1
|
Basu Baul TS, Brahma S, Tamang R, Duthie A, Koch B, Parkin S. Synthesis, structures, and cytotoxicity insights of organotin(IV) complexes with thiazole-appended pincer ligand. J Inorg Biochem 2024; 262:112750. [PMID: 39378763 DOI: 10.1016/j.jinorgbio.2024.112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Diorganotin complexes of the compositions [Me2Sn(L)] (1), [n-Bu2Sn(L)] (2), [Ph2Sn(L)]⋅C6H6 (3), [Bz2Sn(L)]⋅C6H6 (4) and [n-Oct2Sn(L)] (5) were synthesized by reacting R2SnO (R = Me, n-Bu, Ph, Bz or n-Oct) with the N2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide (H2L, where H2 denotes the two acidic protons) in refluxing toluene. Additionally, the mono-n-butyltin complex [n-BuSn(HL)Cl2]·H2O (6) was synthesized from n-BuSnCl3 and H2L in acetonitrile. Compounds were characterized by FT-IR, 1H, 13C and 119Sn NMR spectroscopy, while their solid-state structures were examined using single-crystal X-ray diffraction studies. In diorganotin compounds 1-5, the dianionic tridentate ligands (Npy, N-, N-) act as κ-N3 chelators. In 6, the L moiety (O, Npy, N-) acts as a κ-ON2 tridentate chelator, with involvement of one of the carboxamide oxygen atoms. The coordination polyhedron around the Sn(IV) ion is completed either by two axial Sn-R ligands in compounds 1-5 or by n-Bu and Cl ligands in compound 6, giving rise to distorted trigonal bipyramid or octahedral structures, respectively. The tin NMR results show that the penta-coordinated structures of compounds 1-5 and the hexacoordinated structure of compound 6, observed in the solid-state, are retained in solution. The in vitro antitumor activities of 1-5 were tested on T-47D breast cancer cells. Of these, diphenyltin compound 3 showed the highest anti-proliferative effect, with an IC50 of 10 ± 1.60 μM. Compound 3 exhibited selective toxicity, potentially inducing apoptosis via reactive oxygen species generation and nuclear changes, indicating promise as a breast cancer treatment. This study is the first to explore thiazole-appended organotin compounds for cytotoxicity.
Collapse
Affiliation(s)
- Tushar S Basu Baul
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India; Sophisticated Analytical Instrument Facility, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India.
| | - Swmkwr Brahma
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India
| | - Rupen Tamang
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Andrew Duthie
- School of Life & Environmental Science, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Biplob Koch
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 506 Library Drive, 146 Chemistry-Physics Building, Lexington, KY 40506-0055, USA.
| |
Collapse
|
2
|
Khoshbakht A, Shiran JA, Miran M, Sepehri S. Synthesis and evaluation of in vitro antioxidant, anticancer, and antibacterial properties of new benzylideneiminophenylthiazole analogues. BMC Chem 2024; 18:173. [PMID: 39289717 PMCID: PMC11409754 DOI: 10.1186/s13065-024-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
A series of new benzylideneiminophenylthiazole analogues were designed and synthesized. Common spectroscopic methods, such as FT-IR, 1H-, 13C-NMR, and MASS spectra, and elemental analysis, were used to confirm the molecular structures. Then, the antioxidant, cytotoxicity, and anti-bacterial effects of synthesized analogues were assessed against 2,2-diphenyl-1-picrylhydrazyl (DPPH), three cancer cell lines, and two bacterial strains, respectively. Among the analogues, 7f was detected as the most potent compound for antioxidant activity. Moreover, the compounds 7b, 7f, and 7 g exhibited the maximum cytotoxicity activity against MCF-7, HepG-2, and A549 cell lines, respectively. Finally, 7e showed the highest anti-bacterial activity against both S. aureus and E. coli strains. It was concluded from the antioxidant, cytotoxicity, and anti-bacterial effects that the benzylideneiminophenylthiazoles might serve as candidate molecules for the development of small molecules with medicinal potential.
Collapse
Affiliation(s)
- Ali Khoshbakht
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jafar Abbasi Shiran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mansour Miran
- Department of Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Mohamed DM, Kheder NA, Sharaky M, Nafie MS, Dawood KM, Abbas AA. Synthesis of novel piperazine-based bis(thiazole)(1,3,4-thiadiazole) hybrids as anti-cancer agents through caspase-dependent apoptosis. RSC Adv 2024; 14:24992-25006. [PMID: 39131497 PMCID: PMC11310838 DOI: 10.1039/d4ra05091f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
A series of novel piperazine-based bis(thiazoles) 13a-d were synthesized in moderate to good yields via reaction of the bis(thiosemicarbazones) 7a, b with an assortment of C-acetyl-N-aryl-hydrazonoyl chlorides 8a-f. Similar treatment of the bis(thiosemicarbazone) 7a, b with C-aryl-N-phenylhydrazonoyl chlorides 10a, b afforded the expected bis(thiadiazole) based piperazine products 13b-d in reasonable yields. Cyclization of 7a, b with two equivalents of α-haloketones 14a-d led to the production of the corresponding bis(4-arylthiazol)piperazine derivatives 15a-h in good yields. The structures of the synthesized compounds were confirmed from elemental and spectral data (FTIR, MALDI-TOF, 1H, and 13C NMR). The cytotoxicity of the new compounds was screened against hepatoblastoma (HepG2), human colorectal carcinoma (HCT 116), breast cancer (MCF-7), and Human Dermal Fibroblasts (HDF). Interestingly, all compounds showed promising cytotoxicity against most of the cell lines. Interestingly, compounds 7b, 9a, and 9i exhibited IC50 values of 3.5, 12.1, and 1.2 nM, respectively, causing inhibition of 89.7%, 83.7%, and 97.5%, compared to Erlotinib (IC50 = 1.3 nM, 97.8% inhibition). Compound 9i dramatically induced apoptotic cell death by 4.16-fold and necrosis cell death by 4.79-fold. Compound 9i upregulated the apoptosis-related genes and downregulated the Bcl-2 as an anti-apoptotic gene. Accordingly, the most promising EGFR-targeted chemotherapeutic agent to treat colon cancer was found to be compound 9i.
Collapse
Affiliation(s)
- Doaa M Mohamed
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Nabila A Kheder
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University Cairo Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P. O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| |
Collapse
|
4
|
Kovar C, Loer HLH, Rüdesheim S, Fuhr LM, Marok FZ, Selzer D, Schwab M, Lehr T. A physiologically-based pharmacokinetic precision dosing approach to manage dasatinib drug-drug interactions. CPT Pharmacometrics Syst Pharmacol 2024; 13:1144-1159. [PMID: 38693610 PMCID: PMC11247110 DOI: 10.1002/psp4.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Dasatinib, a second-generation tyrosine kinase inhibitor, is approved for treating chronic myeloid and acute lymphoblastic leukemia. As a sensitive cytochrome P450 (CYP) 3A4 substrate and weak base with strong pH-sensitive solubility, dasatinib is susceptible to enzyme-mediated drug-drug interactions (DDIs) with CYP3A4 perpetrators and pH-dependent DDIs with acid-reducing agents. This work aimed to develop a whole-body physiologically-based pharmacokinetic (PBPK) model of dasatinib to describe and predict enzyme-mediated and pH-dependent DDIs, to evaluate the impact of strong and moderate CYP3A4 inhibitors and inducers on dasatinib exposure and to support optimized dasatinib dosing. Overall, 63 plasma profiles from perorally administered dasatinib in healthy volunteers and cancer patients were used for model development. The model accurately described and predicted plasma profiles with geometric mean fold errors (GMFEs) for area under the concentration-time curve from the first to the last timepoint of measurement (AUClast) and maximum plasma concentration (Cmax) of 1.27 and 1.29, respectively. Regarding the DDI studies used for model development, all (8/8) predicted AUClast and Cmax ratios were within twofold of observed ratios. Application of the PBPK model for dose adaptations within various DDIs revealed dasatinib dose reductions of 50%-80% for strong and 0%-70% for moderate CYP3A4 inhibitors and a 2.3-3.1-fold increase of the daily dasatinib dose for CYP3A4 inducers to match the exposure of dasatinib administered alone. The developed model can be further employed to personalize dasatinib therapy, thereby help coping with clinical challenges resulting from DDIs and patient-related factors, such as elevated gastric pH.
Collapse
Affiliation(s)
- Christina Kovar
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | - Simeon Rüdesheim
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Qin Y, Li D, Qi C, Xiang H, Meng H, Liu J, Zhou S, Gong X, Li Y, Xu G, Zu R, Xie H, Xu Y, Xu G, Zhang Z, Chen S, Pan L, Li Y, Tan L. Structure-based development of potent and selective type-II kinase inhibitors of RIPK1. Acta Pharm Sin B 2024; 14:319-334. [PMID: 38261830 PMCID: PMC10793102 DOI: 10.1016/j.apsb.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 01/25/2024] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases. A number of allosteric RIPK1 inhibitors (RIPK1i) have been developed, and some of them have already advanced into clinical evaluation. Recently, selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge. Here, we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i. We also describe the structure-guided lead optimization of a potent, selective, and orally bioavailable RIPK1i, 62, which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases. Collectively, 62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.
Collapse
Affiliation(s)
- Ying Qin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huyan Meng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingli Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shaoqing Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Gong
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guifang Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Rui Zu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yechun Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gang Xu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shi Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Al-Sanea MM, Nasr TM, Bondock S, Gawish AY, Mohamed NM. Design, synthesis and cytotoxic evaluation of novel bis-thiazole derivatives as preferential Pim1 kinase inhibitors with in vivo and in silico study. J Enzyme Inhib Med Chem 2023; 38:2166936. [PMID: 36728746 PMCID: PMC9897788 DOI: 10.1080/14756366.2023.2166936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bis-thiazole derivatives were synthesised conforming to the Pim1 pharmacophore model following Hantzsch condensation. Pim1 has a major role in regulating the G1/S phase which upon inhibition the cell cycle stops at its early stages. Derivatives 3b and 8b showed the best Pim1 IC50 0.32 and 0.24 µM, respectively relative to staurosporine IC50 0.36 µM. Further confirmation of 3b and 8b Pim1 inhibition was implemented by hindering the T47D cell cycle at G0/G1 and S phases where 3b showed 66.5% cells accumulation at G0/G1 phase while 8b demonstrated 26.5% cells accumulation at the S phase compared to 53.9% and 14.9% of a control group for both phases, respectively. Additional in vivo cytotoxic evaluation of 3b and 8b revealed strong antitumor activity with up-regulation of caspase-3 and down-regulation of VEGF and TNF α immune expression with concomitant elevation of malondialdehyde levels in case of 8b.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tamer M. Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia,Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Aya Y. Gawish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt
| | - Nada M. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt,CONTACT Nada M. Mohamed Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI) University, Cairo, Egypt
| |
Collapse
|
7
|
Hedna R, DiMaio A, Robin M, Allegro D, Tatoni M, Peyrot V, Barbier P, Kovacic H, Breuzard G. 2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma. Int J Mol Sci 2023; 24:15050. [PMID: 37894731 PMCID: PMC10606064 DOI: 10.3390/ijms242015050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Tau protein has been described for several decades as a promoter of tubulin assembly into microtubules. Dysregulation or alterations in Tau expression have been related to various brain cancers, including the highly aggressive and lethal brain tumor glioblastoma multiform (GBM). In this respect, Tau holds significant promise as a target for the development of novel therapies. Here, we examined the structure-activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau binding, Tau fibrillation, and cellular effects on Tau-expressing cancer cells. By spectrofluorometric approach, we found that two compounds, 2 and 9, demonstrated high affinity for Tau and exhibited a strong propensity to inhibit Tau fibrillation. Then, the biological activity of these compounds was evaluated on several Tau-expressing cells derived from glioblastoma. The two lead compounds displayed a high anti-metabolic activity on cells related to an increased fission of the mitochondria network. Moreover, we showed that both compounds induced microtubule bundling within newly formed neurite-like protrusions, as well as with defection of cell migration. Taken together, our results provide a strong experimental basis to develop new potent molecules targeting Tau-expressing cancer cells, such as GBM.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Attilio DiMaio
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Diane Allegro
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Mario Tatoni
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Pascale Barbier
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| |
Collapse
|
8
|
Koide E, Mohardt ML, Doctor ZM, Yang A, Hao M, Donovan KA, Kuismi CC, Nelson AJ, Abell K, Aguiar M, Che J, Stokes MP, Zhang T, Aguirre AJ, Fischer ES, Gray NS, Jiang B, Nabet B. Development and Characterization of Selective FAK Inhibitors and PROTACs with In Vivo Activity. Chembiochem 2023; 24:e202300141. [PMID: 37088717 PMCID: PMC10590827 DOI: 10.1002/cbic.202300141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.
Collapse
Affiliation(s)
- Eriko Koide
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mikaela L. Mohardt
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zainab M. Doctor
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Annan Yang
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingfeng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Andrew J. Aguirre
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
9
|
Al-Humaidi J, Gomha SM, Riyadh SM, Ibrahim MS, Zaki MEA, Abolibda TZ, Jefri OA, Abouzied AS. Synthesis, Biological Evaluation, and Molecular Docking of Novel Azolylhydrazonothiazoles as Potential Anticancer Agents. ACS OMEGA 2023; 8:34044-34058. [PMID: 37744790 PMCID: PMC10515364 DOI: 10.1021/acsomega.3c05038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
A novel set of thiazolylhydrazonothiazoles bearing an indole moiety were synthesized by subjection reactions of carbothioamide derivative and hydrazonoyl chlorides (or α-haloketones). The cytotoxicity of the synthesized compounds was evaluated against the colon carcinoma cell line (HCT-116), liver carcinoma cell line (HepG2), and breast carcinoma cell line (MDA-MB-231), and demonstrated encouraging activity. Furthermore, when representative products were assessed for toxicity against normal cells, minimal toxic effects were observed, indicating their potential safety for use in pharmacological studies. The mechanism of action of the tested products, as inhibitors of the epidermal growth factor receptor tyrosine kinase domain (EGFR TK) protein, was suggested through docking studies that assessed their binding scores and modes, in comparison to a reference standard (W19), thus endorsing their anticancer activity.
Collapse
Affiliation(s)
- Jehan
Y. Al-Humaidi
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. .BOX 84428, Riyadh 11671, Saudi Arabia
| | - Sobhi M. Gomha
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Sayed M. Riyadh
- Department
of Chemistry, Faculty of Science, Cairo
University, Cairo 12613, Egypt
| | - Mohamed S. Ibrahim
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Magdi E. A. Zaki
- Department
of Chemistry, Faculty of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tariq Z. Abolibda
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Ohoud A. Jefri
- Department
of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr S. Abouzied
- Department
of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department
of Pharmaceutical Chemistry, National Organization
for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
10
|
Al-Wahaibi LH, El-Sheref EM, Hassan AA, Bräse S, Nieger M, Youssif BGM, Ibrahim MAA, Tawfeek HN. Synthesis and Structure Determination of Substituted Thiazole Derivatives as EGFR/BRAF V600E Dual Inhibitors Endowed with Antiproliferative Activity. Pharmaceuticals (Basel) 2023; 16:1014. [PMID: 37513926 PMCID: PMC10384562 DOI: 10.3390/ph16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
2,3,4-trisubstituted thiazoles 3a-i, having a methyl group in position four, were synthesized by the reaction of 1,4-disubstituted thiosemicarbazides with chloroacetone in ethyl acetate/Et3N at room temperature or in ethanol under reflux. The structures of new compounds were determined using NMR spectroscopy, mass spectrometry, and elemental analyses. Moreover, the structure of compound 3a was unambiguously confirmed with X-ray analysis. The cell viability assay of 3a-i at 50 µM was greater than 87%, and none of the tested substances were cytotoxic. Compounds 3a-i demonstrated good antiproliferative activity, with GI50 values ranging from 37 to 86 nM against the four tested human cancer cell lines, compared to the reference erlotinib, which had a GI50 value of 33 nM. The most potent derivatives were found to be compounds 3a, 3c, 3d, and 3f, with GI50 values ranging from 37 nM to 54 nM. The EGFR-TK and BRAFV600E inhibitory assays' results matched the antiproliferative assay's results, with the most potent derivatives, as antiproliferative agents, also being the most potent EGFR and BRAFV600E inhibitors. The docking computations were employed to investigate the docking modes and scores of compounds 3a, 3c, 3d, and 3f toward BRAFV600E and EGFR. Docking computations demonstrated the good affinity of compound 3f against BRAFV600E and EGFR, with values of -8.7 and -8.5 kcal/mol, respectively.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - Alaa A Hassan
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
| | - S Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - M Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki, Finland
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University, El Minia 61519, Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University, El-Minia 61519, Egypt
| |
Collapse
|
11
|
Sinicropi MS, Ceramella J, Vanelle P, Iacopetta D, Rosano C, Khoumeri O, Abdelmohsen S, Abdelhady W, El-Kashef H. Novel Thiazolidine-2,4-dione-trimethoxybenzene-thiazole Hybrids as Human Topoisomerases Inhibitors. Pharmaceuticals (Basel) 2023; 16:946. [PMID: 37513858 PMCID: PMC10384675 DOI: 10.3390/ph16070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a complex and heterogeneous disease and is still one of the leading causes of morbidity and mortality worldwide, mostly as the population ages. Despite the encouraging advances made over the years in chemotherapy, the development of new compounds for cancer treatments is an urgent priority. In recent years, the design and chemical synthesis of several innovative hybrid molecules, which bring different pharmacophores on the same scaffold, have attracted the interest of many researchers. Following this strategy, we designed and synthetized a series of new hybrid compounds that contain three pharmacophores, namely trimethoxybenzene, thiazolidinedione and thiazole, and tested their anticancer properties on two breast cancer (MCF-7 and MDA-MB-231) cell lines and one melanoma (A2058) cell line. The most active compounds were particularly effective against the MCF-7 cells and did not affect the viability of the normal MCF-10A cells. Docking simulations indicated the human Topoisomerases I and II (hTopos I and II) as possible targets of these compounds, the inhibitory activity of which was demonstrated by the mean of direct enzymatic assays. Particularly, compound 7e was proved to inhibit both the hTopo I and II, whereas compounds 7c,d blocked only the hTopo II. Finally, compound 7e was responsible for MCF-7 cell death by apoptosis. The reported results are promising for the further design and synthesis of other analogues potentially active as anticancer tools.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Patrice Vanelle
- Aix Marseille University, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Omar Khoumeri
- Aix Marseille University, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
| | - Shawkat Abdelmohsen
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Wafaa Abdelhady
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Hussein El-Kashef
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Faculty of Pharmacy, Sphinx University, New Assiut 71684, Egypt
| |
Collapse
|
12
|
Salem ME, Mahrous EM, Ragab EA, Nafie MS, Dawood KM. Synthesis of novel mono- and bis-pyrazolylthiazole derivatives as anti-liver cancer agents through EGFR/HER2 target inhibition. BMC Chem 2023; 17:51. [PMID: 37291635 DOI: 10.1186/s13065-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 06/10/2023] Open
Abstract
3-Bromoacetyl-4-(2-naphthoyl)-1-phenyl-1H-pyrazole (6) was synthesized from 2-acetylnaphthalene and was used as a new key building block for constructing the title targets. Thus, the reaction of 6 with the thiosemicarbazones 7a-d and 9-11 afforded the corresponding simple naphthoyl-(3-pyrazolyl)thiazole hybrids 8a-d and 12 ~ 14. The symmetric bis-(2-naphthoyl-pyrazol-3-yl)thiazol-2-yl)hydrazono)methyl)phenoxy)alkanes 18a-c and 21a-c were similarly synthesized from reaction of 6 with the appropriate bis-thiosemicarbazones 17a-c and 19a-c, respectively. The synthesized two series of simple and symmetrical bis-molecular hybrid merging naphthalene, thiazole, and pyrazole were evaluated for their cytotoxicity. Compounds 18b,c and 21a showed the most potent cytotoxicity (IC50 = 0.97-3.57 µM) compared to Lapatinib (IC50 = 7.45 µM). Additionally, they were safe (non-cytotoxic) against the THLE2 cells with higher IC50 values. Compounds 18c exhibited promising EGFR and HER-2 inhibitory activities with IC50 = 4.98 and 9.85 nM, respectively, compared to Lapatinib (IC50 = 6.1 and 17.2 nM). Apoptosis investigation revealed that 18c significantly activated apoptotic cell death in HepG2 cells, increasing the death rate by 63.6-fold and arresting cell proliferation at the S-phase. Compound 18c upregulated P53 by 8.6-fold, Bax by 8.9-fold, caspase-3,8,9 by 9, 2.3, and 7.6-fold, while it inhibited the Bcl-2 expression by 0.34-fold. Thereby, compound 18c exhibited promising cytotoxicity against EGFR/HER2 inhibition against liver cancer.
Collapse
Affiliation(s)
- Mostafa E Salem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Esraa M Mahrous
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eman A Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed S Nafie
- Department of Chemistry (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
13
|
Ashmawy FO, Gomha SM, Abdallah MA, Zaki MEA, Al-Hussain SA, El-Desouky MA. Synthesis, In Vitro Evaluation and Molecular Docking Studies of Novel Thiophenyl Thiazolyl-Pyridine Hybrids as Potential Anticancer Agents. Molecules 2023; 28:molecules28114270. [PMID: 37298747 DOI: 10.3390/molecules28114270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Many literature reports revealed the anticancer activity of pyridine and thiazole derivatives, especially in lung cancer. Therefore, a new series of thiazolyl pyridines linked with thiophene moiety via hydrazone group was prepared by one-pot multi-component reaction of (E)-1-(4-methyl-2-(2-(1-(thiophen-2-yl)ethylidene)hydrazinyl)thiazol-5-yl)ethanone with benzaldehyde derivatives and malononitrile in a good yield. Then, compound 5 and the thiazolyl pyridines were investigated for their in vitro anticancer activity against lung cancer (A549) cell line using MTT assay compared to doxorubicin as a reference drug. The structure of all the newly synthesized compounds was established based on spectroscopic data and elemental analyses. For better insight to investigate their mechanism of action on A549 cell line, docking studies were performed, targeting epidermal growth factor receptor (EGFR) tyrosine kinase. The results obtained revealed that the tested compounds displayed excellent anticancer activities against lung cancer cell line except 8c and 8f compared to reference drug. Based on the data obtained, it can be inferred that the novel compounds, as well as their key intermediate, compound 5, demonstrated potent anticancer activity against lung carcinoma by inhibiting EGFR.
Collapse
Affiliation(s)
- Fayza O Ashmawy
- Department of Chemistry, Biochemistry Division, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magda A Abdallah
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohamed A El-Desouky
- Department of Chemistry, Biochemistry Division, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
14
|
Abd El Salam HA, Fathy U, Zayed EM, El Shehry MF, Ahmed E.Gouda A. Design, Synthesis, Cytotoxic Activity and Molecular Docking Studies of Naphthyl Pyrazolyl Thiazole Derivatives as Anticancer Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202203956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hayam A. Abd El Salam
- Green Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt
| | - Usama Fathy
- Applied Organic Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt Corresponding Author
| | - Ehab M. Zayed
- Green Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt
| | - Mohamed F. El Shehry
- Pesticide Chemistry Department National Research Centre, Dokki-Giza-Egypt-P.O.12622 Cairo Egypt
| | | |
Collapse
|
15
|
Aly AA, Alshammari MB, Ahmad A, A. M. Gomaa H, G. M. Youssif B, Bräse S, A. A. Ibrahim M, Mohamed AH. Design, synthesis, docking, and mechanistic studies of new thiazolyl/thiazolidinylpyrimidine-2,4-dione antiproliferative agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
16
|
Adverse Reaction Profiles Related to Gastrointestinal Bleeding Events Associated with BCR-ABL Tyrosine Kinase Inhibitors. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101495. [PMID: 36295654 PMCID: PMC9609656 DOI: 10.3390/medicina58101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022]
Abstract
Background and Objectives: The aim of this study is to investigate the characteristics of gastrointestinal bleeding events associated with BCR-ABL tyrosine kinase inhibitor (TKI) treatment, using the reporting odds ratio (ROR) of the adverse event reports submitted to the Japanese Adverse Drug Event Report database between 2004 and 2020, and to examine the number of reported TKI-related gastrointestinal bleeding cases according to sex and age, as well as the actual number of TKI prescriptions issued in Japan. Materials and Methods: The RORs and 95% confidence intervals (CIs) of gastrointestinal bleeding events related to TKIs were calculated using the data of the 595,121 included cases. Results: Significant gastrointestinal bleeding events were detected for dasatinib (crude ROR: 4.47, 95% CI: 3.77-5.28) and imatinib (crude ROR: 1.22, 95% CI: 1.01-1.46). In multiple logistic regression analyses, significant gastrointestinal bleeding events were detected for dasatinib (adjusted ROR: 8.02, 95% CI: 5.75-10.2), imatinib (adjusted ROR: 1.81, 95% CI: 1.2-2.72), age (≥60 years, adjusted ROR: 2.22, 95% CI: 2.1-2.36), reporting year (adjusted ROR: 1.04, 95% CI: 1.04-1.05), and male sex (adjusted ROR: 1.47, 95% CI: 1.37-1.57). Interaction analysis revealed that the association of gastrointestinal bleeding with dasatinib was affected by age (≥60 years) and sex (female), with the number and proportion of dasatinib-related gastrointestinal bleeding cases increasing among those aged ≥60 years. Conclusions: Specific TKIs and patient characteristics were associated with gastrointestinal bleeding. Our results aid the prompt identification and treatment of TKI-related gastrointestinal bleeding.
Collapse
|
17
|
Clément M, Cervoni JP, Renosi F, Thévenot T, Felix S, Doussot A, Heyd B, Deconinck É, Martino VD. Acute fulminant hepatitis related to the use of dasatinib: First case report. Clin Res Hepatol Gastroenterol 2022; 46:102004. [PMID: 35961592 DOI: 10.1016/j.clinre.2022.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Morgane Clément
- Service d'Hépatologie et de Soins Intensifs Digestifs, CHRU Jean Minjoz, 25030 Besançon Cedex, France
| | - Jean-Paul Cervoni
- Service d'Hépatologie et de Soins Intensifs Digestifs, CHRU Jean Minjoz, 25030 Besançon Cedex, France.
| | | | - Thierry Thévenot
- Service d'Hépatologie et de Soins Intensifs Digestifs, CHRU Jean Minjoz, 25030 Besançon Cedex, France
| | - Sophie Felix
- Service d'Anatomo-pathologie, CHRU Jean Minjoz, 25030 Besançon Cedex, France
| | - Alexandre Doussot
- Service de Chirurgie Digestive et Unité de Transplantation Hépatique, CHRU Jean Minjoz, 25030 Besançon Cedex, France
| | - Bruno Heyd
- Service de Chirurgie Digestive et Unité de Transplantation Hépatique, CHRU Jean Minjoz, 25030 Besançon Cedex, France
| | - Éric Deconinck
- Service d'Hématologie, CHRU Jean Minjoz, 25030 Besançon Cedex, France; Inserm UMR1098 Right, Université de Franche Comté, Besançon, France
| | - Vincent Di Martino
- Service d'Hépatologie et de Soins Intensifs Digestifs, CHRU Jean Minjoz, 25030 Besançon Cedex, France
| |
Collapse
|
18
|
Latham BD, Oskin DS, Crouch RD, Vergne MJ, Jackson KD. Cytochromes P450 2C8 and 3A Catalyze the Metabolic Activation of the Tyrosine Kinase Inhibitor Masitinib. Chem Res Toxicol 2022; 35:1467-1481. [PMID: 36048877 DOI: 10.1021/acs.chemrestox.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 μM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 μM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - D Spencer Oskin
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
19
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
20
|
Synthesis of naphthalimide derivatives bearing benzothiazole and thiazole moieties: In vitro anticancer and in silico ADMET study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Claesson A, Parkes K. Non-innocuous Consequences of Metabolic Oxidation of Alkyls on Arenes. J Med Chem 2022; 65:11433-11453. [PMID: 36001003 DOI: 10.1021/acs.jmedchem.2c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive metabolite (RM) formation is widely accepted as playing a pivotal role in causing adverse idiosyncratic drug reactions, with most attention paid to drug-induced liver injury. Mechanisms of RM formation are determined by the drug's properties in relation to human enzymes transforming the drug. This Perspective focuses on enzymatic oxidation of alkyl groups on aromatics leading to quinone methides and benzylic alcohol sulfates as RMs, a topic that has not received very much attention. Unlike previous overviews, we will include in our Perspective several fulvene-like methides such as 3-methyleneindole. We also speculate that a few older drugs may form non-reported methides of this class. In addition, we report a few guiding DFT calculations of changes in free energy on going from a benzylic alcohol to the corresponding methide. Particularly facile reactions of 2-aminothiazole-5-methanol and 4-aminobenzyl alcohol are noted.
Collapse
Affiliation(s)
- Alf Claesson
- Awametox AB, Lilldalsvägen 17 A, SE-14461 Rönninge, Sweden
| | - Kevin Parkes
- Consultant, 39 Cashio Lane, Letchworth Garden City, Hertfordshire SG6 1AY, U.K
| |
Collapse
|
22
|
Khalil KD, Ahmed HA, Bashal AH, Bräse S, Nayl AA, Gomha SM. Efficient, Recyclable, and Heterogeneous Base Nanocatalyst for Thiazoles with a Chitosan-Capped Calcium Oxide Nanocomposite. Polymers (Basel) 2022; 14:polym14163347. [PMID: 36015604 PMCID: PMC9416520 DOI: 10.3390/polym14163347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Calcium oxide (CaO) nanoparticles have recently gained much interest in recent research due to their remarkable catalytic activity in various chemical transformations. In this article, a chitosan calcium oxide nanocomposite was created by the solution casting method under microwave irradiation. The microwave power and heating time were adjusted to 400 watts for 3 min. As it suppresses particle aggregation, the chitosan (CS) biopolymer acted as a metal oxide stabilizer. In this study, we aimed to synthesize, characterize, and investigate the catalytic potency of chitosan–calcium oxide hybrid nanocomposites in several organic transformations. The produced CS–CaO nanocomposite was analyzed by applying different analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). In addition, the calcium content of the nanocomposite film was measured using energy-dispersive X-ray spectroscopy (EDS). Fortunately, the CS–CaO nanocomposite (15 wt%) was demonstrated to be a good heterogeneous base promoter for high-yield thiazole production. Various reaction factors were studied to maximize the conditions of the catalytic technique. High reaction yields, fast reaction times, and mild reaction conditions are all advantages of the used protocol, as is the reusability of the catalyst; it was reused multiple times without a significant loss of potency.
Collapse
Affiliation(s)
- Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ali H. Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia or
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| |
Collapse
|
23
|
Hadiyal SD, Lalpara JN, Dhaduk BB, Joshi HS. Rational synthesis, anticancer activity, and molecular docking studies of novel benzofuran liked thiazole hybrids. Mol Divers 2022:10.1007/s11030-022-10493-7. [DOI: 10.1007/s11030-022-10493-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/02/2022] [Indexed: 12/19/2022]
|
24
|
Design, synthesis and docking studies of new hydrazinyl-thiazole derivatives as anticancer and antimicrobial agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Suwal S, Rahman M, O’Brien G, Karambizi VG, Wrotny M, Scott Goodman M. Chemo-selective syntheses of N-t-boc-protected amino ester analogs through Buchwald–Hartwig amination. NEW J CHEM 2022. [DOI: 10.1039/d1nj05596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We showcased a library of amino ester molecules created through the BHA reaction. The product formation is more facile in the esters where nitrogen is present ortho to the halo substituent in the heteroaromatic ring.
Collapse
Affiliation(s)
- Sujit Suwal
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Mahmuda Rahman
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Gregory O’Brien
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Victoire G. Karambizi
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Matthew Wrotny
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - M. Scott Goodman
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| |
Collapse
|
26
|
Othman IMM, Alamshany ZM, Tashkandi NY, Gad-Elkareem MAM, Abd El-Karim SS, Nossier ES. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Adv 2022; 12:561-577. [PMID: 35424523 PMCID: PMC8694192 DOI: 10.1039/d1ra08055e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy. This context represents the design and synthesis of two sets of derivatives bearing a pyrazoline-3-one ring conjugated either with a thieno[3,2-d]thiazole or with a dihydrothiazolo[4,5-d]thiazole scaffold via an NH linker, 3a–d and 5a–d respectively, using the pyrazolinone–thiazolinone derivative 1 as a key precursor. All the newly synthesized compounds were assessed in vitro for their anticancer activity against two cancer cell lines (MCF-7 and HepG-2). The safety profile of the most active cytotoxic candidates 1 and 3c was further examined against the normal cell line WI-38. The compounds 1 and 3c were further evaluated as multi-targeting kinase inhibitors against EGFR, VEGFR-2 and BRAFV600E, exhibiting promising suppression impact. Additionally, the latter compounds were investigated for their impact on cell cycle and apoptosis induction potential in the MCF-7 cell line. Moreover, the antimicrobial activity of all the new analogues was evaluated against a panel of Gram-positive and Gram-negative bacteria, yeast and fungi in comparison to streptomycin and amphotericin-B as reference drugs. Interestingly, both 1 and 3c showed the most promising microbial inhibitory effect. Molecular docking studies showed promising binding patterns of the compounds 1 and 3c with the prospective targets, EGFR, VEGFR-2 and BRAFV600E. Finally, additional toxicity studies were performed for the new derivatives which showed their good drug-like properties and low toxicity risks in humans. Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy.![]()
Collapse
Affiliation(s)
- Ismail M. M. Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Zahra M. Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah 21551, Saudi Arabia
| | - Nada Y. Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah 21551, Saudi Arabia
| | | | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
27
|
ElShaer A, Almasry M, Alawar M, Masoud H, El Kinge AR. Dasatinib-Induced Nephrotic Syndrome: A Case Report. Cureus 2021; 13:e20330. [PMID: 34912656 PMCID: PMC8665416 DOI: 10.7759/cureus.20330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Second-generation tyrosine kinase inhibitors (TKI), such as nilotinib and dasatinib, are used in the first-line treatment of chronic myeloid leukemia (CML), usually after the failure or resistance to imatinib. Despite a good safety profile, medications in this category have an increased incidence of specific adverse events such as pulmonary hypertension, pleural effusion, and cardiovascular/peripheral arterial events. However, renal complications are rarely reported and observed. We herein report a case of a 46-year-old patient with CML who developed nephrotic syndrome upon switching from imatinib to dasatinib therapy, with the resolution of symptoms upon treatment discontinuation and switching to nilotinib. Limited cases were reported in the literature. It is thought that the inhibition of the vascular endothelial growth factor (VEGF) pathway is the main mechanism leading to proteinuria. Dasatinib-induced nephrotic syndrome should be looked for as it can be resolved by either reducing the dose or stopping it altogether and switching to another TKI.
Collapse
Affiliation(s)
- Ahmed ElShaer
- Internal Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | - Mazen Almasry
- Internal Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | - Maher Alawar
- Nephrology, Specialized Medical Center, Riyadh, SAU
| | | | | |
Collapse
|
28
|
Mahmoud HK, Abdelhady HA, Elaasser MM, Hassain DZH, Gomha SM. Microwave-Assisted One-Pot Three Component Synthesis of Some Thiazolyl(Hydrazonoethyl)Thiazoles as Potential Anti-Breast Cancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Huda K. Mahmoud
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Hyam A. Abdelhady
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Mahmoud M. Elaasser
- Regional center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Doaa Z. H. Hassain
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Al-Madinah, Al-Munawwarah, Saudi Arabia
| |
Collapse
|
29
|
Annu K, Yasuda K, Caufield WV, Freeman BB, Schuetz EG. Vitamin D levels do not cause vitamin-drug interactions with dexamethasone or dasatinib in mice. PLoS One 2021; 16:e0258579. [PMID: 34669728 PMCID: PMC8528301 DOI: 10.1371/journal.pone.0258579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Vitamin D3 (VD3) induces intestinal CYP3A that metabolizes orally administered anti-leukemic chemotherapeutic substrates dexamethasone (DEX) and dasatinib potentially causing a vitamin-drug interaction. To determine the impact of VD3 status on systemic exposure and efficacy of these chemotherapeutic agents, we used VD3 sufficient and deficient mice and performed pharmacokinetic and anti-leukemic efficacy studies. Female C57BL/6J and hCYP3A4 transgenic VD3 deficient mice had significantly lower duodenal (but not hepatic) mouse Cyp3a11 and hCYP3A4 expression compared to VD3 sufficient mice, while duodenal expression of Mdr1a, Bcrp and Mrp4 were significantly higher in deficient mice. When the effect of VD3 status on DEX systemic exposure was compared following a discontinuous oral DEX regimen, similar to that used to treat pediatric acute lymphoblastic leukemia patients, male VD3 deficient mice had significantly higher mean plasma DEX levels (31.7 nM) compared to sufficient mice (12.43 nM) at days 3.5 but not at any later timepoints. Following a single oral gavage of DEX, there was a statistically, but not practically, significant decrease in DEX systemic exposure in VD3 deficient vs. sufficient mice. While VD3 status had no effect on oral dasatinib's area under the plasma drug concentration-time curve, VD3 deficient male mice had significantly higher dasatinib plasma levels at t = 0.25 hr. Dexamethasone was unable to reverse the poorer survival of VD3 sufficient vs. deficient mice to BCR-ABL leukemia. In conclusion, although VD3 levels significantly altered intestinal mouse Cyp3a in female mice, DEX plasma exposure was only transiently different for orally administered DEX and dasatinib in male mice. Likewise, the small effect size of VD3 deficiency on single oral dose DEX clearance suggests that the clinical significance of VD3 levels on DEX systemic exposure are likely to be limited.
Collapse
Affiliation(s)
- Kavya Annu
- Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Integrated Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Kazuto Yasuda
- Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - William V. Caufield
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Burgess B. Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erin G. Schuetz
- Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
30
|
Synthesis and Biological Evaluation of Thiazolyl-Ethylidene Hydrazino-Thiazole Derivatives: A Novel Heterocyclic System. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of 2-(1-(2-(2-(4-methoxybenzylidene)hydrazinyl)-4-methylthiazol-5-yl)ethylidene)hydrazinecarbothioamide with a range of hydrazonoyl chlorides and α-halo-compounds yielded three new series of thiazole derivatives. Chemical and physical techniques were used to analyze all newly prepared derivatives (1H-NMR, 13C-NMR, FT-IR and mass spectrometry). The potential antimicrobial and anticancer properties of the synthesized derivatives were investigated using various in vitro biological experiments. Most of the thiazole compounds tested were effective against Gram-positive and Gram-negative bacteria. In addition, a minimum inhibition concentration was determined for the antibiotic properties of the most active produced substances. The cytotoxic activities were tested on HepG-2 (liver carcinoma), HCT-116 (colorectal carcinoma) and MDA-MB-231 (breast carcinoma) cell lines in comparison with cisplatin reference drug and using colorimetric MTT assay. The results detected that compound 10c was the most potent against the three tested cell lines. Interestingly, when the tested compounds were evaluated for their toxicity against normal (MRC-5) cells, they exhibited low toxic effects indicating the safe use of most of them that may require further in vivo and pharmacological studies.
Collapse
|
31
|
Abstract
Dasatinib is an oral, once-daily tyrosine kinase inhibitor used in the treatment of chronic myeloid leukaemia and Philadelphia chromosome-positive acute lymphoblastic leukaemia. Dasatinib is rapidly absorbed, with the time for maximal serum concentration varying between 0.25 and 1.5 h. Oral absorption is not affected by food. The absolute bioavailability of dasatinib in humans is unknown due to the lack of an intravenous formulation preventing calculation of the reference exposure. Dasatinib is eliminated through cytochrome P450 (CYP) 3A4-mediated metabolism, with a terminal half-life of 3-4 h. Based on total radioactivity, only 20% of the oral dose (100 mg) is recovered unchanged in faeces (19%, including potential non-absorption) and urine (1%) after 168 h. Dasatinib pharmacokinetics are not influenced by age (children, and adults up to 86 years of age), race and renal insufficiency. Dasatinib absorption is decreased by pH-modifying agents (antacids, H2-receptor blockers, proton pump inhibitors), and dasatinib is also subject to drug interactions with CYP3A4 inducers or inhibitors.
Collapse
|
32
|
Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol Med 2021; 171:169-190. [PMID: 33989756 DOI: 10.1016/j.freeradbiomed.2021.05.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence is a heterogeneous process guided by genetic, epigenetic and environmental factors, characterizing many types of somatic cells. It has been suggested as an aging hallmark that is believed to contribute to aging and chronic diseases. Senescent cells (SC) exhibit a specific senescence-associated secretory phenotype (SASP), mainly characterized by the production of proinflammatory and matrix-degrading molecules. When SC accumulate, a chronic, systemic, low-grade inflammation, known as inflammaging, is induced. In turn, this chronic immune system activation results in reduced SC clearance thus establishing a vicious circle that fuels inflammaging. SC accumulation represents a causal factor for various age-related pathologies. Targeting of several aging hallmarks has been suggested as a strategy to ameliorate healthspan and possibly lifespan. Consequently, SC and SASP are viewed as potential therapeutic targets either through the selective killing of SC or the selective SASP blockage, through natural or synthetic compounds. These compounds are members of a family of agents called senotherapeutics divided into senolytics and senomorphics. Few of them are already in clinical trials, possibly representing a future treatment of age-related pathologies including diseases such as atherosclerosis, osteoarthritis, osteoporosis, cancer, diabetes, neurodegenerative diseases such as Alzheimer's disease, cardiovascular diseases, hepatic steatosis, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and age-related macular degeneration. In this review, we present the already identified senolytics and senomorphics focusing on their redox-sensitive properties. We describe the studies that revealed their effects on cellular senescence and enabled their nomination as novel anti-aging agents. We refer to the senolytics that are already in clinical trials and we present various adverse effects exhibited by senotherapeutics so far. Finally, we discuss aspects of the senotherapeutics that need improvement and we suggest the design of future senotherapeutics to target specific redox-regulated signaling pathways implicated either in the regulation of SASP or in the elimination of SC.
Collapse
Affiliation(s)
- Sofia M Lagoumtzi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece; Department of Biomedical Sciences, University of Western Attica, 28 Ag. Spyridonos Str., Egaleo, 12243, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35, Athens, Greece.
| |
Collapse
|
33
|
Chacko SA, Yang W, Wang Y, Tian Y, Hong Y, Wallace M, Wang B, Ewing WR, Luettgen JM, Shu YZ, Christopher LJ. Preclinical metabolism and disposition of an orally bioavailable macrocyclic FXIa inhibitor. Xenobiotica 2021; 51:933-948. [PMID: 34151691 DOI: 10.1080/00498254.2021.1943565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
FXIa-6f is a high affinity, orally bioavailable macrocyclic FXIa inhibitor with antithrombotic activity in preclinical species.The objectives of this study were to characterize the in vitro metabolism, determine circulating metabolites in pre-clinical species, and examine the disposition of the compound in a bile duct-cannulated rat study (BDC) study to inform clinical development of the compound and the medicinal chemistry approach to identify molecules with improved properties.Across species, metabolic pathways included several oxidative metabolites, including hydroxylated metabolites on the macrocycle or P1 region, descarbamoylation of the methyl carbamate side chain, and a glutathione conjugate on the 2,6-difluoro-3-chlorophenyl ring.In BDC rat, the absorbed dose of [3H]FXIa-6f was cleared mainly by metabolism, with excretion of drug-related material in the bile, mostly as metabolites.In all preclinical species, the parent drug was the primary drug-related component in circulation, but the species differences in the metabolic pathways observed in vitro were reflected in the plasma, where M6, a descarbamoylated metabolite, was more prominent in rat plasma, and M9, a hydroxylated metabolite, was more prominent in monkey plasma. Based on the available data, the human metabolism appears to be most similar to monkey.
Collapse
Affiliation(s)
- Silvi A Chacko
- Department of Nonclinical Research and Development, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Wu Yang
- Discovery Chemistry, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Yufeng Wang
- Discovery Chemistry, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Yuan Tian
- Discovery Chemistry, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Yang Hong
- Discovery Chemistry, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Michael Wallace
- Discovery Chemistry, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Bonnie Wang
- Department of Nonclinical Research and Development, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - William R Ewing
- Discovery Chemistry, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Joseph M Luettgen
- Discovery Biology, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Yue-Zhong Shu
- Department of Nonclinical Research and Development, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| | - Lisa J Christopher
- Department of Nonclinical Research and Development, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, NJ, USA
| |
Collapse
|
34
|
Yang S, Zhang X, Wang Y, Wen C, Wang C, Zhou Z, Lin G. Development of UPLC-MS/MS Method for Studying the Pharmacokinetic Interaction Between Dasatinib and Posaconazole in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2171-2178. [PMID: 34079220 PMCID: PMC8163634 DOI: 10.2147/dddt.s301241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
Background and Aim Dasatinib is approved for the treatment of leukaemia worldwide. Triazole agents such as posaconazole may be used for the control of secondary fungal infection with leukaemia. This work aimed to develop a bioanalytical method to study the potential interaction between dasatinib and posaconazole. Methods An ultrahigh-performance liquid chromatography-tandem mass spectrometry method was established to measure the plasma concentrations of dasatinib and posaconazole in rats simultaneously. Simple protein precipitation with acetonitrile was applied to extract dasatinib and posaconazole in samples. The chromatographic separation of analytes was conducted on an UPLC BEH C18 column using a mobile phase consisting of 0.1% aqueous formic acid and acetonitrile. Dasatinib and posaconazole were monitored in positive ion mode with the following mass transition pairs: m/z 488.2→401.1 for dasatinib and m/z 701.3→683.4 for posaconazole. The method was successfully applied for pharmacokinetic interaction between dasatinib and posaconazole. Results The established method expressed good linearity in 1–1000 ng/mL of dasatinib and 5–5000 ng/mL of posaconazole, with limit of detection was 1 ng/mL and 5 ng/mL, respectively. Methodology validations, including accuracy, precision, matrix effect, recovery, and stability, met the US Food and Drug Administration (FDA) acceptance criteria for bioanalytical method validation. Dasatinib strongly inhibited the clearance of posaconazole in vivo, while posaconazole expressed no significant effect on the pharmacokinetics of dasatinib. Conclusion Dasatinib alters the pharmacokinetics of posaconazole. Attention should be paid to the unexpected risk of adverse clinical outcomes when posaconazole is co-administered with dasatinib.
Collapse
Affiliation(s)
- Suili Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoshan Zhang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yuzhen Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Congcong Wen
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chenxiang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ziye Zhou
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
35
|
Jiang B, Jiang J, Kaltheuner IH, Iniguez AB, Anand K, Ferguson FM, Ficarro SB, Seong BKA, Greifenberg AK, Dust S, Kwiatkowski NP, Marto JA, Stegmaier K, Zhang T, Geyer M, Gray NS. Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma. Eur J Med Chem 2021; 221:113481. [PMID: 33945934 DOI: 10.1016/j.ejmech.2021.113481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Development of inhibitors targeting CDK12/13 is of increasing interest as a potential therapy for cancers as these compounds inhibit transcription of DNA damage response (DDR) genes. We previously described THZ531, a covalent inhibitor with selectivity for CDK12/13. In order to elucidate structure-activity relationship (SAR), we have undertaken a medicinal chemistry campaign and established a focused library of THZ531 analogs. Among these analogs, BSJ-01-175 demonstrates exquisite selectivity, potent inhibition of RNA polymerase II phosphorylation, and downregulation of CDK12-targeted genes in cancer cells. A 3.0 Å co-crystal structure with CDK12/CycK provides a structural rational for selective targeting of Cys1039 located in a C-terminal extension from the kinase domain. With moderate pharmacokinetic properties, BSJ-01-175 exhibits efficacy against an Ewing sarcoma tumor growth in a patient-derived xenograft (PDX) mouse model following 10 mg/kg once a day, intraperitoneal administration. Taken together, BSJ-01-175 represents the first selective CDK12/13 covalent inhibitor with in vivo efficacy reported to date.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ines H Kaltheuner
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; The Broad Institute, Cambridge, MA, 02142, USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Bo Kyung Alex Seong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; The Broad Institute, Cambridge, MA, 02142, USA
| | - Ann Katrin Greifenberg
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sofia Dust
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; The Broad Institute, Cambridge, MA, 02142, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Gomha SM, Abdelhady HA, Hassain DZH, Abdelmonsef AH, El-Naggar M, Elaasser MM, Mahmoud HK. Thiazole-Based Thiosemicarbazones: Synthesis, Cytotoxicity Evaluation and Molecular Docking Study. Drug Des Devel Ther 2021; 15:659-677. [PMID: 33633443 PMCID: PMC7900779 DOI: 10.2147/dddt.s291579] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Hybrid drug design has developed as a prime method for the development of novel anticancer therapies that can theoretically solve much of the pharmacokinetic disadvantages of traditional anticancer drugs. Thus a number of studies have indicated that thiazole-thiophene hybrids and their bis derivatives have important anticancer activity. Mammalian Rab7b protein is a member of the Rab GTPase protein family that controls the trafficking from endosomes to the TGN. Alteration in the Rab7b expression is implicated in differentiation of malignant cells, causing cancer. METHODS 1-(4-Methyl-2-(2-(1-(thiophen-2-yl) ethylidene) hydrazinyl) thiazol-5-yl) ethanone was used as building block for synthesis of novel series of 5-(1-(2-(thiazol-2-yl) hydrazono) ethyl) thiazole derivatives. The bioactivities of the synthesized compounds were evaluated with respect to their antitumor activities against MCF-7 tumor cells using MTT assay. Computer-aided docking protocol was performed to study the possible molecular interactions between the newly synthetic thiazole compounds and the active binding site of the target protein Rab7b. Moreover, the in silico prediction of adsorption, distribution, metabolism, excretion (ADME) and toxicity (T) properties of synthesized compounds were carried out using admetSAR tool. RESULTS The results obtained showed that derivatives 9 and 11b have promising activity (IC50 = 14.6 ± 0.8 and 28.3 ± 1.5 µM, respectively) compared to Cisplatin (IC50 = 13.6 ± 0.9 µM). The molecular docking analysis reveals that the synthesized compounds are predicted to be fit into the binding site of the target Rab7b. In summary, the synthetic thiazole compounds 1-17 could be used as potent inhibitors as anticancer drugs. CONCLUSION Promising anticancer activity of compounds 9 and 11 compared with cisplatin reference drug suggests that these ligands may contribute as lead compounds in search of new anticancer agents to combat chemo-resistance.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Hyam A Abdelhady
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | - Doaa Z H Hassain
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| | | | - Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, 11371, Egypt
| | - Huda K Mahmoud
- Chemistry Department, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
37
|
Jiang H, Jin Y, Yan H, Xu Z, Yang B, He Q, Luo P. Hepatotoxicity of FDA-approved small molecule kinase inhibitors. Expert Opin Drug Saf 2020; 20:335-348. [PMID: 33356646 DOI: 10.1080/14740338.2021.1867104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Given their importance in cellular processes and association with numerous diseases, protein kinases have emerged as promising targets for drugs. The FDA has approved greater than fifty small molecule kinase inhibitors (SMKIs) since 2001. Nevertheless, severe hepatotoxicity and related fatal cases have grown as a potential challenge in the advancement of these drugs, and the identification and diagnosis of drug-induced liver injury (DILI) are thorny problems for clinicians.Areas covered: This article summarizes the progression and analyzes the significant features in the study of SMKI hepatotoxicity, including clinical observations and investigations of the underlying mechanisms.Expert opinion: The understanding of SMKI-associated hepatotoxicity relies on the development of preclinical models and improvement of clinical assessment. With a full understanding of the role of inflammation in DILI and the mediating role of cytokines in inflammation, cytokines are promising candidates as sensitive and specific biomarkers for DILI. The emergence of three-dimensional spheroid models demonstrates potential use in providing clinically relevant data and predicting hepatotoxicity of SMKIs.
Collapse
Affiliation(s)
| | | | - Hao Yan
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou China
| |
Collapse
|
38
|
He Y, Whitehead DM, Briard E, Numao S, Mu L, Schibli R, Ametamey SM, Auberson YP. Evaluation of 5H-Thiazolo[3,2-α]pyrimidin-5-ones as Potential GluN2A PET Tracers. ChemMedChem 2020; 15:2448-2461. [PMID: 32544308 DOI: 10.1002/cmdc.202000340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/10/2022]
Abstract
We describe here our efforts to develop a PET tracer for imaging GluN2A-containing NMDA receptors, based on a 5H-thiazolo[3,2-α]pyrimidin-5-one scaffold. The metabolic stability and overall properties could be optimized satisfactorily, although binding affinities remained a limiting factor for in vivo imaging. We nevertheless identified 7-(((2-fluoroethyl)(3-fluorophenyl)amino)-methyl)-3-(2-(hydroxymethyl)cyclopropyl)-2-methyl-5H-thiazolo-[3,2-α]pyrimidin-5-one ([18 F]7b) as a radioligand providing good-quality images in autoradiographic studies, as well as a tritiated derivative, 2-(7-(((2-fluoroethyl)(4-fluorophenyl)amino)methyl)-2-methyl-5-oxo-5H-thiazolo[3,2-α]pyrimidin-3-yl)cyclopropane-1-carbonitrile ([3 H2 ]15b), which was used for the successful development of a radioligand binding assay. These are valuable new tools for the study of GluN2A-containing NMDA receptors, and for the optimization of allosteric modulators binding to the pharmacophore located at the dimer interface of the GluN1-GluN2A ligand-binding domain.
Collapse
Affiliation(s)
- Yingfang He
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - David M Whitehead
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Emmanuelle Briard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Shin Numao
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Yves P Auberson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| |
Collapse
|
39
|
Tao G, Huang J, Moorthy B, Wang C, Hu M, Gao S, Ghose R. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol 2020; 16:1109-1124. [PMID: 32841068 PMCID: PMC8059872 DOI: 10.1080/17425255.2020.1815705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Toxicity of chemotherapy drugs is the leading cause of poor therapeutic outcome in many cancer patients. Gastrointestinal (GI) toxicity and hepatotoxicity are among the most common side effects of current chemotherapies. Emerging studies indicate that many chemotherapy-induced toxicities are driven by drug metabolism, but very few reviews summarize the role of drug metabolism in chemotherapy-induced GI toxicity and hepatotoxicity. In this review, we highlighted the importance of drug metabolizing enzymes (DMEs) in chemotherapy toxicity. AREAS COVERED Our review demonstrated that altered activity of DMEs play important role in chemotherapy-induced GI toxicity and hepatotoxicity. Besides direct changes in catalytic activities, the transcription of DMEs is also affected by inflammation, cell-signaling pathways, and/or by drugs in cancer patients due to the disease etiology. EXPERT OPINION More studies should focus on how DMEs are altered during chemotherapy treatment, and how such changes affect the metabolism of chemotherapy drug itself. This mutual interaction between chemotherapies and DMEs can lead to excessive exposure of parent drug or toxic metabolites which ultimately cause GI adverse effect.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Junqing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | | | - Cathryn Wang
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, Texas Southern University, Houston TX, U.S
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| |
Collapse
|
40
|
Krebs S, Veach DR, Carter LM, Grkovski M, Fornier M, Mauro MJ, Voss MH, Danila DC, Burnazi E, Null M, Staton K, Pressl C, Beattie BJ, Zanzonico P, Weber WA, Lyashchenko SK, Lewis JS, Larson SM, Dunphy MPS. First-in-Humans Trial of Dasatinib-Derivative Tracer for Tumor Kinase-Targeted PET. J Nucl Med 2020; 61:1580-1587. [PMID: 32169913 PMCID: PMC8524123 DOI: 10.2967/jnumed.119.234864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/05/2020] [Indexed: 01/20/2023] Open
Abstract
We developed a first-of-kind dasatinib-derivative imaging agent, 18F-SKI-249380 (18F-SKI), and validated its use for noninvasive in vivo tyrosine kinase-targeted tumor detection in preclinical models. In this study, we assessed the feasibility of using 18F-SKI for PET imaging in patients with malignancies. Methods: Five patients with a prior diagnosis of breast cancer, renal cell cancer, or leukemia underwent whole-body PET/CT imaging 90 min after injection of 18F-SKI (mean, 241.24 ± 116.36 MBq) as part of a prospective study. In addition, patients underwent either a 30-min dynamic scan of the upper abdomen including, at least partly, cardiac left ventricle, liver, spleen, and kidney (n = 2) or three 10-min whole-body PET/CT scans (n = 3) immediately after injection and blood-based radioactivity measurements to determine the time course of tracer distribution and facilitate radiation dose estimates. A subset of 3 patients had a delayed whole-body PET/CT scan at 180 min. Biodistribution, dosimetry, and tumor uptake were quantified. Absorbed doses were calculated using OLINDA/EXM 1.0. Results: No adverse events occurred after injection of 18F-SKI. In total, 27 tumor lesions were analyzed, with a median SUVpeak of 1.4 (range, 0.7-2.3) and tumor-to-blood ratios of 1.6 (range, 0.8-2.5) at 90 min after injection. The intratumoral drug concentrations calculated for 4 reference lesions ranged from 0.03 to 0.07 nM. In all reference lesions, constant tracer accumulation was observed between 30 and 90 min after injection. A blood radioassay indicated that radiotracer clearance from blood and plasma was initially rapid (blood half-time, 1.31 ± 0.81 min; plasma, 1.07 ± 0.66 min; n = 4), followed variably by either a prolonged terminal phase (blood half-time, 285 ± 148.49 min; plasma, 240 ± 84.85 min; n = 2) or a small rise to a plateau (n = 2). Like dasatinib, 18F-SKI underwent extensive metabolism after administration, as evidenced by metabolite analysis. Radioactivity was predominantly cleared via the hepatobiliary route. The highest absorbed dose estimates (mGy/MBq) in normal tissues were to the right colon (0.167 ± 0.04) and small intestine (0.153 ± 0.03). The effective dose was 0.0258 mSv/MBq (SD, 0.0034 mSv/MBq). Conclusion:18F-SKI demonstrated significant tumor uptake, distinct image contrast despite low injected doses, and rapid clearance from blood.
Collapse
Affiliation(s)
- Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Monica Fornier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Michael J Mauro
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Daniel C Danila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Eva Burnazi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manda Null
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Staton
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Pressl
- Laboratory of Neural Systems, Rockefeller University, New York, New York
| | - Bradley J Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany; and
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
| | - Mark P S Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
41
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
42
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
43
|
Wright WC, Chenge J, Chen T. Structural Perspectives of the CYP3A Family and Their Small Molecule Modulators in Drug Metabolism. LIVER RESEARCH 2019; 3:132-142. [PMID: 32789028 PMCID: PMC7418881 DOI: 10.1016/j.livres.2019.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 enzymes function to catalyze a wide range of reactions, many of which are critically important for drug response. Members of the human cytochrome P450 3A (CYP3A) family are particularly important in drug clearance, and they collectively metabolize more than half of all currently prescribed medications. The ability of these enzymes to bind a large and structurally diverse set of compounds increases the chances of their modulating or facilitating drug metabolism in unfavorable ways. Emerging evidence suggests that individual enzymes in the CYP3A family play discrete and important roles in catalysis and disease progression. Here we review the similarities and differences among CYP3A enzymes with regard to substrate recognition, metabolism, modulation by small molecules, and biological consequence, highlighting some of those with clinical significance. We also present structural perspectives to further characterize the basis of these comparisons.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Corresponding author: Taosheng Chen, Department of Chemical Biology and Therapeutics, MS 1000, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA. Tel: (901) 595-5937; Fax: (901) 595-5715;
| |
Collapse
|
44
|
Paludetto M, Puisset F, Chatelut E, Arellano C. Identifying the reactive metabolites of tyrosine kinase inhibitors in a comprehensive approach: Implications for drug‐drug interactions and hepatotoxicity. Med Res Rev 2019; 39:2105-2152. [DOI: 10.1002/med.21577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Marie‐Noëlle Paludetto
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
- Département PharmacieInstitut Claudius Regaud, IUCT‐O Toulouse France
| | - Florent Puisset
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
- Département PharmacieInstitut Claudius Regaud, IUCT‐O Toulouse France
| | - Etienne Chatelut
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
| | - Cécile Arellano
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
| |
Collapse
|
45
|
Abdelgalil AA, Alam MA, Raish M, Mohammed IE, Hassan Mohammed AE, Ansari MA, Al Jenoobi FI. Dasatinib significantly reduced in vivo exposure to cyclosporine in a rat model: The possible involvement of CYP3A induction. Pharmacol Rep 2019; 71:201-205. [PMID: 30785057 DOI: 10.1016/j.pharep.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/25/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study was designed to investigate the effects of dasatinib and nilotinib on the pharmacokinetics of cyclosporine in rats, as these drugs have been reported to be cytochrome P450 3A4 (CYP3A4) substrates. METHODS Control and test groups (n = 5) were treated with vehicle and dasatinib (4 mg/kg, and 16 mg/kg, oral) or nilotinib (94 mg/kg, oral), respectively, for 8 consecutive days. On day 8, all groups were administered cyclosporine (30 mg/kg) 1 h after the last dose of dasatinib or nilotinib. Blood was collected from the retro-orbital plexus in heparinized tubes at different time points (0, 0.5, 1, 1.5, 2, 3.5, 8, 12, and 24 h). The cyclosporine concentration in blood samples was determined by ultra-performance liquid chromatography-tandem mass spectrometry. The effects of dasatinib on CYP3A2 mRNA and protein expression levels were also investigated. RESULTS Dasatinib significantly reduced the maximum blood concentration (Cmax) of cyclosporine by 85.7%, and increased hepatic and intestinal CYP3A2 mRNA and protein expression levels by 2.4- and 1.25-fold, respectively, compared to those in the controls (p < 0.05). On the other hand, nilotinib had no significant effects on cyclosporine pharmacokinetic parameters. CONCLUSIONS Dasatinib significantly reduced cyclosporine exposure, which was most probably related to the induction of CYP3A-mediated cyclosporine metabolism.
Collapse
Affiliation(s)
- Ahmed A Abdelgalil
- Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imad Eldin Mohammed
- Department of Pharmacology, College of Pharmacy, University of Gezira, Sudan
| | | | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Klopčič I, Dolenc MS. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem Res Toxicol 2018; 32:1-34. [DOI: 10.1021/acs.chemrestox.8b00213] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivana Klopčič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
47
|
van Hoppe S, Rood JJM, Buil L, Wagenaar E, Sparidans RW, Beijnen JH, Schinkel AH. P-Glycoprotein (MDR1/ABCB1) Restricts Brain Penetration of the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib, While Cytochrome P450-3A (CYP3A) Limits Its Oral Bioavailability. Mol Pharm 2018; 15:5124-5134. [DOI: 10.1021/acs.molpharmaceut.8b00702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Stéphanie van Hoppe
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Johannes J. M. Rood
- Section of Pharmacoepidemiology & Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3512 JE Utrecht, The Netherlands
| | - Levi Buil
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Els Wagenaar
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Rolf W. Sparidans
- Section of Pharmacoepidemiology & Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3512 JE Utrecht, The Netherlands
| | - Jos H. Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Section of Pharmacoepidemiology & Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3512 JE Utrecht, The Netherlands
| | - Alfred H. Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
48
|
Jackson KD, Durandis R, Vergne MJ. Role of Cytochrome P450 Enzymes in the Metabolic Activation of Tyrosine Kinase Inhibitors. Int J Mol Sci 2018; 19:E2367. [PMID: 30103502 PMCID: PMC6121577 DOI: 10.3390/ijms19082367] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Tyrosine kinase inhibitors are a rapidly expanding class of molecular targeted therapies for the treatment of various types of cancer and other diseases. An increasing number of clinically important small molecule tyrosine kinase inhibitors have been shown to undergo cytochrome P450-mediated bioactivation to form chemically reactive, potentially toxic products. Metabolic activation of tyrosine kinase inhibitors is proposed to contribute to the development of serious adverse reactions, including idiosyncratic hepatotoxicity. This article will review recent findings and ongoing studies to elucidate the link between drug metabolism and tyrosine kinase inhibitor-associated hepatotoxicity.
Collapse
Affiliation(s)
- Klarissa D Jackson
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| | - Rebecca Durandis
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| | - Matthew J Vergne
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| |
Collapse
|
49
|
Filppula AM, Mustonen TM, Backman JT. In Vitro Screening of Six Protein Kinase Inhibitors for Time-Dependent Inhibition of CYP2C8 and CYP3A4: Possible Implications with regard to Drug-Drug Interactions. Basic Clin Pharmacol Toxicol 2018; 123:739-748. [DOI: 10.1111/bcpt.13088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Anne M. Filppula
- Department of Clinical Pharmacology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Tiffany M. Mustonen
- Department of Clinical Pharmacology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Janne T. Backman
- Department of Clinical Pharmacology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
50
|
Khojasteh SC, Miller GP, Mitra K, Rietjens IMCM. Biotransformation and bioactivation reactions - 2017 literature highlights *. Drug Metab Rev 2018; 50:221-255. [PMID: 29954222 DOI: 10.1080/03602532.2018.1473875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This annual review is the third one to highlight recent advances in the study and assessment of biotransformations and bioactivations ( Table 1 ). We followed the same format as the previous years with selection and authoring each section (see Baillie et al. 2016 ; Khojasteh et al. 2017 ). We acknowledge that many universities no longer train students in mechanistic biotransformation studies reflecting a decline in the investment for those efforts by public funded granting institutions. We hope this work serves as a resource to appreciate the knowledge gained each year to understand and hopefully anticipate toxicological outcomes dependent on biotransformations and bioactivations. This effort itself also continues to evolve. I am pleased that Drs. Rietjens and Miller have again contributed to this annual review. We would like to welcome Kaushik Mitra as an author for this year's issue, and we thank Deepak Dalvie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. As always, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- a Department of Drug Metabolism and Pharmacokinetics , Genentech, Inc , South San Francisco , CA , USA
| | - Grover P Miller
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kaushik Mitra
- c Department of Safety Assessment and Laboratory Animal Resources , Merck Research Laboratories (MRL), Merck & Co., Inc , West Point , PA , USA
| | | |
Collapse
|