1
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
2
|
Huang Y, Yang D, Liao S, Guan X, Zhou F, Liu Y, Wang Y, Zhang Y. Ginsenoside Rg1 protects the blood-brain barrier and myelin sheath to prevent postoperative cognitive dysfunction in aged mice. Neuroreport 2024; 35:925-935. [PMID: 39166417 DOI: 10.1097/wnr.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In this study, the postoperative cognitive dysfunction (POCD) mouse model was established to observe the changes in inflammation, blood-brain barrier permeability, and myelin sheath, and we explore the effect of ginsenoside Rg1 pretreatment on improving POCD syndrome. The POCD model of 15- to 18-month-old mice was carried out with internal fixation of tibial fractures under isoflurane anesthesia. Pretreatment was performed by continuous intraperitoneal injection of ginsenoside Rg1(40 mg/kg/day) for 14 days before surgery. The cognitive function was detected by the Morris water maze. The contents of interleukin-1β and tumor necrosis factor-α in the hippocampus, cortex, and serum were detected by ELISA. The permeability of blood-brain barrier was observed by Evans blue. The mRNA levels and protein expression levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin basic protein (MBP), beta-catenin, and cyclin D1 in the hippocampus were analyzed by quantitative PCR and western blotting. The protein expression levels of ZO-1 and Wnt1 in the hippocampus were analyzed by western blotting. Finally, the localizations of CNPase and MBP in the hippocampus were detected by immunofluorescence. Ginsenoside Rg1 can prevent POCD, peripheral and central inflammation, and blood-brain barrier leakage, and reverse the downregulation of ZO-1, CNPase, MBP, and Wnt pathway-related molecules in aged mice. Preclinical studies suggest that ginsenoside Rg1 improves postoperative cognitive function in aged mice by protecting the blood-brain barrier and myelin sheath, and its specific mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yao Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Dianping Yang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Sijing Liao
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Xilin Guan
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Feiran Zhou
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yan Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yong Wang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
- Department of Anesthesiology, Heiiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
3
|
Lee MML, Chan BD, Ng YW, Leung TW, Shum TY, Lou JS, Wong WY, Tai WCS. Therapeutic effect of Sheng Mai San, a traditional Chinese medicine formula, on inflammatory bowel disease via inhibition of NF-κB and NLRP3 inflammasome signaling. Front Pharmacol 2024; 15:1426803. [PMID: 39156108 PMCID: PMC11327010 DOI: 10.3389/fphar.2024.1426803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a globally emergent chronic inflammatory disease which commonly requires lifelong care. To date, there remains a pressing need for the discovery of novel anti-inflammatory therapeutic agents against this disease. Sheng Mai San (SMS) is a traditional Chinese medicine prescription with a long history of use for treating Qi and Yin deficiency and recent studies have shown that SMS exhibits anti-inflammatory potential. However, the effects of SMS on the gastrointestinal system remain poorly studied, and its therapeutic potential and underlying molecular mechanisms in IBD have yet to be discovered. In this study, we examined the therapeutic efficacy of SMS in IBD and its anti-inflammatory activity and underlying molecular mechanism, in vivo and in vitro. Methods The therapeutic efficacy of SMS in IBD was assessed in the DSS-induced acute colitis mouse model. Body weight, stool consistency, rectal bleeding, colon length, organ coefficient, cytokine levels in colon tissues, infiltration of immune cells, and colon pathology were evaluated. The anti-inflammatory activity of SMS and related molecular mechanisms were further examined in lipopolysaccharide (LPS)-induced macrophages via assessment of pro-inflammatory cytokine secretion and NF-κB, MAPK, STAT3, and NLRP3 signalling. Results SMS significantly ameliorated the severity of disease in acute colitis mice, as evidenced by an improvement in disease activity index, colon morphology, and histological damage. Additionally, SMS reduced pro-inflammatory cytokine production and infiltration of immune cells in colon tissues. Furthermore, in LPS-induced macrophages, we demonstrated that SMS significantly inhibited the production of cytokines and suppressed the activation of multiple pro-inflammatory signalling pathways, including NF-κB, MAPK, and STAT3. SMS also abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion, suggesting a new therapeutic target for the treatment of IBD. These mechanistic findings were also confirmed in in vivo assays. Conclusion This study presents the anti-inflammatory activity and detailed molecular mechanism of SMS, in vitro and in vivo. Importantly, we highlight for the first time the potential of SMS as an effective therapeutic agent against IBD.
Collapse
Affiliation(s)
- Magnolia Muk-Lan Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Brandon Dow Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yuen-Wa Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tsz-Wing Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tan-Yu Shum
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wing-Yan Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| |
Collapse
|
4
|
Niu Z, Liu Y, Shen R, Jiang X, Wang Y, He Z, Li J, Hu Y, Zhang J, Jiang Y, Hu W, Si C, Wei S, Shen T. Ginsenosides from Panax ginseng as potential therapeutic candidates for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155474. [PMID: 38471369 DOI: 10.1016/j.phymed.2024.155474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.
Collapse
Affiliation(s)
- Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yanan Liu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruyi Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Jiang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Yanting Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ziliang He
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Junyao Li
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ting Shen
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Rivera Rodríguez R, Johnson JJ. Terpenes: Modulating anti-inflammatory signaling in inflammatory bowel disease. Pharmacol Ther 2023; 248:108456. [PMID: 37247693 PMCID: PMC10527092 DOI: 10.1016/j.pharmthera.2023.108456] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Inflammatory Bowel Disease (IBD) are autoimmune diseases characterized by chronic intestinal inflammation. Considered a western disease, IBD incidence in newly developed countries is skyrocketing. Accordingly, global prevalence is steadily increasing. There are two major IBD phenotypes, ulcerative colitis (UC) and Crohn's disease (CD). UC manifests as uninterrupted inflammation localized in the colon and rectum. Meanwhile, CD presents as interrupted inflammation that can occur throughout the digestive tract. As a result, therapeutics have focused on anti-inflammatory approaches for its treatment. Unfortunately, only 50% of patients benefit from current Food and Drug Administration approved treatments, and all are associated with serious adverse effects. Thus, there is a need for safer and novel therapeutics to increase the efficacy in this population. One aspect that is critical in understanding IBD is how food and phytochemicals therein may be associated with modifying the pathogenesis of IBD. A variety of retrospective and prospective studies, and clinical trials have shown benefits of plant-rich diets on the prevention and symptomatic improvement of IBD. The Mediterranean diet is rich in vegetables, fruits, legumes, and herbs; and characterized by the abundance of anti-inflammatory phytochemicals. An understudied phytochemical class enriched in this diet is terpenes; isoprene-based molecules are widely available in Mediterranean herbs and citrus fruits. Various terpenes have been evaluated in different IBD models. However, some present contradictory or inconclusive results. Therefore, in this review we evaluated preclinical studies of terpenes modulating basic inflammatory signaling related to IBD.
Collapse
Affiliation(s)
- Rocío Rivera Rodríguez
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, United States of America
| | - Jeremy James Johnson
- University of Illinois Chicago, College of Pharmacy, Department of Pharmacy Practice, United States of America.
| |
Collapse
|
6
|
Li S, Yuan R, Fan Q, Zhang C, Han S, Li J, Xu Z, Sun K, Xu Q, Yao C, Yang S, Gao H. Ginsenoside Rb1 exerts therapeutic effects on ulcerative colitis through regulating the Nrf2/PIP2/NLRP3 inflammasome signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
7
|
Wu F, Lai S, Feng H, Liu J, Fu D, Wang C, Wang C, Liu J, Li Z, Li P. Protective Effects of Protopanaxatriol Saponins on Ulcerative Colitis in Mouse Based on UPLC-Q/TOF-MS Serum and Colon Metabolomics. Molecules 2022; 27:8346. [PMID: 36500439 PMCID: PMC9738265 DOI: 10.3390/molecules27238346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific inflammation of the bowel that mainly affects the mucosa and submucosa of the rectum and colon. Ginsenosides are the main active ingredients in ginseng and show many therapeutic effects in anti-inflammatory diseases, cancer, and nervous system regulation. Protopanaxatriol saponin (PTS) is an important part of saponins, and there is no research on its pharmacological effects on colitis. In this study, a model of ulcerative colitis in mice was induced by having mice freely drink 3.5% dextran sodium sulfate (DSS) solution, and UPLC-Q-TOF-MS-based metabolomics methods were applied to explore the therapeutic effect and protective mechanism of PTS for treating UC. The results showed that PTS could significantly prevent colon shortening and pathological damage and alleviate abnormal changes in UC mouse physiological and biochemical parameters. Moreover, PTS intervention regulated proinflammatory cytokines such as TNF-α, IL-6, and IL-1 in serum, and MPO and NO in colon. Interestingly, PTS could significantly inhibit UC mouse metabolic dysfunction by reversing abnormal changes in 29 metabolites and regulating eleven metabolic pathways. PTS has potential application in the treatment of UC and could alleviate UC in mice by affecting riboflavin metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis and by regulating pentose and glucuronate conversion, linoleic acid metabolism, phenylalanine metabolism, ether lipid metabolism, sphingolipid metabolism, and tyrosine metabolism, which points at a direction for further research and for the development of PTS as a novel natural agent.
Collapse
Affiliation(s)
- Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Sihan Lai
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dongxing Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Zhao Q, Chen T, Ni C, Hu Y, Nan Y, Lin W, Liu Y, Zheng F, Shi X, Lin Z, Zhu J, Lin Z. Indole-3-propionic Acid Attenuates HI-Related Blood-Brain Barrier Injury in Neonatal Rats by Modulating the PXR Signaling Pathway. ACS Chem Neurosci 2022; 13:2897-2912. [PMID: 36129348 DOI: 10.1021/acschemneuro.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier (BBB) is an important physiological barrier of the human body contributing to maintaining brain homeostasis and normal function. Hypoxic-ischemic (HI)-related brain injury is one of the main causes of neonatal acute morbidity and chronic disability. The previous research of our group confirmed that there was serious BBB destruction during HI brain injury. However, at present, the protection strategy of BBB is very limited, and further research on the protection mechanism is warranted. Indole-3-propionic acid (IPA) is a bacterial metabolism with anti-inflammatory and antioxidant properties, having neuroprotective effects and protective effects on the mucosal barrier. However, the role of IPA in BBB is not clear. In this research, we demonstrated the protective effect of IPA on BBB disruption from HI brain injury and hypothesized that it involves the amelioration of inflammation, oxidative stress, and MMP activation, thereby inhibiting apoptosis of rat brain microvascular endothelial cells (rBMECs). We demonstrated that expression levels of several inflammatory markers, including iNOS, TNF-α, IL-6, and IL-1β, were significantly increased from HI damage or OGD injury. However, IPA treatment inhibited the increase significantly. Moreover, we demonstrated that IPA reduced intracellular ROS levels and MMP activation in rBMECs from OGD injury. Further research on the underlying detailed molecular mechanisms suggested that IPA attenuates inflammation by inhibiting NF-κB signaling. Finally, we investigated the mechanism of the relationship between PXR activation and NF-κB inhibition. The results suggested overexpression of PXR in rBMECs could significantly counteract the decrease of junction proteins and downregulate the increased p-IκB-α and p-NF-κB from OGD injury. However, the protective effects of IPA were reversed by antagonists of the PXR. Taken together, IPA might mitigate HI-induced damage of the BBB and the protective effect may be exerted through modulating the PXR signaling pathway.
Collapse
Affiliation(s)
- Qianlei Zhao
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chao Ni
- Department of Pediatric Cardiovascular, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yan Nan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wei Lin
- Department of PICU, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yanli Liu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feixia Zheng
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xulai Shi
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
9
|
Zhang P, Zhang X, Xiong P, Zhong C, Zhou Z, Jia B, Liu X. Renshen Baidu Powder Attenuated Intestinal Inflammation and Apoptosis in Ulcerative Colitis Rats through the Inhibition of PI3K/AKT/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5234025. [PMID: 35942369 PMCID: PMC9356782 DOI: 10.1155/2022/5234025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Renshen Baidu Powder (RBP) is a famous classic compound of traditional Chinese medicine (TCM) and is commonly used for treating ulcerative colitis (UC). However, the pharmacological mechanism of RBP in treating UC remains unclear. This study investigates the possible mechanism of RBP for UC treatment by network pharmacological analysis and rat validation. METHODS First, the main chemical constituents of RBP were identified using ultrahigh-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS). Then, we obtained targets of identified compounds from the SwissTargetPrediction database and targets associated with UC from GeneCards database. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the metabolism-related signaling pathways affected by RBP. Hematoxylin-eosin (HE) staining was used to observe the pathological change of colon in UC rats after treating RBP, and terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP Nick end labeling (TUNEL) staining was used to detect apoptosis after RBP treatment. The enzyme-linked immunosorbent assay (ELISA) was employed to evaluate cytokine levels of TNF-α, IL-1β, and IL-6. The protein expressions of Bax, Bcl-2, PI3K, AKT, and NF-κB in colonic tissue were detected using immunohistochemistry (IHC). Real-time quantitative polymerase chain reaction (RT-QPCR) was employed to evaluate mRNA expression of PI3K, AKT, and NF-κB. RESULTS We found a total of 24 main compounds and 329 potential targets related to UC. According to KEGG results, 3 main pathways were identified as responsible for UC, including PI3K-AKT, HIF-1, and VEGF signaling pathway. Animal experiments showed that RBP treatment significantly attenuated colon damage in rats with UC. Mechanistically, RBP could inhibit PI3K/AKT/NF-κB pathway; decrease cell apoptosis; and downregulate the expression of TNF-α, IL-1β, and IL-6. CONCLUSIONS This study demonstrated that RBP may exert anti-inflammatory and antiapoptotic therapeutic benefits in UC by regulating the PI3K/AKT/NF-κB signaling pathways, providing a scientific basis for understanding the mechanism of RBP against UC.
Collapse
Affiliation(s)
- Peixu Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Peiyu Xiong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Chun Zhong
- Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu 610014, China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS7000, Australia
| | - Bo Jia
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xinglong Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
10
|
Chemical Characterization and Metabolic Profiling of the Compounds in the Chinese Herbal Formula Li Chang Decoction by UPLC-QTOF/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1322751. [PMID: 35463075 PMCID: PMC9020952 DOI: 10.1155/2022/1322751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
Background Li Chang decoction (LCD), a Chinese medicine formula, is commonly used to treat ulcerative colitis (UC) in clinics. Purpose This study aimed to identify the major components in LCD and its prototype and metabolic components in rat biological samples. Methods The chemical constituents in LCD were identified by establishing a reliable ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MS) method. Afterwards, the rats were orally administered with LCD, and the biological samples (plasma, urine, and feces) were collected for further analyzing the effective compounds in the treatment of UC. Result A total of 104 compounds were discriminated in LCD, including 26 flavonoids, 20 organic acids, 20 saponins, 8 amino acids, 5 oligosaccharides, 5 tannins, 3 lignans, 2 alkaloids, and 15 others (nucleosides, glycosides, esters, etc.). About 50 prototype and 94 metabolic components of LCD were identified in biological samples. In total, 29 prototype components and 22 metabolic types were detected in plasma. About 27 prototypes and 96 metabolites were discriminated in urine, and 34 prototypes and 18 metabolites were identified in feces. Conclusion The flavonoids, organic acids, and saponins were the major compounds of LCD, and this study promotes the further pharmacokinetic and pharmacological evaluation of LCD.
Collapse
|
11
|
Kapoor K, Eissa N, Tshikudi D, Bernstein CN, Ghia JE. Impact of intrarectal chromofungin treatment on dendritic cells-related markers in different immune compartments in colonic inflammatory conditions. World J Gastroenterol 2021; 27:8138-8155. [PMID: 35068859 PMCID: PMC8704268 DOI: 10.3748/wjg.v27.i47.8138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chromofungin (CHR: chromogranin-A 47-66) is a chromogranin-A derived peptide with anti-inflammatory and anti-microbial properties. Ulcerative colitis (UC) is characterized by a colonic decrease of CHR and a dysregulation of dendritic CD11c+ cells.
AIM To investigate the association between CHR treatment and dendritic cells (DCs)-related markers in different immune compartments in colitis.
METHODS A model of acute UC-like colitis using dextran sulphate sodium (DSS) was used in addition to biopsies collected from UC patients.
RESULTS Intrarectal CHR treatment reduced the severity of DSS-induced colitis and was associated with a significant decrease in the expression of CD11c, CD40, CD80, CD86 and interleukin (IL)-12p40 in the inflamed colonic mucosa and CD11c, CD80, CD86 IL-6 and IL-12p40 within the mesenteric lymph nodes and the spleen. Furthermore, CHR treatment decreased CD80 and CD86 expression markers of splenic CD11c+ cells and decreased NF-κB expression in the colon and of splenic CD11c+ cells. In vitro, CHR decreased CD40, CD80, CD86 IL-6 and IL-12p40 expression in naïve bone marrow-derived CD11c+ DCs stimulated with lipopolysaccharide. Pharmacological studies demonstrated an impact of CHR on the NF-κB pathway. In patients with active UC, CHR level was reduced and showed a negative linear relationship with CD11c and CD86.
CONCLUSION CHR has protective properties against intestinal inflammation via the regulation of DC-related markers and CD11c+ cells. CHR could be a potential therapy of UC.
Collapse
Affiliation(s)
- Kunal Kapoor
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Diane Tshikudi
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Charles N Bernstein
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| |
Collapse
|
12
|
Shi J, Weng JH, Mitchison TJ. Immunomodulatory drug discovery from herbal medicines: Insights from organ-specific activity and xenobiotic defenses. eLife 2021; 10:e73673. [PMID: 34779403 PMCID: PMC8592567 DOI: 10.7554/elife.73673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Traditional herbal medicines, which emphasize a holistic, patient-centric view of disease treatment, provide an exciting starting point for discovery of new immunomodulatory drugs. Progress on identification of herbal molecules with proven single agent activity has been slow, in part because of insufficient consideration of pharmacology fundamentals. Many molecules derived from medicinal plants exhibit low oral bioavailability and rapid clearance, leading to low systemic exposure. Recent research suggests that such molecules can act locally in the gut or liver to activate xenobiotic defense pathways that trigger beneficial systemic effects on the immune system. We discuss this hypothesis in the context of four plant-derived molecules with immunomodulatory activity: indigo, polysaccharides, colchicine, and ginsenosides. We end by proposing research strategies for identification of novel immunomodulatory drugs from herbal medicine sources that are informed by the possibility of local action in the gut or liver, leading to generation of systemic immune mediators.
Collapse
Affiliation(s)
- Jue Shi
- Centre for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist UniversityHong KongChina
| | - Jui-Hsia Weng
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Institute of Biological Chemistry, Academia SinicaTaipeiTaiwan
| | | |
Collapse
|
13
|
Yuan L, Zhang L, Yao N, Wu L, Liu J, Liu F, Zhang H, Hu X, Xiong Y, Xia C. Upregulation of UGT1A1 expression by ursolic acid and oleanolic acid via the inhibition of the PKC/NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153726. [PMID: 34536821 DOI: 10.1016/j.phymed.2021.153726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Isomeric ursolic acid (UA) and oleanolic acid (OA) compounds have recently garnered great attention due to their biological effects. Previously, it had been shown that UA and OA can exert important pharmacological action via the protein kinase C (PKC) and nuclear factor-κB (NF-κB) signaling, and that they can induce the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) in HepG2 cells. This study aims to investigate the role of PKC/NF-κB signaling in regulating the expression of UGT1A1 and examine how UA and OA induce UGT1A1 based on this signaling pathway. METHODS HepG2 cells, hp65-overexpressed HepG2 cell and lentivirus-hp65-shRNA silenced HepG2 cells were stimulated with PKC/NF-κB specific agonists and inhibitors for 24 h in the presence or absence of UA and OA. The expression of UGT1A1, PKC, and NF-κB were determined by qRT-PCR, western blot, and dual-luciferase reporter gene assays. RESULTS PKC/NF-κB activation downregulates UGT1A1 expression. This effect is countered by UA and OA treatment. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), the agonists of PKC and NF-κB signaling, respectively, significantly inhibit hp65-mediated UGT1A1 luciferase activity. UA, OA, and the PKC/NF-κB inhibitors suppress this effect. PMA and LPS do not affect UGT1A1 activity in p65-silenced HepG2 cells; however, UA and OA mildly influence UGT1A1 expression in these cells. CONCLUSION The activation of PKC/NF-κB signaling can significantly downregulate UGT1A1 expression. By inhibiting the PKC/NF-κB signaling pathway, UA and OA promote UGT1A1 expression in HepG2 cells.
Collapse
Affiliation(s)
- Li Yuan
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Lingming Zhang
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Na Yao
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Lingna Wu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Xiao Hu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
14
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
15
|
Dong JY, Xia KJ, Liang W, Liu LL, Yang F, Fang XS, Xiong YJ, Wang L, Zhou ZJ, Li CY, Zhang WD, Wang JY, Chen DP. Ginsenoside Rb1 alleviates colitis in mice via activation of endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 signaling pathway. Acta Pharmacol Sin 2021; 42:1461-1471. [PMID: 33268823 PMCID: PMC8379258 DOI: 10.1038/s41401-020-00561-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is regulated by ER-resident E3 ubiquitin ligase Hrd1, which has been implicated in inflammatory bowel disease (IBD). Ginsenoside Rb1 (GRb1) is the major ginsenoside in ginseng with multiple pharmacological activities. In this study we investigated the role of Hrd1 in IBD and its regulation by GRb1. Two mouse colitis models were established to mimic human IBD: drinking water containing dextran sodium sulfate (DSS) as well as intra-colonic infusion of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Colitis mice were treated with GRb1 (20, 40 mg·kg-1·d-1, ig) or a positive control drug sulfasalazine (500 mg·kg-1·d-1, ig) for 7 days. The model mice showed typical colitis symptoms and pathological changes in colon tissue. In addition to significant inflammatory responses and cell apoptosis in colon tissue, colon epithelial expression of Hrd1 was significantly decreased, the expression of ER stress markers GRP78, PERK, CHOP, and caspase 12 was increased, and the expression of Fas was increased (Fas was removed by Hrd1-induced ubiquitination). These changes were partially, or completely, reversed by GRb1 administration, whereas injection of Hrd1 inhibitor LS102 (50 mg·kg-1· d-1, ip, for 6 days) exacerbated colitis symptoms in colitis mice. GRb1 administration not only normalized Hrd1 expression at both the mRNA and protein levels, but also alleviated the ER stress response, Fas-related apoptosis, and other colitis symptoms. In intestinal cell line IEC-6, the expression of Hrd1 was significantly decreased by LPS treatment, but was normalized by GRb1 (200 μM). GRb1 alleviated LPS-induced ER stress and cell apoptosis in IEC-6 cells, and GRb1 action was inhibited by knockdown of Hrd1 using small interfering RNA. In summary, these results reveal a pathological role of Hrd1 in colitis, and provide a novel insight into alternative treatment of colitis using GRb1 activating Hrd1 signaling pathway.
Collapse
|
16
|
Ahn S, Simu SY, Yang DC, Jang M, Um BH. Effects of Ginsenoside Rf on dextran sodium sulfate-induced colitis in mice. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1950128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sungeun Ahn
- Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shakina Yesmin Simu
- College of pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Mi Jang
- Food Standard Research Center, Korea Food Research Institute (KFRI), Wanju, Republic of Korea
| | - Byung-Hun Um
- Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| |
Collapse
|
17
|
Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases. Pharmaceuticals (Basel) 2021; 14:ph14060506. [PMID: 34073220 PMCID: PMC8229898 DOI: 10.3390/ph14060506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
A disturbed interaction between the gut microbiota and the mucosal immune system plays a pivotal role in the development of inflammatory bowel disease (IBD). Various compounds that are produced by the gut microbiota, from its metabolism of diverse dietary sources, have been found to possess anti-inflammatory and anti-oxidative properties in in vitro and in vivo models relevant to IBD. These gut microbiota-derived metabolites may have similar, or more potent gut homeostasis-promoting effects compared to the widely-studied short-chain fatty acids (SCFAs). Available data suggest that mainly members of the Firmicutes are responsible for producing metabolites with the aforementioned effects, a phylum that is generally underrepresented in the microbiota of IBD patients. Further efforts aiming at characterizing such metabolites and examining their properties may help to develop novel modulatory microbiome therapies to treat or prevent IBD.
Collapse
|
18
|
Hu J, Huang H, Che Y, Ding C, Zhang L, Wang Y, Hao H, Shen H, Cao L. Qingchang Huashi Formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113394. [PMID: 32941971 DOI: 10.1016/j.jep.2020.113394] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/19/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disease of the gastrointestinal tract, consisting of ulcerative colitis (UC) and Crohn's disease (CD). Gut microbiota and their metabolites may play a role in the pathogen of IBD, especially of the UC. Qingchang Huashi Formula (QHF), a traditional Chinese medicine formula, has shown therapeutic effect on treating UC based on the clinical practice without clear pharmacological mechanism. AIM OF THE STUDY The aim of this study was to clearly define the effect of QHF and its components, Baitouweng (PBR) and Baizhi (ADR) on treating UC. MATERIALS AND METHODS Pharmacodynamic effects of QHF and single herb were evaluated in dextran sulfate sodium (DSS) induced acute or chronic colitis mice. Body weight loss, disease activity index (DAI) and colon length were estimated. Histological changes were observed by H&E staining. The number and abundance of gut microbiota were measured with 16S rRNA sequencing. LC-MS and GC-MS were used to detect the concentration of metabolites (e.g., bile acids (BAs) and short chain fatty acids (SCFAs)). The goblet cell was observed by Alcian blue/periodic acid-Schiff (AB/PAS) straining and the crypt stem cell was estimated by immunohistochemical analyses. The colorectal tissues were used to detect levels of IL-1β, IL-6 and TNF-α by ELISA or qRT-PCR. The expression of NLRP3, Caspase 1 and IL-1β were examined by western blotting. RESULTS QHF significantly inhibited colitis, protected mice from the loss of body weight and colon shorten. Comparatively, ADR and PBR showed strong efficacy in inhibiting DSS-induced colitis. We verified that while ADR was responsible for QHF's effect on maintaining gut microbiota homeostasis and metabolism, PBR was more prominent in keeping crypt stem cells proliferation and colonic goblet cells function. Moreover, we demonstrated that the alleviation of colitis by QHF was associated with the restoration of gut microbiota-metabolism homeostasis, protection of intestinal epithelial barrier and regulation of NLRP3/IL-1β pathway. CONCLUSIONS The finding of the present study suggested that QHF is curative in DSS-induced colitis by restoring gut microbiota-metabolism homeostasis and goblet cells function. An optimized QHF was constituted by ADR and PBR, which showed comparable efficacy on colitis to that of QHF. Our work probed out the active constitutes as well as the relevant pharmacological mechanisms of QHF, shedding light on potential new drug combination for the treatment of IBD.
Collapse
Affiliation(s)
- Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China; State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Hai Huang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Yuan Che
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Chujie Ding
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Lu Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China.
| | - Yun Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China.
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Yang Y, Hu N, Gao XJ, Li T, Yan ZX, Wang PP, Wei B, Li S, Zhang ZJ, Li SL, Yan R. Dextran sulfate sodium-induced colitis and ginseng intervention altered oral pharmacokinetics of cyclosporine A in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113251. [PMID: 32810615 DOI: 10.1016/j.jep.2020.113251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Application of cyclosporine A (CsA) as a rescue treatment in acute severe ulcerative colitis (UC) is limited by its narrow therapeutic window and great interpatient variability. As a substrate of cytochrome P450 3A enzyme (CYP3A) and P-glycoprotein (P-gp), the oral pharmacokinetics of CsA is susceptible to disease status and concomitant medications. Combined treatment with ginseng, a famous medicinal herb frequently prescribed for ameliorating abnormal immune response in many diseases including UC, showed immunologic safety in CsA-based immunosuppression. AIM OF THE STUDY Since the therapeutic levels of CsA can be achieved within 24 h, this study first assessed the impact of acute colitis and ginseng intervention on the single oral dose pharmacokinetics of CsA and explored the underlying mechanisms in dextran sulfate sodium (DSS)-induced colitis rats and Caco-2 cells. MATERIALS AND METHODS Rats received drinking water (normal group), 5% DSS (UC group), or 5% DSS plus daily oral ginseng extract (GS+UC group). On day 7, GS+UC group only received an oral dose of CsA (5 mg/kg), while animals of normal or UC group received an oral, intravenous (1.25 mg/kg), or intraperitoneal dose of CsA (1.25 mg/kg), respectively. Blood, liver/intestine tissues and fecal samples were collected for determining CsA and main hydroxylated metabolite HO-CsA or measuring hepatic/intestinal CYP3A activity. Caco-2 cells were incubated with gut microbial culture supernatant (CS) of different groups or ginseng (decoction or polysaccharides), and then CYP3A, P-gp and tight junction (TJ) proteins were determined. RESULTS Oral CsA exhibited enhanced absorption, systemic exposure and tissue accumulation, and lower fecal excretion, while intravenous or intraperitoneal CsA showed lower systemic exposure and enhanced distribution, in colitis rats. Diminished intestinal and hepatic P-gp expression well explained the changes with DSS-induced colitis. Moreover, blood exposures of HO-CsA in both normal and colitis after oral dosing were significantly higher than intravenous/intraperitoneal dosing, supporting the dominant role of intestinal first-pass metabolism. Interestingly, colitis reduced CYP3A expression in intestine and liver but only potentiated intestinal CYP3A activity, causing higher oral systemic exposure of HO-CsA. Oral ginseng mitigated colitis-induced down-regulation of CYP3A and P-gp expression, facilitated HO-CsA production, biliary excretion and colonic sequestration of CsA, while not affected CsA oral systemic exposure. In Caco-2 cells, gut microbial CS from both colitis and GS+UC group diminished P-gp function, while ginseng polysaccharides directly affected ZO-1 distribution and suppressed TJ proteins expression, explaining unaltered oral CsA systemic exposure. CONCLUSIONS DSS-induced colitis significantly altered oral CsA disposition through regulating intestinal and hepatic P-gp and CYP3A. One-week ginseng treatment enhanced colonic accumulation while not altered the systemic exposure of CsA after single oral dosing, indicating pharmacokinetic compatibility between the two medications.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Xue-Jiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Zhi-Xiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Pan-Pan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Sai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Zai-Jun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China.
| |
Collapse
|
20
|
Kang Z, Zhonga Y, Wu T, Huang J, Zhao H, Liu D. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease. Pharmacol Rep 2021; 73:700-711. [PMID: 33462754 PMCID: PMC8180475 DOI: 10.1007/s43440-020-00213-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.
Collapse
Affiliation(s)
- Zengping Kang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Youbao Zhonga
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.,Experimental Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiaqi Huang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, Jiangxi, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 1689 Meiling Road, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
21
|
Ginsenoside Rg1 Induces Apoptotic Cell Death in Triple-Negative Breast Cancer Cell Lines and Prevents Carcinogen-Induced Breast Tumorigenesis in Sprague Dawley Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8886955. [PMID: 33178325 PMCID: PMC7607905 DOI: 10.1155/2020/8886955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
The objective of this study is to investigate the anticancer potential of ginsenoside Rg1 using in vitro and in vivo experimental models. In this study, we found that ginsenoside Rg1 induces cytotoxicity and apoptotic cell death through reactive oxygen species (ROS) generation and alterations in mitochondrial membrane potential (MMP) in the triple-negative breast cancer cells (MDA-MB-MD-231 cell lines). We found that ginsenoside Rg1 induces the formation of gamma H2AX foci, an indication of DNA damage, and subsequent TUNEL positive apoptotic nuclei in the MDA-MB-MD-231 cell lines. Further, we found that ginsenoside Rg1 prevents 7,12-dimethylbenz (a) anthracene (DMBA; 20 mg/rat) induced mammary gland carcinogenesis in experimental rats. We observed oral administration of ginsenoside Rg1 inhibited the DMBA-mediated tumor incidence, prevented the elevation of oxidative damage markers, and restored antioxidant enzymes near to normal. Furthermore, qRT-PCR gene expression studies revealed that ginsenoside Rg1 prevents the expression of markers associated with cell proliferation and survival, modulates apoptosis markers, downregulates invasion and angiogenesis markers, and regulates the EMT markers. Therefore, the present results suggest that ginsenoside Rg1 shows significant anticancer properties against breast cancer in experimental models.
Collapse
|
22
|
Sun B, Xing K, Qi C, Yan K, Xu Y. Down-regulation of miR-215 attenuates lipopolysaccharide-induced inflammatory injury in CCD-18co cells by targeting GDF11 through the TLR4/NF-kB and JNK/p38 signaling pathways. Histol Histopathol 2020; 35:1473-1481. [PMID: 33146403 DOI: 10.14670/hh-18-278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ulcerative colitis (UC) is a risk factor for carcinogenesis of colorectal cancer, which is associated with disruption of the epithelial barrier and disorder of the inflammatory response. It has been reported that the expression of microRNA (miR)-215 is upregulated in patients with long-term UC. The present study aimed to investigate the effects of miR-215 on lipopolysaccharide (LPS)-induced inflammatory injury in CCD-18Co cells, as well as to identify the underlying possible molecular mechanisms. CCD-18Co cells were treated with 1 µg/ml LPS to induce inflammatory injury. Reverse transcription-quantitative PCR was performed to determine the expression of miR-215 in LPS-treated CCD-18Co cells. Moreover, a dual luciferase reporter system assay was used to evaluate the interaction of miR-215 and growth differentiation factor 11 (GDF11) in CCD-18Co cells. The expression of miR-215 was significantly upregulated in LPS-treated CCD-18Co cells. Knockdown of miR-215 significantly alleviated the inflammatory response and oxidative stress in LPS-treated CCD-18Co cells. In addition, GDF11 was identified as a direct binding target of miR-215 in CCD-18Co cells. Knockdown of miR-215 significantly increased the expression of GDF11, but decreased the expression levels of Toll-like receptor (TLR)4, phosphorylated (p)-p65, iNOS, p-p38 and p-JNK in LPS-treated CCD-18Co cells. Collectively, the present findings indicated that knockdown of miR-215 alleviated oxidative stress and inflammatory response in LPS-treated CCD-18Co cells by upregulating GDF11 expression and inactivating the TLR4/NF-κB and JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Boyang Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Xing
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Yu Z, Yue B, Ding L, Luo X, Ren Y, Zhang J, Mani S, Wang Z, Dou W. Activation of PXR by Alpinetin Contributes to Abrogate Chemically Induced Inflammatory Bowel Disease. Front Pharmacol 2020; 11:474. [PMID: 32372959 PMCID: PMC7186371 DOI: 10.3389/fphar.2020.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alpinetin is a naturally occurring flavonoid from the ginger plants. We previously reported the identification of alpinetin as a ligand of human pregnane X receptor (hPXR). The current study investigated the role of alpinetin as a putative PXR activator in ameliorating chemically induced inflammatory bowel disease (IBD). We found that oral administration of alpinetin significantly alleviated the severity of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration, the levels of the pro-inflammatory mediators, and the PXR target genes in the colon. In vitro, alpinetin blocked the nuclear translocation of p-p65 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Further, alpinetin significantly upregulated PXR target genes and inhibited TNF-α-induced NF-κB-luciferase activity in LS174T colorectal cells; however, this regulatory effects were lost when cellular PXR gene was knocked down. In PXR transactivation assays, alpinetin increased both mouse and human PXR transactivation in a dose-dependent manner. Ligand occluding mutants, S247W/C284W and S247W/C284W/S208W, in hPXR-reporter assays, abrogated alpinetin-induced hPXR transactivation. Finally, alpinetin bound to the hPXR-ligand-binding domain (LBD) was confirmed by competitive ligand binding assay. The current study significantly extends prior observations by validating a PXR/NF-κB regulatory mechanism governing alpinetin's anti-inflammatory effects in a murine model of IBD.
Collapse
Affiliation(s)
- Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ding
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijing Ren
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Zhang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Zhang G, Liu M, Song M, Wang J, Cai J, Lin C, Li Y, Jin X, Shen C, Chen Z, Cai D, Gao Y, Zhu C, Lin C, Liu C. Patchouli alcohol activates PXR and suppresses the NF-κB-mediated intestinal inflammatory. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112302. [PMID: 31614203 DOI: 10.1016/j.jep.2019.112302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pregnane-X-receptor (PXR) is involved in inflammatory bowel disease (IBD). Patchouli alcohol (PA) has anti-inflammatory effects; however, the effect of PA on IBD pathogenesis remains largely unknown. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory effect of PA, primarily focused on crosstalk between PA-mediated PXR activation and NF-κB inhibition. MATERIALS AND METHODS We evaluated the anti-inflammatory effect of PA with respect to PXR/NF-κB signalling using in vitro and in vivo models. In vitro, PA, identified as a PXR agonist, was evaluated by hPXR transactivation assays and through assessing for CYP3A4 expression and activity. NF-κB inhibition was analysed based on NF-κB luciferase assays, NF-κB-mediated pro-inflammatory gene expression, and NF-κB nuclear translocation after activation of PXR by PA. In vivo, colonic mPXR and NF-κB signalling were analysed to assess PA-mediated the protective effect against dextran sulphate sodium (DSS)-induced colitis. Furthermore, pharmacological inhibition of PXR was further evaluated by examining PA protection against DSS-induced colitis. RESULTS PA induced CYP3A4 expression and activity via an hPXR-dependent mechanism. PA-mediated PXR activation attenuated inflammation by inhibiting NF-κB activity and nuclear translocation. The anti-inflammatory effect of PA on NF-κB was abolished by PXR knockdown. PA prevented DSS-induced inflammation by regulating PXR/NF-κB signalling, whereas pharmacological PXR inhibition abated PA-mediated suppressive effects on NF-κB inflammation signalling. CONCLUSIONS PA activates PXR signalling and suppresses NF-κB signalling, consequently causing amelioration of inflammation. Our results highlight the importance of PXR-NF-κB crosstalk in colitis and suggest a novel therapeutic reagent.
Collapse
Affiliation(s)
- Guohui Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Zhuhai Precision Medicine Center, Zhuhai People(')s Hospital, Zhuhai, China
| | - Meijing Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Meng Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jueyu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiazhong Cai
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuanquan Lin
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanwu Li
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuangpeng Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhao Chen
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Dake Cai
- The Fifth Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 500095, China
| | - Yong Gao
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
25
|
Yang Y, Liu X, Li S, Chen Y, Zhao Y, Wei Y, Qiu Y, Liu Y, Zhou Z, Han J, Wu G, Ding Q. Genome-scale CRISPR screening for potential targets of ginsenoside compound K. Cell Death Dis 2020; 11:39. [PMID: 31959745 PMCID: PMC6971025 DOI: 10.1038/s41419-020-2234-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022]
Abstract
Ginsenosides exhibit a large variety of biological activities in maintaining physical health; however, the molecule underpinnings underlining these biological activities remain to be defined. Here, we took a cellular condition that compound K (CK) induces autophagic cell death in HeLa cells, and setup a high-throughput genetic screening using CRISPR technology. We have identified a number of CK-resistant and CK-sensitive genes, and further validated PMAIP1 as a CK-resistant gene and WASH1 as a CK-sensitive gene. Compound K treatment reduces the expression of WASH1, which further accelerates the autophagic cell death, highlighting WASH1 as an interesting downstream mediator of CK effects. Overall, our study offers an easy-to-adopt platform to study the functional mediators of ginsenosides, and provides a candidate list of genes that are potential targets of CK.
Collapse
Affiliation(s)
- Yuanyuan Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| |
Collapse
|
26
|
Ammonium fluoride-induced stabilization for anion attachment mass spectrometry: Facilitating the pseudotargeted profiling of bile acids submetabolome. Anal Chim Acta 2019; 1081:120-130. [DOI: 10.1016/j.aca.2019.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023]
|
27
|
Andrographolide Derivative AL-1 Ameliorates Dextran Sodium Sulfate-Induced Murine Colitis by Inhibiting NF- κB and MAPK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6138723. [PMID: 31687082 PMCID: PMC6800948 DOI: 10.1155/2019/6138723] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Trinitrobenzenesulfonic acid (TNBS) and dextran sodium sulfate (DSS) are commonly used to induce experimental murine ulcerative colitis (UC). Our recent study has demonstrated that a novel andrographolide derivative, AL-1, ameliorated TNBS-induced colitis in mice. However, the effect of AL-1 on DSS-induced murine colitis and the underlying mechanisms are yet unknown. In the present study, we aimed to investigate the therapeutic potential of AL-1 against DSS-induced UC in mice and to define its mechanisms of action. Oral administration of AL-1 attenuated body weight loss, reduced colon length shortening, lowered the disease activity index score, and alleviated colon histological damage. AL-1 significantly inhibited myeloperoxidase activity and suppressed immune inflammatory responses in colonic tissues. Moreover, AL-1 reversed DSS-altered expression of inflammatory cytokines in DSS-induced colitis mice. Importantly, the efficacy of 45 mg/kg of AL-1 was higher than that of 100 mg/kg of the positive control drugs 5-aminosalicylic acid and mesalazine. AL-1 decreased lipopolysaccharide-induced generation of reactive oxygen species and nitric oxide in cultured macrophages in vitro; it also reversed the altered expression of inflammatory cytokines. In both in vivo and in vitro studies, Western blot analysis revealed that AL-1 reduced the expression of phosphorylated NF-κB p65 and IκBα, downregulated the expression of iNOS and COX-2, and attenuated the expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), ERK, and JNK. In conclusion, AL-1 alleviated DSS-induced murine colitis by inhibiting activation of the NF-κB and MAPK signaling pathways. Our data suggest that AL-1 could be a potential new treatment for UC.
Collapse
|
28
|
Pregnane X receptor activation constrains mucosal NF-κB activity in active inflammatory bowel disease. PLoS One 2019; 14:e0221924. [PMID: 31581194 PMCID: PMC6776398 DOI: 10.1371/journal.pone.0221924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background The Pregnane X Receptor (PXR) is a principal signal transducer in mucosal responses to xenobiotic stress. It is well-recognized that inflammatory bowel disease is accompanied by xenobiotic stress, but the importance of the PXR in limiting inflammatory responses in inflammatory bowel disease remains obscure at best. Methods We stimulate a total of 106 colonic biopsies from 19 Crohn’s disease patients with active disease, 36 colonic biopsies from 8 control patients, colonic organoids and various cell culture models (either proficient or genetically deficient with respect to PXR) in vitro with the PXR ligand rifampicin or vehicle. Effects on NF-κB activity are assessed by measuring interleukin-8 (IL-8) and interleukin-1ß (IL-1ß) mRNA levels by qPCR and in cell culture models by NF-κB reporter-driven luciferase activity and Western blot for signal transduction elements. Results We observe a strict inverse correlation between colonic epithelial PXR levels and NF-κB target gene expression in colonic biopsies from Crohn’s disease patients. PXR, activated by rifampicin, is rate-limiting for mucosal NF-κB activation in IBD. The correlation between colonic epithelial PXR levels and NF-κB target gene expression was also observed in intestinal organoids system. Furthermore, in preclinical in vitro models of intestinal inflammation, including intestinal organoids, genetic inactivation of PXR unleashes NF-κB-dependent signal transduction whereas conversely NF-κB signaling reduces levels of PXR expression. Conclusions Our data indicate that the PXR is a major and clinically relevant antagonist of NF-κB activity in the intestinal epithelial compartment during inflammatory bowel disease.
Collapse
|
29
|
Zhang WJ, Liu Y, Wei JS, Wu YL. Ginsenoside Rd inhibits IL-1β-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination. Braz J Med Biol Res 2019; 52:e8525. [PMID: 31411316 PMCID: PMC6694592 DOI: 10.1590/1414-431x20198525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/29/2019] [Indexed: 02/28/2023] Open
Abstract
Many compounds of ginsenosides show anti-inflammatory properties. However, their anti-inflammatory effects in intervertebral chondrocytes in the presence of inflammatory factors have never been shown. Increased levels of pro-inflammatory cytokines are generally associated with the degradation and death of chondrocytes; therefore, finding an effective and nontoxic substance that attenuates the inflammation is worthwhile. In this study, chondrocytes were isolated from the nucleus pulposus tissues, and the cells were treated with ginsenoside compounds and IL-1β, alone and in combination. Cell viability and death rate were assessed by CCK-8 and flow cytometry methods, respectively. PCR, western blot, and immunoprecipitation assays were performed to determine the mRNA and protein expression, and the interactions between proteins, respectively. Monomeric component of ginsenoside Rd had no toxicity at the tested range of concentrations. Furthermore, Rd suppressed the inflammatory response of chondrocytes to interleukin (IL)-1β by suppressing the increase in IL-1β, tumor necrosis factor (TNF)-α, IL-6, COX-2, and inducible nitric oxide synthase (iNOS) expression, and retarding IL-1β-induced degradation of chondrocytes by improving cell proliferation characteristics and expression of aggrecan and COL2A1. These protective effects of Rd were associated with ubiquitination of IL-1 receptor accessory protein (IL1RAP), blocking the stimulation of IL-1β to NF-κB. Bioinformatics analysis showed that NEDD4, CBL, CBLB, CBLC, and ITCH most likely target IL1RAP. Rd increased intracellular ITCH level and the amount of ITCH attaching to IL1RAP. Thus, IL1RAP ubiquitination promoted by Rd is likely to occur by up-regulation of ITCH. In summary, Rd inhibited IL-1β-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- School of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou City, Guangzhou, China
| | - Ying Liu
- School of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou City, Guangzhou, China
| | - Jie-Shu Wei
- School of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou City, Guangzhou, China
| | - Ya-Li Wu
- School of Rehabilitation Medicine, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou City, Guangzhou, China
| |
Collapse
|
30
|
Abstract
As plant-derived natural products, saponins have been widely applied for the dietary modification of metabolic syndrome. However, the underlying mechanisms of their preventive and therapeutic effects are still largely unclear. Nuclear receptors have been identified as potential pharmaceutical targets for treating various types of metabolic disorders. With similar structure to endogenous hormones, several saponins may serve as selective ligands for nuclear receptors. Recently, a series of saponins are proved to exert their physiological activities through binding to nuclear receptors. This review summarizes the biological and pharmacological activities of typical saponins mediated by some of the most well described nuclear receptors, including the classical steroid hormone receptors (ER, GR, MR, and AR) and the adopted orphan receptors (PPAR, LXR, FXR, and PXR).
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shuning Zhong
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
31
|
Liu M, Zhang G, Zheng C, Song M, Liu F, Huang X, Bai S, Huang X, Lin C, Zhu C, Hu Y, Mi S, Liu C. Activating the pregnane X receptor by imperatorin attenuates dextran sulphate sodium-induced colitis in mice. Br J Pharmacol 2018; 175:3563-3580. [PMID: 29945292 PMCID: PMC6086988 DOI: 10.1111/bph.14424] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the human pregnane X receptor (PXR; NR1I2) has potential therapeutic uses for inflammatory bowel disease (IBD). Imperatorin (IMP), a naturally occurring coumarin, is the main bioactive ingredient of Angelica dahurica Radix, which is regularly used to treat the common cold and intestinal disorders. However, there are no data on the protective effects of IMP against IBD. EXPERIMENTAL APPROACH The effects of IMP on PXR-modulated cytochrome P450 3A4 (CYP3A4) expression were assessed using a PXR transactivation assay, a mammalian two-hybrid assay, a competitive ligand-binding assay, analysis of CYP3A4 mRNA and protein expression levels and measurement of CYP3A4 activity using a cell-based reporter gene assay and in vitro model. The inhibitory effects of IMP on NF-κB activity were evaluated by a reporter assay and NF-κB p65 nuclear translocation. The anti-IBD effects of IMP were investigated in a dextran sulphate sodium (DSS)-induced colitis mouse model. Colon inflammatory cytokines were assessed by elisa. KEY RESULTS IMP activated CYP3A4 promoter activity, recruited steroid receptor coactivator 1 to the ligand-binding domain of PXR and increased the expression and activity of CYP3A4. PXR knockdown substantially reduced IMP-induced increase in CYP3A4 expression. Furthermore, IMP-mediated PXR activation suppressed the nuclear translocation of NF-κB and down-regulated LPS-induced expression of pro-inflammatory genes. Nevertheless, PXR knockdown partially reduced the IMP-mediated inhibition of NF-κB. IMP ameliorated DSS-induced colitis by PXR/NF-κB signalling. CONCLUSIONS AND IMPLICATIONS IMP acts as a PXR agonist to attenuate DSS-induced colitis by suppression of the NF-κB-mediated pro-inflammatory response in a PXR/NF-κB-dependent manner.
Collapse
Affiliation(s)
- Meijing Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Guohui Zhang
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chunge Zheng
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Meng Song
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Fangle Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaotao Huang
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shasha Bai
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xinan Huang
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chaozhan Lin
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chenchen Zhu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yingjie Hu
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Suiqing Mi
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Changhui Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
32
|
Feng S, Dai Z, Liu A, Wang H, Chen J, Luo Z, Yang CS. β-Sitosterol and stigmasterol ameliorate dextran sulfate sodium-induced colitis in mice fed a high fat Western-style diet. Food Funct 2018; 8:4179-4186. [PMID: 29034917 DOI: 10.1039/c7fo00375g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytosterols, the plant analogues of cholesterol, widely occur in the human diet. In this study, we investigated and compared the effects of stigmasterol and β-sitosterol (both with purities ≥95%) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J male mice fed a high fat Western-style diet. Mice treated with DSS developed severe mucosal colitis, with a marked distortion and crypt loss of colonic surface epithelium. Both β-sitosterol and stigmasterol significantly inhibited colon shortening, lowered fecal hemoglobin content, and reduced the severity of colitis in the middle and distal colon (p < 0.05). These phytosterols also significantly suppressed the activation of nuclear factor-kappa B. They also significantly decreased colony stimulating factor-1 and the nuclear translocation of inflammatory master regulator nuclear factor-kappa B. Stigmasterol significantly lowered the colonic inflammation score and the expression of cyclooxygenase-2 and colony stimulating factor-1, while β-sitosterol was less or not effective. These results suggest that dietary intake of stigmasterol and β-sitosterol ameliorates colitis. Such activities of stigmasterol and β-sitosterol in humans remain to be investigated.
Collapse
Affiliation(s)
- Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Nobutani K, Miyoshi J, Musch MW, Nishiyama M, Watanabe J, Kaneko A, Yamamoto M, Yoshida M, Kono T, Jeong H, Chang EB. Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect 2018; 5. [PMID: 28971602 PMCID: PMC5625165 DOI: 10.1002/prp2.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Herbal medicines and natural products used for maintenance of health or treatment of diseases have many biological effects, including altering the pharmacokinetics and metabolism of other medications. Daikenchuto (TU‐100), an aqueous extract of ginger, ginseng, and Japanese green pepper fruit, is a commonly prescribed Kampo (Japanese herbal medicine) for postoperative ileus or bloating. The effects of TU‐100 on drug metabolism have not been investigated. In this study, we analyzed the effect of TU‐100 on expression of key drug‐metabolizing enzymes (DMEs) and drug transporters (DTs) in murine liver and gastrointestinal tract using a dietary model. Liver, jejunum, and proximal colon were analyzed for phase I and II DMEs and DT mRNA expression by reverse transcription (RT) first by nonquantitative and followed by quantitative polymerase chain reaction (PCR) and protein expression. Liver, jejunum, and proximal colon expressed some identical but also unique DMEs and DTs. TU‐100 increased the greatest changes in cytochrome (Cyp) 2b10 and Cyp3a11 and Mdr1a. Basal and TU‐100 stimulated levels of DME and DT expression were gender‐dependent, dose‐dependent and reversible after cessation of TU‐100 supplementation, except for some changes in the intestine. Quantitative Western blot analysis of protein extracts confirmed the quantitative PCR results.
Collapse
Affiliation(s)
- Kentaro Nobutani
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mark W Musch
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| | - Mitsue Nishiyama
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami, Ibaraki, Japan
| | | | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan.,Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hyunyoung Jeong
- Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
34
|
Xu Y, Tan HY, Li S, Wang N, Feng Y. Panax notoginseng for Inflammation-Related Chronic Diseases: A Review on the Modulations of Multiple Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:971-996. [DOI: 10.1142/s0192415x18500519] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Panax notoginseng (P. notoginseng) is a well-known and commonly used Chinese herbal medicine in Asian countries. As one of the major species in the Panax genus, it has a distinct chemical composition and medical application compared with other species. P. notoginseng attracts attention and interest due to its potential therapeutic effects not only on blood diseases, but also other kinds of human chronic disorders. This paper critically reviewed the latest advance of knowledge on the pharmacological effects of P. notoginseng on a variety of chronic diseases including inflammatory bowel disease, arthritis, ischemia, atherosclerosis, Alzheimer disease and trauma, as well as hyperlipidemia, diabetes, and so on. As inflammation is considered the fundamental factor involved in the pathogenesis of chronic diseases, our review therefore focuses on understanding the involvement of classical inflammatory pathways underlying the mechanism of action of P. notoginseng. Potential clinical application was also discussed. Furthermore, by combining with network pharmacology, we introduced the major bioactive components of P. notoginseng, analyzed their cellular targets and associated signaling pathways. In conclusion, this review identified inflammatory pathway as the key signaling for determining the efficacy of P. notoginseng on chronic diseases. It is speculated that P. notoginseng is a multi-targeted agent with an anti-inflammatory property in the adjuvant and alternative treatment of human chronic diseases.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
35
|
Liu W, Guo W, Hang N, Yang Y, Wu X, Shen Y, Cao J, Sun Y, Xu Q. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation. Oncotarget 2017; 7:30536-49. [PMID: 27105502 PMCID: PMC5058699 DOI: 10.18632/oncotarget.8867] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
Mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1), a paracaspase and essential regulator for nuclear factor kB (NF-κB) activation, plays an important role in innate and adaptive immunity. Suppression of MALT1 protease activity with small molecule inhibitors showed promising efficacies in subtypes of B cell lymphoma and improvement in experimental autoimmune encephalomyelitis model. However, whether MALT1 inhibitors could ameliorate colitis remains unclear. In the present study, we examined the pharmacological effect of two specific MALT1 inhibitors MI-2 and mepazine on the dextran sulfate sodium (DSS)-induced experimental colitis in mice, followed by mechanistic analysis on NF-κB and NLRP3 inflammasome activation. Treatment with MI-2 and mepazine dose-dependently attenuated symptoms of colitis in mice, evidenced by reduction in the elevated disease activity index, the shortening of colon length as well as the histopathologic improvement. Moreover, protein and mRNA levels of DSS-induced proinflammatory cytokines in colon, including TNF, IL-1β, IL-6, IL-18, IL-17A and IFN-γ, were markedly suppressed by MALT1 inhibitors. The underlying mechanisms for the protective effect of MALT1 inhibitors in DSS-induced colitis may be attributed to its inhibition on NF-κB and NLRP3 inflammasome activation in macrophages. The in vitro study showed that MALT1 inhibitors decreased production of IL-1β/IL-18 in phorbol myristate acetate-differentiated THP-1 cells and bone marrow derived macrophage via suppressing the activation of NF-κB and NLRP3 inflammasome. Taken together, our results demonstrated that inhibition of the protease activity of MALT1 might be a viable strategy to treat inflammatory bowel disease and the NLRP3 inflammasome and NF-κB activation are critical components in MALT1 signaling cascades in this disease model.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Nan Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jingsong Cao
- Eternity Bioscience Inc, Cranbury, NJ 08512, USA
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
36
|
Xu YJ, Yu ZQ, Zhang CL, Li XP, Feng CY, Lei K, He WX, Liu D. Protective Effects of Ginsenosides on 17α-Ethynyelstradiol-Induced Intrahepatic Cholestasis via Anti-Oxidative and Anti-Inflammatory Mechanisms in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1613-1629. [PMID: 29121800 DOI: 10.1142/s0192415x17500872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study was designed to assess the effects and potential mechanisms of ginsenosides on 17[Formula: see text]-ethynyelstradiol (EE)-induced intrahepatic cholestasis (IC). Ginsenoside at doses of 30, 100, 300[Formula: see text]mg/kg body weight was intragastrically (i.g.) given to rats for 5 days to examine the effect on EE-induced IC. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bile acid (TBA) were measured. Hepatic malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined. Protein expression of proinflammatory cytokines TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] was analyzed by immunohistochemistry and Western blot. Results indicated that ginsenosides remarkably prevented EE-induced increase in the serum levels of AST, ALT, ALP and TBA. Moreover, the elevation of hepatic MDA content induced by EE was significantly reduced, while hepatic SOD activities were significantly increased when treated with ginsenosides. Histopathology of the liver tissue showed that pathological injuries were relieved after treatment with ginsenosides. In addition, treatment with ginsenosides could significantly downregulate the protein expression of TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] compared with EE group. These findings indicate that ginsenosides exert the hepatoprotective effect on EE-induced intrahepatic cholestasis in rats, and this protection might be attributed to the attenuation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yan-Jiao Xu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zao-Qin Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Ping Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Yang Feng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Xi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Chromofungin (CHR: CHGA47-66) is downregulated in persons with active ulcerative colitis and suppresses pro-inflammatory macrophage function through the inhibition of NF-κB signaling. Biochem Pharmacol 2017; 145:102-113. [DOI: 10.1016/j.bcp.2017.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022]
|
38
|
Guo J, Li W, Wu Y, Jing X, Huang J, Zhang J, Xiang W, Ren R, Lv Z, Xiao J, Guo F. Meclizine Prevents Ovariectomy-Induced Bone Loss and Inhibits Osteoclastogenesis Partially by Upregulating PXR. Front Pharmacol 2017; 8:693. [PMID: 29046637 PMCID: PMC5632684 DOI: 10.3389/fphar.2017.00693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Pregnane X receptor (PXR) which belongs to the nuclear hormone receptor superfamily plays vital roles in several biological functions, especially in the inflammatory procedure. Besides that, PXR is revealed by recent studies to have essential effects on bone tissue. As an agonist of PXR, meclizine is a piperazine-derived histamine H1 antagonist, and has been frequently used for prevention and treatment of vomiting and nausea. Because osteoclastogenesis is characterized by the activation of inflammation-related signaling pathways, we speculated that meclizine may affect formation and function of osteoclast. In the present study, we explored the effect of meclizine on RANKL-induced osteoclastogenesis both in vivo and in vitro. In primary bone marrow-derived macrophages (BMMs), meclizine reduced osteoclast formation and bone resorption in a dose-dependent manner, while knockdown of PXR with siRNA partially abrogated the osteoclastogenesis inhibition of meclizine. On the one hand, at the molecular level, meclizine attenuated RANKL-induced activation of c-Fos, NFATc1, nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs), including ERK and p38, but not JNK. Meanwhile, meclizine reduced the expression of osteoclast-specific genes, including TRAP, MMP9, Cathepsin K and NFATc1. On the other hand, meclizine decreased OVX-induced bone loss by repressing osteoclast activity. In conclusion, our results indicated that meclizine inhibits osteoclastogenesis via regulation of several RANKL signaling pathways and PXR was involved in the processes. Therefore, meclizine may be considered as a novel therapeutic candidate for osteoclast-related diseases.
Collapse
Affiliation(s)
- Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijin Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxing Wu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengtao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Wang Y, Zhang Y, Xiao J, Xu R, Wang Q, Wang X. Simultaneous determination of baicalin, baicalein, wogonoside, wogonin, scutellarin, berberine, coptisine, ginsenoside Rb1 and ginsenoside Re of Banxia xiexin decoction in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/12/2017] [Accepted: 08/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ying Wang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yifan Zhang
- School of Pharmacy; Shanghai University of Medicine and Health Sciences; Shanghai China
| | - Juan Xiao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Ranchi Xu
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Qiangli Wang
- School of Basic Medical Sciences; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Xinhong Wang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|
40
|
Zhu G, Wang H, Wang T, Shi F. Ginsenoside Rg1 attenuates the inflammatory response in DSS-induced mice colitis. Int Immunopharmacol 2017; 50:1-5. [PMID: 28605639 DOI: 10.1016/j.intimp.2017.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Ginsenoside Rg1 is a major active constituent of Panax ginseng and possesses anti-inflammatory effects. It has been reported to have therapeutic effects on various diseases. In the present study, we investigated the role of ginsenoside Rg1 in dextran sodium sulfate (DSS)-induced mouse colitis. Our results showed that ginsenoside Rg1 markedly reduces proinflammatory cytokines release upon DSS stimulation of mouse dendritic cells, that ginsenoside Rg1 suppresses IL-1β (Interleukin 1 beta) and TNF-α (Tumor necrosis factor alpha) release via up-regulation of NLRP12 (NACHT, LRR and PYD domains-containing protein 12) expression, and that ginsenoside Rg1 significantly decreases the inflammatory response to DSS-induced mouse colitis, as evidenced by increased body weight, reduced colonic damage scores and disease activity index (DAI), and lowered proinflammatory cytokines levels. These results highlight the potential therapeutic use of ginsenoside Rg1 as an anti-inflammatory agent in the treatment of colitis.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tiancheng Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev 2017; 38:625-654. [DOI: 10.1002/med.21450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-yi Qi
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Li Li
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Hui Ma
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| |
Collapse
|
42
|
Kodama S, Shimura T, Kuribayashi H, Abe T, Yoshinari K. Pregnenolone 16α-carbonitrile ameliorates concanavalin A-induced liver injury in mice independent of the nuclear receptor PXR activation. Toxicol Lett 2017; 271:58-65. [PMID: 28237809 DOI: 10.1016/j.toxlet.2017.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/02/2017] [Accepted: 02/20/2017] [Indexed: 12/19/2022]
Abstract
The pregnane X receptor (PXR) is well-known as a key regulator of drug/xenobiotic clearance. Upon activation by ligand, PXR transcriptionally upregulates the expression of drug-metabolizing enzymes and drug transporters. Recent studies have revealed that PXR also plays a role in regulating immune/inflammatory responses. Specific PXR activators, including synthetic ligands and phytochemicals, have been shown to ameliorate chemically induced colitis in mice. In this study, we investigated an anti-inflammatory effect of pregnenolone 16α-carbonitrile (PCN), a prototypical activator for rodent PXR, in concanavalin A (Con A)-induced liver injury, a model of immune-mediated liver injury, using wild-type and Pxr-/- mice. Unexpectedly, pretreatment with PCN significantly ameliorated Con A-induced liver injury in not only wild-type but Pxr-/- mice as well, accompanied with lowered plasma ALT levels and histological improvements. Pretreatment with PCN was found to significantly repress the induction of Cxcl2 and Ccl2 mRNA expression and neutrophil infiltration into the liver of both wild-type and Pxr-/- mice at the early time point of Con A-induced liver injury. Our results indicate that PCN has unexpected immunosuppressive activity independent of PXR activation to protect mice from immune-mediated liver injury induced by Con A.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Laboratory of Pharmacotherapy of Life-Style Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Takuto Shimura
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hideaki Kuribayashi
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Taiki Abe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kouichi Yoshinari
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
43
|
Kang A, Zhang S, Zhu D, Dong Y, Shan J, Xie T, Wen H, Di L. Gut microbiota in the pharmacokinetics and colonic deglycosylation metabolism of ginsenoside Rb1 in rats: Contrary effects of antimicrobials treatment and restraint stress. Chem Biol Interact 2016; 258:187-96. [DOI: 10.1016/j.cbi.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
|
44
|
PXR- and CAR-mediated herbal effect on human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1121-1129. [DOI: 10.1016/j.bbagrm.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
|
45
|
Tan Z, Luo M, Yang J, Cheng Y, Huang J, Lu C, Song D, Ye M, Dai M, Gonzalez FJ, Liu A, Guo B. Chlorogenic acid inhibits cholestatic liver injury induced by α-naphthylisothiocyanate: involvement of STAT3 and NFκB signalling regulation. ACTA ACUST UNITED AC 2016; 68:1203-13. [PMID: 27367057 DOI: 10.1111/jphp.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chlorogenic acid (CGA) is one of the most widely consumed polyphenols in diets and is recognized to be a natural hepatoprotective agent. Here, we evaluated the protective effect and the potential mechanism of CGA against ɑ-naphthylisothiocyanate (ANIT)-induced cholestasis and liver injury. METHODS Twenty-five male 129/Sv mice were administered with CGA, and ANIT challenge was performed at 75 mg/kg on the 4th day. Blood was collected and subjected to biochemical analysis; the liver tissues were examined using histopathological analysis and signalling pathways. KEY FINDINGS Chlorogenic acid almost totally attenuated the ANIT-induced liver damage and cholestasis, compared with the ANIT group. Dose of 50 mg/kg of CGA significantly prevented ANIT-induced changes in serum levels of alanine aminotransferase, alkaline phosphatases, total bile acid, direct bilirubin, indirect bilirubin (5.3-, 6.3-, 18.8-, 158-, 41.4-fold, P<0.001) and aspartate aminotransferase (4.6-fold, P<0.01). Expressions of the altered bile acid metabolism and transport-related genes were normalized by cotreatment with CGA. The expressions of interleukin 6, tumour necrosis factor-α and suppressor of cytokine signalling 3 were found to be significantly decreased (1.2-fold, ns; 11.0-fold, P<0.01; 4.4-fold, P<0.05) in the CGA/ANIT group. Western blot revealed that CGA inhibited the activation and expression of signal transducer and activator of transcription 3 and NFκB. CONCLUSIONS These data suggest that CGA inhibits both ANIT-induced intrahepatic cholestasis and the liver injury. This protective effect involves down-regulation of STAT3 and NFκB signalling.
Collapse
Affiliation(s)
- Zhen Tan
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, China
| | - Min Luo
- Medical School of Ningbo University, Ningbo, China
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo, China
| | - Yuqing Cheng
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, China
| | - Jing Huang
- Medical School of Ningbo University, Ningbo, China
| | - Caide Lu
- Medical School of Ningbo University, Ningbo, China
| | - Danjun Song
- Medical School of Ningbo University, Ningbo, China
| | - Meiling Ye
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, China
| | - Manyun Dai
- Medical School of Ningbo University, Ningbo, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo, China
| | - Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
46
|
Cecropin B Represses CYP3A29 Expression through Activation of the TLR2/4-NF-κB/PXR Signaling Pathway. Sci Rep 2016; 6:27876. [PMID: 27296244 PMCID: PMC4906279 DOI: 10.1038/srep27876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
Cecropins are peptide antibiotics used as drugs and feed additives. Cecropin B can inhibit the expression of CYP3A29, but the underlying mechanisms remain unclear. The present study was designed to determine the mechanisms responsible for the effects of cecropin B on CYP3A29 expression, focusing on the Toll-like receptors (TLRs) and NF-κB pathways. Our results indicated that the CYP3A29 expression was inhibited by cecropin B, which was regulated by pregnane X receptor (PXR) in a time- and dose-dependent manner. Cecropin B-induced NF-κB activation played a pivotal role in the suppression of CYP3A29 through disrupting the association of the PXR/retinoid X receptor alpha (RXR-α) complex with DNA sequences. NF-κB p65 directly interacted with the DNA-binding domain of PXR, suppressed its expression, and inhibited its transactivation, leading to the downregulation of the PXR-regulated CYP3A29 expression. Furthermore, cecropin B activated pig liver cells by interacting with TLRs 2 and 4, which modulated NF-κB-mediated signaling pathways. In conclusion, cecropin B inhibited the expression of CYP3A29 in a TLR/NF-κB/PXR-dependent manner, which should be considered in future development of cecropins and other antimicrobial peptides.
Collapse
|
47
|
Liu J, Zhou F, Chen Q, Kang A, Lu M, Liu W, Zang X, Wang G, Zhang J. Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Sci Rep 2015; 5:13558. [PMID: 26324318 PMCID: PMC4555107 DOI: 10.1038/srep13558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Patients with inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, often suffer drug intolerance. This resistance can be divided into intrinsic resistance and acquired resistance. Although there is agreement on acquired resistance, studies regarding intrinsic resistance have demonstrated inconsistencies, especially for Crohn’s disease. For this reason, an animal model of Crohn’s disease was induced with 2,4,6-trinitrobenzene sulfonic acid solution (TNBS), and intrinsic resistance was analyzed by measuring the function and expression of P-glycoprotein (P-gp) in peripheral mononuclear blood cells (PMBC), followed by mechanistic studies. The results revealed reduced retention of cyclosporine A in PMBC over-expressing P-gp in a TNBS-treated group and enhanced secretion of the cytokines IL-1β, IL-6, IL-17, and TNF-α as well as LPS in plasma. These cytokines and LPS can induce P-gp expression through the STAT3/Nf-κb pathway, contributing to a decrease of cyclosporine A retention, which can be reversed by the application of a P-gp inhibitor. Our results demonstrated that the sustained chronic inflammation could induce the intrinsic resistance presented as P-gp over-expression in PBMC in Crohn’s disease through STAT3/Nf-κb pathway and this resistance might be reversed by combinational usage of P-gp inhibitors.
Collapse
Affiliation(s)
- Jiali Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianying Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meng Lu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyue Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaojie Zang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key laboratory of drug design and optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|