinetics (L.B., S.B.), Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts
| |
Collapse
|
36
|
Navarrete-Vázquez G, Morales-Vilchis MG, Estrada-Soto S, Ramírez-Espinosa JJ, Hidalgo-Figueroa S, Nava-Zuazo C, Tlahuext H, Leon-Rivera I, Medina-Franco JL, López-Vallejo F, Webster SP, Binnie M, Ortiz-Andrade R, Moreno-Diaz H. Synthesis of 2-{2-[(α/β-naphthalen-1-ylsulfonyl)amino]-1,3-thiazol-4-yl} acetamides with 11β-hydroxysteroid dehydrogenase inhibition and in combo antidiabetic activities. Eur J Med Chem 2014; 74:179-86. [DOI: 10.1016/j.ejmech.2013.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/06/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
|
37
|
Abstract
The accuracy of preclinical safety evaluation to predict human toxicity is hindered by species difference in drug metabolism and toxic mechanism between human and nonhuman animals. In vitro human-based experimental systems allowing the assessment of human-specific drug properties represent a logical and practical approach to provide human-specific information. An advantage of in vitro approaches is that they require only limited amounts of time and resources, and, most importantly, do not invoke harm to human patients. Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent a practical and useful experimental system to assess drug metabolism. The use of human hepatocytes to evaluate two major adverse drug properties, drug–drug interactions and hepatotoxicity, are reviewed. The application of human hepatocytes in metabolism-based drug–drug interactions includes metabolite profiling, pathway identification, CYP450 inhibition, CYP450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. Correlation of drug toxicity with proteomics and genomics data may allow the discovery of clinical biomarkers for early detection of liver toxicity.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories LLC, 9221 Rumsey Road Suite 8, Columbia, MD 21045, USA
| |
Collapse
|
38
|
2-acylamino-5-nitro-1,3-thiazoles: preparation and in vitro bioevaluation against four neglected protozoan parasites. Bioorg Med Chem 2014; 22:1626-33. [PMID: 24529307 DOI: 10.1016/j.bmc.2014.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
The 2-acylamino-5-nitro-1,3-thiazole derivatives (1-14) were prepared using a one step reaction. All compounds were tested in vitro against four neglected protozoan parasites (Giardia intestinalis, Trichomonas vaginalis, Leishmania amazonensis and Trypanosoma cruzi). Acetamide (9), valeroylamide (10), benzamide (12), methylcarbamate (13) and ethyloxamate (14) derivatives were the most active compounds against G. intestinalis and T. vaginalis, showing nanomolar inhibition. Compound 13 (IC50=10nM), was 536-times more active than metronidazole, and 121-fold more effective than nitazoxanide against G. intestinalis. Compound 14 was 29-times more active than metronidazole and 6.5-fold more potent than nitazoxanide against T. vaginalis. Ureic derivatives 2, 3 and 5 showed moderate activity against L. amazonensis. None of them were active against T. cruzi. Ligand efficiency indexes analysis revealed higher intrinsic quality of the most active 2-acylamino derivatives than nitazoxanide and metronidazole. In silico toxicity profile was also computed for the most active compounds. A very low in vitro mammalian cytotoxicity was obtained for 13 and 14, showing selectivity indexes (SI) of 246,300 and 141,500, respectively. Nitazoxanide showed an excellent leishmanicidal and trypanocidal effect, repurposing this drug as potential new antikinetoplastid parasite compound.
Collapse
|
39
|
|
40
|
Ring B, Wrighton SA, Mohutsky M. Reversible mechanisms of enzyme inhibition and resulting clinical significance. Methods Mol Biol 2014; 1113:37-56. [PMID: 24523108 DOI: 10.1007/978-1-62703-758-7_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Inhibition of a drug-metabolizing enzyme by the reversible interaction of a drug with the enzyme, thus decreasing the metabolism of another drug, is a major cause of clinically significant drug-drug interactions. This chapter defines the four reversible mechanisms of inhibition exhibited by drugs: competitive, noncompetitive, uncompetitive, and mixed competitive/noncompetitive. An in vitro procedure to determine the potential of a drug to be a reversible inhibitor is also provided. Finally, a number of examples of clinically significant drug-drug interactions resulting from reversible inhibition are described.
Collapse
Affiliation(s)
- Barbara Ring
- Quintiles, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| | | | | |
Collapse
|
41
|
Waters NJ, Obach RS, Di L. Consideration of the unbound drug concentration in enzyme kinetics. Methods Mol Biol 2014; 1113:119-45. [PMID: 24523111 DOI: 10.1007/978-1-62703-758-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system under investigation. As a consequence, the apparent kinetic parameters that are derived, such as K m or K i, can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus, as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components that can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.
Collapse
Affiliation(s)
- Nigel J Waters
- Drug Metabolism and Pharmacokinetics, Epizyme Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
42
|
Stresser DM, Mao J, Kenny JR, Jones BC, Grime K. Exploring concepts ofin vitrotime-dependent CYP inhibition assays. Expert Opin Drug Metab Toxicol 2013; 10:157-74. [DOI: 10.1517/17425255.2014.856882] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Yeo KR, Jamei M, Rostami-Hodjegan A. Predicting drug-drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach. Expert Rev Clin Pharmacol 2013; 6:143-57. [PMID: 23473592 DOI: 10.1586/ecp.13.4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of in vitro-in vivo extrapolation (IVIVE), a 'bottom-up' approach, to predict pharmacokinetic parameters and drug-drug interactions (DDIs) has accelerated mainly due to an increase in the understanding of the multiple mechanisms involved in these interactions and the availability of appropriate in vitro systems that act as surrogates for delineating various elements of the interactions relevant to absorption, distribution, metabolism and elimination. Recent advances in the knowledge of the population variables required for IVIVE (demographic, anatomical, genetic and physiological parameters) have also contributed to the appreciation of the sources of variability and wider use of this approach for different scenarios within the pharmaceutical industry. Initially, the authors present an overview of the integration of IVIVE into 'static' and 'dynamic' models for the quantitative prediction of DDIs. The main purpose of this review is to discuss the application of IVIVE in conjunction with physiologically based pharmacokinetic modeling under a systems biology approach to characterize the potential DDIs in individual patients, including those who cannot be investigated in formal clinical trials for ethical reasons. In addition, we address the issues related to the prediction of complex DDIs involving the inhibition of cytochrome P- and transporter-mediated activities through multiple drugs.
Collapse
Affiliation(s)
- Karen Rowland Yeo
- Simcyp Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK.
| | | | | |
Collapse
|
44
|
Desbans C, Hilgendorf C, Lutz M, Bachellier P, Zacharias T, Weber JC, Dolgos H, Richert L, Ungell AL. Prediction of fraction metabolized via CYP3A in humans utilizing cryopreserved human hepatocytes from a set of 12 single donors. Xenobiotica 2013; 44:17-27. [DOI: 10.3109/00498254.2013.809617] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 2013; 23:4608-16. [PMID: 23845219 DOI: 10.1016/j.bmcl.2013.06.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 11/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling plays a vital role in mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SphKs) catalyze a key step in sphingomyelin metabolism that leads to the production of S1P. There are two isoforms of SphK and observations made with SphK deficient mice show the two isoforms can compensate for each other's loss. Thus, inhibition of both isoforms is likely required to block SphK dependent angiogenesis. A structure based approach was used to design and synthesize a series of SphK inhibitors resulting in the identification of the first potent inhibitors of both isoforms of human SphK. Additionally, to our knowledge, this series of inhibitors contains the only sufficiently potent inhibitors of murine SphK1 with suitable physico-chemical properties to pharmacologically interrogate the role of SphK1 in rodent models and to reproduce the phenotype of SphK1 (-/-) mice.
Collapse
|
46
|
Berry LM, Zhao Z, Lin MHJ. Dynamic modeling of cytochrome P450 inhibition in vitro: impact of inhibitor depletion on IC₅₀ shift. Drug Metab Dispos 2013; 41:1433-41. [PMID: 23649703 DOI: 10.1124/dmd.113.051508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The impact of inhibitor depletion on the determination of shifted IC₅₀ (IC₅₀ determined after 30 minutes of preincubation with inhibitor) is examined. In addition, IC₅₀-shift data are analyzed using a mechanistic model that incorporates the processes of inhibitor depletion, as well as reversible and time-dependent inhibition. Anomalies such as a smaller-than-expected shift in IC₅₀ and even increases in IC₅₀ with preincubation were explained by the depletion of inhibitor during the preincubation. The IC₅₀-shift assay remains a viable approach to characterizing a wide range of reversible and time-dependent inhibitors. However, as with more traditional time-dependent inactivation methods, it is recommended that IC₅₀-shift experimental data be interpreted with some knowledge of the magnitude of inhibitor depletion. For the most realistic classification of time-dependent inhibitors using IC₅₀-shift methods, shifted IC₅₀ should be calculated using observed inhibitor concentrations at the end of the incubation rather than nominal inhibitor concentrations. Finally, a mechanistic model that includes key processes, such as competitive inhibition, enzyme inactivation, and inhibitor depletion, can be used to describe accurately the observed IC₅₀ and shifted IC₅₀ curves. For compounds showing an IC₅₀ fold shift >1.5 based on the observed inhibitor concentrations, reanalyzing the IC₅₀-shift data using the mechanistic model appeared to allow for reasonable estimation of Ki, KI, and kinact directly from the IC₅₀ shift experiments.
Collapse
Affiliation(s)
- Loren M Berry
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., 360 Binney St., Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
47
|
Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS JOURNAL 2013; 15:629-45. [PMID: 23543602 DOI: 10.1208/s12248-013-9470-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
Recently, the US Food and Drug Administration and European Medicines Agency have issued new guidance for industry on drug interaction studies, which outline comprehensive recommendations on a broad range of in vitro and in vivo studies to evaluate drug-drug interaction (DDI) potential. This paper aims to provide an overview of these new recommendations and an in-depth scientifically based perspective on issues surrounding some of the recommended approaches in emerging areas, particularly, transporters and complex DDIs. We present a number of theoretical considerations and several case examples to demonstrate complexities in applying (1) the proposed transporter decision trees and associated criteria for studying a broad spectrum of transporters to derive actionable information and (2) the recommended model-based approaches at an early stage of drug development to prospectively predict DDIs involving time-dependent inhibition and mixed inhibition/induction of drug metabolizing enzymes. We hope to convey the need for conducting DDI studies on a case-by-case basis using a holistic scientifically based interrogative approach and to communicate the need for additional research to fill in knowledge gaps in these areas where the science is rapidly evolving to better ensure the safety and efficacy of new therapeutic agents.
Collapse
Affiliation(s)
- Thomayant Prueksaritanont
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Sharp and Dohme Corp., WP 75A-203, West Point, PA 19486, USA,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hidalgo-Figueroa S, Ramírez-Espinosa JJ, Estrada-Soto S, Almanza-Pérez JC, Román-Ramos R, Alarcón-Aguilar FJ, Hernández-Rosado JV, Moreno-Díaz H, Díaz-Coutiño D, Navarrete-Vázquez G. Discovery of Thiazolidine-2,4-Dione/Biphenylcarbonitrile Hybrid as Dual PPAR α/γ Modulator with Antidiabetic Effect:In vitro, In SilicoandIn VivoApproaches. Chem Biol Drug Des 2013; 81:474-83. [DOI: 10.1111/cbdd.12102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio Hidalgo-Figueroa
- Facultad de Farmacia; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001; Chamilpa; Cuernavaca Mor.; 62209; México
| | - Juan J. Ramírez-Espinosa
- Facultad de Farmacia; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001; Chamilpa; Cuernavaca Mor.; 62209; México
| | - Samuel Estrada-Soto
- Facultad de Farmacia; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001; Chamilpa; Cuernavaca Mor.; 62209; México
| | - Julio C. Almanza-Pérez
- Laboratorio de Farmacología; Depto. Ciencias de la Salud, D.C.B.S.; Universidad Autónoma Metropolitana-Iztapalapa; Apdo.-Postal 55-535; CP 09340; México; D.F.; México
| | - Rubén Román-Ramos
- Laboratorio de Farmacología; Depto. Ciencias de la Salud, D.C.B.S.; Universidad Autónoma Metropolitana-Iztapalapa; Apdo.-Postal 55-535; CP 09340; México; D.F.; México
| | - Francisco J. Alarcón-Aguilar
- Laboratorio de Farmacología; Depto. Ciencias de la Salud, D.C.B.S.; Universidad Autónoma Metropolitana-Iztapalapa; Apdo.-Postal 55-535; CP 09340; México; D.F.; México
| | - Jesús V. Hernández-Rosado
- Posgrado en Biología Experimental, D.C.B.S.; Universidad Autónoma Metropolitana-Iztapalapa; Apdo.-Postal 55-535; CP 09340; México; D.F.; México
| | - Hermenegilda Moreno-Díaz
- Universidad del Papaloapan, Campus Tuxtepec; Circuito Central 200, Col. Parque Industrial; 68301; Tuxtepec; Oaxaca; México
| | - Daniel Díaz-Coutiño
- Universidad del Papaloapan, Campus Tuxtepec; Circuito Central 200, Col. Parque Industrial; 68301; Tuxtepec; Oaxaca; México
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia; Universidad Autónoma del Estado de Morelos; Av. Universidad 1001; Chamilpa; Cuernavaca Mor.; 62209; México
| |
Collapse
|
49
|
Donato MT, Gómez-Lechón MJ. Fluorescence-based screening of cytochrome P450 activities in intact cells. Methods Mol Biol 2013; 987:135-48. [PMID: 23475674 DOI: 10.1007/978-1-62703-321-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorimetric methods to assess cytochrome P450 (P450) activities that do not require metabolite separation have been developed. These methods make use of non- or low-fluorescent P450 substrates that produce highly fluorescent metabolites in aqueous solutions. The assays are based on the direct incubation of intact cells in culture with appropriate fluorogenic probe substrates, followed by fluorimetric quantification of the product formed and released into incubation medium. We describe a battery of fluorescence assays for rapid measurement of the activity of nine P450s involved in drug metabolism. For each individual P450 activity the probe showing the best properties (highest metabolic rates, lowest background fluorescence) has been selected. Fluorescence-based assays are highly sensitive and allow the simultaneous activity assessments of cells cultured in 96-well plates, using plate readers, with notable reductions in costs, time, and cells, thus enhancing sample throughput.
Collapse
Affiliation(s)
- M Teresa Donato
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | | |
Collapse
|
50
|
Mao J, Johnson TR, Shen Z, Yamazaki S. Prediction of Crizotinib-Midazolam Interaction Using the Simcyp Population-Based Simulator: Comparison of CYP3A Time-Dependent Inhibition between Human Liver Microsomes versus Hepatocytes. Drug Metab Dispos 2012; 41:343-52. [DOI: 10.1124/dmd.112.049114] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|