1
|
Hridoy M, Khan I, Ramanjulu M, Anthony P, Childers W, Nagar S, Korzekwa K. Mechanistic studies on pH-permeability relationships: Impact of the membrane polar headgroup region on pKa. Int J Pharm 2025; 673:125383. [PMID: 39993512 PMCID: PMC11949092 DOI: 10.1016/j.ijpharm.2025.125383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Passive permeability through biological membranes requires partitioning of drug molecules into the lipid bilayer and subsequent permeation. Most drugs are weak acids or bases, making their ionization constants (pKa) critical for predicting permeation across biological barriers. The pH-partition hypothesis posits that only the uncharged form contributes to passive permeability, suggesting a proportional relationship between permeability and uncharged fraction. However, experimental pH-permeability profiles are not accurately predicted with neutral fractions calculated using aqueous pKa values. Interactions between charged solutes and phospholipids are expected to alter the pKa of drugs within the membrane. In this study, we use modeling and simulation and experimental partitioning in a biphasic surrogate phospholipid membrane system, diacetyl phosphatidylcholine (DAcPC) and n-hexane, to study pH dependent permeability. Models were constructed in which pKa values were either shifted or distributed around the aqueous pKa and the resulting neutral fractions were compared to pH-dependent permeabilities. For acids, models with shifted or distributed pKa values can explain pH-dependent permeabilities in Caco-2 cells, but these models were not predictive for bases. For partitioning studies, five probe drugs, two acidic (ketoprofen, tolbutamide), two basic (metoprolol, verapamil), and one neutral (diazepam), were partitioned between n-hexane and buffer or buffer-hydrated DAcPC at different pH values. The apparent pKa values in the surrogate phospholipid system (C6/DAcPC) were shifted from their aqueous pKa values. However, the resulting pKa values did not predict observed pH-dependent Caco-2 permeabilities. Models that decrease the pH-pKa difference improve permeability predictions for both bases and acids and use of a pKa shift or distribution can further improve predictions for acids.
Collapse
Affiliation(s)
- Md Hridoy
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; Current address: Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Irfan Khan
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Mercy Ramanjulu
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; Current address: Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Paul Anthony
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Wayne Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Lynch TL, Marin VL, McClure RA, Phipps C, Ronau JA, Rouhimoghadam M, Adams AM, Kandi S, Wolke ML, Shergalis AG, Potts GK, Nacham O, Richardson P, Kakavas SJ, Chhor G, Jenkins GJ, Woller KR, Warder SE, Vasudevan A, Reitsma JM. Quantitative Measurement of Rate of Targeted Protein Degradation. ACS Chem Biol 2024; 19:1604-1615. [PMID: 38980123 DOI: 10.1021/acschembio.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.
Collapse
Affiliation(s)
- Thomas L Lynch
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Violeta L Marin
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A McClure
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Colin Phipps
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Judith A Ronau
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Milad Rouhimoghadam
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ashley M Adams
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Soumya Kandi
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Malerie L Wolke
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Andrea G Shergalis
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gregory K Potts
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Omprakash Nacham
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Paul Richardson
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Stephan J Kakavas
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gekleng Chhor
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Kevin R Woller
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Scott E Warder
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Justin M Reitsma
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
3
|
Löscher W, Gramer M, Römermann K. Heterogeneous brain distribution of bumetanide following systemic administration in rats. Biopharm Drug Dispos 2024; 45:138-148. [PMID: 38823029 DOI: 10.1002/bdd.2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Bumetanide is used widely as a tool and off-label treatment to inhibit the Na-K-2Cl cotransporter NKCC1 in the brain and thereby to normalize intra-neuronal chloride levels in several brain disorders. However, following systemic administration, bumetanide only poorly penetrates into the brain parenchyma and does not reach levels sufficient to inhibit NKCC1. The low brain penetration is a consequence of both the high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, and of brain efflux transport. In previous studies, bumetanide was determined in the whole brain or a few brain regions, such as the hippocampus. However, the blood-brain barrier and its efflux transporters are heterogeneous across brain regions, so it cannot be excluded that bumetanide reaches sufficiently high brain levels for NKCC1 inhibition in some discrete brain areas. Here, bumetanide was determined in 14 brain regions following i.v. administration of 10 mg/kg in rats. Because bumetanide is much more rapidly eliminated by rats than humans, its metabolism was reduced by pretreatment with piperonyl butoxide. Significant, up to 5-fold differences in regional bumetanide levels were determined with the highest levels in the midbrain and olfactory bulb and the lowest levels in the striatum and amygdala. Brain:plasma ratios ranged between 0.004 (amygdala) and 0.022 (olfactory bulb). Regional brain levels were significantly correlated with local cerebral blood flow. However, regional bumetanide levels were far below the IC50 (2.4 μM) determined previously for rat NKCC1. Thus, these data further substantiate that the reported effects of bumetanide in rodent models of brain disorders are not related to NKCC1 inhibition in the brain.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Laboratory, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Gardner I, Xu M, Han C, Wang Y, Jiao X, Jamei M, Khalidi H, Kilford P, Neuhoff S, Southall R, Turner DB, Musther H, Jones B, Taylor S. Non-specific binding of compounds in in vitro metabolism assays: a comparison of microsomal and hepatocyte binding in different species and an assessment of the accuracy of prediction models. Xenobiotica 2022; 52:943-956. [PMID: 36222269 DOI: 10.1080/00498254.2022.2132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-specific binding in in vitro metabolism systems leads to an underestimation of the true intrinsic metabolic clearance of compounds being studied. Therefore in vitro binding needs to be accounted for when extrapolating in vitro data to predict the in vivo metabolic clearance of a compound. While techniques exist for experimentally determining the fraction of a compound unbound in in vitro metabolism systems, early in drug discovery programmes computational approaches are often used to estimate the binding in the in vitro system.Experimental fraction unbound data (n = 60) were generated in liver microsomes (fumic) from five commonly used pre-clinical species (rat, mouse, dog, minipig, monkey) and humans. Unbound fraction in incubations with mouse, rat or human hepatocytes was determined for the same 60 compounds. These data were analysed to determine the relationship between experimentally determined binding in the different matrices and across different species. In hepatocytes there was a good correlation between fraction unbound in human and rat (r2=0.86) or mouse (r2=0.82) hepatocytes. Similar correlations were observed between binding in human liver microsomes and microsomes from rat, mouse, dog, Göttingen minipig or monkey liver microsomes (r2 of >0.89, n = 51 - 52 measurements in different species). Physicochemical parameters (logP, pKa and logD) were predicted for all evaluated compounds. In addition, logP and/or logD were measured for a subset of compounds.Binding to human hepatocytes predicted using 5 different methods was compared to the measured data for a set of 59 compounds. The best methods evaluated used measured microsomal binding in human liver microsomes to predict hepatocyte binding. The collated physicochemical data were used to predict the human fumic using four different in silico models for a set of 53-60 compounds. The correlation (r2) and root mean square error between predicted and observed microsomal binding was 0.69 & 0.20, 0.47 & 0.23, 0.56 & 0.21 and 0.54 & 0.26 for the Turner-Simcyp, Austin, Hallifax-Houston and Poulin models, respectively. These analyses were extended to include measured literature values for binding in human liver microsomes for a larger set of compounds (n=697). For the larger dataset of compounds, microsomal binding was well predicted for neutral compounds (r2=0.67 - 0.70) using the Poulin, Austin, or Turner-Simcyp methods but not for acidic or basic compounds (r2<0.5) using any of the models. While the lipophilicity-based models can be used, the in vitro binding should be measured for compounds where more certainty is needed, using appropriately calibrated assays and possibly established weak, moderate, and strong binders as reference compounds to allow comparison across databases.
Collapse
Affiliation(s)
| | - Mandy Xu
- Pharmaron Beijing Co. Ltd., Beijing, China
| | | | - Yi Wang
- Pharmaron Beijing Co. Ltd., Beijing, China
| | | | | | | | - Peter Kilford
- Certara UK Ltd., Sheffield, United Kingdom.,Labcorp Drug Development, Harrogate, United Kingdom
| | | | | | | | | | - Barry Jones
- Pharmaron UK, Hoddesdon, Hertfordshire, United Kingdom
| | - Simon Taylor
- Pharmaron UK, Hoddesdon, Hertfordshire, United Kingdom
| |
Collapse
|
5
|
Korzekwa K, Radice C, Nagar S. A Permeability- and Perfusion-based PBPK model for Improved Prediction of Concentration-time Profiles. Clin Transl Sci 2022; 15:2035-2052. [PMID: 35588513 PMCID: PMC9372417 DOI: 10.1111/cts.13314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 12/02/2022] Open
Abstract
To improve predictions of concentration‐time (C‐t) profiles of drugs, a new physiologically based pharmacokinetic modeling framework (termed ‘PermQ’) has been developed. This model includes permeability into and out of capillaries, cell membranes, and intracellular lipids. New modeling components include (i) lumping of tissues into compartments based on both blood flow and capillary permeability, and (ii) parameterizing clearances in and out of membranes with apparent permeability and membrane partitioning values. Novel observations include the need for a shallow distribution compartment particularly for bases. C‐t profiles were modeled for 24 drugs (7 acidic, 5 neutral, and 12 basic) using the same experimental inputs for three different models: Rodgers and Rowland (RR), a perfusion‐limited membrane‐based model (Kp,mem), and PermQ. Kp,mem and PermQ can be directly compared since both models have identical tissue partition coefficient parameters. For the 24 molecules used for model development, errors in Vss and t1/2 were reduced by 37% and 43%, respectively, with the PermQ model. Errors in C‐t profiles were reduced (increased EOC) by 43%. The improvement was generally greater for bases than for acids and neutrals. Predictions were improved for all 3 models with the use of parameters optimized for the PermQ model. For five drugs in a test set, similar results were observed. These results suggest that prediction of C‐t profiles can be improved by including capillary and cellular permeability components for all tissues.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Casey Radice
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
6
|
Korzekwa K, Yadav J, Nagar S. Using Partition Analysis as a Facile Method to Derive Net Clearances. Clin Transl Sci 2022; 15:1867-1879. [PMID: 35579201 PMCID: PMC9372430 DOI: 10.1111/cts.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
Partition analysis has been described previously by W.W. Cleland to derive net rate constants and simplify the derivation of enzyme kinetic equations. Here, we show that partition analysis can be used to derive elimination and transfer (distribution) net clearances for use in pharmacokinetic models. For elimination clearances, the net clearance approach is exemplified with a mammillary two‐compartment model with peripheral elimination, and the established well‐stirred and full hepatic clearance models. The intrinsic hepatic clearance associated with an observed average hepatic clearance can be easily calculated with net clearances. Expressions for net transfer clearances are easily derived, including models with explicit membranes (e.g., monolayer permeability and blood–brain barrier models). Together, these approaches can be used to derive equations for physiologically based and hybrid compartmental/ physiologically based models. This tutorial describes how net clearances can be used to derive relationships for simple models as well as increasingly complex models, such as inclusion of active transport and target mediated processes.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, PA 19140, Philadelphia
| | - Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University, PA 19140, Philadelphia.,Current Address: Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, PA 19140, Philadelphia
| |
Collapse
|
7
|
Numerical Methods for Modeling Enzyme Kinetics. Methods Mol Biol 2021; 2342:147-168. [PMID: 34272694 DOI: 10.1007/978-1-0716-1554-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Differential equations are used to describe time-dependent changes in enzyme kinetics and pharmacokinetics. Analytical and numerical methods can be used to solve differential equations. This chapter describes the use of numerical methods in solving differential equations and its applications in characterizing the complexities observed in enzyme kinetics. A discussion is included on the use of numerical methods to overcome limitations of explicit equations in the analysis of metabolism kinetics, reversible inhibition kinetics, and inactivation kinetics. The chapter describes the advantages of using numerical methods when Michaelis-Menten assumptions do not hold.
Collapse
|
8
|
Ligand binding at the protein-lipid interface: strategic considerations for drug design. Nat Rev Drug Discov 2021; 20:710-722. [PMID: 34257432 DOI: 10.1038/s41573-021-00240-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Many drug targets are embedded within the phospholipid bilayer of cellular membranes, including G protein-coupled receptors, ion channels, transporters and membrane-bound enzymes. Increasing evidence from biophysical and structural studies suggests that many small-molecule drugs commonly associate with these targets at binding sites at the protein-phospholipid interface. Without a direct path from bulk solvent to a binding site, a drug must first partition in the phospholipid membrane before interacting with the protein target. This membrane access mechanism necessarily affects the interpretation of potency data, structure-activity relationships, pharmacokinetics and physicochemical properties for drugs that target these sites. With an increasing number of small-molecule intramembrane binding sites revealed through X-ray crystallography and cryogenic electron microscopy, we suggest that ligand-lipid interactions likely play a larger role in small-molecule drug action than commonly appreciated. This Perspective introduces key concepts and drug design considerations to aid discovery teams operating within this target space, and discusses challenges and future opportunities in the field.
Collapse
|
9
|
Korzekwa K. Case Study 5: Predicting the Drug Interaction Potential for Inhibition of CYP2C8 by Montelukast. Methods Mol Biol 2021; 2342:685-693. [PMID: 34272712 DOI: 10.1007/978-1-0716-1554-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Predicting drug-drug interactions (DDIs) from in vitro data is made difficult by not knowing concentrations of substrate and inhibitor at the target site. For in vivo targets, this is understandable, since intracellular concentrations can differ from extracellular concentrations. More vexing is that the concentration of the drug at the target for some in vitro assays can also be unknown. This uncertainty has resulted in standard in vitro practices that cannot accurately predict human pharmacokinetics. This case study highlights the impact of drug distribution, both in vitro and in vivo, with the example of the drug interaction potential of montelukast.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Abstract
The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system(s) under investigation. As a consequence, the apparent kinetic parameters, such as Km or Ki, that are derived can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components which can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.
Collapse
Affiliation(s)
- Nigel J Waters
- Preclinical Development, Black Diamond Therapeutics, Cambridge, MA, USA
| | - R Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
11
|
Willmann M, Ermert J, Prante O, Hübner H, Gmeiner P, Neumaier B. Radiosynthesis and evaluation of 18F-labeled dopamine D 4-receptor ligands. Nucl Med Biol 2021; 92:43-52. [PMID: 32718750 DOI: 10.1016/j.nucmedbio.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The dopamine D4 receptor (D4R) has attracted considerable attention as potential target for the treatment of a broad range of central nervous system disorders. Although many efforts have been made to improve the performance of putative radioligand candidates, there is still a lack of D4R selective tracers suitable for in vivo PET imaging. Thus, the objective of this work was to develop a D4-selective PET ligand for clinical applications. METHODS Four compounds based on previous and new lead structures were prepared and characterized with regard to their D4R subtype selectivity and predicted lipophilicity. From these, 3-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-1H-pyrrolo[2,3-b]pyridine I and (S)-4-(3-fluoro-4-methoxybenzyl)-2-(phenoxymethyl)morpholine II were selected for labeling with fluorine-18 and subsequent evaluation by in vitro autoradiography to assess their suitability as D4 radioligand candidates for in vivo imaging. RESULTS The radiosynthesis of [18F]I and [18F]II was successfully achieved by copper-mediated radiofluorination with radiochemical yields of 7% and 66%, respectively. The radioligand [18F]II showed specific binding in areas where D4 expression is expected, whereas [18F]I did not show any uptake in distinct brain regions and exhibited an unacceptable degree of non-specific binding. CONCLUSIONS The compounds studied exhibited high D4R subtype selectivity and logP values compatible with high brain uptake, but only ligand [18F]II showed low non-specific binding and is therefore a good candidate for further evaluation. ADVANCES IN KNOWLEDGE The discovery of new lead structures for high-affinity D4 ligands opens up new possibilities for the development of suitable PET-radioligands. IMPLICATIONS FOR PATIENT PET-imaging of dopamine D4-receptors could facilitate understanding, diagnosis and treatment of neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael Willmann
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Johannes Ermert
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen Straße, 52428 Jülich, Germany.
| | - Olaf Prante
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Translational Research Center, 91054 Erlangen, Germany
| | - Harald Hübner
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department Chemistry and Pharmacy, Medicinal Chemistry, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department Chemistry and Pharmacy, Medicinal Chemistry, 91058 Erlangen, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen Straße, 52428 Jülich, Germany; University of Colgne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
| |
Collapse
|
12
|
Zhou J, Argikar UA, Miners JO. Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods Mol Biol 2021; 2342:301-338. [PMID: 34272700 DOI: 10.1007/978-1-0716-1554-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bisubstrate reaction that requires the aglycone and the cofactor, UDP-GlcUA. Accumulating evidence suggests that the bisubstrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modeling of glucuronidation reactions in vitro, UDP-GlcUA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for during experimental design and data interpretation. While the assessment of drug-drug interactions resulting from UGT inhibition has been challenging in the past, the increasing availability of UGT enzyme-selective substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of drug-drug interaction potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often underpredicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation. Physiologically based pharmacokinetic (PBPK) modeling has also shown to be of value for predicting PK of drugs eliminated by glucuronidation.
Collapse
Affiliation(s)
- Jin Zhou
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| | - John O Miners
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
13
|
Synthesis, Biological, and Computational Evaluation of Antagonistic, Chiral Hydrobenzoin Esters of Arecaidine Targeting mAChR M1. Pharmaceuticals (Basel) 2020; 13:ph13120437. [PMID: 33266067 PMCID: PMC7760838 DOI: 10.3390/ph13120437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are a pivotal constituent of the central and peripheral nervous system. Yet, therapeutic and diagnostic applications thereof are hampered by the lack of subtype selective ligands. Within this work, we synthesized and chemically characterized three different stereoisomers of hydrobenzoin esters of arecaidine by NMR, HR-MS, chiral chromatography, and HPLC-logP. All compounds are structurally eligible for carbon-11 labeling and show appropriate stability in Dulbecco’s phosphate-buffered saline (DPBS) and F12 cell culture medium. A competitive radioligand binding assay on Chinese hamster ovary cell membranes comprising the human mAChR subtypes M1-M5 showed the highest orthosteric binding affinity for subtype M1 and a strong influence of stereochemistry on binding affinity, which corresponds to in silico molecular docking experiments. Ki values toward M1 were determined as 99 ± 19 nM, 800 ± 200 nM, and 380 ± 90 nM for the (R,R)-, (S,S)-, and racemic (R,S)-stereoisomer, respectively, highlighting the importance of stereochemical variations in mAChR ligand development. All three stereoisomers were shown to act as antagonists toward mAChR M1 using a Fluo-4 calcium efflux assay. With respect to future positron emission tomography (PET) tracer development, the (R,R)-isomer appears especially promising as a lead structure due to its highest subtype selectivity and lowest Ki value.
Collapse
|
14
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
15
|
Drukarch B, Jacobs GE, Wilhelmus MMM. Solving the crisis in psychopharmacological research: Cellular-membrane(s) pharmacology to the rescue? Biomed Pharmacother 2020; 130:110545. [PMID: 32731134 DOI: 10.1016/j.biopha.2020.110545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need for the introduction of novel and better (i.e., improved risk-benefit profile) compounds for the treatment of major psychiatric disorders, in particular mood and psychotic disorders. However, despite increased societal awareness and a rising public and professional demand for such agents from patients and physicians, the pharmaceutical industry continues to close down its psychopharmacology research facilities in reaction to the lack of success with the search for new psychotropics. It is high time to stop this untoward trend and explore "new" lines of investigation to solve the current crisis in psychopharmacological research. In line with the prevailing molecular view in drug research in general, also in psychopharmacology mechanistic explanations for drug effects are "traditionally" looked for at the level of molecular targets, like receptors and transporters. Also, more recent approaches, although using so-called systems- and function-based approaches to model the multidimensional characteristics of psychiatric disorders and psychotropic drug action, still emphasize this search strategy for new therapeutic leads by identification of single molecules or molecular pathways. This "psychomolecular gaze" overlooks and disregards the fact that psychotropic agents usually are highly hydrophobic and amphipathic/amphiphilic agents that, in addition to their interaction with membrane-bound proteins in the form of e.g. receptors or transporters, also interact strongly with the lipid component of cellular membranes. Here we suggest to develop a program of systematic, whole-cell level based, investigation into the role of these physical-chemical cellular membrane interactions in the therapeutic action of known psychotherapeutics. This complementary yet conceptually different approach, in our opinion, will complement drug development in psychopharmacology and thereby assist in overcoming the current crisis. In this way the "old" physical theory of drug action, which antedates the current, primary molecular, paradigm may offer "new" options for lead discovery in psychopharmacological research.
Collapse
Affiliation(s)
- B Drukarch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - G E Jacobs
- Centre for Human Drug Research, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - M M M Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
17
|
Highly Selective, Amine‐Derived Cannabinoid Receptor 2 Probes. Chemistry 2020; 26:1380-1387. [DOI: 10.1002/chem.201904584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Indexed: 11/07/2022]
|
18
|
Nagayasu M, Ozeki K, Sakurai Y, Tsutsui H, Onoue S. Simplified Method to Determine the Efflux Ratio on P-Glycoprotein Substrates Using Three-Compartment Model Analysis for Caco-2 Cell Assay Data. Pharm Res 2019; 37:13. [PMID: 31873817 DOI: 10.1007/s11095-019-2729-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Multiple time-point sampling is required in transcellular transport studies to accurately calculate the appropriate efflux ratio (ER). Our study sought to develop a simplified method to determine the ER in Caco-2 cells. METHODS The equation for the ER was derived from a three-compartment model of apical to basal and basal to apical transport. Transcellular transport studies were conducted with 10 non-P-glycoprotein (P-gp) and 6 P-gp substrates in Caco-2 cells, and the ER was calculated using this equation. RESULTS The equation for the ER used the concentration ratio in the receiver compartment at the same time-point; therefore, the ER can theoretically be calculated using only a single point. The ER of all non-P-gp substrates tested was close to 1 at all sampling times. The ERs of cyclosporine A calculated from the concentration ratio at 30, 60, 90, and 120 min incubation were 2.93, 6.43, 7.12, and 9.57, respectively, and the ER at 120 min was almost identical to the theoretical value (9.62) calculated using three-compartment model analysis. The other 5 P-gp substrates showed a similar tendency. Single-point sampling can be used to accurately calculate ER at 120 min. CONCLUSIONS Single-point sampling is a promising approach for calculating appropriate ERs in the drug discovery stage.
Collapse
Affiliation(s)
- Miho Nagayasu
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8256, Japan
| | - Kazuhisa Ozeki
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Yuuji Sakurai
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Haruka Tsutsui
- Research division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8256, Japan
| |
Collapse
|
19
|
Gobbi L, Mercier J, Bang-Andersen B, Nicolas JM, Reilly J, Wagner B, Whitehead D, Briard E, Maguire RP, Borroni E, Auberson YP. A Comparative Study of in vitro Assays for Predicting the Nonspecific Binding of PET Imaging Agents in vivo. ChemMedChem 2019; 15:585-592. [PMID: 31797561 DOI: 10.1002/cmdc.201900608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Indexed: 01/23/2023]
Abstract
Nonspecific binding (NSB) is a key parameter in optimizing PET imaging tracers. We compared the ability to predict NSB of three available methods: LIMBA, rat fu,brain , and CHI(IAM). Even though NSB is often associated with lipophilicity, we observed that logD does not correlate with any of these assays, clearly indicating that lipophilicity, while influencing NSB, is insufficient to predict it. A cross-comparison of the methods showed that all three correlate and are useful predictors of NSB. The three assays, however, rank the molecules slightly differently, illustrating the challenge of comparing molecules within a narrow chemical space. We also noted that CHI(IAM) values more effectively predict VNS , a measure of in vivo NSB in the human brain. CHI(IAM) measurements might be a closer model of the actual physicochemical interaction between PET tracer candidates and cell membranes, and seems to be the method of choice for the optimization of in vivo NSB.
Collapse
Affiliation(s)
- Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Joël Mercier
- UCB Early Solutions, UCB Biopharma sprl, 1420, Braine-l'Alleud, Belgium
| | - Benny Bang-Andersen
- Molecular Discovery and Innovation, H. Lundbeck A/S, 9 Ottiliavej, 2500, Valby, Denmark
| | | | - John Reilly
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Björn Wagner
- Pharma Research and Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - David Whitehead
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - Emmanuelle Briard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | - R Paul Maguire
- UCB Early Solutions, UCB Biopharma sprl, 1420, Braine-l'Alleud, Belgium
| | - Edilio Borroni
- Pharma Research and Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Yves P Auberson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| |
Collapse
|
20
|
Gentry KA, Anantharamaiah GM, Ramamoorthy A. Probing protein-protein and protein-substrate interactions in the dynamic membrane-associated ternary complex of cytochromes P450, b 5, and reductase. Chem Commun (Camb) 2019; 55:13422-13425. [PMID: 31638629 PMCID: PMC6879317 DOI: 10.1039/c9cc05904k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (cytP450) interacts with two redox partners, cytP450 reductase and cytochrome-b5, to metabolize substrates. Using NMR, we reveal changes in the dynamic interplay when all three proteins are incorporated into lipid nanodiscs in the absence and presence of substrates.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
21
|
Holt K, Ye M, Nagar S, Korzekwa K. Prediction of Tissue-Plasma Partition Coefficients Using Microsomal Partitioning: Incorporation into Physiologically based Pharmacokinetic Models and Steady-State Volume of Distribution Predictions. Drug Metab Dispos 2019; 47:1050-1060. [PMID: 31324699 PMCID: PMC6750188 DOI: 10.1124/dmd.119.087973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022] Open
Abstract
Drug distribution is a necessary component of models to predict human pharmacokinetics. A new membrane-based tissue-plasma partition coefficient (K p) method (K p,mem) to predict unbound tissue to plasma partition coefficients (K pu) was developed using in vitro membrane partitioning [fraction unbound in microsomes (f um)], plasma protein binding, and log P The resulting K p values were used in a physiologically based pharmacokinetic (PBPK) model to predict the steady-state volume of distribution (V ss) and concentration-time (C-t) profiles for 19 drugs. These results were compared with K p predictions using a standard method [the differential phospholipid K p prediction method (K p,dPL)], which differentiates between acidic and neutral phospholipids. The K p,mem method was parameterized using published rat K pu data and tissue lipid composition. The K pu values were well predicted with R 2 = 0.8. When used in a PBPK model, the V ss predictions were within 2-fold error for 12 of 19 drugs for K p,mem versus 11 of 19 for Kp,dPL With one outlier removed for K p,mem and two for K p,dPL, the V ss predictions for R 2 were 0.80 and 0.79 for the K p,mem and K p,dPL methods, respectively. The C-t profiles were also predicted and compared. Overall, the K p,mem method predicted the V ss and C-t profiles equally or better than the K p,dPL method. An advantage of using f um to parameterize membrane partitioning is that f um data are used for clearance prediction and are, therefore, generated early in the discovery/development process. Also, the method provides a mechanistically sound basis for membrane partitioning and permeability for further improving PBPK models. SIGNIFICANCE STATEMENT: A new method to predict tissue-plasma partition coefficients was developed. The method provides a more mechanistic basis to model membrane partitioning.
Collapse
Affiliation(s)
- Kimberly Holt
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Min Ye
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Yadav J, Korzekwa K, Nagar S. Impact of Lipid Partitioning on the Design, Analysis, and Interpretation of Microsomal Time-Dependent Inactivation. Drug Metab Dispos 2019; 47:732-742. [PMID: 31043439 PMCID: PMC6556519 DOI: 10.1124/dmd.118.085969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Nonspecific drug partitioning into microsomal membranes must be considered for in vitro-in vivo correlations. This work evaluated the effect of including lipid partitioning in the analysis of complex TDI kinetics with numerical methods. The covariance between lipid partitioning and multiple inhibitor binding was evaluated. Simulations were performed to test the impact of lipid partitioning on the interpretation of TDI kinetics, and experimental TDI datasets for paroxetine (PAR) and itraconazole (ITZ) were modeled. For most kinetic schemes, modeling lipid partitioning results in statistically better fits. For MM-IL simulations (KI,u = 0.1 µM, kinact = 0.1 minute-1), concurrent modeling of lipid partitioning for an fumic range (0.01, 0.1, and 0.5) resulted in better fits compared with post hoc correction (AICc: -526 vs. -496, -579 vs. -499, and -636 vs. -579, respectively). Similar results were obtained with EII-IL. Lipid partitioning may be misinterpreted as double binding, leading to incorrect parameter estimates. For the MM-IL datasets, when fumic = 0.02, MM-IL, and EII model fits were indistinguishable (δAICc = 3). For less partitioned datasets (fumic = 0.1 or 0.5), the inclusion of partitioning resulted in better models. The inclusion of lipid partitioning can lead to markedly different estimates of KI,u and kinact A reasonable alternate experimental design is nondilution TDI assays, with post hoc fumic incorporation. The best fit models for PAR (MIC-M-IL) and ITZ (MIC-EII-M-IL and MIC-EII-M-Seq-IL) were consistent with their reported mechanism and kinetics. Overall, experimental fumic values should be concurrently incorporated into TDI models with complex kinetics, when dilution protocols are used.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Lee Y, Choi SQ. Quantitative analysis for lipophilic drug transport through a model lipid membrane with membrane retention. Eur J Pharm Sci 2019; 134:176-184. [DOI: 10.1016/j.ejps.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/27/2022]
|
24
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Interaction of natural compounds with biomembrane models: A biophysical approach for the Alzheimer's disease therapy. Colloids Surf B Biointerfaces 2019; 180:83-92. [PMID: 31030024 DOI: 10.1016/j.colsurfb.2019.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
Abstract
Natural compounds such as caffeine (CA), gallic acid (GA) and tannic acid (TA) have been reported to be useful for Alzheimer's disease (AD) therapy. It was proved that some natural compounds inhibit the formation of senil plaques composed by beta-amyloid peptide (Aβ), a hallmark of AD. Evidences suggest that the therapeutic activity of compounds depends of their interaction with biological membranes. To understand why these compounds fail in vivo and in clinical trials, it is important to evaluate their pharmacokinetics properties. Thus, a biophysical approach to study drug-membrane interactions is essential to understand the mechanisms by which the drugs interact with the cellular membranes and affect the Aβ production, aggregation and clearance pathways. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol (chol) were used to mimic the biophysical properties of cell membranes and study their interactions with these compounds. The partition coefficient, influence on membrane fluidity and location within the bilayer of the drugs were studied by derivative spectrophotometry, dynamic light scattering and fluorescence quenching, respectively. The results suggest that TA exhibited a significant higher partition than CA and GA and a preferential location near to the polar head of bilayer. The obtained results may explain the therapeutic mechanisms reported for these natural compounds.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria J Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
25
|
Heterogeneous drug tissue binding in brain regions of rats, Alzheimer's patients and controls: impact on translational drug development. Sci Rep 2019; 9:5308. [PMID: 30926941 PMCID: PMC6440985 DOI: 10.1038/s41598-019-41828-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 03/18/2019] [Indexed: 01/08/2023] Open
Abstract
For preclinical and clinical assessment of therapeutically relevant unbound, free, brain concentrations, the pharmacokinetic parameter fraction of unbound drug in brain (fu,brain) is commonly used to compensate total drug concentrations for nonspecific brain tissue binding (BTB). As, homogenous BTB is assumed between species and in health and disease, rat BTB is routinely used. The impact of Alzheimer’s disease (AD) on drug BTB in brain regions of interest (ROI), i.e., fu,brain,ROI, is yet unclear. This study for the first time provides insight into regional drug BTB and the validity of employing rat fu,brain,ROI as a surrogate of human BTB, by investigating five marketed drugs in post-mortem tissue from AD patients (n = 6) and age-matched controls (n = 6). Heterogeneous drug BTB was observed in all within group comparisons independent of disease and species. The findings oppose the assumption of uniform BTB, highlighting the need of case-by-case evaluation of fu,brain,ROI in translational CNS research.
Collapse
|
26
|
Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells. J Control Release 2018; 283:261-268. [DOI: 10.1016/j.jconrel.2018.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
|
27
|
Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem 2018; 183:117-136. [DOI: 10.1016/j.jinorgbio.2018.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
|
28
|
Treyer A, Mateus A, Wiśniewski JR, Boriss H, Matsson P, Artursson P. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids. Mol Pharm 2018; 15:2224-2233. [DOI: 10.1021/acs.molpharmaceut.8b00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrea Treyer
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - André Mateus
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | - Pär Matsson
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala 75123, Sweden
- Science for Life Laboratory Drug Discovery and Development Platform (SciLifelab DDD-P), Uppsala 75123, Sweden
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
29
|
Pak J, Chen ZJ, Sun K, Przekwas A, Walenga R, Fan J. Computational modeling of drug transport across the in vitro cornea. Comput Biol Med 2017; 92:139-146. [PMID: 29175100 DOI: 10.1016/j.compbiomed.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
Abstract
A novel quasi-3D (Q3D) modeling approach was developed to model networks of one dimensional structures like tubes and vessels common in human anatomy such as vascular and lymphatic systems, neural networks, and respiratory airways. Instead of a branching network of the same tissue type, this approach was extended to model an interconnected stack of different corneal tissue layers with membrane junction conditions assigned between the tissues. The multi-laminate structure of the cornea presents a unique barrier design and opportunity for investigation using Q3D modeling. A Q3D model of an in vitro rabbit cornea was created to simulate the drug transport across the cornea, accounting for transcellular and paracellular pathways of passive and convective drug transport as well as physicochemistry of lipophilic partitioning and protein binding. Lipophilic Rhodamine B and hydrophilic fluorescein were used as drug analogs. The model predictions for both hydrophilic and lipophilic tracers were able to match the experimental measurements along with the sharp discontinuities at the epithelium-stroma and stroma-endothelium interfaces. This new modeling approach was successfully applied towards pharmacokinetic modeling for use in topical ophthalmic drug design.
Collapse
Affiliation(s)
- Joseph Pak
- CFD Research Corporation, 701 McMillian Way NW, Suite D, Huntsville, AL 35806, USA
| | - Z J Chen
- CFD Research Corporation, 701 McMillian Way NW, Suite D, Huntsville, AL 35806, USA
| | - Kay Sun
- CFD Research Corporation, 701 McMillian Way NW, Suite D, Huntsville, AL 35806, USA.
| | - Andrzej Przekwas
- CFD Research Corporation, 701 McMillian Way NW, Suite D, Huntsville, AL 35806, USA
| | - Ross Walenga
- Office of Generic Drugs, Food and Drug Administration, Silver Spring, MD, USA
| | - Jianghong Fan
- Office of Generic Drugs, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
30
|
Cannalire R, Tarantino D, Astolfi A, Barreca ML, Sabatini S, Massari S, Tabarrini O, Milani M, Querat G, Mastrangelo E, Manfroni G, Cecchetti V. Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. Eur J Med Chem 2017; 143:1667-1676. [PMID: 29137867 DOI: 10.1016/j.ejmech.2017.10.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
Over recent years, many RNA viruses have been "re-discovered", including life-threatening flaviviruses, such as Dengue, Zika, and several encephalitis viruses. Since no specific inhibitors are currently available to treat these infections, there is a pressing need for new therapeutics. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) represents a validated target being essential for viral replication and it has no human analog. To date, few NS5 RdRp inhibitor chemotypes have been reported and no inhibitors are currently in clinical development. In this context, after an in vitro screening against Dengue 3 NS5 RdRp of our in-house HCV NS5B inhibitors focused library, we found that 2,1-benzothiazine 2,2-dioxides are promising non-nucleoside inhibitors of flaviviral RdRp with compounds 8 and 10 showing IC50 of 0.6 and 0.9 μM, respectively. Preliminary structure-activity relationships indicated a key role for the C-4 benzoyl group and the importance of a properly functionalized C-6 phenoxy moiety to modulate potency. Compound 8 acts as non-competitive inhibitor and its proposed pose in the so-called N pocket of the RdRp thumb domain allowed to explain the key contribution of the benzoyl and the phenoxy moieties for the ligand binding.
Collapse
Affiliation(s)
- Rolando Cannalire
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Delia Tarantino
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133 Milano, Italy; CNR-IBF, Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via Celoria 26, I-20133 Milano, Italy
| | - Andrea Astolfi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Maria Letizia Barreca
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Stefano Sabatini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Serena Massari
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Oriana Tabarrini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Mario Milani
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133 Milano, Italy; CNR-IBF, Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via Celoria 26, I-20133 Milano, Italy
| | - Gilles Querat
- UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP) & Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Faculté de Médecine, 27 bd Jean Moulin, 13005 Marseille France
| | - Eloise Mastrangelo
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133 Milano, Italy; CNR-IBF, Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via Celoria 26, I-20133 Milano, Italy.
| | - Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Violetta Cecchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| |
Collapse
|
31
|
Nagar S, Korzekwa RC, Korzekwa K. Continuous Intestinal Absorption Model Based on the Convection-Diffusion Equation. Mol Pharm 2017; 14:3069-3086. [PMID: 28712300 DOI: 10.1021/acs.molpharmaceut.7b00286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prediction of the rate and extent of drug absorption upon oral dosing needs models that capture the complexities of both the drug molecule and intestinal physiology. We report here the development of a continuous intestinal absorption model based on the convection-diffusion equation. The model includes explicit enterocyte apical membrane and intracellular lipid radial compartments along the length of the intestine. Physiologic functions along length x are built into the model and include velocity, diffusion, surface areas, and pH of the intestine. Also included are expression levels of the intestinal active uptake transporter OATP2B1 and efflux transporter P-gp. Oral dosing of solution as well as solid (with a dissolution function) was modeled for several drugs. The fraction absorbed (FA) and concentration-time (C-t) profiles were predicted and compared with clinical data. Overall, FA was well predicted upon oral (n = 21) or colonic dosing (n = 11), with four outliers. The overall accuracy (prediction of the correct bin) was 81% with outliers and 90% without outliers. Of the nine solution dosing data sets, six drugs were very well predicted with an exposure overlap coefficient (EOC) > 0.9 and predicted Cmax and Tmax values similar to those observed. Of the six solid dose formulations evaluated, the EOC values were > 0.9 for all drugs except budesonide. The observed precipitation of nifedipine at high doses was predicted by the model. Most of the poor predictions were for drugs that are known to be transporter substrates. As proof of concept, incorporating OATP2B1 and P-gp markedly improved the EOC and predicted Cmax and Tmax for fexofenadine. Finally, the continuous intestinal model accurately recapitulated the known relationships between drug absorption and permeability, solubility, and particle size. Together, these results indicate that this preliminary intestinal absorption model offers a simple and straightforward framework to build in complexities such as drug permeability, lipid partitioning, solubility, metabolism, and transport for improved prediction of the rate and extent of drug absorption.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy , Philadelphia, Pennsylvania 19140, United States
| | - Richard C Korzekwa
- Department of Physics, University of Texas , Austin, Texas 78712, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy , Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
32
|
Barnaba C, Gentry K, Sumangala N, Ramamoorthy A. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature. F1000Res 2017; 6:662. [PMID: 28529725 PMCID: PMC5428493 DOI: 10.12688/f1000research.11015.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome
b
5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s) played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Katherine Gentry
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nirupama Sumangala
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P. Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci Rep 2017; 7:43047. [PMID: 28225057 PMCID: PMC5320532 DOI: 10.1038/srep43047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/17/2017] [Indexed: 11/26/2022] Open
Abstract
Intracellular drug exposure is influenced by cell- and tissue-dependent expression of drug-transporting proteins and metabolizing enzymes. Here, we introduce the concept of intracellular bioavailability (Fic) as the fraction of extracellular drug available to bind intracellular targets, and we assess how Fic is affected by cellular drug disposition processes. We first investigated the impact of two essential drug transporters separately, one influx transporter (OATP1B1; SLCO1B1) and one efflux transporter (P-gp; ABCB1), in cells overexpressing these proteins. We showed that OATP1B1 increased Fic of its substrates, while P-gp decreased Fic. We then investigated the impact of the concerted action of multiple transporters and metabolizing enzymes in freshly-isolated human hepatocytes in culture configurations with different levels of expression and activity of these proteins. We observed that Fic was up to 35-fold lower in the configuration with high expression of drug-eliminating transporters and enzymes. We conclude that Fic provides a measurement of the net impact of all cellular drug disposition processes on intracellular bioavailable drug levels. Importantly, no prior knowledge of the involved drug distribution pathways is required, allowing for high-throughput determination of drug access to intracellular targets in highly defined cell systems (e.g., single-transporter transfectants) or in complex ones (including primary human cells).
Collapse
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Andrea Treyer
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Cardiovascular and Metabolic Diseases Innovative Medicines, DMPK, AstraZeneca R&D, Mölndal SE-431 83, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Box 580, Uppsala SE-751 23, Sweden.,Science for Life Laboratory Drug Discovery and Development platform (SciLifelab DDD-P), Uppsala University, Uppsala SE-751 23, Sweden
| |
Collapse
|
34
|
Mangiapia G, Gvaramia M, Kuhrts L, Teixeira J, Koutsioubas A, Soltwedel O, Frielinghaus H. Effect of benzocaine and propranolol on phospholipid-based bilayers. Phys Chem Chem Phys 2017; 19:32057-32071. [DOI: 10.1039/c7cp06077g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug/bilayer interactions are fundamental in determining the action mechanism of active ingredients. Neutron techniques represent unique tools for having a clear comprehension of such interactions.
Collapse
Affiliation(s)
- G. Mangiapia
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - M. Gvaramia
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
- Ivane Javakhishvili Tbilisi State University
| | - L. Kuhrts
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - J. Teixeira
- Laboratoire Léon Brillouin (CEA-CNRS)
- CEA-Saclay
- F-91191 Gif-sur-Yvette CEDEX
- France
| | - A. Koutsioubas
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| | - O. Soltwedel
- Heinz Maier-Leibnitz Zentrum
- Technische Universität München
- D-85747 Garching
- Germany
| | - H. Frielinghaus
- Forschungszentrum Jülich GmbH
- Jülich Centre for Neutron Science Außenstelle am Heinz Maier-Leibnitz Zentrum
- D-85747 Garching
- Germany
| |
Collapse
|
35
|
Nagar S, Korzekwa K. Drug Distribution. Part 1. Models to Predict Membrane Partitioning. Pharm Res 2016; 34:535-543. [PMID: 27981450 DOI: 10.1007/s11095-016-2085-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. METHODS Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. RESULTS The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). CONCLUSIONS Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N Broad Street, Philadelphia, Pennsylvania, 19140, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N Broad Street, Philadelphia, Pennsylvania, 19140, USA.
| |
Collapse
|
36
|
Nair PC, McKinnon RA, Miners JO. A Fragment-Based Approach for the Computational Prediction of the Nonspecific Binding of Drugs to Hepatic Microsomes. Drug Metab Dispos 2016; 44:1794-1798. [PMID: 27543205 DOI: 10.1124/dmd.116.071852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022] Open
Abstract
Correction for the nonspecific binding (NSB) of drugs to liver microsomes is essential for the accurate measurement of the kinetic parameters Km and Ki, and hence in vitro-in vivo extrapolation to predict hepatic clearance and drug-drug interaction potential. Although a number of computational approaches for the estimation of drug microsomal NSB have been published, they generally rely on compound lipophilicity and charge state at the expense of other physicochemical and chemical properties. In this work, we report the development of a fragment-based hologram quantitative structure activity relationship (HQSAR) approach for the prediction of NSB using a database of 132 compounds. The model has excellent predictivity, with a noncross-validated r2 of 0.966 and cross-validated r2 of 0.680, with a predictive r2 of 0.748 for an external test set comprising 34 drugs. The HQSAR method reliably predicted the fraction unbound in incubations of 95% of the training and test set drugs, excluding compounds with a steroid or morphinan 4,5-epoxide nucleus. Using the same data set of compounds, performance of the HQSAR method was superior to a model based on logP/D as the sole descriptor (predictive r2 for the test set compounds, 0.534). Thus, the HQSAR method provides an alternative approach to laboratory-based procedures for the prediction of the NSB of drugs to liver microsomes, irrespective of the drug charge state (acid, base, or neutral).
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology (P.C.N., J.O.M.) and Flinders Centre for Innovation in Cancer (P.C.N., R.A.M., J.O.M.), School of Medicine, Flinders University, Adelaide, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology (P.C.N., J.O.M.) and Flinders Centre for Innovation in Cancer (P.C.N., R.A.M., J.O.M.), School of Medicine, Flinders University, Adelaide, Australia
| | - John O Miners
- Department of Clinical Pharmacology (P.C.N., J.O.M.) and Flinders Centre for Innovation in Cancer (P.C.N., R.A.M., J.O.M.), School of Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
37
|
Kulkarni P, Korzekwa K, Nagar S. Intracellular Unbound Atorvastatin Concentrations in the Presence of Metabolism and Transport. J Pharmacol Exp Ther 2016; 359:26-36. [PMID: 27451408 PMCID: PMC5034709 DOI: 10.1124/jpet.116.235689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Accurate prediction of drug target activity and rational dosing regimen design require knowledge of drug concentrations at the target. It is important to understand the impact of processes such as membrane permeability, partitioning, and active transport on intracellular drug concentrations. The present study aimed to predict intracellular unbound atorvastatin concentrations and characterize the effect of enzyme-transporter interplay on these concentrations. Single-pass liver perfusion studies were conducted in rats using atorvastatin (ATV, 1 µM) alone at 4°C and at 37°C in presence of rifampin (RIF, 20 µM) and 1-aminobenzotriazole (ABT, 1 mM), separately and in combination. The unbound intracellular ATV concentration was predicted with a five-compartment explicit membrane model using the parameterized diffusional influx clearance, active basolateral uptake clearance, and metabolic clearance. Chemical inhibition of uptake and metabolism at 37°C proved to be better controls relative to studies at 4°C. The predicted unbound intracellular concentration at the end of the 50-minute perfusion in the +ABT , +ABT+RIF, and the ATV-only groups was 6.5 µM, 0.58 µM, and 5.14 µM, respectively. The predicted total liver concentrations and amount recovered in bile were within 0.94-1.3 fold of the observed value in all groups. The fold difference in total liver concentration did not always extrapolate to the fold difference in predicted unbound concentration across groups. Together, these results support the use of compartmental modeling to predict intracellular concentrations in dynamic organ-based systems. These predictions can provide insight into the role of uptake transporters and metabolizing enzymes in determining drug tissue concentrations.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Kenneth Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Sjögren E, Andersson S, Sundgren-Andersson AK, Halldin MM, Stålberg O. Assessment of Free Drug Concentration in Cyclodextrin Formulations Is Essential to Determine Drug Potency in Functional In Vitro Assays. J Pharm Sci 2016; 105:2913-2920. [PMID: 27431012 DOI: 10.1016/j.xphs.2016.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023]
Abstract
Cyclodextrins (CD) have the ability to form inclusion complexes with drugs and can be used as excipients to enhance solubility of poorly soluble drugs. To make accurate estimations of the potency of the drug, knowledge of the free drug concentration is important. The aim of this study was to evaluate the applicability of calculated free drug concentrations toward response measurements in a transient receptor potential vanilloid receptor-1 cell-based in vitro assay. This included accounting for potential competitive CD binding of 2 transient receptor potential vanilloid receptor-1 active entities: 1 antagonist, and 1 agonist (capsaicin). Solubility of the CD-drug complexes was measured, and the ligand to substrate affinity in CD formulations was determined according to the phase-solubility technique. The total concentration of antagonist, agonist, CD, and the binding constants between ligands and CD were used to calculate the free concentration of CD ligands. For capsaicin and 2 of the 3 investigated model drugs, the calculated free drug concentration was consistent with the experimental in vitro data while it was overestimated for one of the compounds. In conclusion, the suggested approach can be used to calculate free drug concentration and competitive binding in CD formulations for the application of cell-based drug functionality assays.
Collapse
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Uppsala University, BOX 580, Uppsala SE-751 23, Sweden
| | - Sara Andersson
- Department of Pharmacy, Uppsala University, BOX 580, Uppsala SE-751 23, Sweden
| | | | - Magnus M Halldin
- AlzeCure Foundation, Karolinska Institute Science Park, Huddinge SE-141 57, Sweden
| | - Olle Stålberg
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden.
| |
Collapse
|
39
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
40
|
Scott EE, Wolf CR, Otyepka M, Humphreys SC, Reed JR, Henderson CJ, McLaughlin LA, Paloncýová M, Navrátilová V, Berka K, Anzenbacher P, Dahal UP, Barnaba C, Brozik JA, Jones JP, Estrada DF, Laurence JS, Park JW, Backes WL. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function. Drug Metab Dispos 2016; 44:576-90. [PMID: 26851242 PMCID: PMC4810767 DOI: 10.1124/dmd.115.068569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 11/22/2022] Open
Abstract
This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function.
Collapse
Affiliation(s)
- Emily E Scott
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - C Roland Wolf
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Michal Otyepka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Sara C Humphreys
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James R Reed
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Colin J Henderson
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Lesley A McLaughlin
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Markéta Paloncýová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Veronika Navrátilová
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Karel Berka
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Pavel Anzenbacher
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Upendra P Dahal
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Carlo Barnaba
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - James A Brozik
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jeffrey P Jones
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - D Fernando Estrada
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Jennifer S Laurence
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Ji Won Park
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| | - Wayne L Backes
- Departments of Medicinal Chemistry and Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas (D.F.E, J.S.L., E.E.S.); Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom (C.R.W., C.J.H., L.A.M.); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (M.O., M.P., V.N., K.B.) and Department of Pharmacology, Faculty of Medicine and Dentistry (P.A.), Palacký University, Olomouc, Czech Republic; Department of Chemistry, Washington State University, Pullman, Washington (S.C.H., U.P.D., C.B., J.A.B., J.P.J.); and Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.R.R., J.W.P., W.L.B.)
| |
Collapse
|
41
|
Subramanian N, Schumann-Gillett A, Mark AE, O'Mara ML. Understanding the accumulation of P-glycoprotein substrates within cells: The effect of cholesterol on membrane partitioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:776-82. [DOI: 10.1016/j.bbamem.2015.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/18/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022]
|
42
|
Ho NF, Nielsen J, Peterson M, Burton PS. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers. J Pharm Sci 2016; 105:904-914. [DOI: 10.1016/j.xphs.2015.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
43
|
Burns K, Nair PC, Rowland A, Mackenzie PI, Knights KM, Miners JO. The Nonspecific Binding of Tyrosine Kinase Inhibitors to Human Liver Microsomes. Drug Metab Dispos 2015; 43:1934-7. [PMID: 26443648 DOI: 10.1124/dmd.115.065292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/05/2015] [Indexed: 02/13/2025] Open
Abstract
Drugs and other chemicals frequently bind nonspecifically to the constituents of an in vitro incubation mixture, particularly the enzyme source [e.g., human liver microsomes (HLM)]. Correction for nonspecific binding (NSB) is essential for the accurate calculation of the kinetic parameters Km, Clint, and Ki. Many tyrosine kinase inhibitors (TKIs) are lipophilic organic bases that are nonionized at physiologic pH. Attempts to measure the NSB of several TKIs to HLM by equilibrium dialysis proved unsuccessful, presumably due to the limited aqueous solubility of these compounds. Thus, the addition of detergents to equilibrium dialysis samples was investigated as an approach to measure the NSB of TKIs. The binding of six validation set nonionized lipophilic bases (felodipine, isradipine, loratidine, midazolam, nifedipine, and pazopanib) to HLM (0.25 mg/ml) was shown to be unaffected by the addition of CHAPS (6 mM) to the dialysis medium. This approach was subsequently applied to measurement of the binding of axitinib, dabrafenib, erlotinib, gefitinib, ibrutinib, lapatinib, nilotinib, nintedanib, regorafenib, sorafenib, and trametinib to HLM (0.25 mg/ml). As with the validation set drugs, attainment of equilibrium was demonstrated in HLM-HLM and buffer-buffer control dialysis experiments. Values of the fraction unbound to HLM ranged from 0.14 (regorafenib and sorafenib) to 0.93 (nintedanib), and were generally consistent with the known physicochemical determinants of drug NSB. The extensive NSB of many TKIs to HLM underscores the importance of correction for TKI binding to HLM and, presumably, other enzyme sources present in in vitro incubation mixtures.
Collapse
Affiliation(s)
- Kushari Burns
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
| | - Kathleen M Knights
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
| | - John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
44
|
Ozeki K, Kato M, Sakurai Y, Ishigai M, Kudo T, Ito K. Evaluation of the appropriate time range for estimating the apparent permeability coefficient (Papp) in a transcellular transport study. Int J Pharm 2015; 495:963-71. [DOI: 10.1016/j.ijpharm.2015.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
|
45
|
Knobloch J, Suhendro DK, Zieleniecki JL, Shapter JG, Köper I. Membrane-drug interactions studied using model membrane systems. Saudi J Biol Sci 2015; 22:714-8. [PMID: 26586998 PMCID: PMC4625119 DOI: 10.1016/j.sjbs.2015.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/04/2022] Open
Abstract
The direct interaction of drugs with the cell membrane is often neglected when drug effects are studied. Systematic investigations are hindered by the complexity of the natural membrane and model membrane systems can offer a useful alternative. Here some examples are reviewed of how model membrane architectures including vesicles, Langmuir monolayers and solid supported membranes can be used to investigate the effects of drug molecules on the membrane structure, and how these interactions can translate into effects on embedded membrane proteins.
Collapse
Affiliation(s)
| | | | | | | | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
46
|
Haupt LJ, Kazmi F, Ogilvie BW, Buckley DB, Smith BD, Leatherman S, Paris B, Parkinson O, Parkinson A. The Reliability of Estimating Ki Values for Direct, Reversible Inhibition of Cytochrome P450 Enzymes from Corresponding IC50 Values: A Retrospective Analysis of 343 Experiments. Drug Metab Dispos 2015; 43:1744-50. [PMID: 26354951 DOI: 10.1124/dmd.115.066597] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
In the present study, we conducted a retrospective analysis of 343 in vitro experiments to ascertain whether observed (experimentally determined) values of Ki for reversible cytochrome P450 (P450) inhibition could be reliably predicted by dividing the corresponding IC₅₀ values by two, based on the relationship (for competitive inhibition) in which Ki = IC₅₀/2 when [S] (substrate concentration) = Km (Michaelis-Menten constant). Values of Ki and IC₅₀ were determined under the following conditions: 1) the concentration of P450 marker substrate, [S], was equal to Km (for IC₅₀ determinations) and spanned Km (for Ki determinations); 2) the substrate incubation time was short (5 minutes) to minimize metabolism-dependent inhibition and inhibitor depletion; and 3) the concentration of human liver microsomes was low (0.1 mg/ml or less) to maximize the unbound fraction of inhibitor. Under these conditions, predicted Ki values, based on IC₅₀/2, correlated strongly with experimentally observed Ki determinations [r = 0.940; average fold error (AFE) = 1.10]. Of the 343 predicted Ki values, 316 (92%) were within a factor of 2 of the experimentally determined Ki values, and only one value fell outside a 3-fold range. In the case of noncompetitive inhibitors, Ki values predicted from IC₅₀/2 values were overestimated by a factor of nearly 2 (AFE = 1.85; n = 13), which is to be expected because, for noncompetitive inhibition, Ki = IC₅₀ (not IC₅₀/2). The results suggest that, under appropriate experimental conditions with the substrate concentration equal to Km, values of Ki for direct, reversible inhibition can be reliably estimated from values of IC₅₀/2.
Collapse
Affiliation(s)
- Lois J Haupt
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - Faraz Kazmi
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - Brian W Ogilvie
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - David B Buckley
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - Brian D Smith
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - Sarah Leatherman
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - Brandy Paris
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - Oliver Parkinson
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| | - Andrew Parkinson
- XenoTech, LLC, Lenexa, Kansas (L.J.H., F.K., B.W.O., D.B.B., B.D.S., S.L.); and XPD Consulting, Shawnee, Kansas (B.P., O.P., A.P.)
| |
Collapse
|
47
|
Welch MA, Köck K, Urban TJ, Brouwer KLR, Swaan PW. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos 2015; 43:725-34. [PMID: 25735837 PMCID: PMC4407708 DOI: 10.1124/dmd.114.062539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability.
Collapse
Affiliation(s)
- Matthew A Welch
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Kathleen Köck
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Thomas J Urban
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Kim L R Brouwer
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| |
Collapse
|
48
|
Wang Y, Wang M, Qi H, Pan P, Hou T, Li J, He G, Zhang H. Pathway-dependent inhibition of paclitaxel hydroxylation by kinase inhibitors and assessment of drug-drug interaction potentials. Drug Metab Dispos 2014; 42:782-95. [PMID: 24476576 DOI: 10.1124/dmd.113.053793] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Paclitaxel is often used in combination with small molecule kinase inhibitors to enhance antitumor efficacy against various malignancies. Because paclitaxel is metabolized by CYP2C8 and CYP3A4, the possibility of drug-drug interactions mediated by enzyme inhibition may exist between the combining agents. In the present study, a total of 12 kinase inhibitors were evaluated for inhibitory potency in human liver microsomes by monitoring the formation of CYP2C8 and CYP3A4 metabolites simultaneously. For reversible inhibition, nilotinib was found to be the most potent inhibitor against both CYP2C8 and CYP3A4, and the inhibition potency could be explained by strong hydrogen binding based on molecular docking simulations and type II binding based on spectral analysis. Comparison of K(i) values revealed that the CYP2C8 pathway was more sensitive toward some kinase inhibitors (such as axitinib), while the CYP3A4 pathway was preferentially inhibited by others (such as bosutinib). Pathway-dependent inactivation (time-dependent inhibition) was also observed for a number of kinase inhibitors against CYP3A4 but not CYP2C8. Further studies showed that axitinib had a K(I) of 0.93 μM and k(inact) of 0.0137 min(-1), and the observed inactivation toward CYP3A4 was probably due to the formation of reactive intermediate(s). Using a static model, a reasonably accurate prediction of drug-drug interactions was achieved by incorporating parallel pathways and hepatic extraction ratio. The present results suggest that potent and pathway-dependent inhibition of CYP2C8 and/or CYP3A4 pathways by kinase inhibitors may alter the ratio of paclitaxel metabolites in vivo, and that such changes can be clinically relevant as differential metabolism has been linked to paclitaxel-induced neurotoxicity in cancer patients.
Collapse
Affiliation(s)
- Yedong Wang
- College of Pharmaceutical Sciences (Y.W., M.W., H.Q., T.H., J.L., G.H., H.Z.), Institute of Functional Nano and Soft Materials, and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices (P.P., T.H.), Soochow University, Suzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ramsden D, Tweedie DJ, Chan TS, Taub ME, Li Y. Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, HepatoPac. Drug Metab Dispos 2014; 42:394-406. [PMID: 24366904 DOI: 10.1124/dmd.113.055897] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
An increased appreciation of the importance of transporter and enzyme interplay in drug clearance and a desire to delineate these mechanisms necessitates the utilization of models that contain a full complement of enzymes and transporters at physiologically relevant activities. Additionally, the development of drugs with longer half-lives requires in vitro systems with extended incubation times that allow characterization of metabolic pathways for low-clearance drugs. A recently developed coculture hepatocyte model, HepatoPac, has been applied to meet these challenges. Faldaprevir is a drug in late-stage development for the treatment of hepatitis C. Faldaprevir is a low-clearance drug with the somewhat unique characteristic of being slowly metabolized, producing two abundant hydroxylated metabolites (M2a and M2b) in feces (∼40% of the dose) without exhibiting significant levels of circulating metabolites in humans. The human HepatoPac model was investigated to characterize the metabolism and transport of faldaprevir. In human HepatoPac cultures, M2a and M2b were the predominant metabolites formed, with extents of formation comparable to in vivo. Direct glucuronidation of faldaprevir was shown to be a minor metabolic pathway. HepatoPac studies also demonstrated that faldaprevir is concentrated in liver with active uptake by multiple transporters (including OATP1B1 and Na(+)-dependent transporters). Overall, human HepatoPac cultures provided valuable insights into the metabolism and disposition of faldaprevir in humans and demonstrated the importance of enzyme and transporter interplay in the clearance of the drug.
Collapse
Affiliation(s)
- Diane Ramsden
- Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | | | | |
Collapse
|
50
|
Ramsden D, Tweedie DJ, St George R, Chen LZ, Li Y. Generating an in vitro-in vivo correlation for metabolism and liver enrichment of a hepatitis C virus drug, faldaprevir, using a rat hepatocyte model (HepatoPac). Drug Metab Dispos 2014; 42:407-14. [PMID: 24366905 DOI: 10.1124/dmd.113.055947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Hepatocytes provide an integrated model to study drug metabolism and disposition. As a result of a loss of polarity or a significant decrease in the expression of enzymes and transporters, suspended and sandwich-cultured hepatocytes have limitations in determining hepatocellular drug concentrations. Underprediction of the extent of glucuronidation is also a concern for these hepatocyte models. Faldaprevir is a hepatitis C virus protease inhibitor in late-stage development that has demonstrated significant liver enrichment in in vivo rat models based on quantitative whole-body autoradiography (QWBA) and liver-to-plasma area under-the-curve ratio. In bile duct cannulated rats, the primary biliary metabolite was a glucuronide. Owing to ethical concerns, it is difficult to assess liver enrichment in humans, and a lack of in vitro and in vivo correlation of glucuronidation has been reported. The current study was conducted to verify whether a hepatocyte model, rat HepatoPac, could overcome some of these limitations and provide validity for follow-up studies with human HepatoPac. With rat HepatoPac, liver enrichment values averaged 34-fold and were consistent with rat QWBA (26.8-fold) and in vivo data (42-fold). In contrast, liver enrichment in suspended hepatocytes was only 2.8-fold. Furthermore, the extent of faldaprevir glucuronidation in HepatoPac studies was in agreement with in vivo results, with glucuronidation as the major pathway (96%). Suspended rat hepatocytes did not generate the glucuronide or two key hydroxylated metabolites that were observed in vivo. Overall, our studies suggest that HepatoPac is a promising in vitro model to predict in vivo liver enrichment and metabolism, especially for glucuronidation, and has demonstrated superiority over suspended hepatocytes.
Collapse
Affiliation(s)
- Diane Ramsden
- Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | | | | |
Collapse
|