1
|
Tomás RMF, Dallman R, Congdon TR, Gibson MI. Cryopreservation of assay-ready hepatocyte monolayers by chemically-induced ice nucleation: preservation of hepatic function and hepatotoxicity screening capabilities. Biomater Sci 2023; 11:7639-7654. [PMID: 37840476 PMCID: PMC10661096 DOI: 10.1039/d3bm01046e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
Cell culture plays a critical role in biomedical discovery and drug development. Primary hepatocytes and hepatocyte-derived cell lines are especially important cellular models for drug discovery and development. To enable high-throughput screening and ensure consistent cell phenotypes, there is a need for practical and efficient cryopreservation methods for hepatocyte-derived cell lines and primary hepatocytes in an assay-ready format. Cryopreservation of cells as adherent monolayers in 96-well plates presents unique challenges due to low volumes being susceptible to supercooling, leading to low recovery and well-to-well variation. Primary cell cryopreservation is also particularly challenging due to the loss of cell viability and function. In this study, we demonstrate the use of soluble ice nucleator materials (IN) to cryopreserve a hepatic-derived cell line (HepG2) and primary mouse hepatocytes, as adherent monolayers. HepG2 cell recovery was near 100% and ∼75% of primary hepatocytes were recovered 24 hours post-thaw compared to just 10% and 50% with standard 10% DMSO, respectively. Post-thaw assessment showed that cryopreserved HepG2 cells retain membrane integrity, metabolic activity, proliferative capacity and differentiated hepatic functions including urea secretion, cytochrome P450 levels and lipid droplet accumulation. Cryopreserved primary hepatocytes exhibited reduced hepatic functions compared to fresh hepatocytes, but functional levels were similar to commercial suspension-cryopreserved hepatocytes, with the added benefit of being stored in an assay-ready format. In addition, normal cuboidal morphology and minimal membrane damage were observed 24 hours post-thaw. Cryopreserved HepG2 and mouse hepatocytes treated with a panel of pharmaceutically active compounds produced near-identical dose-response curves and EC50 values compared to fresh hepatocytes, confirming the utility of cryopreserved bankable cells in drug metabolism and hepatotoxicity studies. Cryopreserved adherent HepG2 cells and primary hepatocytes in 96 well plates can significantly reduce the time and resource burden associated with routine cell culture and increases the efficiency and productivity of high-throughput drug screening assays.
Collapse
Affiliation(s)
- Ruben M F Tomás
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Robert Dallman
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | - Matthew I Gibson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
2
|
Takemura A, Ishii S, Ikeyama Y, Esashika K, Takahashi J, Ito K. New in vitro screening system to detect drug-induced liver injury using a culture plate with low drug sorption and high oxygen permeability. Drug Metab Pharmacokinet 2023; 52:100511. [PMID: 37531708 DOI: 10.1016/j.dmpk.2023.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 08/04/2023]
Abstract
Drug-induced liver injury (DILI) is a major factor underlying drug withdrawal from the market. Therefore, it is important to predict DILI during the early phase of drug discovery. Metabolic activation and mitochondrial toxicity are good indicators of the potential for DILI. However, hepatocyte function, including drug-metabolizing enzyme activity and mitochondrial function, reportedly decreases under conventional culture conditions; therefore, these conditions fail to precisely detect metabolic activation and mitochondrial toxicity-induced cell death. To resolve this issue, we employed a newly developed cell culture plate with high oxygen permeability and low drug sorption (4-polymethyl-1-pentene [PMP] plate). Under PMP plate conditions, cytochrome P450 (CYP) activity and mitochondrial function were increased in primary rat hepatocytes. Following l-buthionine-sulfoximine-induced glutathione depletion, acetaminophen-induced cell death significantly increased under PMP plate conditions. Additionally, 1-aminobenzotriazole reduced cell death. Moreover, mitochondrial toxicity due to mitochondrial complex inhibitors (ketoconazole, metformin, and phenformin) increased under PMP plate conditions. In summary, PMP plate conditions could improve CYP activity and mitochondrial function in primary rat hepatocytes and potentially detect metabolic activation and mitochondrial toxicity.
Collapse
Affiliation(s)
- Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Sanae Ishii
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yugo Ikeyama
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Katsuhiro Esashika
- New Business Solutions Department, Innovative Solutions Center for Information & Communication Technology, Mitsui Chemicals, Inc., Chiba, Japan
| | - Jun Takahashi
- Bio Technology & Medical Materials Department, Synthetic Chemicals Laboratory, R&D Center, Mitsui Chemicals, Inc., Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Farasyn T, Xu C, Yue W. Development of a Rat Sandwich-Cultured Hepatocytes Model Expressing Functional Human Organic Anion Transporting Polypeptide (OATP) 1B3: A Potential Screening Tool for Liver-Targeting Compounds. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2021; 24:475-483. [PMID: 34516949 PMCID: PMC11195919 DOI: 10.18433/jpps31818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Organic anion transporting polypeptide (OATP) 1B3 transports many clinically important drugs, including statins, from blood into the liver. It exclusively expresses in human liver under normal physiological conditions. There is no rodent ortholog of human OATP1B3. Tissue targeting of therapeutic molecules mediated by transporters, including liver-targeting via liver-specific OATPs, is an emerging area in drug development. Sandwich-cultured primary hepatocytes (SCH) are a well characterized in vitro model for assessment of hepatic drug uptake and biliary excretion. The current study was designed to develop a novel rat SCH model expressing human OATP1B3 to study the hepatic disposition of OATP1B3 substrates. METHODS Primary rat hepatocytes transduced with adenoviral vectors expressing FLAG-tagged OATP1B3 (Ad-OATP1B3), a control vector Ad-LacZ, or that were non-transduced were cultured in a sandwich configuration. FLAG immunoblot and immunofluorescence-staining determined expression and localization of OATP1B3. Uptake of [3H]-cholecystokinin octapeptide (CCK-8), a specific OATP1B3 substrate, was determined. Taurocholate (TC) is a substrate routinely used in SCH to assess biliary excretion via bile canaliculi (BC) and is also a substrate of OATP1B3. [3H]-TC accumulation in cells+BC, cells, biliary excretion index (BEI) and in vitro Clbiliary were determined using B-CLEAR® technology. RESULTS OATP1B3 protein was extensively expressed and primarily localized on the plasma membrane in day 4 Ad-OATP1B3-transduced rat SCH. [3H]-CCK-8 accumulation in cells+BC was significantly greater (~5-13 folds, p<0.001) in day 4 SCH with vs. without Ad-OATP1B3-transduction. Expressing OATP1B3 in rat SCH significantly increased [3H]-TC accumulation in cells+BC and cells, without affecting BEI and in vitro Clbiliary. CONCLUSIONS Rat SCH expressing human OATP1B3-is a novel in vitro model allowing simultaneous assessment of hepatic uptake, hepatocellular accumulation and biliary excretion process of a human OATP1B3 substrate. This model could be a potential tool for screening for liver-targeting compounds mediated by OATP1B3.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Chao Xu
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
4
|
Yang Y, Liu L, Xu M, Zhang X, Wang L, He Q, Xu M, Jiang X. Tanshinone ⅡA may alleviate rifampin-induced cholestasis by regulating the expression and function of NTCP. Hum Exp Toxicol 2020; 40:1003-1011. [PMID: 33307820 DOI: 10.1177/0960327120979030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Na+-taurocholate cotransporting polypeptide (NTCP) acts as the major hepatic basolateral uptake system, and plays a key role in balancing bile flow. The anti-tuberculosis drugs rifampin (RFP) can affect bile flow causing liver injury, while tanshinone IIA (TAN IIA) has the effect of protecting liver. This study aimed to investigate the effects of RFP and TAN IIA on the NTCP expression and activity, and explore the potential connections. Herein, we established sandwich-cultured primary rat hepatocytes, and quantified mRNA and protein levels of NRF2 and NTCP after treatment with RFP (10, 25, or 50 μM) or co-treatment with TAN IIA (5, 10, or 20 μM) for 12, 24, 48 h (n = 3). NTCP activity was assessed by measuring the initial uptake rates of known substrates taurocholate (TCA) (n = 3) after treatment with different concentrations of RFP, TAN ⅡA for 12, 24 and 48 h. We found that RFP had inhibition effects on NRF2, NTCP mRNA and protein expression, and co-administration of TAN IIA could reverse RFP inhibition. TCA cellular accumulation was significantly decreased by RFP (39.1%), and TAN IIA could significantly induce TCA uptake of NTCP (2.9-fold at 48 h). The TCA uptake activity was correlated with the NTCP mRNA expression, confirming the role of RFP or TAN IIA on NTCP expression and activity is synchronous, and we can predict NTCP activity by detecting its mRNA expression. In conclusion, our work will enrich the significance of NTCP in the liver protection, and provide theoretical basis for TAN IIA to prevent RFP induced cholestatic liver injury.
Collapse
Affiliation(s)
- Y Yang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China.,Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - L Liu
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China.,Department of Pharmacy, 575842the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - M Xu
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - X Zhang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - L Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Q He
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - M Xu
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - X Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Chang JH, Sangaraju D, Liu N, Jaochico A, Plise E. Comprehensive Evaluation of Bile Acid Homeostasis in Human Hepatocyte Co-Culture in the Presence of Troglitazone, Pioglitazone, and Acetylsalicylic Acid. Mol Pharm 2019; 16:4230-4240. [DOI: 10.1021/acs.molpharmaceut.9b00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae H. Chang
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Dewakar Sangaraju
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Ning Liu
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Allan Jaochico
- Genentech, Inc, South San Francisco, California 94080, United States
| | - Emile Plise
- Genentech, Inc, South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Witte S, Brockelmann Y, Haeger JD, Schmicke M. Establishing a model of primary bovine hepatocytes with responsive growth hormone receptor expression. J Dairy Sci 2019; 102:7522-7535. [PMID: 31155243 DOI: 10.3168/jds.2018-15873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
The liver becomes resistant to growth hormone before parturition in dairy cows (uncoupling of the somatotropic axis). However, the mechanism of growth hormone insensitivity has not been fully described. The aim of the present study was to improve a previous model of adult bovine hepatocytes in a sandwich culture system to ensure growth hormone receptor (GHR) expression. First, we modified the protocol for hepatocyte retrieval and tested the effect of short (18 min) and long (up to 30 min) warm ischemia on hepatocyte viability. Second, we used medium additives that affect GHR expression in vivo-insulin (INS), dexamethasone (DEX), both (INS+DEX), or no hormone additives (CTRL)-to ensure the functionality of hepatocytes, as measured by lactate dehydrogenase activity and urea concentration in the medium. We also used reverse transcriptase PCR of hepatocytes to evaluate expression of albumin (ALB), hepatocyte nuclear factor 4α (HNF4A), nuclear factor-κ-B-inhibitor α (NFKBIA), cytosolic phosphoenolpyruvate carboxykinase (PCK1), and vimentin (VIM) mRNA. Moreover, we analyzed the expression of GHRtot (GHR), GHR1A, insulin-like growth factor-1 (IGF1), and IGF binding protein-2 (IGFBP2) in response to exposure to media with the different compositions. Modification of the protocol (changes in rinsing and perfusion times, buffer composition, and the volume and standardization of collagenase) led to increased cell counts and cell viability. Short warm ischemia with the modified protocol significantly increased cell count (4.7 × 107 ± 1.9 × 107 vs. 3.5 × 106 ± 1.5 × 106 vital cells/g of liver) and viability (79.1 ± 8.4 vs. 37.1 ± 8.9%). Therefore, we gathered hepatocytes from the liver after short warm ischemia with the modified protocol. For these hepatocytes, lactate dehydrogenase activity was lower in media with INS and with DEX than in media with INS+DEX or CTRL; urea concentrations were highest at d 4 for INS+DEX. As well, HNF4A and ALB were more highly expressed in hepatocytes cultured with INS and INS+DEX than in those cultured with DEX or CTRL, and the substitution of DEX suppressed VIM and NFKBIA expression but increased PCK1 expression. The expression of GHR, GHR1A, and IGF1 was suppressed by dexamethasone (DEX and INS+DEX), whereas INS distinctly increased GHR, GHR1A, and IGF1 mRNA expression. Hepatocytes in a sandwich culture showed influenceable GHR expression; this study provides a model that can be used in studies examining factors that influence the expression and signal transduction of GHR in dairy cows.
Collapse
Affiliation(s)
- S Witte
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - Y Brockelmann
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - J-D Haeger
- Institute for Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - M Schmicke
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany.
| |
Collapse
|
7
|
Chan TS, Yu H, Moore A, Khetani SR, Tweedie D. Meeting the Challenge of Predicting Hepatic Clearance of Compounds Slowly Metabolized by Cytochrome P450 Using a Novel Hepatocyte Model, HepatoPac. Drug Metab Dispos 2018; 47:58-66. [PMID: 30552098 DOI: 10.1124/dmd.113.053397fullarticlecorrection] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022] Open
Abstract
Generating accurate in vitro intrinsic clearance data is an important aspect of predicting in vivo human clearance. Primary hepatocytes in suspension are routinely used to predict in vivo clearance; however, incubation times have typically been limited to 4-6 hours, which is not long enough to accurately evaluate the metabolic stability of slowly metabolized compounds. HepatoPac is a micropatterened hepatocyte-fibroblast coculture system that can be used for continuous incubations of up to 7 days. This study evaluated the ability of human HepatoPac to predict the in vivo clearance (CL) of 17 commercially available compounds with low to intermediate clearance (<12 ml/min/kg). In vitro half-life for disappearance of each compound was converted to hepatic clearance using the well stirred model, with and without correction for plasma protein binding. Hepatic CL, using three individual donors, was accurately predicted for 11 of 17 compounds (59%; predicted clearance within 2-fold of observed human in vivo clearance values). The accuracy of prediction increased to 82% (14 of 17 compounds) with an acceptance criterion defined as within 3-fold. When considering only low clearance compounds (<5 ml/min per kg), which represented 10 of the 17 compounds, the accuracy of prediction was 70% within 2-fold and 100% within 3-fold. In addition, the turnover of three slowly metabolized compounds (alprazolam, meloxicam, and tolbutamide) in HepatoPac was directly compared with turnover in suspended hepatocytes. The turnover of alprazolam and tolbutamide was approximately 2-fold greater using HepatoPac compared with suspended hepatocytes, which was roughly in line with the extrapolated values (correcting for the longer incubation time and lower cell number with HepatoPac). HepatoPac, but not suspended hepatocytes, demonstrated significant turnover of meloxicam. These results demonstrate the utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds.
Collapse
Affiliation(s)
- Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Hongbin Yu
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Amanda Moore
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Salman R Khetani
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Donald Tweedie
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| |
Collapse
|
8
|
Caetano-Pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018; 46:1647-1657. [DOI: 10.1124/dmd.118.082750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
|
9
|
Petrov PD, Fernández-Murga ML, López-Riera M, Goméz-Lechón MJ, Castell JV, Jover R. Predicting drug-induced cholestasis: preclinical models. Expert Opin Drug Metab Toxicol 2018; 14:721-738. [PMID: 29888962 DOI: 10.1080/17425255.2018.1487399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and can widely be classified in experimental animals and in vitro models. Expert opinion: Drugs are a growing cause of cholestasis, but the progress made in explaining mechanisms and differences in susceptibility is not growing at the same rate. We need reliable models able to recapitulate the features of DIC, particularly its idiosyncrasy. The homogeneity and the species-specific differences move animal models away from a fair predictability. However, in vitro human models are improving and getting closer to the real hepatocyte phenotype, and they will likely be the choice in the near future. Progress in this area will not only need reliable predictive models but also mechanistic insights.
Collapse
Affiliation(s)
- Petar D Petrov
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - M Leonor Fernández-Murga
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - Mireia López-Riera
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain
| | - M José Goméz-Lechón
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Jose V Castell
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| | - Ramiro Jover
- a Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Unidad de Hepatología Experimental , Valencia , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
10
|
Matsunaga N, Fukuchi Y, Imawaka H, Tamai I. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay. Drug Metab Dispos 2018; 46:680-691. [PMID: 29352067 DOI: 10.1124/dmd.117.079236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme and efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular efflux transporters, determines the fate of metabolites formed in the liver. As sandwich-cultured hepatocytes (SCHs) maintain metabolic activities and form a canalicular network, the whole interplay between uptake and efflux transporters and drug-metabolizing enzymes can be investigated simultaneously. In this article, we review the utility and applicability of SCHs for mechanistic understanding of hepatic disposition of both parent drugs and metabolites. In addition, the utility of SCHs for mimicking species-specific disposition of parent drugs and metabolites in vivo is described. We also review application of SCHs for clinically relevant prediction of drug-drug interactions caused by drugs and metabolites. The usefulness of mathematical modeling of hepatic disposition of parent drugs and metabolites in SCHs is described to allow a quantitative understanding of an event in vitro and to develop a more advanced model to predict in vivo disposition.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Yukina Fukuchi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Ikumi Tamai
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| |
Collapse
|
11
|
Rasmussen MK. Induction of cytochrome P450 mRNA in porcine primary hepatocytes cultured under serum free conditions: Comparison of freshly isolated cells and cryopreserved. Exp Cell Res 2017; 360:218-225. [PMID: 28916194 DOI: 10.1016/j.yexcr.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Primary hepatocytes are widely used in the study of dynamic events like regulation of gene expression, as they are superior to most cell-lines. However, the culturing of the hepatocytes often results in loss of phenotype, e.g. the expression of the cytochrome p450s (CYP). The present study investigated the impact of serum in the culture medium of porcine primary hepatocytes (PPH) on markers of dedifferentiation as well as the impact on CYP induction. The effects were studied in both freshly isolated primary hepatocytes as well as cryopreserved. The exclusion of serum in the culturing media were not introducing significant dedifferentiation as judged by the gene expression of α-fetoprotein, albumin, glucose-6-phosphatase and the constitutive expression of selected transcription factors and CYP. The induction of CYP2B22 and CYP3A29 by phenobarbital and rifampicin, were greater in hepatocytes cultured without serum. The same were not observed for TCDD induced CYP1A2 expression. In conclusion, PPH cultured under serum free conditions results in little or no dedifferentiation, while being more responsive to known CYP inducers. Hence, it can be suggested that PPH cultured under serum free conditions provides a reliable hepatocyte model to investigate CYP gene regulation.
Collapse
|
12
|
Results from 11C-metformin-PET scans, tissue analysis and cellular drug-sensitivity assays questions the view that biguanides affects tumor respiration directly. Sci Rep 2017; 7:9436. [PMID: 28842630 PMCID: PMC5573362 DOI: 10.1038/s41598-017-10010-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
The anti-diabetic biguanide drugs metformin (METF) and phenformin (PHEN) may have anti-cancer effects. Biguanides suppress plasma growth factors, but nonetheless, the view that these mitochondrial inhibitors accumulate in tumor tissue to an extent that leads to severe energetic stress or alleviation of hypoxia-induced radioresistance is gaining ground. Our cell studies confirm that biguanides inhibits cell proliferation by targeting respiration, but only at highly suprapharmacological concentrations due to low drug retention. Biodistribution/PET studies of 11C-labeled metformin (11C-METF) revealed that plasma bioavailability remained well below concentrations with metabolic/anti-proliferative in vitro effects, following a high oral dose. Intraperitoneal administration resulted in higher drug concentrations, which affected metabolism in normal organs with high METF uptake (e.g., kidneys), but tumor drug retention peaked at low levels comparable to plasma levels and hypoxia was unaffected. Prolonged intraperitoneal treatment reduced tumor growth in two tumor models, however, the response did not reflect in vitro drug sensitivity, and tumor metabolism and hypoxia was unaffected. Our results do not support that direct inhibition of tumor cell respiration is responsible for reduced tumor growth, but future studies using 11C-METF-PET are warranted, preferably in neoplasia’s originating from tissue with high drug transport capacity, to investigate the controversial idea of direct targeting.
Collapse
|
13
|
Multiple drug transporters mediate the placental transport of sulpiride. Arch Toxicol 2017; 91:3873-3884. [DOI: 10.1007/s00204-017-2008-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
|
14
|
Cantrill C, Houston JB. Understanding the Interplay Between Uptake and Efflux Transporters Within In Vitro Systems in Defining Hepatocellular Drug Concentrations. J Pharm Sci 2017; 106:2815-2825. [PMID: 28478131 DOI: 10.1016/j.xphs.2017.04.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/03/2023]
Abstract
One of the most holistic in vitro systems for prediction of intracellular drug concentrations is sandwich-cultured hepatocytes (SCH); however, a comprehensive evaluation of the utility of SCH to estimate uptake and biliary clearances and the need for additional kinetic parameters has yet to be carried out. Toward this end, we have selected 9 compounds (rosuvastatin, valsartan, fexofenadine, pravastatin, repaglinide, telmisartan, atorvastatin, saquinavir, and quinidine) to provide a range of physicochemical and hepatic disposition properties. Uptake clearances were determined in SCH and compared with conventional monolayer and suspension hepatocyte systems, previously reported by our laboratory. CLuptake ranged from 1 to 41 μL/min/106 cells in SCH which were significantly lower (1%-10%) compared with the other hepatocyte models. The hepatocyte-to-media unbound concentration ratio (Kpu) has been assessed and ranged 0.7-59, lower compared with other hepatocyte systems (8-280). Estimates of in vitro biliary clearance (CLbile) for 4 drugs were determined and were scaled to predict in vivo values using both intracellular concentration and media drug concentrations. These studies demonstrate that reduced uptake in rat SCH may limit drug access to canalicular efflux transport proteins and highlight the importance of elucidating the interplay between these proteins for accurate prediction of hepatic clearance.
Collapse
Affiliation(s)
- Carina Cantrill
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK.
| |
Collapse
|
15
|
Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. J Pharm Sci 2016; 105:443-459. [PMID: 26869411 DOI: 10.1016/j.xphs.2015.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites. Mechanistic modeling based on SCH data enables estimation of metabolic and transporter-mediated clearances, which can be used to construct physiologically based pharmacokinetic models for prediction of drug disposition and drug-drug interactions in humans. In addition to pharmacokinetic studies, SCH also have been used to study cytotoxicity and perturbation of biological processes by drugs and hepatically generated metabolites. Human SCH can provide mechanistic insights underlying clinical drug-induced liver injury (DILI). In addition, data generated in SCH can be integrated into systems pharmacology models to predict potential DILI in humans. In this review, applications of SCH in studying hepatobiliary drug disposition and bile acid-mediated DILI are discussed. An example is presented to show how data generated in the SCH model were used to establish a quantitative relationship between intracellular bile acids and cytotoxicity, and how this information was incorporated into a systems pharmacology model for DILI prediction.
Collapse
|
16
|
Moore A, Chothe PP, Tsao H, Hariparsad N. Evaluation of the Interplay between Uptake Transport and CYP3A4 Induction in Micropatterned Cocultured Hepatocytes. Drug Metab Dispos 2016; 44:1910-1919. [PMID: 27655038 DOI: 10.1124/dmd.116.072660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023] Open
Abstract
Previously we assessed the inductive response of prototypical inducers in hepatocyte monocultures and the long-term coculture model HepatoPac using cryopreserved hepatocytes from the same donors. We noted that the rifampicin EC50 generated using the HepatoPac model corresponded better to the EC50 based on clinical data compared with data generated in the monoculture system. We postulated that there may be differences in the functioning of uptake transporters between the two systems that may have led to the EC50 difference. In this study, we characterized the functional activity of multiple uptake transporters in the two systems using cryopreserved hepatocytes from the same donors. Our data suggest that uptake transporter activity is higher in HepatoPac compared with the monoculture system. As a follow up to this study, we measured the intracellular concentrations of rifampicin and bosentan, which are known substrates of uptake transporters; we observed significantly higher intracellular concentrations of both compounds in HepatoPac relative to the monoculture system. This finding equated to lower cytochrome P450 isoform 3A4 (CYP3A4) EC50 values in the HepatoPac system compared with the monoculture system for both mRNA and activity. In parallel, no significant EC50 shift was observed for carbamazepine and phenytoin, which are not known to be substrates of uptake transporters. Our data suggest that next generation liver models such as HepatoPac may be a useful in vitro tool to quantitatively predict drug-drug interactions when it is known that the perpetrator is also a substrate of drug transporters.
Collapse
Affiliation(s)
- Amanda Moore
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Hong Tsao
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| |
Collapse
|
17
|
Kong LL, Shen GL, Wang ZY, Zhuang XM, Xiao WB, Yuan M, Gong ZH, Li H. Inhibition of P-Glycoprotein and Multidrug Resistance-Associated Protein 2 Regulates the Hepatobiliary Excretion and Plasma Exposure of Thienorphine and Its Glucuronide Conjugate. Front Pharmacol 2016; 7:242. [PMID: 27555820 PMCID: PMC4977286 DOI: 10.3389/fphar.2016.00242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/22/2016] [Indexed: 11/13/2022] Open
Abstract
Thienorphine (TNP) is a novel partial opioid agonist that has completed phase II clinical evaluation as a promising drug candidate for the treatment of opioid dependence. Previous studies have shown that TNP and its glucuronide conjugate (TNP-G) undergo significant bile excretion. The purpose of this study was to investigate the roles of efflux transporters in regulating biliary excretion and plasma exposure of TNP and TNP-G. An ATPase assay suggested that TNP and TNP-G were substrates of P-gp and MRP2, respectively. The in vitro data from rat hepatocytes showed that bile excretion of TNP and TNP-G was regulated by the P-gp and MRP2 modulators. The accumulation of TNP and TNP-G in HepG2 cells significantly increased by the treatment of mdr1a or MRP2 siRNA for P-gp or MRP2 modulation. In intact rats, the bile excretion, and pharmacokinetic profiles of TNP and TNP-G were remarkably changed with tariquidar and probenecid pretreatment, respectively. Tariquidar increased the Cmax and AUC0-t and decreased MRT and T1/2 of TNP, whereas probenecid decreased the plasma exposure of TNP-G and increased its T1/2. Knockdown P-gp and MRP2 function using siRNA significantly increased the plasma exposure of TNP and TNP-G and reduced their mean retention time in mice. These results indicated the important roles of P-gp and MRP2 in hepatobiliary excretion and plasma exposure of TNP and TNP-G. Inhibition of the efflux transporters may affect the pharmacokinetics of TNP and result in a drug-drug interaction between TNP and the concomitant transporter inhibitor or inducer in clinic.
Collapse
Affiliation(s)
- Ling-Lei Kong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and ToxicologyBeijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing, China
| | - Guo-Lin Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and ToxicologyBeijing, China; Research Center for Import-Export Chemicals Safety of General Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China, Chinese Academy of Inspection and QuarantineBeijing, China
| | - Zhi-Yuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiao-Mei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Wei-Bin Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Ze-Hui Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Hua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing, China
| |
Collapse
|
18
|
Schupp AK, Trilling M, Rattay S, Le-Trilling VTK, Haselow K, Stindt J, Zimmermann A, Häussinger D, Hengel H, Graf D. Bile Acids Act as Soluble Host Restriction Factors Limiting Cytomegalovirus Replication in Hepatocytes. J Virol 2016; 90:6686-6698. [PMID: 27170759 PMCID: PMC4944301 DOI: 10.1128/jvi.00299-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The liver constitutes a prime site of cytomegalovirus (CMV) replication and latency. Hepatocytes produce, secrete, and recycle a chemically diverse set of bile acids, with the result that interactions between bile acids and cytomegalovirus inevitably occur. Here we determined the impact of naturally occurring bile acids on mouse CMV (MCMV) replication. In primary mouse hepatocytes, physiological concentrations of taurochenodeoxycholic acid (TCDC), glycochenodeoxycholic acid, and to a lesser extent taurocholic acid significantly reduced MCMV-induced gene expression and diminished the generation of virus progeny, while several other bile acids did not exert antiviral effects. The anticytomegalovirus activity required active import of bile acids via the sodium-taurocholate-cotransporting polypeptide (NTCP) and was consistently observed in hepatocytes but not in fibroblasts. Under conditions in which alpha interferon (IFN-α) lacks antiviral activity, physiological TCDC concentrations were similarly effective as IFN-γ. A detailed investigation of distinct steps of the viral life cycle revealed that TCDC deregulates viral transcription and diminishes global translation in infected cells. IMPORTANCE Cytomegaloviruses are members of the Betaherpesvirinae subfamily. Primary infection leads to latency, from which cytomegaloviruses can reactivate under immunocompromised conditions and cause severe disease manifestations, including hepatitis. The present study describes an unanticipated antiviral activity of conjugated bile acids on MCMV replication in hepatocytes. Bile acids negatively influence viral transcription and exhibit a global effect on translation. Our data identify bile acids as site-specific soluble host restriction factors against MCMV, which may allow rational design of anticytomegalovirus drugs using bile acids as lead compounds.
Collapse
Affiliation(s)
- Anna-Kathrin Schupp
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mirko Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Rattay
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katrin Haselow
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Albert Zimmermann
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Department for Medical Microbiology and Hygiene, Institute of Virology, Albert-Ludwigs-University, Freiburg, Germany
| | - Dirk Graf
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
19
|
Establishment of a Drug-Induced, Bile Acid–Dependent Hepatotoxicity Model Using HepaRG Cells. J Pharm Sci 2016; 105:1550-60. [DOI: 10.1016/j.xphs.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/29/2023]
|
20
|
Ramboer E, Rogiers V, Vanhaecke T, Vinken M. Effects of Trichostatin A on drug uptake transporters in primary rat hepatocyte cultures. EXCLI JOURNAL 2015; 14:567-76. [PMID: 26648816 PMCID: PMC4669911 DOI: 10.17179/excli2015-220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 11/10/2022]
Abstract
The present study was set up to investigate the effects of Trichostatin A (TSA), a prototypical epigenetic modifier, on the expression and activity of hepatic drug uptake transporters in primary cultured rat hepatocytes. To this end, the expression of the sinusoidal transporters sodium-dependent taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 4 (Oatp4) was monitored by real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblotting. The activity of the uptake transporters was analyzed using radiolabeled substrates and chemical inhibitors. Downregulation of the expression and activity of Oatp4 and Ntcp was observed as a function of the cultivation time and could not be counteracted by TSA. In conclusion, the epigenetic modifier TSA does not seem to exert a positive effect on the expression and activity of the investigated uptake transporters in primary rat hepatocyte cultures.
Collapse
Affiliation(s)
- Eva Ramboer
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| | - Vera Rogiers
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| | - Tamara Vanhaecke
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-cosmetology research group, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel
| |
Collapse
|
21
|
Basal efflux of bile acids contributes to drug-induced bile acid-dependent hepatocyte toxicity in rat sandwich-cultured hepatocytes. Toxicol In Vitro 2015; 29:1454-63. [DOI: 10.1016/j.tiv.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
|
22
|
Qiu L, Finley J, Taimi M, Aleo MD, Strock C, Gilbert J, Qin S, Will Y. High-Content Imaging in Human and Rat Hepatocytes Using the Fluorescent Dyes CLF and CMFDA Is Not Specific Enough to Assess BSEP/Bsep and/or MRP2/Mrp2 Inhibition by Cholestatic Drugs. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luping Qiu
- Center for Therapeutic Innovation, Pfizer Global R&D, New York, New York
| | - James Finley
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Mohammed Taimi
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Michael D. Aleo
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | | | | | | | - Yvonne Will
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| |
Collapse
|
23
|
Le Vee M, Jouan E, Noel G, Stieger B, Fardel O. Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes. Toxicol In Vitro 2015; 29:938-46. [PMID: 25862123 DOI: 10.1016/j.tiv.2015.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/16/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
Abstract
Human hepatocytes cultured in a monolayer configuration represent a well-established in vitro model in liver toxicology, notably used in drug transporter studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, remains however incompletely documented in these cultured hepatocytes. The present study was therefore designed to analyze transporter expression and location in such cells. Most of drug transporters were first shown to be present at notable mRNA levels in monolayer-cultured human hepatocytes. Cultured human hepatocytes, which morphologically exhibited bile canaliculi-like structures, were next demonstrated, through immunofluorescence staining, to express the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3 at their sinusoidal pole. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of monolayer-cultured human hepatocytes. Moreover, canalicular secretion of reference substrates for the efflux transporters bile salt export pump, MRP2 and P-glycoprotein as well as sinusoidal drug transporter activities were observed. This polarized and functional expression of drug transporters in monolayer-cultured human hepatocytes highlights the interest of using this human in vitro cell model in xenobiotic transport studies.
Collapse
Affiliation(s)
- Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Elodie Jouan
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Gregory Noel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
24
|
Panda S, Bisht S, Malakar D, Mohanty AK, Kaushik JK. In vitro culture of functionally active buffalo hepatocytes isolated by using a simplified manual perfusion method. PLoS One 2015; 10:e0118841. [PMID: 25790478 PMCID: PMC4366187 DOI: 10.1371/journal.pone.0118841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/09/2015] [Indexed: 01/27/2023] Open
Abstract
Background In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes. Results Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3±0.66)×107 cells per gram of liver tissue with a viability of 82.3±3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies. Conclusion We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active hepatocytes for studying gene expression, regulation, hepatic genomics and proteomics in farm animals.
Collapse
Affiliation(s)
- Santanu Panda
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Sonu Bisht
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok K. Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Jai K. Kaushik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
- * E-mail:
| |
Collapse
|
25
|
Yang K, Pfeifer ND, Köck K, Brouwer KLR. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther 2015. [PMID: 25711339 DOI: 10.1124/jpet.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance-associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug's inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure when multiple transport pathways are impaired.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Yang K, Pfeifer ND, Köck K, Brouwer KLR. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther 2015; 353:415-23. [PMID: 25711339 DOI: 10.1124/jpet.114.221564] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid) disposition was characterized in human and rat sandwich-cultured hepatocytes (SCH) combined with pharmacokinetic modeling. In human SCH, biliary excretion of TCA predominated (CLBile = 0.14 ± 0.04 ml/min per g liver; CLBL = 0.042 ± 0.019 ml/min per g liver), whereas CLBile and CLBL contributed approximately equally to TCA hepatocellular excretion in rat SCH (CLBile = 0.34 ± 0.07 ml/min per g liver; CLBL = 0.26 ± 0.07 ml/min per g liver). Troglitazone decreased TCA uptake, CLBile, and CLBL; membrane vesicle assays revealed for the first time that the major metabolite, troglitazone sulfate, was a noncompetitive inhibitor of multidrug resistance-associated protein 4, a basolateral bile acid efflux transporter. Simulations revealed that decreased CLBile led to a greater increase in hepatic TCA exposure in human than in rat SCH. A decrease in both excretory pathways (CLBile and CLBL) exponentially increased hepatic TCA in both species, suggesting that 1) drugs that inhibit both pathways may have a greater risk for hepatotoxicity, and 2) impaired function of an alternate excretory pathway may predispose patients to hepatotoxicity when drugs that inhibit one pathway are administered. Simulations confirmed the protective role of uptake inhibition, suggesting that a drug's inhibitory effects on bile acid uptake also should be considered when evaluating hepatotoxic potential. Overall, the current study precisely characterized basolateral efflux of TCA, revealed species differences in hepatocellular TCA efflux pathways, and provided insights about altered hepatic bile acid exposure when multiple transport pathways are impaired.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Ferslew BC, Köck K, Bridges AS, Brouwer KLR. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos 2014; 42:1567-74. [PMID: 24958844 DOI: 10.1124/dmd.114.057554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatic uptake and efflux transporters govern the systemic and hepatic exposure of many drugs and metabolites. Enalapril is a pharmacologically inactive prodrug of enalaprilat. Following oral administration, enalapril is converted to enalaprilat in hepatocytes and undergoes translocation into the systemic circulation to exert its pharmacologic effect by inhibiting angiotensin-converting enzyme. Although the transport proteins governing hepatic uptake of enalapril and the biliary excretion of enalapril and enalaprilat are well established, it remains unknown how hepatically derived enalaprilat translocates across the basolateral membrane into the systemic circulation. In this study, the role of ATP-binding cassette transporters in the hepatic basolateral efflux of enalaprilat was investigated using membrane vesicles. ATP-dependent uptake of enalaprilat into vesicles expressing multidrug resistance-associated protein (MRP) 4 was significantly greater (∼3.8-fold) than in control vesicles. In contrast, enalaprilat was not transported to a significant extent by MRP3, and enalapril was not transported by either MRP3 or MRP4. The functional importance of MRP4 in the basolateral excretion of derived enalaprilat was evaluated using a novel basolateral efflux protocol developed in human sandwich-cultured hepatocytes. Under normal culture conditions, the mean intrinsic basolateral efflux clearance (CLint ,basolateral) of enalaprilat was 0.026 ± 0.012 µl/min; enalaprilat CLint,basolateral was significantly reduced to 0.009 ± 0.009 µl/min by pretreatment with the pan-MRP inhibitor MK-571. Results suggest that hepatically derived enalaprilat is excreted across the hepatic basolateral membrane by MRP4. Changes in MRP4-mediated basolateral efflux may alter the systemic concentrations of this active metabolite, and potentially the efficacy of enalapril.
Collapse
Affiliation(s)
- Brian C Ferslew
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Arlene S Bridges
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Qiu X, Zhang H, Lai Y. Quantitative targeted proteomics for membrane transporter proteins: method and application. AAPS JOURNAL 2014; 16:714-26. [PMID: 24830943 DOI: 10.1208/s12248-014-9607-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/05/2014] [Indexed: 01/04/2023]
Abstract
Although global proteomics has shown promise for discovery of many new proteins, biomarkers, protein modifications, and polymorphisms, targeted proteomics is emerging in the proteomics research field as a complement to untargeted shotgun proteomics, particularly when a determined set of low-abundance functional proteins need to be measured. The function and expression of proteins related to drug absorption, distribution, metabolism, and excretion (ADME) such as cytochrome P450 enzymes and membrane transporters are of great interest in biopharmaceutical research. Since the variation in ADME-related protein expression is known to be a major complicating factor encountered during in vitro-in vivo and in vivo-in vivo extrapolations (IVIVE), the accurate quantification of the ADME proteins in complex biological systems becomes a fundamental element in establishing IVIVE for pharmacokinetic predictions. In this review, we provide an overview of relevant methodologies followed by a summary of recent applications encompassing mass spectrometry-based targeted quantifications of membrane transporters.
Collapse
Affiliation(s)
- Xi Qiu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA
| | | | | |
Collapse
|
29
|
Chatterjee S, Bijsmans IT, van Mil SW, Augustijns P, Annaert P. Toxicity and intracellular accumulation of bile acids in sandwich-cultured rat hepatocytes: Role of glycine conjugates. Toxicol In Vitro 2014; 28:218-30. [DOI: 10.1016/j.tiv.2013.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 02/06/2023]
|
30
|
Lundquist P, Lööf J, Fagerholm U, Sjögren I, Johansson J, Briem S, Hoogstraate J, Afzelius L, Andersson TB. Prediction of In Vivo Rat Biliary Drug Clearance from an In Vitro Hepatocyte Efflux Model. Drug Metab Dispos 2014; 42:459-68. [DOI: 10.1124/dmd.113.054155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Lundquist P, Englund G, Skogastierna C, Lööf J, Johansson J, Hoogstraate J, Afzelius L, Andersson TB. Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Dispos 2014; 42:448-58. [PMID: 24396144 DOI: 10.1124/dmd.113.054528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp-mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.
Collapse
Affiliation(s)
- Patrik Lundquist
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, (P.L., G.E., C.S., J.L., J.J., J.H., L.A.); Cardiovascular and Gastrointestinal Innovative Medicines DMPK, AstraZeneca R&D, Mölndal, (P.L., T.B.A.); Department of Pharmacy, Uppsala University, Uppsala, (P.L.); and Section of Pharmacogenetics, Departments of Physiology and Pharmacology, Karolinska Institutet, Stockholm, (T.B.A.), Sweden
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hepatocyte-based in vitro model for assessment of drug-induced cholestasis. Toxicol Appl Pharmacol 2014; 274:124-36. [DOI: 10.1016/j.taap.2013.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
|
33
|
Probert PME, Chung GW, Cockell SJ, Agius L, Mosesso P, White SA, Oakley F, Brown CDA, Wright MC. Utility of B-13 progenitor-derived hepatocytes in hepatotoxicity and genotoxicity studies. Toxicol Sci 2013; 137:350-70. [PMID: 24235770 PMCID: PMC3908725 DOI: 10.1093/toxsci/kft258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AR42J-B-13 (B-13) cells form hepatocyte-like (B-13/H) cells in response to glucocorticoid treatment. To establish its utility in toxicity and genotoxicity screening, cytochrome P450 (CYP) induction, susceptibility to toxins, and transporter gene expression were examined. Conversion to B-13/H cells resulted in expression of male-specific CYP2C11 and sensitivity to methapyrilene. B-13/H cells constitutively expressed CYP1A, induced expression in response to an aryl hydrocarbon receptor agonist, and activated benzo[α]pyrene to a DNA-damaging species. Functional CYP1A2 was not expressed due to deletions in the Cyp1a2 gene. A B-13 cell line stably expressing the human CYP1A2 was therefore engineered (B-13−TR/h1A2) and the derived B-13/H cells expressed metabolically functional CYP1A2. Treatment with the cooked food mutagen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine resulted in a dose-dependent increase in DNA damage. B-13/H cells expressed constitutive androstane receptor (CAR) and induced CYP2B1 mRNA levels in response to classical CAR activators. However, translation to functional CYP2B1 protein was low and increased minimally by CAR activator treatment. B-13/H cells expressed high levels of pregnane X-receptor (PXR) and induced CYP3A1 in response to classical PXR activators. CYP3A genes were inducible, functional, and activated aflatoxin B1 to a DNA-damaging species. All 23 major hepatic transporters were induced when B-13 cells were converted to B-13/H cells, although in many cases, levels remained below those present in adult rat liver. However, bile salt export pump, Abcb1b, multidrug resistance-associated protein, and breast cancer resistance protein transporters were functional in B-13/H cells. These data demonstrate that the B-13 cell generates hepatocyte-like cells with functional drug metabolism and transporter activities, which can alone—or in a humanized form—be used to screen for hepatotoxic and genotoxic endpoints in vitro.
Collapse
|
34
|
Costa A, Sarmento B, Seabra V. An evaluation of the latestin vitrotools for drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:103-19. [DOI: 10.1517/17425255.2014.857402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Pfeifer ND, Bridges AS, Ferslew BC, Hardwick RN, Brouwer KLR. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition II: characterization of hepatic elimination by basolateral, biliary, and metabolic clearance pathways in rat isolated perfused liver. J Pharmacol Exp Ther 2013; 347:737-45. [PMID: 24080682 DOI: 10.1124/jpet.113.208314] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basolateral efflux clearance (CLBL) contributes significantly to rosuvastatin (RSV) elimination in sandwich-cultured hepatocytes (SCH). The contribution of CLBL to RSV hepatic elimination was determined in single-pass isolated perfused livers (IPLs) from wild-type (WT) and multidrug resistance-associated protein 2 (Mrp2)-deficient (TR(-)) rats in the absence and presence of the P-glycoprotein and breast cancer resistance protein (Bcrp) inhibitor, elacridar (GF120918); clearance values were compared with SCH. RSV biliary clearance (CLBile) was ablated almost completely by GF120918 in TR(-) IPLs, confirming that Mrp2 and Bcrp primarily are responsible for RSV CLBile. RSV appearance in outflow perfusate was attributed primarily to CLBL, which was impaired in TR(-) IPLs. CLBL was ≈ 6-fold greater than CLBile in the linear range in WT IPLs in the absence of GF120918. Recovery of unchanged RSV in liver tissue increased in TR(-) compared with WT (≈ 25 versus 6% of the administered dose) due to impaired CLBL and CLBile. RSV pentanoic acid, identified by high-resolution liquid chromatography-tandem mass spectroscopy, comprised ≈ 40% of total liver content and ≈ 16% of the administered dose in TR(-) livers at the end of perfusion, compared with ≈ 30 and 3% in WT livers, consistent with impaired RSV excretion and "shunting" to the metabolic pathway. In vitro-ex vivo extrapolation between WT SCH and IPLs (without GF120918) revealed that uptake clearance and CLBL were 4.2- and 6.4-fold lower, respectively, in rat SCH compared with IPLs; CLBile translated almost directly (1.1-fold). The present IPL data confirmed the significant role of CLBL in RSV hepatic elimination, and demonstrated that both CLBL and CLBile influence RSV hepatic and systemic exposure.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina (N.D.P., B.C.F., K.L.R.B.); and Department of Pathology (A.S.B.) and Curriculum in Toxicology (R.N.H., K.L.R.B.), School of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | |
Collapse
|
36
|
Pfeifer ND, Yang K, Brouwer KLR. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J Pharmacol Exp Ther 2013; 347:727-36. [PMID: 24023367 DOI: 10.1124/jpet.113.207472] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transporters responsible for hepatic uptake and biliary clearance (CLBile) of rosuvastatin (RSV) have been well characterized. However, the contribution of basolateral efflux clearance (CLBL) to hepatic and systemic exposure of RSV is unknown. Additionally, the appropriate design of in vitro hepatocyte efflux experiments to estimate CLBile versus CLBL remains to be established. A novel uptake and efflux protocol was developed in sandwich-cultured hepatocytes (SCH) to achieve desired tight junction modulation while maintaining cell viability. Subsequently, studies were conducted to determine the role of CLBL in the hepatic disposition of RSV using SCH from wild-type (WT) and multidrug resistance-associated protein 2 (Mrp2)-deficient (TR(-)) rats in the absence and presence of the P-glycoprotein and breast cancer resistance protein (Bcrp) inhibitor elacridar (GF120918). RSV CLBile was nearly ablated by GF120918 in TR(-) SCH, confirming that Mrp2 and Bcrp are responsible for the majority of RSV CLBile. Pharmacokinetic modeling revealed that CLBL and CLBile represent alternative elimination routes with quantitatively similar contributions to the overall hepatocellular excretion of RSV in rat SCH under baseline conditions (WT SCH in the absence of GF120918) and also in human SCH. Membrane vesicle experiments revealed that RSV is a substrate of MRP4 (Km = 21 ± 7 µM, Vmax = 1140 ± 210 pmol/min per milligram of protein). Alterations in MRP4-mediated RSV CLBL due to drug-drug interactions, genetic polymorphisms, or disease states may lead to changes in hepatic and systemic exposure of RSV, with implications for the safety and efficacy of this commonly used medication.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | |
Collapse
|
37
|
Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative expression of human drug transporter proteins in lung tissues: Analysis of regional, gender, and interindividual differences by liquid chromatography–tandem mass spectrometry. J Pharm Sci 2013; 102:3395-406. [DOI: 10.1002/jps.23606] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/30/2022]
|
38
|
Pfeifer ND, Harris KB, Yan GZ, Brouwer KLR. Determination of intracellular unbound concentrations and subcellular localization of drugs in rat sandwich-cultured hepatocytes compared with liver tissue. Drug Metab Dispos 2013; 41:1949-56. [PMID: 23990525 DOI: 10.1124/dmd.113.052134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prediction of clinical efficacy, toxicity, and drug-drug interactions may be improved by accounting for the intracellular unbound drug concentration (C(unbound)) in vitro and in vivo. Furthermore, subcellular drug distribution may aid in predicting efficacy, toxicity, and risk assessment. The present study was designed to quantify the intracellular C(unbound) and subcellular localization of drugs in rat sandwich-cultured hepatocytes (SCH) compared with rat isolated perfused liver (IPL) tissue. Probe drugs with distinct mechanisms of hepatocellular uptake and accumulation were selected for investigation. Following drug treatment, SCH and IPL tissues were homogenized and fractionated by differential centrifugation to enrich for subcellular compartments. Binding in crude lysate and cytosol was determined by equilibrium dialysis; the C(unbound) and intracellular-to-extracellular C(unbound) ratio (K(pu,u)) were used to describe accumulation of unbound drug. Total accumulation (K(pobserved)) in whole tissue was well predicted by the SCH model (within 2- to 3-fold) for the selected drugs. Ritonavir (K(pu,u) ∼1) was evenly distributed among cellular compartments, but highly bound, which explained the observed accumulation within liver tissue. Rosuvastatin was recovered primarily in the cytosolic fraction, but did not exhibit extensive binding, resulting in a K(pu,u) >1 in liver tissue and SCH, consistent with efficient hepatic uptake. Despite extensive binding and sequestration of furamidine within liver tissue, a significant portion of cellular accumulation was attributed to unbound drug (K(pu,u) >16), as expected for a charged, hepatically derived metabolite. Data demonstrate the utility of SCH to predict quantitatively total tissue accumulation and elucidate mechanisms of hepatocellular drug accumulation such as active uptake versus binding/sequestration.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
39
|
Chan TS, Yu H, Moore A, Khetani SR, Kehtani SR, Tweedie D. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metab Dispos 2013; 41:2024-32. [PMID: 23959596 DOI: 10.1124/dmd.113.053397] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Generating accurate in vitro intrinsic clearance data is an important aspect of predicting in vivo human clearance. Primary hepatocytes in suspension are routinely used to predict in vivo clearance; however, incubation times have typically been limited to 4-6 hours, which is not long enough to accurately evaluate the metabolic stability of slowly metabolized compounds. HepatoPac is a micropatterened hepatocyte-fibroblast coculture system that can be used for continuous incubations of up to 7 days. This study evaluated the ability of human HepatoPac to predict the in vivo clearance (CL) of 17 commercially available compounds with low to intermediate clearance (<12 ml/min per kg). In vitro half-life for disappearance of each compound was converted to hepatic clearance using the well stirred model, with and without correction for plasma protein binding. Hepatic CL, using three individual donors, was accurately predicted for 10 of 17 compounds (59%; predicted clearance within 2-fold of observed human in vivo clearance values). The accuracy of prediction increased to 76% (13 of 17 compounds) with an acceptance criterion defined as within 3-fold. When considering only low clearance compounds (<5 ml/min per kg), which represented 10 of the 17 compounds, the accuracy of prediction was 60% within 2-fold and 90% within 3-fold. In addition, the turnover of three slowly metabolized compounds (alprazolam, meloxicam, and tolbutamide) in HepatoPac was directly compared with turnover in suspended hepatocytes. The turnover of alprazolam and tolbutamide was approximately 2-fold greater using HepatoPac compared with suspended hepatocytes, which was roughly in line with the extrapolated values (correcting for the longer incubation time and lower cell number with HepatoPac). HepatoPac, but not suspended hepatocytes, demonstrated significant turnover of meloxicam. These results demonstrate the utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds.
Collapse
Affiliation(s)
- Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | | | | | | | | | | |
Collapse
|
40
|
Zou P, Liu X, Wong S, Feng MR, Liederer BM. Comparison of In Vitro-In Vivo Extrapolation of Biliary Clearance Using an Empirical Scaling Factor Versus Transport-Based Scaling Factors in Sandwich-Cultured Rat Hepatocytes. J Pharm Sci 2013; 102:2837-50. [DOI: 10.1002/jps.23620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/05/2023]
|
41
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1062] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
42
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Noel G, Le Vee M, Moreau A, Stieger B, Parmentier Y, Fardel O. Functional expression and regulation of drug transporters in monolayer- and sandwich-cultured mouse hepatocytes. Eur J Pharm Sci 2013; 49:39-50. [PMID: 23396053 DOI: 10.1016/j.ejps.2013.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/12/2013] [Accepted: 01/13/2013] [Indexed: 01/13/2023]
Abstract
Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained.
Collapse
Affiliation(s)
- Gregory Noel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Amélie Moreau
- Technologie Servier, 25-27 rue Eugène Vignat, 45000 Orléans, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | | | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
44
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
45
|
Woolbright BL, Jaeschke H. Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 2012; 18:4985-93. [PMID: 23049206 PMCID: PMC3460324 DOI: 10.3748/wjg.v18.i36.4985] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023] Open
Abstract
Cholestasis results in a buildup of bile acids in serum and in hepatocytes. Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acid-induced apoptosis as the major cause of hepatocellular injury. Recent work has focused both on the role of bile acids in cell signaling as well as the role of sterile inflammation in the pathophysiology. Advances in modern analytical methodology have allowed for more accurate measuring of bile acid concentrations in serum, liver, and bile to very low levels of detection. Interestingly, toxic bile acid levels are seemingly far lower than previously hypothesized. The initial hypothesis has been based largely upon the exposure of μmol/L concentrations of toxic bile acids and bile salts to primary hepatocytes in cell culture, the possibility that in vivo bile acid concentrations may be far lower than the observed in vitro toxicity has far reaching implications in the mechanism of injury. This review will focus on both how different bile acids and different bile acid concentrations can affect hepatocytes during cholestasis, and additionally provide insight into how these data support recent hypotheses that cholestatic liver injury may not occur through direct bile acid-induced apoptosis, but may involve largely inflammatory cell-mediated liver cell necrosis.
Collapse
|
46
|
Huang L, Be X, Tchaparian EH, Colletti AE, Roberts J, Langley M, Ling Y, Wong BK, Jin L. Deletion ofAbcg2Has Differential Effects on Excretion and Pharmacokinetics of Probe Substrates in Rats. J Pharmacol Exp Ther 2012; 343:316-24. [DOI: 10.1124/jpet.112.197046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|