1
|
O'Connor C, Schneider M, Katinas JM, Nayeen MJ, Shah K, Magdum T, Sharma A, Kim S, Bao X, Li J, Dann CE, Gangjee A, Matherly LH, Hou Z. Role of Mitochondrial and Cytosolic Folylpolyglutamate Synthetase in One-Carbon Metabolism and Antitumor Efficacy of Mitochondrial-Targeted Antifolates. Mol Pharmacol 2024; 106:173-187. [PMID: 39048308 PMCID: PMC11413923 DOI: 10.1124/molpharm.124.000912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Folate-dependent one-carbon (C1) metabolism encompasses distinct cytosolic and mitochondrial pathways connected by an interchange among serine, glycine, and formate. In both the cytosol and mitochondria, folates exist as polyglutamates, with polyglutamylation catalyzed by folylpolyglutamate synthetase (FPGS), including cytosolic and mitochondrial isoforms. Serine is metabolized by serine hydroxymethyltransferase (SHMT)2 in the mitochondria and generates glycine and C1 units for cellular biosynthesis in the cytosol. AGF347 is a novel pyrrolo[3,2-day]pyrimidine antifolate that targets SHMT2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. FPGS is expressed in primary pancreatic cancer specimens, and FPGS levels correlate with in vitro efficacies of AGF347 toward human pancreatic cancer cells. MIA PaCa-2 pancreatic cancer cells with CRISPR knockout of FPGS were engineered to express doxycycline-inducible FPGS exclusively in the cytosol (cFPGS) or in both the cytosol and mitochondria (mFPGS). Folate and AGF347 accumulations increased in both the cytosol and mitochondria with increased mFPGS but were restricted to the cytosol with cFPGS. AGF347-Glu5 inhibited SHMT2 ∼19-fold greater than AGF347 By metabolomics analysis, mFPGS stimulated the C1 flux from serine in the mitochondria and de novo purine and dTTP synthesis far greater than cFPGS. mFPGS enhanced in vitro inhibition of MIA PaCa-2 cell proliferation by AGF347 (∼30-fold) more than cFPGS (∼4.9-fold). Similar results were seen with other pyrrolo[3,2-d]pyrimidine antifolates (AGF291, AGF320); however, elevated mFPGS adversely impacted inhibition by the nonclassical SHMT2/SHMT1 inhibitor SHIN1. These results suggest a critical role of mFPGS levels in determining antitumor efficacies of mitochondrial-targeted pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer. SIGNIFICANCE STATEMENT: AGF347 is a novel pyrrolo[3,2-d]pyrimidine antifolate that targets serine hydroxymethyltransferase (SHMT)2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. AGF347 accumulation increases with folylpolyglutamate synthetase (FPGS) levels in both the cytosol and mitochondria. Increased mitochondrial FPGS stimulated one-carbon metabolic fluxes in the cytosol and mitochondria and substantially enhanced in vitro inhibition of pancreatic cancer cells by AGF347. Mitochondrial FPGS levels play important roles in determining the antitumor efficacies of pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer.
Collapse
Affiliation(s)
- Carrie O'Connor
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Mathew Schneider
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Jade M Katinas
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Md Junayed Nayeen
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Khushbu Shah
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Tejashree Magdum
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Abhishekh Sharma
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Seongho Kim
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Xun Bao
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Jing Li
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Charles E Dann
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Aleem Gangjee
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Larry H Matherly
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Zhanjun Hou
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| |
Collapse
|
2
|
Katinas JM, Nayeen MJ, Schneider M, Shah K, Fifer AN, Klapper LM, Sharma A, Thalluri K, Van Nieuwenhze MS, Hou Z, Gangjee A, Matherly LH, Dann CE. Structural Characterization of 5-Substituted Pyrrolo[3,2- d]pyrimidine Antifolate Inhibitors in Complex with Human Serine Hydroxymethyl Transferase 2. Biochemistry 2024:10.1021/acs.biochem.3c00613. [PMID: 38324671 PMCID: PMC11303599 DOI: 10.1021/acs.biochem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We previously discovered first-in-class multitargeted 5-substituted pyrrolo[3,2-d]pyrimidine antifolates that inhibit serine hydroxymethyltransferase 2 (SHMT2), resulting in potent in vitro and in vivo antitumor efficacies. In this report, we present crystallographic structures for SHMT2 in complex with an expanded series of pyrrolo[3,2-d]pyrimidine compounds with variations in bridge length (3-5 carbons) and the side chain aromatic ring (phenyl, thiophene, fluorine-substituted phenyl, and thiophene). We evaluated structural features of the inhibitor-SHMT2 complexes and correlations to inhibitor potencies (i.e., Kis), highlighting conserved polar contacts and identifying 5-carbon bridge lengths as key determinants of inhibitor potency. Based on the analysis of SHMT2 structural data, we investigated the impact of mutation of Tyr105 in SHMT2 kinetic analysis and studies with HCT116 cells with inducible expression of wild-type and Y105F SHMT2. Increased enzyme inhibition potency by the pyrrolo[3,2-d]pyrimidine inhibitors with Phe105 SHMT2 accompanied an increased growth inhibition of Phe105-expressing HCT116 cells compared to wild-type SHMT2. Pyrrolo[3,2-d]pyrimidine inhibitors with polyglutamate modifications were evaluated for potencies against SHMT2. We determined the crystal structures of SHMT2 in complex with our lead antifolate AGF347 lacking L-glutamate, or as a diglutamate and triglutamate, for comparison with parent AGF347. These data provide the first insights into the influence of antifolate polyglutamylation on SHMT2:inhibitor interactions. Collectively, our results provide new insights into the critical structural determinants of SHMT2 binding by pyrrolo[3,2-d]pyrimidine inhibitors as novel antitumor agents, as well as the first structural characterization of human SHMT2 in complex with polyglutamates of an SHMT2-targeted antifolate.
Collapse
Affiliation(s)
- Jade M Katinas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Md Junayed Nayeen
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mathew Schneider
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Khushbu Shah
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Alexandra N Fifer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lily M Klapper
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Abhishekh Sharma
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Kishore Thalluri
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Zhanjun Hou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Kaku K, Ravindra MP, Tong N, Choudhary S, Li X, Yu J, Karim M, Brzezinski M, O’Connor C, Hou Z, Matherly LH, Gangjee A. Discovery of Tumor-Targeted 6-Methyl Substituted Pemetrexed and Related Antifolates with Selective Loss of RFC Transport. ACS Med Chem Lett 2023; 14:1682-1691. [PMID: 38116433 PMCID: PMC10726441 DOI: 10.1021/acsmedchemlett.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.
Collapse
Affiliation(s)
- Krishna Kaku
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Manasa P. Ravindra
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Shruti Choudhary
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Xinxin Li
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jianming Yu
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Mohammad Karim
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Madelyn Brzezinski
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
4
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
5
|
Maeda K. Quantitative Prediction of Intestinal Absorption of Drugs from In Vitro Study: Utilization of Differentiated Intestinal Epithelial Cells Derived from Intestinal Stem Cells at Crypts. Drug Metab Dispos 2023; 51:1136-1144. [PMID: 37142427 DOI: 10.1124/dmd.122.000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Prediction of intestinal absorption of drugs in humans is one of the critical elements in the development process for oral drugs. However, it remains challenging, because intestinal absorption of drugs is influenced by multiple factors, including the function of various metabolic enzymes and transporters, and large species differences in drug bioavailability hinder the prediction of human bioavailability directly from in vivo animal experiments. For the screening of intestinal absorption properties of drugs, a transcellular transport assay with Caco-2 cells is still routinely used by pharmaceutical companies because of its convenience, but the predictability of the fraction of the oral dose that goes to the portal vein of metabolic enzyme/transporter substrate drugs was not always good because the cellular expression of metabolic enzymes and transporters is different from that in the human intestine. Recently, various novel in vitro experimental systems have been proposed such as the use of human-derived intestinal samples, transcellular transport assay with induced pluripotent stem-derived enterocyte-like cells, or differentiated intestinal epithelial cells derived from intestinal stem cells at crypts. Crypt-derived differentiated epithelial cells have an excellent potential to characterize species differences and regional differences in intestinal absorption of drugs because a unified protocol can be used for the proliferation of intestinal stem cells and their differentiation into intestinal absorptive epithelial cells regardless of the animal species and the gene expression pattern of differentiated cells is maintained at the site of original crypts. The advantages and disadvantages of novel in vitro experimental systems for characterizing intestinal absorption of drugs are also discussed. SIGNIFICANCE STATEMENT: Among novel in vitro tools for the prediction of human intestinal absorption of drugs, crypt-derived differentiated epithelial cells have many advantages. Cultured intestinal stem cells are rapidly proliferated and easily differentiated into intestinal absorptive epithelial cells simply by changing the culture media. A unified protocol can be used for the establishment of intestinal stem cell culture from preclinical species and humans. Region-specific gene expression at the collection site of crypts can be reproduced in differentiated cells.
Collapse
Affiliation(s)
- Kazuya Maeda
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
6
|
Nayeen MJ, Katinas JM, Magdum T, Shah K, Wong JE, O’Connor CE, Fifer AN, Wallace-Povirk A, Hou Z, Matherly LH, Dann CE, Gangjee A. Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria. J Med Chem 2023; 66:11294-11323. [PMID: 37582241 PMCID: PMC10461232 DOI: 10.1021/acs.jmedchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Collapse
Affiliation(s)
- Md. Junayed Nayeen
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Tejashree Magdum
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Khushbu Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer E. Wong
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Carrie E. O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Alexandra N. Fifer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
7
|
Tong N, Wong-Roushar J, Wallace-Povirk A, Shah Y, Nyman MC, Katinas JM, Schneider M, O’Connor C, Bao X, Kim S, Li J, Hou Z, Matherly LH, Dann CE, Gangjee A. Multitargeted 6-Substituted Thieno[2,3- d]pyrimidines as Folate Receptor-Selective Anticancer Agents that Inhibit Cytosolic and Mitochondrial One-Carbon Metabolism. ACS Pharmacol Transl Sci 2023; 6:748-770. [PMID: 37200803 PMCID: PMC10186366 DOI: 10.1021/acsptsci.3c00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 05/20/2023]
Abstract
Multitargeted agents with tumor selectivity result in reduced drug resistance and dose-limiting toxicities. We report 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with pyridine (3, 4), fluorine-substituted pyridine (5), phenyl (6, 7), and thiophene side chains (8, 9), for comparison with unsubstituted phenyl (1, 2) and thiophene side chain (10, 11) containing thieno[2,3-d]pyrimidine compounds. Compounds 3-9 inhibited proliferation of Chinese hamster ovary cells (CHO) expressing folate receptors (FRs) α or β but not the reduced folate carrier (RFC); modest inhibition of CHO cells expressing the proton-coupled folate transporter (PCFT) by 4, 5, 6, and 9 was observed. Replacement of the side-chain 1',4'-phenyl ring with 2',5'-pyridyl, or 2',5'-pyridyl with a fluorine insertion ortho to l-glutamate resulted in increased potency toward FR-expressing CHO cells. Toward KB tumor cells, 4-9 were highly active (IC50's from 2.11 to 7.19 nM). By metabolite rescue in KB cells and in vitro enzyme assays, de novo purine biosynthesis was identified as a targeted pathway (at 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase)). Compound 9 was 17- to 882-fold more potent than previously reported compounds 2, 10, and 11 against GARFTase. By targeted metabolomics and metabolite rescue, 1, 2, and 6 also inhibited mitochondrial serine hydroxymethyl transferase 2 (SHMT2); enzyme assays confirmed inhibition of SHMT2. X-ray crystallographic structures were obtained for 4, 5, 9, and 10 with human GARFTase. This series affords an exciting new structural platform for potent multitargeted antitumor agents with FR transport selectivity.
Collapse
Affiliation(s)
- Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Wong-Roushar
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Yesha Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Morgan C. Nyman
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mathew Schneider
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Xun Bao
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Seongho Kim
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Jing Li
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
8
|
Guijarro MV, Kellish PC, Dib PE, Paciaroni NG, Nawab A, Andring J, Kulemina L, Borrero NV, Modenutti C, Feely M, Nasri E, Seifert RP, Luo X, Bennett RL, Shabashvili D, Licht JD, McKenna R, Roitberg A, Huigens RW, Kaye FJ, Zajac-Kaye M. First-in-class multifunctional TYMS nonclassical antifolate inhibitor with potent in vivo activity that prolongs survival. JCI Insight 2023; 8:e158798. [PMID: 37097751 PMCID: PMC10386886 DOI: 10.1172/jci.insight.158798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase. Collectively, this work identifies nonclassical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile, highlighting the potential for enhanced cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob Andring
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | | | - Carlos Modenutti
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, and
- Institute of Biological Chemistry of the Faculty of Exact and Natural Sciences (IQUIBICEN) CONICET, University City, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Michael Feely
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Elham Nasri
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert P. Seifert
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Richard L. Bennett
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida, USA
| | | | - Jonathan D. Licht
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Adrian Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | | | - Frederic J. Kaye
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
9
|
Gök V, Erdem Ş, Haliloğlu Y, Bişgin A, Belkaya S, Başaran KE, Canatan MF, Özcan A, Yılmaz E, Acıpayam C, Karakükcü M, Canatan H, Per H, Patıroğlu T, Eken A, Ünal E. Immunodeficiency associated with a novel functionally defective variant of SLC19A1 benefits from folinic acid treatment. Genes Immun 2023; 24:12-20. [PMID: 36517554 DOI: 10.1038/s41435-022-00191-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.
Collapse
Affiliation(s)
- Veysel Gök
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Şerife Erdem
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Yeşim Haliloğlu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Atıl Bişgin
- Department of Medical Genetics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Türkiye
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Alper Özcan
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ebru Yılmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Can Acıpayam
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Sütçü İmam University, Kahramanmaraş, Türkiye
| | - Musa Karakükcü
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.,Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye. .,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
10
|
Dang Y, Zhou D, Du X, Zhao H, Lee CH, Yang J, Wang Y, Qin C, Guo Z, Zhang Z. Molecular mechanism of substrate recognition by folate transporter SLC19A1. Cell Discov 2022; 8:141. [PMID: 36575193 PMCID: PMC9794768 DOI: 10.1038/s41421-022-00508-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Folate (vitamin B9) is the coenzyme involved in one-carbon transfer biochemical reactions essential for cell survival and proliferation, with its inadequacy causing developmental defects or severe diseases. Notably, mammalian cells lack the ability to de novo synthesize folate but instead rely on its intake from extracellular sources via specific transporters or receptors, among which SLC19A1 is the ubiquitously expressed one in tissues. However, the mechanism of substrate recognition by SLC19A1 remains unclear. Here we report the cryo-EM structures of human SLC19A1 and its complex with 5-methyltetrahydrofolate at 3.5-3.6 Å resolution and elucidate the critical residues for substrate recognition. In particular, we reveal that two variant residues among SLC19 subfamily members designate the specificity for folate. Moreover, we identify intracellular thiamine pyrophosphate as the favorite coupled substrate for folate transport by SLC19A1. Together, this work establishes the molecular basis of substrate recognition by this central folate transporter.
Collapse
Affiliation(s)
- Yu Dang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Dong Zhou
- grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaojuan Du
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China ,grid.411472.50000 0004 1764 1621Present Address: Peking University First Hospital, Peking University Health Science Center, Beijing, China
| | - Hongtu Zhao
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Chia-Hsueh Lee
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jing Yang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Yijie Wang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Changdong Qin
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhenxi Guo
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Matherly LH, Schneider M, Gangjee A, Hou Z. Biology and therapeutic applications of the proton-coupled folate transporter. Expert Opin Drug Metab Toxicol 2022; 18:695-706. [PMID: 36239195 PMCID: PMC9637735 DOI: 10.1080/17425255.2022.2136071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The proton-coupled folate transporter (PCFT; SLC46A1) was discovered in 2006 as the principal mechanism by which folates are absorbed in the intestine and the causal basis for hereditary folate malabsorption (HFM). In 2011, it was found that PCFT is highly expressed in many tumors. This stimulated interest in using PCFT for cytotoxic drug targeting, taking advantage of the substantial levels of PCFT transport and acidic pH conditions commonly associated with tumors. AREAS COVERED We summarize the literature from 2006 to 2022 that explores the role of PCFT in the intestinal absorption of dietary folates and its role in HFM and as a transporter of folates and antifolates such as pemetrexed (Alimta) in relation to cancer. We provide the rationale for the discovery of a new generation of targeted pyrrolo[2,3-d]pyrimidine antifolates with selective PCFT transport and inhibitory activity toward de novo purine biosynthesis in solid tumors. We summarize the benefits of this approach to cancer therapy and exciting new developments in the structural biology of PCFT and its potential to foster refinement of active structures of PCFT-targeted anti-cancer drugs. EXPERT OPINION We summarize the promising future and potential challenges of implementing PCFT-targeted therapeutics for HFM and a variety of cancers.
Collapse
Affiliation(s)
- Larry H. Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
12
|
Wallace-Povirk A, Rubinsak L, Malysa A, Dzinic SH, Ravindra M, Schneider M, Glassbrook J, O'Connor C, Hou Z, Kim S, Back J, Polin L, Morris RT, Gangjee A, Gibson H, Matherly LH. Targeted therapy of pyrrolo[2,3-d]pyrimidine antifolates in a syngeneic mouse model of high grade serous ovarian cancer and the impact on the tumor microenvironment. Sci Rep 2022; 12:11346. [PMID: 35790779 PMCID: PMC9256750 DOI: 10.1038/s41598-022-14788-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/13/2022] [Indexed: 01/30/2023] Open
Abstract
Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRβ is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRβ-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.
Collapse
Affiliation(s)
| | - Lisa Rubinsak
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Agnes Malysa
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Manasa Ravindra
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Glassbrook
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Jessica Back
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Robert T Morris
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Heather Gibson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Hou Z, Gangjee A, Matherly LH. The evolving biology of the proton‐coupled folate transporter: New insights into regulation, structure, and mechanism. FASEB J 2022; 36:e22164. [PMID: 35061292 PMCID: PMC8978580 DOI: 10.1096/fj.202101704r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023]
Abstract
The human proton‐coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high‐level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo‐electron microscopy structures of chicken PCFT in a substrate‐free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH‐regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo‐oligomer, and evidence suggests that homo‐oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh Pennsylvania USA
| | - Larry H. Matherly
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
- Department of Pharmacology Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
14
|
Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010191. [PMID: 35008360 PMCID: PMC8750473 DOI: 10.3390/cancers14010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRβ is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.
Collapse
|
15
|
Chawla P, Teli G, Gill RK, Narang RK. An Insight into Synthetic Strategies and Recent Developments of Dihydrofolate Reductase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pooja Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
- Pooja Chawla Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001 Punjab India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Rupinder Kaur Gill
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Raj Kumar Narang
- Department of Pharmaceutics ISF College of Pharmacy Moga Punjab India
| |
Collapse
|
16
|
Parker JL, Deme JC, Kuteyi G, Wu Z, Huo J, Goldman ID, Owens RJ, Biggin PC, Lea SM, Newstead S. Structural basis of antifolate recognition and transport by PCFT. Nature 2021; 595:130-134. [PMID: 34040256 PMCID: PMC9990147 DOI: 10.1038/s41586-021-03579-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Justin C Deme
- Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - I David Goldman
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Susan M Lea
- Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Razaghi A, Zickler AM, Spallholz J, Kirsch G, Björnstedt M. Selenofolate inhibits the proliferation of IGROV1 cancer cells independently from folate receptor alpha. Heliyon 2021; 7:e07254. [PMID: 34169173 PMCID: PMC8209087 DOI: 10.1016/j.heliyon.2021.e07254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer is one of the main causes of human mortality worldwide and novel chemotherapeutics are required due to the limitations of conventional cancer therapies. For example, using redox selenium compounds as novel chemotherapeutics seem to be very promising. The objective of this study was to explore if folate could be used as a carrier to deliver a newly synthesised selenium derivative selenofolate into cancer cells. Particularly, the cytotoxic effects of this selenofolate compound were investigated in a variety of cancer cell types including lung, liver, and cervical cancers and specifically IGROV1 cells. Our results showed that selenofolate inhibits the growth of cancer cells in-vitro. However, despite the expectations, folate receptor alpha (FRα) was not involved in the transportation of selenofolate compound into the cells i.e. growth inhibition was independent of FRα, suggesting that multiple transporters (e.g. reduced folate carrier-1) are possibly involved in the delivery and internalisation of folate in IGROV1 cells. Additionally, selenofolate did not exert cell death through apoptosis. Instead, anti-proliferative activity showed to be the main cause of growth inhibition of selenolofate in the IGROV1 cell line. In conclusion, selenofolate inhibits the growth of cancer cells and thus, may be explored further as a potential chemotherapeutic agent.
Collapse
Affiliation(s)
- Ali Razaghi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
| | - Antje Maria Zickler
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
| | - Julian Spallholz
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
| | - Gilbert Kirsch
- Université de Lorraine, CNRS, L2CM, F-57000, Metz, France
| | - Mikael Björnstedt
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, SE-14152, Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
18
|
Wallace-Povirk A, Tong N, Wong-Roushar J, O'Connor C, Zhou X, Hou Z, Bao X, Garcia GE, Li J, Kim S, Dann CE, Matherly LH, Gangjee A. Discovery of 6-substituted thieno[2,3-d]pyrimidine analogs as dual inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis in folate receptor expressing human tumors. Bioorg Med Chem 2021; 37:116093. [PMID: 33773393 PMCID: PMC8058616 DOI: 10.1016/j.bmc.2021.116093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
We discovered 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with 3-4 bridge carbons and side-chain thiophene or furan rings for dual targeting one-carbon (C1) metabolism in folate receptor- (FR) expressing cancers. Synthesis involved nine steps starting from the bromo-aryl carboxylate. From patterns of growth inhibition toward Chinese hamster ovary cells expressing FRα or FRβ, the proton-coupled folate transporter or reduced folate carrier, specificity for uptake by FRs was confirmed. Anti-proliferative activities were demonstrated toward FRα-expressing KB tumor cells and NCI-IGROV1 ovarian cancer cells. Inhibition of de novo purine biosynthesis at both 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase and glycinamide ribonucleotide formyltransferase (GARFTase) was confirmed by metabolite rescue, metabolomics and enzyme assays. X-ray crystallographic structures were obtained with compounds 3-5 and human GARFTase. Our studies identify first-in-class C1 inhibitors with selective uptake by FRs and dual inhibition of enzyme targets in de novo purine biosynthesis, resulting in anti-tumor activity. This series affords an exciting new platform for selective multi-targeted anti-tumor agents.
Collapse
Affiliation(s)
- Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Nian Tong
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | | | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Xilin Zhou
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Gloria E Garcia
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States.
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
19
|
O'Connor C, Wallace-Povirk A, Ning C, Frühauf J, Tong N, Gangjee A, Matherly LH, Hou Z. Folate transporter dynamics and therapy with classic and tumor-targeted antifolates. Sci Rep 2021; 11:6389. [PMID: 33737637 PMCID: PMC7973545 DOI: 10.1038/s41598-021-85818-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT. We showed that cellular accumulations of extracellular folates were determined by the type and levels of the major folate transporters, with PCFT and RFC prevailing over FRα, depending on expression levels and pH. Based on patterns of cell proliferation in the presence of the inhibitors, we established transport redundancy for RFC and PCFT in pemetrexed uptake, and for PCFT and FRα in AGF94 uptake; uptake by PCFT predominated for pemetrexed and FRα for AGF94. For methotrexate and PT523, uptake by RFC predominated even in the presence of PCFT or FRα. For both classic (methotrexate, PT523) and FRα-targeted (AGF102) antifolates, anti-proliferative activities were antagonized by PCFT, likely due to its robust activity in mediating folate accumulation. Collectively, our findings describe a previously unrecognized interplay among the major folate transport systems that depends on transporter levels and extracellular pH, and that determines their contributions to the uptake and anti-tumor efficacies of targeted and untargeted antifolates.
Collapse
Affiliation(s)
- Carrie O'Connor
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Adrianne Wallace-Povirk
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Changwen Ning
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Josephine Frühauf
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Nian Tong
- Division of Medicinal Chemistry, Duquesne University, Pittsburgh, PA, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Duquesne University, Pittsburgh, PA, USA
| | - Larry H Matherly
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| | - Zhanjun Hou
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
20
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
21
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
23
|
Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B‐Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res 2020; 64:e2000426. [DOI: 10.1002/mnfr.202000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| |
Collapse
|
24
|
A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nat Commun 2020; 11:2936. [PMID: 32522993 PMCID: PMC7287054 DOI: 10.1038/s41467-020-16747-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR‐mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one‐carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR‐driven changes to gene expression and resistance to pharmacological treatment. The unfolded protein response (UPR) is a stress response pathway implicated in numerous diseases and chemotherapy resistance. Here, the authors define the UPR regulon with a multi-omics strategy, uncovering changes to mitochondrial one-carbon metabolism and concomitant resistance to folate-based therapeutics.
Collapse
|
25
|
Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds. Br J Cancer 2020; 123:644-656. [PMID: 32493992 PMCID: PMC7434895 DOI: 10.1038/s41416-020-0912-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/12/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.
Collapse
|
26
|
Wang SC, Davejan P, Hendargo KJ, Javadi-Razaz I, Chou A, Yee DC, Ghazi F, Lam KJK, Conn AM, Madrigal A, Medrano-Soto A, Saier MH. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183277. [PMID: 32205149 DOI: 10.1016/j.bbamem.2020.183277] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
The Major Facilitator Superfamily (MFS) is currently the largest characterized superfamily of transmembrane secondary transport proteins. Its diverse members are found in essentially all organisms in the biosphere and function by uniport, symport, and/or antiport mechanisms. In 1993 we first named and described the MFS which then consisted of 5 previously known families that had not been known to be related, and by 2012 we had identified a total of 74 families, classified phylogenetically within the MFS, all of which included only transport proteins. This superfamily has since expanded to 89 families, all included under TC# 2.A.1, and a few transporter families outside of TC# 2.A.1 were identified as members of the MFS. In this study, we assign nine previously unclassified protein families in the Transporter Classification Database (TCDB; http://www.tcdb.org) to the MFS based on multiple criteria and bioinformatic methodologies. In addition, we find integral membrane domains distantly related to partial or full-length MFS permeases in Lysyl tRNA Synthases (TC# 9.B.111), Lysylphosphatidyl Glycerol Synthases (TC# 4.H.1), and cytochrome b561 transmembrane electron carriers (TC# 5.B.2). Sequence alignments, overlap of hydropathy plots, compatibility of repeat units, similarity of complexity profiles of transmembrane segments, shared protein domains and 3D structural similarities between transport proteins were analyzed to assist in inferring homology. The MFS now includes 105 families.
Collapse
Affiliation(s)
- Steven C Wang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Pauldeen Davejan
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Kevin J Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Ida Javadi-Razaz
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Amy Chou
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Daniel C Yee
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Faezeh Ghazi
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Katie Jing Kay Lam
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Adam M Conn
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Assael Madrigal
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America.
| |
Collapse
|
27
|
Alam C, Kondo M, O'Connor DL, Bendayan R. Clinical Implications of Folate Transport in the Central Nervous System. Trends Pharmacol Sci 2020; 41:349-361. [PMID: 32200980 DOI: 10.1016/j.tips.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Folates are essential for key biosynthetic processes in mammalian cells and play a crucial role in the maintenance of central nervous system homeostasis. Mammals lack the metabolic capacity for folate biosynthesis; hence, folate requirements are largely met through dietary sources. To date, three major folate transport pathways have been characterized: the folate receptors (FRs), reduced folate carrier (RFC), and proton-coupled folate transporter (PCFT). This article reviews current knowledge on the role of folate transport systems in mediating folate delivery to vital tissues, particularly the brain, and how these pathways are modulated by various regulatory mechanisms. We will also briefly highlight the clinical significance of cerebral folate transport in relation to neurodevelopmental disorders associated with folate deficiency.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada; Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
28
|
Kawami M. [Investigation of Drug-induced Lung Injury for the Development of a Novel Therapeutic Approach]. YAKUGAKU ZASSHI 2020; 140:15-22. [PMID: 31902879 DOI: 10.1248/yakushi.19-00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of serious lung diseases, such as pulmonary fibrosis, is associated with several drugs. A recent study has shown that the epithelial-mesenchymal transition (EMT) plays an essential role in the development of pulmonary fibrosis. However, the mechanisms underlying drug-induced EMT in alveolar epithelial cells have not been characterized. The present study showed that methotrexate (MTX), a drug known to cause lung injury, induced EMT-like phenotypic changes in an A549 cell model of the alveolar epithelium. We also found that the transforming growth factor (TGF)-β1-mediated signaling pathway was associated with MTX-induced EMT. In addition, our results showed that certain secreted factors and microRNAs, a class of small noncoding RNAs, may be involved in MTX-induced EMT. The effects of COA-Cl, a novel synthetic small molecule, on TGF-β1-induced EMT were evaluated to determine the therapeutic potential of COA-Cl against drug-induced lung injury. COA-Cl significantly suppressed TGF-β1-induced EMT-like phenotypic changes, as evidenced by the inhibition of EMT-related transcription factors. Furthermore, MTX-induced EMT was completely suppressed by co-treatment with folic acid. Thus, these compounds may be promising therapeutic agents against drug-induced lung injury. In conclusion, the present study elucidated mechanisms underlying drug-induced EMT and highlighted a potential novel therapeutic approach to drug-induced lung diseases.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University
| |
Collapse
|
29
|
Lu X. The Role of Large Neutral Amino Acid Transporter (LAT1) in Cancer. Curr Cancer Drug Targets 2019; 19:863-876. [DOI: 10.2174/1568009619666190802135714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Background:
The solute carrier family 7 (SLC7) can be categorically divided into two
subfamilies, the L-type amino acid transporters (LATs) including SLC7A5-13, and SLC7A15, and
the cationic amino acid transporters (CATs) including SLC7A1-4 and SLC7A14. Members of the
CAT family transport predominantly cationic amino acids by facilitating diffusion with intracellular
substrates. LAT1 (also known as SLC7A5), is defined as a heteromeric amino acid transporter
(HAT) interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide to uptake
not only large neutral amino acids, but also several pharmaceutical drugs to cells.
Methods:
In this review, we provide an overview of the interaction of the structure-function of
LAT1 and its essential role in cancer, specifically, its role at the blood-brain barrier (BBB) to facilitate
the transport of thyroid hormones, pharmaceuticals (e.g., I-DOPA, gabapentin), and metabolites
into the brain.
Results:
LAT1 expression increases as cancers progress, leading to higher expression levels in highgrade
tumors and metastases. In addition, LAT1 plays a crucial role in cancer-associated
reprogrammed metabolic networks by supplying tumor cells with essential amino acids.
Conclusion:
The increasing understanding of the role of LAT1 in cancer has led to an increase in
interest surrounding its potential as a drug target for cancer treatment.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR, United Kingdom
| |
Collapse
|
30
|
Identification of the amino acid residue responsible for the myricetin sensitivity of human proton-coupled folate transporter. Sci Rep 2019; 9:18105. [PMID: 31792273 PMCID: PMC6889420 DOI: 10.1038/s41598-019-54367-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Human proton-coupled folate transporter (hPCFT/SLC46A1) has recently been found to be inhibited by myricetin by a sustained mechanism, raising a concern that the inhibition might lead to malabsorption of folates in the intestine, where hPCFT works for their epithelial uptake. However, rat PCFT (rPCFT) has more recently been found not to be inhibited by myricetin. Prompted by this finding, we attempted to determine the amino acid residue involved in that by analyses comparing between hPCFT and rPCFT. In the initial analysis, chimeric constructs prepared from hPCFT and rPCFT were examined for myricetin sensitivity to determine the hPCFT segment involved in the sensitivity. Focusing on the thereby determined segment from 83rd to 186th amino acid residue, hPCFT mutants having a designated amino acid residue replaced with its counterpart in rPCFT were prepared for the subsequent analysis. Among them, only G158N-substituted hPCFT was found to be transformed to be insensitive to myricetin and, accordingly, oppositely N158G-substituted rPCFT was transformed to be sensitive to myricetin. These results indicate the critical role of Gly158 in the myricetin sensitivity of hPCFT. This finding would help advance the elucidation of the mechanism of the myricetin-induced inhibition of hPCFT and manage the potential risk arising from that.
Collapse
|
31
|
Discovery of amide-bridged pyrrolo[2,3-d]pyrimidines as tumor targeted classical antifolates with selective uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis. Bioorg Med Chem 2019; 27:115125. [PMID: 31679978 DOI: 10.1016/j.bmc.2019.115125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
We previously showed that classical 6-substituted pyrrolo[2,3-d]pyrimidine antifolates bind to folate receptor (FR) α and the target purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFTase) with different cis and trans conformations. In this study, we designed novel analogs of this series with an amide moiety in the bridge region that can adopt both the cis and trans lowest energy conformations. This provides entropic benefit, by restricting the number of side-chain conformations of the unbound ligand to those most likely to promote binding to FRα and the target enzyme required for antitumor activity. NMR of the most active compound 7 showed both cis and trans amide bridge conformations in ~1:1 ratio. The bridge amide group in the best docked poses of 7 in the crystal structures of FRα and GARFTase adopted both cis and trans conformations, with the lowest energy conformations predicted by Maestro and evidenced by NMR within 1 kcal/mol. Compound 7 showed ~3-fold increased inhibition of FRα-expressing cells over its non-restricted parent analog 1 and was selectively internalized by FRα over the reduced folate carrier (RFC), resulting in significant in vitro antitumor activity toward FRα-expressing KB human tumor cells. Antitumor activity of 7 was abolished by treating cells with adenosine but was incompletely protected by 5-aminoimidazole-4-carboxamide (AICA) at higher drug concentrations, suggesting GARFTase and AICA ribonucleotide formyltransferase (AICARFTase) in de novo purine biosynthesis as the likely intracellular targets. GARFTase inhibition by compound 7 was confirmed by an in situ cell-based activity assay. Our results identify a "first-in-class" classical antifolate with a novel amide linkage between the scaffold and the side chain aryl L-glutamate that affords exclusive selectivity for transport via FRα over RFC and antitumor activity resulting from inhibition of GARFTase and likely AICARFTase. Compound 7 offers significant advantages over clinically used inhibitors of this class that are transported by the ubiquitous RFC, resulting in dose-limiting toxicities.
Collapse
|
32
|
Dekhne AS, Shah K, Ducker GS, Katinas JM, Wong-Roushar J, Nayeen MJ, Doshi A, Ning C, Bao X, Frühauf J, Liu J, Wallace-Povirk A, O'Connor C, Dzinic SH, White K, Kushner J, Kim S, Hüttemann M, Polin L, Rabinowitz JD, Li J, Hou Z, Dann CE, Gangjee A, Matherly LH. Novel Pyrrolo[3,2- d]pyrimidine Compounds Target Mitochondrial and Cytosolic One-carbon Metabolism with Broad-spectrum Antitumor Efficacy. Mol Cancer Ther 2019; 18:1787-1799. [PMID: 31289137 PMCID: PMC6774887 DOI: 10.1158/1535-7163.mct-19-0037] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
Folate-dependent one-carbon (C1) metabolism is compartmentalized into the mitochondria and cytosol and supports cell growth through nucleotide and amino acid biosynthesis. Mitochondrial C1 metabolism, including serine hydroxymethyltransferase (SHMT) 2, provides glycine, NAD(P)H, ATP, and C1 units for cytosolic biosynthetic reactions, and is implicated in the oncogenic phenotype across a wide range of cancers. Whereas multitargeted inhibitors of cytosolic C1 metabolism, such as pemetrexed, are used clinically, there are currently no anticancer drugs that specifically target mitochondrial C1 metabolism. We used molecular modeling to design novel small-molecule pyrrolo[3,2-d]pyrimidine inhibitors targeting mitochondrial C1 metabolism at SHMT2. In vitro antitumor efficacy was established with the lead compounds (AGF291, AGF320, AGF347) toward lung, colon, and pancreatic cancer cells. Intracellular targets were identified by metabolic rescue with glycine and nucleosides, and by targeted metabolomics using a stable isotope tracer, with confirmation by in vitro assays with purified enzymes. In addition to targeting SHMT2, inhibition of the cytosolic purine biosynthetic enzymes, β-glycinamide ribonucleotide formyltransferase and/or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase, and SHMT1 was also established. AGF347 generated significant in vivo antitumor efficacy with potential for complete responses against both early-stage and upstage MIA PaCa-2 pancreatic tumor xenografts, providing compelling proof-of-concept for therapeutic targeting of SHMT2 and cytosolic C1 enzymes by this series. Our results establish structure-activity relationships and identify exciting new drug prototypes for further development as multitargeted antitumor agents.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Khushbu Shah
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Gregory S Ducker
- Department of Chemistry/Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Jade M Katinas
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | | | - Md Junayed Nayeen
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Arpit Doshi
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Changwen Ning
- Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Josephine Frühauf
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Joshua D Rabinowitz
- Department of Chemistry/Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana.
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
33
|
Gao T, Zhang C, Shi X, Guo R, Zhang K, Gu J, Li L, Li S, Zheng Q, Cui M, Cui M, Gao X, Liu Y, Wang L. Targeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents. Eur J Med Chem 2019; 178:329-340. [PMID: 31200235 DOI: 10.1016/j.ejmech.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
A novel series of 6-substituted pyrrolo[2,3-d]pyrimidines with reversed amide moieties from the lead compound 1a were designed and synthesized as nonclassical antifolates and as potential antitumor agents. Target compounds 1-9 were successfully obtained through two sequential condensation reactions from the key intermediate 2-amino-6-(2-aminoethyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one. In preliminary antiproliferation assay, all compounds demonstrated submicromolar to nanomolar inhibitory effects against KB tumor cells, whereas compounds 1-3 also exhibited nanomolar antiproliferative activities toward SW620 and A549 cells. In particular, compounds 1-3 were significantly more potent than the positive control methotrexate (MTX) and pemetrexed (PMX) to A549 cells. The growth inhibition induced cell cycle arrest at G1-phase with S-phase suppression. Along with the results of nucleoside protection assays, inhibition assays of dihydrofolate reductase (DHFR) clearly elucidated that the intracellular target of the designed compounds was DHFR. Molecular modeling studies suggested two binding modes of the target compounds with DHFR.
Collapse
Affiliation(s)
- Tianfeng Gao
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Congying Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiaowei Shi
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ran Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Kai Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jianmin Gu
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lin Li
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Shuolei Li
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qianqian Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengyu Cui
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Miao Cui
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xingmei Gao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Province Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang, 050017, PR China.
| |
Collapse
|
34
|
Alonso-Peña M, Espinosa-Escudero RA, Soto-Muñiz M, Sanchon-Sanchez P, Sanchez-Martin A, Marin JJ. Role of transportome in the pharmacogenomics of hepatocellular carcinoma and hepatobiliary cancer. Pharmacogenomics 2019; 20:957-970. [PMID: 31486734 DOI: 10.2217/pgs-2019-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An important factor determining the pharmacological response to antitumor drugs is their concentrations in cancer cells, which accounts for the net interaction with their intracellular molecular targets. Accordingly, mechanisms leading to reduced intracellular levels of active agents play a crucial role in cancer chemoresistance. These include impaired drug uptake through solute carrier (SLC) proteins and efficient drug export by ATP-dependent pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. Since the net movement of drugs in-and-out the cells depends on the overall expression of carrier proteins, defining the so-called transportome, special attention has been devoted to the study of transcriptome regarding these proteins. Nevertheless, genetic variants affecting SLC and ABC genes may markedly affect the bioavailability and, hence, the efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Ricardo A Espinosa-Escudero
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Meraris Soto-Muñiz
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Paula Sanchon-Sanchez
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Anabel Sanchez-Martin
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Jose Jg Marin
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain.,Center for the Study of Liver & Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, 28029, Spain
| |
Collapse
|
35
|
Min DJ, Vural S, Krushkal J. Association of transcriptional levels of folate-mediated one-carbon metabolism-related genes in cancer cell lines with drug treatment response. Cancer Genet 2019; 237:19-38. [DOI: 10.1016/j.cancergen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
|
36
|
Kroll M, Kaupat-Bleckmann K, Mörickel A, Altenl J, Schewel DM, Stanullal M, Zimmermann M, Schrappe M, Cario G. Methotrexate-associated toxicity in children with Down syndrome and acute lymphoblastic leukemia during consolidation therapy with high dose methotrexate according to ALL-BFM treatment regimen. Haematologica 2019; 105:1013-1020. [PMID: 31371414 PMCID: PMC7109740 DOI: 10.3324/haematol.2019.224774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023] Open
Abstract
Children with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) often suffer from severe toxicities during treatment, especially with high-dose methotrexate (HD-MTX). Systematic data on methotrexate (MTX) toxicity in these patients are rare. We analyzed seven MTX-associated toxicities during consolidation therapy in 103 DS- and 1,109 non-DS-patients (NDS) with ALL (NDS-ALL) enrolled in ALL-Berlin–Frankfurt–Münster (ALL-BFM) trials between 1995–2016 and 1995–2007, respectively. Patients received four courses MTX (5 g/m2 each) plus intrathecal MTX and 6-mercaptopurine (6-MP). From 2004 onwards, a dose of 0.5 g/m2 in the first MTX course has been recommended for DS-patients. DS-patients showed higher rates of grade 3/4 toxicities after the first course with 5 g/m2 MTX compared to NDS-patients (grade 3/4 toxicities 62 in 45 DS-patients vs. 516 in 1,089 NDS-patients, P<0.001). The dose reduction (0.5 g/m2) in DS-patients has reduced toxicity (39 in 51 patients, P<0.001) without increasing the relapse risk (reduced dose, 5-year cumulative relapse incidence = 0.09±0.04 vs. high dose, 0.10±0.05, P=0.51). MTX dose escalation to 1.0 g/m2 for DS-patients who tolerated 0.5 g/m2 (n= 28 of 51 patients) did not result in an increased rate of grade 3/4 toxicities after the second course (P=0.285). Differences in MTX plasma levels at 42 and 48 hours after the start of the first methotrexate infusion did not explain higher toxicity rates in DS-patients treated with 0.5 g/m2 compared to NDS-patients treated with 5 g/m2. Within the DS cohort a higher MTX plasma level was associated with increased toxicity. In conclusion, dose reduction in the first MTX course reduced severe toxicities without increasing the risk of relapse. (ClinicalTrials.gov identifier: NTC00430118, NCT01117441).
Collapse
Affiliation(s)
- Mirko Kroll
- Department of Pediatrics I, University Hospital Schleswig-Holstein, Kiel
| | | | - Anja Mörickel
- Department of Pediatrics I, University Hospital Schleswig-Holstein, Kiel
| | - Julia Altenl
- Department of Pediatrics I, University Hospital Schleswig-Holstein, Kiel
| | - Denis M Schewel
- Department of Pediatrics I, University Hospital Schleswig-Holstein, Kiel
| | - Martin Stanullal
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics I, University Hospital Schleswig-Holstein, Kiel
| | - Gunnar Cario
- Department of Pediatrics I, University Hospital Schleswig-Holstein, Kiel
| |
Collapse
|
37
|
Aluri S, Zhao R, Lin K, Shin DS, Fiser A, Goldman ID. Substitutions that lock and unlock the proton-coupled folate transporter (PCFT-SLC46A1) in an inward-open conformation. J Biol Chem 2019; 294:7245-7258. [PMID: 30858177 DOI: 10.1074/jbc.ra118.005533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/06/2019] [Indexed: 11/06/2022] Open
Abstract
The proton-coupled folate transporter (PCFT) mediates intestinal absorption of folates and their transport from blood to cerebrospinal fluid across the choroid plexus. Substitutions at Asp-109 in the first intracellular loop between the first and second transmembrane domains (TMDs) abolish PCFT function, but protein expression and trafficking to the cell membrane are retained. Here, we used site-directed mutagenesis, the substituted-cysteine accessibility method, functional analyses, and homology modeling to determine whether the D109A substitution locks PCFT in one of its conformational states. Cys-substituted residues lining the PCFT aqueous translocation pathway and accessible in WT PCFT to the membrane-impermeable cysteine-biotinylation reagent, MTSEA-biotin, lost accessibility when introduced into the D109A scaffold. Substitutions at Gly-305 located exofacially within the eighth TMD, particularly with bulky residues, when introduced into the D109A scaffold largely restored function and MTSEA-biotin accessibility to Cys-substituted residues within the pathway. Likewise, Ser-196 substitution in the fifth TMD, predicted by homology modeling to be in proximity to Gly-305, also partially restored function found in solute transporters, is critical to oscillation of the carrier among its conformational states. Substitutions at Asp-109 and Gly-112 lock PCFT in an inward-open conformation, resulting in the loss of function. However, the integrity of the locked protein is preserved, indicated by the restoration of function after insertion of a second "unlocking" mutation. and accessibility. Similarly, the inactivating G112K substitution within the first intracellular loop was partially reactivated by introducing the G305L substitution. These data indicate that the first intracellular loop, with a sequence identical to "motif A" (GXXXDXXGR(R/K)).
Collapse
Affiliation(s)
| | | | - Kai Lin
- From the Departments of Pharmacology.,the Air Force Medical Center, PLA, Beijing 100142, China
| | | | - Andras Fiser
- Systems and Computational Biology, and.,Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | | |
Collapse
|
38
|
Scheller K, Quitzke V, Kappler M. New molecular aspects in the mechanism of oromaxillofacial cleft prevention by B-vitamins. J Craniomaxillofac Surg 2018; 46:2058-2062. [PMID: 30446326 DOI: 10.1016/j.jcms.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022] Open
Abstract
Clinical and experimental studies show a clear positive effect of B-vitamins in the prevention of oromaxillofacial clefts, especially cleft lip and palate (CL/P). Hereby the local effect of thiamin (B1) in the amniotic fluid is very important for the embryonic facial development as seen in palatal organ models stimulated by topical B-vitamin application (Scheller et al., 2013a). Moreover a low B1 concentration in the serum and amniotic fluid was found in pregnant mice with clefts in their offspring (Scheller et al., 2013b). Immunochemical analyses of midface sections (ThTr-1 transporter) and the placenta (ThTr-2 transporter) of cleft fetuses with orofacial clefts showed an atypical cytoplasmatic localization (Scheller et al., 2017). mRNA nalyses of different B-vitamin transporters (B1, B2, B5, B7, B9) were performed and showed ThTr2 transporter in a short splice variant in all cleft fetuses. This splice variant may cause a functional loss of the transport capacity through the placenta barrier and result in a low amniotic fluid concentration of vitamin B1. All other analyzed transport proteins showed no functional change. These findings confirm the hypothesis that cleft prevention by high vitamin B1 substitution fails in genetically determined cleft mice, caused by an insufficient B1 uptake and missing local effect.
Collapse
Affiliation(s)
- Konstanze Scheller
- Department of Oral and Maxillofacial and Facial Plastic Surgery, Martin-Luther-University Halle-Wittenberg (Head: apl. Prof. Dr. Dr. A.W. Eckert), Ernst-Grube-Straße 40, 06120, Halle, Germany.
| | - Vivian Quitzke
- Department of Oral and Maxillofacial and Facial Plastic Surgery, Martin-Luther-University Halle-Wittenberg (Head: apl. Prof. Dr. Dr. A.W. Eckert), Ernst-Grube-Straße 40, 06120, Halle, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial and Facial Plastic Surgery, Martin-Luther-University Halle-Wittenberg (Head: apl. Prof. Dr. Dr. A.W. Eckert), Ernst-Grube-Straße 40, 06120, Halle, Germany
| |
Collapse
|
39
|
Kawami M, Honda N, Miyamoto M, Yumoto R, Takano M. Reduced folate carrier-mediated methotrexate transport in human distal lung epithelial NCl-H441 cells. J Pharm Pharmacol 2018; 71:167-175. [PMID: 30324648 DOI: 10.1111/jphp.13022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Abstract
Objectives
We had previously found that reduced folate carrier (RFC; SLC19A1) is mainly involved in an influx of transport of methotrexate (MTX), a folate analogue, using alveolar epithelial A549 cells. Therefore, we examined MTX uptake in NCl-H441 (H441) cells, another in vitro alveolar epithelial model, focusing on the localization of RFC in the present study.
Methods
Transport function of RFC in H441 cells was studied using [3H]MTX.
Key findings
The uptake of MTX was increased remarkably after pretreatment of the cell monolayer with ethylenediaminetetraacetic acid (EDTA) in H441 cells but not in A549 cells, indicating the contribution of the basolaterally located transporter. In addition, folic acid and thiamine monophosphate, RFC inhibitors, inhibited the uptake of MTX from the basolateral side of the H441 cells. In order to compare the function of RFC on the apical and basolateral sides of the cells, the uptake of MTX from each side was examined using a Transwell chamber. Intracellular MTX amounts from the basolateral side were found to be significantly higher than those from the apical side.
Conclusions
These findings suggest that the distribution of MTX in the lung alveolar epithelial cells may be mediated by basolaterally located RFC in alveolar epithelial cells.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Natsuko Honda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mioka Miyamoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
40
|
Shah K, Raghavan S, Hou Z, Matherly LH, Gangjee A. Development and validation of chemical features-based proton-coupled folate transporter/activity and reduced folate carrier/activity models (pharmacophores). J Mol Graph Model 2018; 81:125-133. [PMID: 29550744 PMCID: PMC5959037 DOI: 10.1016/j.jmgm.2018.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
All clinically used antifolates lack transport selectivity for tumors over normal cells resulting in dose-limiting toxicities. There is growing interest in developing novel tumor-targeted cytotoxic antifolates with selective transport into tumors over normal cells via the proton-coupled folate transporter (PCFT) over the ubiquitously expressed reduced folate carrier (RFC). A lack of X-ray crystal structures or predictive models for PCFT or RFC has hindered structure-aided drug design for PCFT-selective therapeutics. Four-point validated models (pharmacophores) were generated for PCFT/Activity (HBA, NI, RA, RA) and RFC/Activity (HBD, NI, HBA, HBA) based on inhibition (IC50) of proliferation of isogenic Chinese hamster ovary (CHO) cells engineered to express only human PCFT or only RFC. Our results revealed substantial differences in structural features required for transport of novel molecules by these transporters which can be utilized for developing transporter-selective antifolates.
Collapse
Affiliation(s)
- Khushbu Shah
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Sudhir Raghavan
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Department of Oncology, Wayne State University School of Medicine, 421 East Canfield Street, Detroit, MI 48201, United States
| | - Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Department of Oncology, Wayne State University School of Medicine, 421 East Canfield Street, Detroit, MI 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
41
|
Ravindra M, Wilson MR, Tong N, O'Connor C, Karim M, Polin L, Wallace-Povirk A, White K, Kushner J, Hou Z, Matherly LH, Gangjee A. Fluorine-Substituted Pyrrolo[2,3- d]Pyrimidine Analogues with Tumor Targeting via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis. J Med Chem 2018; 61:4228-4248. [PMID: 29701475 DOI: 10.1021/acs.jmedchem.8b00408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel fluorinated 2-amino-4-oxo-6-substituted pyrrolo[2,3- d]pyrimidine analogues 7-12 were synthesized and tested for selective cellular uptake by folate receptors (FRs) α and β or the proton-coupled folate transporter (PCFT) and for antitumor efficacy. Compounds 8, 9, 11, and 12 showed increased in vitro antiproliferative activities (∼11-fold) over the nonfluorinated analogues 2, 3, 5, and 6 toward engineered Chinese hamster ovary and HeLa cells expressing FRs or PCFT. Compounds 8, 9, 11, and 12 also inhibited proliferation of IGROV1 and A2780 epithelial ovarian cancer cells; in IGROV1 cells with knockdown of FRα, 9, 11, and 12 showed sustained inhibition associated with uptake by PCFT. All compounds inhibited glycinamide ribonucleotide formyltransferase, a key enzyme in the de novo purine biosynthesis pathway. Molecular modeling studies validated in vitro cell-based results. NMR evidence supports the presence of an intramolecular fluorine-hydrogen bond. Potent in vivo efficacy of 11 was established with IGROV1 xenografts in severe compromised immunodeficient mice.
Collapse
Affiliation(s)
- Manasa Ravindra
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Mike R Wilson
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Nian Tong
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Carrie O'Connor
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Mohammad Karim
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Lisa Polin
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Adrianne Wallace-Povirk
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Kathryn White
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Juiwanna Kushner
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Zhanjun Hou
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Larry H Matherly
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States.,Department of Pharmacology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| |
Collapse
|
42
|
Ravindra M, Wallace-Povirk A, Karim MA, Wilson MR, O'Connor C, White K, Kushner J, Polin L, George C, Hou Z, Matherly LH, Gangjee A. Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis. J Med Chem 2018; 61:2027-2040. [PMID: 29425443 DOI: 10.1021/acs.jmedchem.7b01708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor-targeted specificities of 6-substituted pyrrolo[2,3- d]pyrimidine analogues of 1, where the phenyl side-chain is replaced by 3',6' (5, 8), 2',5' (6, 9), and 2',6' (7, 10) pyridyls, were analyzed. Proliferation inhibition of isogenic Chinese hamster ovary (CHO) cells expressing folate receptors (FRs) α and β were in rank order, 6 > 9 > 5 > 7 > 8, with 10 showing no activity, and 6 > 9 > 5 > 8, with 10 and 7 being inactive, respectively. Antiproliferative effects toward FRα- and FRβ-expressing cells were reflected in competitive binding with [3H]folic acid. Only compound 6 was active against proton-coupled folate receptor (PCFT)-expressing CHO cells (∼4-fold more potent than 1) and inhibited [3H]methotrexate uptake by PCFT. In KB and IGROV1 tumor cells, 6 showed <1 nM IC50, ∼2-3-fold more potent than 1. Compound 6 inhibited glycinamide ribonucleotide formyltransferase in de novo purine biosynthesis and showed potent in vivo efficacy toward subcutaneous IGROV1 tumor xenografts in SCID mice.
Collapse
Affiliation(s)
- Manasa Ravindra
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Adrianne Wallace-Povirk
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Mohammad A Karim
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Mike R Wilson
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Carrie O'Connor
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Kathryn White
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Juiwanna Kushner
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Lisa Polin
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Christina George
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Zhanjun Hou
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Larry H Matherly
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States.,Department of Pharmacology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| |
Collapse
|
43
|
Matherly LH, Hou Z, Gangjee A. The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother Pharmacol 2018; 81:1-15. [PMID: 29127457 PMCID: PMC5756103 DOI: 10.1007/s00280-017-3473-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
This review considers the "promise" of exploiting the proton-coupled folate transporter (PCFT) for selective therapeutic targeting of cancer. PCFT was discovered in 2006 and was identified as the principal folate transporter involved in the intestinal absorption of dietary folates. The recognition that PCFT was highly expressed in many tumors stimulated substantial interest in using PCFT for cytotoxic drug targeting, taking advantage of its high level transport activity under the acidic pH conditions that characterize many tumors. For pemetrexed, among the best PCFT substrates, transport by PCFT establishes its importance as a clinically important transporter in malignant pleural mesothelioma and non-small cell lung cancer. In recent years, the notion of PCFT-targeting has been extended to a new generation of tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine compounds that are structurally and functionally distinct from pemetrexed, and that exhibit near exclusive transport by PCFT and potent inhibition of de novo purine nucleotide biosynthesis. Based on compelling preclinical evidence in a wide range of human tumor models, it is now time to advance the most optimized PCFT-targeted agents with the best balance of PCFT transport specificity and potent antitumor efficacy to the clinic to validate this novel paradigm of highly selective tumor targeting.
Collapse
Affiliation(s)
- Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
44
|
Coupling to a cancer-selective heparan-sulfate-targeted branched peptide can by-pass breast cancer cell resistance to methotrexate. Oncotarget 2017; 8:76141-76152. [PMID: 29100299 PMCID: PMC5652693 DOI: 10.18632/oncotarget.19056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/18/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer-selective tetra-branched peptides, named NT4, can be coupled to different functional units for cancer cell imaging or therapy. NT4 peptides specifically bind to lipoprotein receptor-related proteins (LRP) receptors and to heparan sulfate chains on membrane proteoglycans and can be efficiently internalized by cancer cells expressing these membrane targets. Since binding and internalization of NT4 peptides is mediated by specific NT4 receptors on cancer cell membranes and this may allow drug resistance produced by drug membrane transporters to be by-passed, we tested the ability of drug-armed NT4 to by-pass drug resistance in cancer cell lines. We found that MTX-conjugated NT4 allows drug resistance to be by-passed in MTX-resistant human breast cancer cells lacking expression of folate reduced carrier. NT4 peptides appear to be extremely promising cancer-selective targeting agents that can be exploited as theranostics in personalized oncological applications.
Collapse
|
45
|
Abstract
Methotrexate is an antifolate agent used in the treatment of autoimmune diseases and various types of cancers. It is a unique antiproliferative agent because it can be administered by multiple routes with a wide variation of dosing. Methotrexate pharmacokinetics have generated numerous papers focusing on descriptive data and pharmacodynamics. Methotrexate is one of the rare anticancer agents which pharmacokinetics are routinely monitoring to control excessive toxicity when administrated at high dose (>1 g/m2). The identification of transporters involved in its disposition has permitted the understanding and the prevention of most drug interactions. Pharmacogenetic factors affecting the expression of MRP2 and OATP1B1 partly explain the interindividual variability of methotrexate clearance. The remaining challenge in methotrexate pharmacokinetics is to further understand unexplained delayed renal elimination despite the implementation of preventive measures.
Collapse
|
46
|
Nunes C, Silva C, Correia-Branco A, Martel F. Lack of effect of the procarcinogenic 17β-estradiol on nutrient uptake by the MCF-7 breast cancer cell line. Biomed Pharmacother 2017; 90:287-294. [PMID: 28365520 DOI: 10.1016/j.biopha.2017.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is one of the most frequent cancers in the population, especially in older women. Estrogen is known to be a key hormone in the development and progression of mammary carcinogenesis. In this study, we investigated if the procarcinogenic effect of 17β-estradiol (E2) in breast cancer MCF-7 cells is dependent on changes in glucose or folic acid cellular uptake. The effect of E2 on uptake of 3H-deoxy-d-glucose, 3H-folic acid, cell proliferation (3-thymidine incorporation assay), culture growth (sulforhodamine B assay), viability (lactate dehydrogenase activity assay), lactate production and migration capacity (injury assay) was evaluated. E2 (48h; 100nM) increased culture growth (16%), proliferation rate (24%), cellular viability (36%) and lactate production (38%). In contrast, E2 did not significantly affect the migration capacity of MCF-7 cells. The pro-proliferative, but not the cytoprotective effect of E2 was found to be ERβ-dependent. The polyphenols rutin and caffeic acid were not able to counteract the effect of E2 upon cell proliferation and viability. Uptake of 3H-deoxy-d-glucose was not affected by E2, either in the absence or presence of GLUT inhibitors (cytochalasin B plus phloridzin). Moreover, E2 did not change GLUT1 mRNA levels. Finally, 3H-folic acid uptake was also not affected by E2, both in the absence and presence of the RFC1 inhibitor, methotrexate. The pro-proliferative and cytoprotective effects of E2 are not dependent neither of stimulation of glucose cellular uptake (both GLUT and non-GLUT-mediated) nor of stimulation of folic acid uptake (both RFC1-and non-RFC1-mediated).
Collapse
Affiliation(s)
- C Nunes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal
| | - C Silva
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal
| | - A Correia-Branco
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal
| | - F Martel
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health Sciences (I3S), University of Porto, Porto, Portugal.
| |
Collapse
|
47
|
Hou Z, Gattoc L, O'Connor C, Yang S, Wallace-Povirk A, George C, Orr S, Polin L, White K, Kushner J, Morris RT, Gangjee A, Matherly LH. Dual Targeting of Epithelial Ovarian Cancer Via Folate Receptor α and the Proton-Coupled Folate Transporter with 6-Substituted Pyrrolo[2,3- d]pyrimidine Antifolates. Mol Cancer Ther 2017; 16:819-830. [PMID: 28138029 DOI: 10.1158/1535-7163.mct-16-0444] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 02/04/2023]
Abstract
Folate uptake in epithelial ovarian cancer (EOC) involves the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT), both facilitative transporters and folate receptor (FR) α. Although in primary EOC specimens, FRα is widely expressed and increases with tumor stage, PCFT was expressed independent of tumor stage (by real-time RT-PCR and IHC). EOC cell line models, including cisplatin sensitive (IGROV1 and A2780) and resistant (SKOV3 and TOV112D) cells, expressed a 17-fold range of FRα and similar amounts (within ∼2-fold) of PCFT. Novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates AGF94 and AGF154 exhibited potent antiproliferative activities toward all of the EOC cell lines, reflecting selective cellular uptake by FRα and/or PCFT over RFC. When IGROV1 cells were pretreated with AGF94 at pH 6.8, clonogenicity was potently inhibited, confirming cell killing. FRα was knocked down in IGROV1 cells with lentiviral shRNAs. Two FRα knockdown clones (KD-4 and KD-10) showed markedly reduced binding and uptake of [3H]folic acid and [3H]AGF154 by FRα, but maintained high levels of [3H]AGF154 uptake by PCFT compared to nontargeted control cells. In proliferation assays, KD-4 and KD-10 cells preserved in vitro inhibition by AGF94 and AGF154, compared to a nontargeted control, attributable to residual FRα- and substantial PCFT-mediated uptake. KD-10 tumor xenografts in severe-compromised immune-deficient mice were likewise sensitive to AGF94 Collectively, our results demonstrate the substantial therapeutic potential of novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with dual targeting of PCFT and FRα toward EOCs that express a range of FRα, along with PCFT, as well as cisplatin resistance. Mol Cancer Ther; 16(5); 819-30. ©2017 AACR.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Leda Gattoc
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Si Yang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania
| | | | - Christina George
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve Orr
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert T Morris
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
48
|
Di Paolo A, Orlandi P, Di Desidero T, Danesi R, Bocci G. Simultaneous, But Not Consecutive, Combination With Folinate Salts Potentiates 5-Fluorouracil Antitumor Activity In Vitro and In Vivo. Oncol Res 2017; 25:1129-1140. [PMID: 28109077 PMCID: PMC7841196 DOI: 10.3727/096504017x14841698396900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The combination of folinate salts to 5-fluoruracil (5-FU)-based schedules is an established clinical routine in the landscape of colorectal cancer treatment. The aim of this study was to investigate the pharmacological differences between the sequential administration of folinate salts (1 h before, as in clinical routine) followed by 5-FU and the simultaneous administration of both drugs. Proliferation and apoptotic assays were performed on human colon cancer cells exposed to 5-FU, calcium (CaLV), or disodium (NaLV) levofolinate or their simultaneous and sequential combination for 24 and 72 h. TYMS and SLC19A1 gene expression was performed with real-time PCR. In vivo experiments were performed in xenografted nude mice, which were treated with 5-FU escalating doses and CaLV or NaLV alone or in simultaneous and sequential combination. The simultaneous combination of folinate salts and 5-FU was synergistic (NaLV) or additive (CaLV) in a 24-h treatment in both cell lines. In contrast, the sequential combination of both folinate salts and 5-FU was antagonistic at 24 and 72 h. The simultaneous combination of 5-FU and NaLV or CaLV inhibited TYMS gene expression at 24 h, whereas the sequential combination reduced SLC19A1 gene expression. In vivo experiments confirmed the enhanced antitumor activity of the 5-FU + NaLV simultaneous combination with a good toxicity profile, whereas the sequential combination with CaLV failed to potentiate 5-FU activity. In conclusion, only the simultaneous, but not the consecutive, in vitro and in vivo combination of 5-FU and both folinate salt formulations potentiated the antiproliferative effects of the drugs.
Collapse
|
49
|
Hattinger CM, Tavanti E, Fanelli M, Vella S, Picci P, Serra M. Pharmacogenomics of genes involved in antifolate drug response and toxicity in osteosarcoma. Expert Opin Drug Metab Toxicol 2016; 13:245-257. [PMID: 27758143 DOI: 10.1080/17425255.2017.1246532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Antifolates are structural analogs of folates, which have been used as antitumor drugs for more than 60 years. The antifolate drug most commonly used for treating human tumors is methotrexate (MTX), which is utilized widely in first-line treatment protocols of high-grade osteosarcoma (HGOS). In addition to MTX, two other antifolates, trimetrexate and pemetrexed, have been tested in clinical settings for second-line treatment of recurrent HGOS with patients unfortunately showing modest activity. Areas covered: There is clinical evidence which suggsest that, like other chemotherapeutic agents, not all HGOS patients are equally responsive to antifolates and do not have the same susceptibility to experience adverse drug-related toxicities. Here, we summarize the pharmacogenomic information reported so far for genes involved in antifolate metabolism and transport and in MTX-related toxicity in HGOS patients. Expert opinion: Identification and validation of genetic biomarkers that significantly impact clinical antifolate treatment response and related toxicity may provide the basis for a future treatment modulation based on the pharmacogenetic and pharmacogenomic features of HGOS patients.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Elisa Tavanti
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Marilù Fanelli
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Serena Vella
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Piero Picci
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| | - Massimo Serra
- a Pharmacogenomics and Pharmacogenetics Research Unit, Laboratory of Experimental Oncology , Orthopaedic Rizzoli Institute , Bologna , Italy
| |
Collapse
|
50
|
Machacek C, Supper V, Leksa V, Mitulovic G, Spittler A, Drbal K, Suchanek M, Ohradanova-Repic A, Stockinger H. Folate Receptor β Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen. THE JOURNAL OF IMMUNOLOGY 2016; 197:2229-38. [PMID: 27534550 DOI: 10.4049/jimmunol.1501878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) β, a GPI-anchored protein belonging to the folate receptor family. As FRβ shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRβ, it represents a promising target for future therapeutic strategies. In this study, we performed affinity purification and mass spectrometric analysis of the protein microenvironment of FRβ in the plasma membrane of human FRβ(+) macrophages and FRβ-transduced monocytic THP-1 cells. In this manner, we identified a novel role of FRβ: that is, we report functional interactions of FRβ with receptors mediating cellular adhesion, in particular the CD11b/CD18 β2 integrin heterodimer complement receptor type 3/Mac-1. This interaction results in impeded adhesion of FRβ(+) human primary macrophages and THP-1 cells to collagen in comparison with their FRβ(-) counterparts. We further show that FRβ is only expressed by human macrophages when differentiated with M-CSF. These findings thus identify FRβ as a novel CD11b/CD18 regulator for trafficking and homing of a subset of macrophages on collagen.
Collapse
Affiliation(s)
- Christian Machacek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Verena Supper
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Goran Mitulovic
- Department of Clinical Chemistry and Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University of Vienna, 1090 Vienna, Austria; and
| | | | | | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|