1
|
Petrinović M, Majetić D, Bakula M, Pećin I, Fabris-Vitković D, Deškin M, Tešanović Perković D, Bakula M, Gradišer M, Ćurčić IB, Canecki-Varžić S. Molecular Mechanisms Affecting Statin Pharmacokinetics after Bariatric Surgery. Int J Mol Sci 2024; 25:10375. [PMID: 39408705 PMCID: PMC11476770 DOI: 10.3390/ijms251910375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
According to recent data, one in eight people in the world struggle with obesity. Obesity management is increasingly dependent on bariatric surgical interventions, as the combination of lifestyle modifications and pharmacotherapy could have a modest long-term effect. Surgery is recommended only for individuals whose body mass index (BMI) ≥ 40 kg/m2 and ≥ 35 kg/m2 in the presence of weight-related comorbidities. The most commonly performed procedures are sleeve gastrectomy and roux-en-Y gastric bypass. Pharmacokinetic and pharmacodynamic alterations occur as a result of the anatomical and physiological changes caused by surgery, which further differ depending on physicochemical drug factors and factors related to the dosage form. The following modifications are distinguished based on the type of bariatric surgery performed. Most bariatric patients have accompanying comorbidities, including dyslipidemia treated with hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins. Significant improvements in the lipid profile are observed early in the postoperative period. The data reported in this review on statin pharmacokinetic alterations have demonstrated substantial inter- and intravariability, making it difficult to adopt clear guidelines. Based on the current literature review, reducing the statin dose to the lowest effective with continuous monitoring is considered an optimal approach in clinical practice.
Collapse
Affiliation(s)
- Matea Petrinović
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.P.); (D.M.)
- Polyclinic Slavonija, 31000 Osijek, Croatia
| | - Domagoj Majetić
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.P.); (D.M.)
- The Clinic for Internal Diseases, Department for Gastroenterology and Hepatology, Clinical Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Miro Bakula
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolic Diseases, Sveti Duh University Hospital, 10000 Zagreb, Croatia;
| | - Ivan Pećin
- Department of Internal Medicine, Unit for Metabolic Diseases, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Marin Deškin
- Division of Endocrinology and Diabetes, General Hospital Pula, 52100 Pula, Croatia
| | | | - Maja Bakula
- Vuk Vrhovac University Clinic for Diabetes and Metabolism, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Marina Gradišer
- Internal Medicine Department, County Hospital Čakovec, 40000 Čakovec, Croatia
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Ines Bilić Ćurčić
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.P.); (D.M.)
- Clinic for Internal Diseases, Department for Endocrinology and Diabetes, Clinical Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Silvija Canecki-Varžić
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.P.); (D.M.)
- Clinic for Internal Diseases, Department for Endocrinology and Diabetes, Clinical Hospital Centre Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
2
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
3
|
Fukazawa N, Nishimura T, Orii K, Noguchi S, Tomi M. Conversion of Olmesartan to Olmesartan Medoxomil, A Prodrug that Improves Intestinal Absorption, Confers Substrate Recognition by OATP2B1. Pharm Res 2024; 41:849-861. [PMID: 38485855 DOI: 10.1007/s11095-024-03687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Olmesartan medoxomil (olmesartan-MX), an ester-type prodrug of the angiotensin II receptor blocker (ARB) olmesartan, is predominantly anionic at intestinal pH. Human organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in the small intestine and is involved in the absorption of various acidic drugs. This study was designed to test the hypothesis that OATP2B1-mediated uptake contributes to the enhanced intestinal absorption of olmesartan-MX, even though olmesartan itself is not a substrate of OATP2B1. METHODS Tetracycline-inducible human OATP2B1- and rat Oatp2b1-overexpressing HEK 293 cell lines (hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293, respectively) were established to characterize OATP2B1-mediated uptake. Rat jejunal permeability was measured using Ussing chambers. ARBs were quantified by liquid chromatography-tandem mass spectrometry. RESULTS Significant olmesartan-MX uptake was observed in hOATP2B1/T-REx-293 and rOatp2b1/T-REx-293 cells, whereas olmesartan uptake was undetectable or much lower than olmesartan-MX uptake, respectively. Furthermore, olmesartan-MX exhibited several-fold higher uptake in Caco-2 cells and greater permeability in rat jejunum compared to olmesartan. Olmesartan-MX uptake in hOATP2B1/T-REx-293 cells and in Caco-2 cells was significantly decreased by OATP2B1 substrates/inhibitors such as 1 mM estrone-3-sulfate, 100 µM rifamycin SV, and 100 µM fluvastatin. Rat Oatp2b1-mediated uptake and rat jejunal permeability of olmesartan-MX were significantly decreased by 50 µM naringin, an OATP2B1 inhibitor. Oral administration of olmesartan-MX with 50 µM naringin to rats significantly reduced the area under the plasma concentration-time curve of olmesartan to 76.9%. CONCLUSION Olmesartan-MX is a substrate for OATP2B1, and the naringin-sensitive transport system contributes to the improved intestinal absorption of olmesartan-MX compared with its parent drug, olmesartan.
Collapse
Affiliation(s)
- Naomi Fukazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Tomohiro Nishimura
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Keisuke Orii
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Saki Noguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku 105-8512, Tokyo, Japan.
| |
Collapse
|
4
|
Kaci H, Bakos É, Needs PW, Kroon PA, Valentová K, Poór M, Özvegy-Laczka C. The 2-aminoethyl diphenylborinate-based fluorescent method identifies quercetin and luteolin metabolites as substrates of Organic anion transporting polypeptides, OATP1B1 and OATP2B1. Eur J Pharm Sci 2024; 196:106740. [PMID: 38437885 DOI: 10.1016/j.ejps.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Organic anion transporting polypeptides (OATPs), OATP1B1 and OATP2B1 are membrane proteins mediating the cellular uptake of chemically diverse organic compounds. OATP1B1 is exclusively expressed in hepatocytes and plays a key role in hepatic detoxification. The ubiquitously expressed OATP2B1 promotes the intestinal absorption of orally administered drugs. Flavonoids are widely found in foods and beverages, and many of them can inhibit OATP function, resulting in food-drug interactions. In our previous work, we have shown that not only luteolin (LUT) and quercetin (Q), but also some of their metabolites can inhibit OATP1B1 and OATP2B1 activity. However, data about the potential direct transport of these flavonoids by OATPs have been incomplete. Hence, in the current study, we developed a simple, fluorescence-based method for the measurement of intracellular flavonoid levels. The method applies a cell-permeable small molecule (2-aminoethyl diphenylborinate, 2-APB), that, upon forming a complex with flavonoids, results in their fluorescence enhancement. This way the direct uptake of LUT and Q, and also their metabolites' could be investigated both by confocal microscopy and in a fluorescence plate reader in living cells. With this approach we identified quercetin-3'-O-sulfate, luteolin-3'-O-glucuronide, luteolin-7-O-glucuronide and luteolin-3'-O-sulfate as substrates of both OATP1B1 and OATP2B1. Our results highlight that OATP1B1 and OATP2B1 can be key participants in the transmembrane movement of LUT and Q conjugates with otherwise low cell permeability. In addition, the novel method developed in this study can be a good completion to existing fluorescence-based assays to investigate OATP function.
Collapse
Affiliation(s)
- Hana Kaci
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest Pázmány Péter sétány 1/C, Hungary
| | - Éva Bakos
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| | - Paul W Needs
- Food, Microbiome & Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Paul A Kroon
- Food, Microbiome & Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague CZ-142 00, Czech Republic
| | - Miklós Poór
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Molecular Life Sciences, RCNS, HUN-REN, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| |
Collapse
|
5
|
Huh Y, Plotka A, Wei H, Kaplan J, Raha N, Towner J, Purohit VS, Dowty ME, Wolk R, Vourvahis M, King-Ahmad A, Mathialagan S, West MA, Lazzaro S, Ryu S, Rodrigues AD. Utilization of Rosuvastatin and Endogenous Biomarkers in Evaluating the Impact of Ritlecitinib on BCRP, OATP1B1, and OAT3 Transporter Activity. Pharm Res 2023; 40:2639-2651. [PMID: 37561322 PMCID: PMC10733197 DOI: 10.1007/s11095-023-03564-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE Ritlecitinib, an inhibitor of Janus kinase 3 and tyrosine kinase expressed in hepatocellular carcinoma family kinases, is in development for inflammatory diseases. This study assessed the impact of ritlecitinib on drug transporters using a probe drug and endogenous biomarkers. METHODS In vitro transporter-mediated substrate uptake and inhibition by ritlecitinib and its major metabolite were evaluated. Subsequently, a clinical drug interaction study was conducted in 12 healthy adult participants to assess the effect of ritlecitinib on pharmacokinetics of rosuvastatin, a substrate of breast cancer resistance protein (BCRP), organic anion transporting polypeptide 1B1 (OATP1B1), and organic anion transporter 3 (OAT3). Plasma concentrations of coproporphyrin I (CP-I) and pyridoxic acid (PDA) were assessed as endogenous biomarkers for OATP1B1 and OAT1/3 function, respectively. RESULTS In vitro studies suggested that ritlecitinib can potentially inhibit BCRP, OATP1B1 and OAT1/3 based on regulatory cutoffs. In the subsequent clinical study, coadministration of ritlecitinib decreased rosuvastatin plasma exposure area under the curve from time 0 to infinity (AUCinf) by ~ 13% and maximum concentration (Cmax) by ~ 27% relative to rosuvastatin administered alone. Renal clearance was comparable in the absence and presence of ritlecitinib coadministration. PK parameters of AUCinf and Cmax for CP-I and PDA were also similar regardless of ritlecitinib coadministration. CONCLUSION Ritlecitinib does not inhibit BCRP, OATP1B1, and OAT3 and is unlikely to cause a clinically relevant interaction through these transporters. Furthermore, our findings add to the body of evidence supporting the utility of CP-I and PDA as endogenous biomarkers for assessment of OATP1B1 and OAT1/3 transporter activity.
Collapse
|
6
|
Lehtisalo M, Taskinen S, Tarkiainen EK, Neuvonen M, Viinamäki J, Paile-Hyvärinen M, Lilius TO, Tapaninen T, Backman JT, Tornio A, Niemi M. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br J Clin Pharmacol 2023; 89:242-252. [PMID: 35942816 PMCID: PMC10087178 DOI: 10.1111/bcp.15485] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim was to comprehensively investigate the effects of genetic variability on the pharmacokinetics of rosuvastatin. METHODS We conducted a genome-wide association study and candidate gene analyses of single dose rosuvastatin pharmacokinetics in a prospective study (n = 159) and a cohort of previously published studies (n = 88). RESULTS In a genome-wide association meta-analysis of the prospective study and the cohort of previously published studies, the SLCO1B1 c.521 T > C (rs4149056) single nucleotide variation (SNV) associated with increased area under the plasma concentration-time curve (AUC) and peak plasma concentration of rosuvastatin (P = 1.8 × 10-12 and P = 3.2 × 10-15 ). The candidate gene analysis suggested that the ABCG2 c.421C > A (rs2231142) SNV associates with increased rosuvastatin AUC (P = .0079), while the SLCO1B1 c.388A > G (rs2306283) and SLCO2B1 c.1457C > T (rs2306168) SNVs associate with decreased rosuvastatin AUC (P = .0041 and P = .0076). Based on SLCO1B1 genotypes, we stratified the participants into poor, decreased, normal, increased and highly increased organic anion transporting polypeptide (OATP) 1B1 function groups. The OATP1B1 poor function phenotype associated with 2.1-fold (90% confidence interval 1.6-2.8, P = 4.69 × 10-5 ) increased AUC of rosuvastatin, whereas the OATP1B1 highly increased function phenotype associated with a 44% (16-62%; P = .019) decreased rosuvastatin AUC. The ABCG2 c.421A/A genotype associated with 2.2-fold (1.5-3.0; P = 2.6 × 10-4 ) increased AUC of rosuvastatin. The SLCO2B1 c.1457C/T genotype associated with 28% decreased rosuvastatin AUC (11-42%; P = .01). CONCLUSION These data suggest roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Poor SLCO1B1 or ABCG2 function genotypes may increase the risk of rosuvastatin-induced myotoxicity. Reduced doses of rosuvastatin are advisable for patients with these genotypes.
Collapse
Affiliation(s)
- Minna Lehtisalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Suvi Taskinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Jenni Viinamäki
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas O Lilius
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Tuija Tapaninen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|
8
|
Chu X, Chan GH, Houle R, Lin M, Yabut J, Fandozzi C. In Vitro Assessment of Transporter Mediated Perpetrator DDIs for Several Hepatitis C Virus Direct-Acting Antiviral Drugs and Prediction of DDIs with Statins Using Static Models. AAPS J 2022; 24:45. [DOI: 10.1208/s12248-021-00677-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
|
9
|
Storelli F, Li CY, Sachar M, Kumar V, Heyward S, Sáfár Z, Kis E, Unadkat JD. Prediction of Hepatobiliary Clearances and Hepatic Concentrations of Transported Drugs in Humans Using Rosuvastatin as a Model Drug. Clin Pharmacol Ther 2022; 112:593-604. [DOI: 10.1002/cpt.2556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Flavia Storelli
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Cindy Yanfei Li
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Madhav Sachar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Vineet Kumar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | | | | | | | | |
Collapse
|
10
|
Sato R, Akiyoshi T, Morita T, Katayama K, Yajima K, Kataoka H, Imaoka A, Ohtani H. Dual kinetics of OATP2B1: Inhibitory potency and pH-dependence of OATP2B1 inhibitors. Drug Metab Pharmacokinet 2021; 41:100416. [PMID: 34619547 DOI: 10.1016/j.dmpk.2021.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/17/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
Organic anion transporting polypeptide (OATP) 2B1 is expressed in the intestine and liver, and OATP2B1-mediated transport of estrone 3-sulfate is pH-dependent and consists of: the high-affinity component (Hc) and low-affinity component (Lc). This study aimed to evaluate the influence of pH on the transport kinetics of each component, along with the inhibitory nature of ten OATP2B1 inhibitors. The Michaelis constants (Km) were 4-fold and 1.5-fold lower at pH 6.3 than at pH 7.4, for Hc and Lc respectively. The inhibitory potencies of diclofenac, indomethacin, and ibuprofen towards Hc were 1.5-4.3 fold lower at pH 6.3 than at pH 7.4. Contrastingly, inhibitory potencies towards Lc were 9.0-52 fold lower at pH 7.4. Similarly, the inhibitory effect of naproxen was stronger towards Hc at pH 6.3 and towards Lc at pH 7.4. On the other hand, celecoxib selectively inhibited Lc transport at pH 7.4. Rifampicin inhibited both components at pH 6.3 and 7.4 to a similar extent, while bromosulphophthalein, naringin, and gefitinib selectively inhibited Hc irrespective of pH. Fexofenadine inhibited neither component. In conclusion, the transport affinities of both Hc and Lc were enhanced under acidic conditions. The influence of pH on the inhibitory potency towards each component varied among the inhibitors.
Collapse
Affiliation(s)
- Ryo Sato
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Takeshi Akiyoshi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Tokio Morita
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kazuhiro Katayama
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| | - Kodai Yajima
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Hiroki Kataoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Ayuko Imaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Hisakazu Ohtani
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
11
|
Chothe PP, Nakakariya M, Rotter CJ, Sandoval P, Tohyama K. Recent Advances in Drug Transporter Sciences: Highlights From the Year 2020. Drug Metab Rev 2021; 53:321-349. [PMID: 34346798 DOI: 10.1080/03602532.2021.1963270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug Metabolism Reviews has an impressive track record of providing scientific reviews in the area of xenobiotic biotransformation over 47 years. It has consistently proved to be resourceful to many scientists from pharmaceutical industry, academia, regulatory agencies working in diverse areas including enzymology, pharmacology, pharmacokinetics and toxicology. Over the last 5 years Drug metabolism Reviews has annually published an industry commentary aimed to highlight novel insights and approaches that have made significant impacts on the field of biotransformation (led by Cyrus Khojasteh). We hope to continue this tradition by providing an overview of advances made in the field of drug transporters during 2020. The field of drug transporters is rapidly evolving as they play an essential role in drug absorption, distribution, clearance and elimination. In this review we have selected outstanding drug transporter articles that have significantly contributed to moving forward the field of transporter science with respect to translation and improved understanding of diverse aspects including uptake clearance, clinical biomarkers, induction, proteomics, emerging transporters and tissue targeting.The theme of this review consists of synopsis that summarizes each article followed by our commentary. The objective of this work is not to provide a comprehensive review but rather exemplify novel insights and state-of-the-art highlights of recent research that have advanced our understanding of drug transporters in drug disposition. We are hopeful that this effort will prove useful to the scientific community and as such request feedback, and further extend an invitation to anyone interested in contributing to future reviews.
Collapse
Affiliation(s)
- Paresh P Chothe
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chrome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda California Incorporated, 9625 Towne Centre Drive, San Diego, California, 92121, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Kimio Tohyama
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
12
|
Weiss J, Bajraktari-Sylejmani G, Haefeli WE. Low risk of the TMPRSS2 inhibitor camostat mesylate and its metabolite GBPA to act as perpetrators of drug-drug interactions. Chem Biol Interact 2021; 338:109428. [PMID: 33647240 PMCID: PMC9748837 DOI: 10.1016/j.cbi.2021.109428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023]
Abstract
Camostat mesylate, a potent inhibitor of the human transmembrane protease, serine 2 (TMPRSS2), is currently under investigation for its effectiveness in COVID-19 patients. For its safe application, the risks of camostat mesylate to induce pharmacokinetic drug-drug interactions with co-administered drugs should be known. We therefore tested in vitro the potential inhibition of important efflux (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2)), and uptake transporters (organic anion transporting polypeptides OATP1B1, OATP1B3, OATP2B1) by camostat mesylate and its active metabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA). Transporter inhibition was evaluated using fluorescent probe substrates in transporter over-expressing cell lines and compared to the respective parental cell lines. Moreover, possible mRNA induction of pharmacokinetically relevant genes regulated by the nuclear pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) was analysed in LS180 cells by quantitative real-time PCR. The results of our study for the first time demonstrated that camostat mesylate and GBPA do not relevantly inhibit P-gp, BCRP, OATP1B1 or OATP1B3. Only OATP2B1 was profoundly inhibited by GBPA with an IC50 of 11 μM. Induction experiments in LS180 cells excluded induction of PXR-regulated genes such as cytochrome P450 3A4 (CYP3A4) and ABCB1 and AhR-regulated genes such as CYP1A1 and CYP1A2 by camostat mesylate and GBPA. Together with the summary of product characteristics of camostat mesylate indicating no inhibition of CYP1A2, 2C9, 2C19, 2D6, and 3A4 in vitro, our data suggest a low potential of camostat mesylate to act as a perpetrator in pharmacokinetic drug-drug interactions. Only inhibition of OATP2B1 by GBPA warrants further investigation.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Kinzi J, Grube M, Meyer Zu Schwabedissen HE. OATP2B1 - The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol 2021; 188:114534. [PMID: 33794186 DOI: 10.1016/j.bcp.2021.114534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
The organic anion transporting polypeptide 2B1 (OATP2B1) was one of the first cloned members of the SLCO family. However, its physiological and pharmacological role is still poorly understood, and object of a current debate on the transporter's relevance. Within this commentary, we summarize the data currently available on the transporter's expression and its substrates and highlight the strength and difficulties of the methods that have been applied to gather these data. The conclusion drawn from these findings was that OATP2B1 due to its intestinal expression is most likely involved in oral drug absorption of its substrate and therefore prone for interactions. This has been tested in in vivo drug interaction and/or pharmacogenetic studies. While some of these support the notion of OATP2B1 being of relevance in drug absorption, the pharmacogenetic findings are rather inconclusive. We will explain our thoughts why OATP2B1 may not influence the general systemic pharmacokinetic of certain substrates, but possibly local distribution processes, like the transfer across the blood-brain-barrier. Besides the pharmacokinetic aspects, there are data on endogenous molecules like coproporphyrins and sulfated steroids. Therefore, we will also highlight possible physiological roles of OATP2B1, which are driven by its expression pattern in the tubular cells of the kidney as well as its expression in the blood brain barrier. Finally we also deal with the advantages and disadvantages in the use of animal models to decipher the role of OATP2B1 in pharmacokinetics of its substrates and beyond.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
14
|
Bajraktari-Sylejmani G, Weiss J. Potential Risk of Food-Drug Interactions: Citrus Polymethoxyflavones and Flavanones as Inhibitors of the Organic Anion Transporting Polypeptides (OATP) 1B1, 1B3, and 2B1. Eur J Drug Metab Pharmacokinet 2020; 45:809-815. [PMID: 32661908 PMCID: PMC7677148 DOI: 10.1007/s13318-020-00634-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background and Objectives Citrus flavonoids are not only components of daily nutrition, they are also promoted as dietary supplements and are important ingredients in traditional medicines. Interactions of flavonoids with synthetic drugs represent an often neglected issue. We therefore investigated in vitro whether the polymethoxyflavones nobiletin, sinensetin, and tangeretin and the flavonoid rutinosides didymin, hesperidin, and narirutin can inhibit human organic anion transporting polypeptides (OATP) 1B1, 1B3, and 2B1, which are important transporters mediating drug-drug and food-drug interactions. Methods Inhibition was investigated by quantifying the decreased uptake of the fluorescent OATP1B1 and OATP1B3 substrate 8-fluorescein-cAMP in HEK293 cells overexpressing OATP1B1 or OATP1B3 and of the fluorescent OATP2B1 substrate 4′,5′-dibromofluorescein in HEK293 cells overexpressing OATP2B1. Results We demonstrate that all flavonoids investigated inhibit OATP2B1 in the lower micromolar range (IC50 between 1.6 and 14.2 µM), but only the polymethoxyflavones also inhibit OATP1B1 and 1B3 (IC50 between 2.1 and 21 µM). Conclusions All flavonoids investigated might contribute to the intestinal OATP2B1-based interactions with drugs observed with citrus juices or fruits. In contrast, the concentration of the polymethoxyflavones after consumption of citrus juices or fruits is most likely too low to reach relevant systemic concentrations and thus to inhibit hepatic OATP1B1 and OATP1B3, but there might be a risk when they are consumed as medicines or as dietary supplements.
Collapse
Affiliation(s)
- Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Wegler C, Prieto Garcia L, Klinting S, Robertsen I, Wiśniewski JR, Hjelmesaeth J, Åsberg A, Jansson-Löfmark R, Andersson TB, Artursson P. Proteomics-Informed Prediction of Rosuvastatin Plasma Profiles in Patients With a Wide Range of Body Weight. Clin Pharmacol Ther 2020; 109:762-771. [PMID: 32970864 PMCID: PMC7984432 DOI: 10.1002/cpt.2056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Rosuvastatin is a frequently used probe to study transporter‐mediated hepatic uptake. Pharmacokinetic models have therefore been developed to predict transporter impact on rosuvastatin disposition in vivo. However, the interindividual differences in transporter concentrations were not considered in these models, and the predicted transporter impact was compared with historical in vivo data. In this study, we investigated the influence of interindividual transporter concentrations on the hepatic uptake clearance of rosuvastatin in 54 patients covering a wide range of body weight. The 54 patients were given an oral dose of rosuvastatin the day before undergoing gastric bypass or cholecystectomy, and pharmacokinetic (PK) parameters were established from each patient’s individual time‐concentration profiles. Liver biopsies were sampled from each patient and their individual hepatic transporter concentrations were quantified. We combined the transporter concentrations with in vitro uptake kinetics determined in HEK293‐transfected cells, and developed a semimechanistic model with a bottom‐up approach to predict the plasma concentration profiles of the single dose of rosuvastatin in each patient. The predicted PK parameters were evaluated against the measured in vivo plasma PKs from the same 54 patients. The developed model predicted the rosuvastatin PKs within two‐fold error for rosuvastatin area under the plasma concentration versus time curve (AUC; 78% of the patients; average fold error (AFE): 0.96), peak plasma concentration (Cmax; 76%; AFE: 1.05), and terminal half‐life (t1/2; 98%; AFE: 0.89), and captured differences in the rosuvastatin PKs in patients with the OATP1B1 521T<C polymorphism. This demonstrates that hepatic uptake clearance determined in transfected cell lines, together with proteomics scaling, provides a useful tool for prediction models, without the need for empirical scaling factors.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luna Prieto Garcia
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Signe Klinting
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jøran Hjelmesaeth
- Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Di L, Artursson P, Avdeef A, Benet LZ, Houston JB, Kansy M, Kerns EH, Lennernäs H, Smith DA, Sugano K. The Critical Role of Passive Permeability in Designing Successful Drugs. ChemMedChem 2020; 15:1862-1874. [PMID: 32743945 DOI: 10.1002/cmdc.202000419] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/25/2022]
Abstract
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 752 36, Uppsala, Sweden
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue, #102, New York, NY 10128, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA 94143, USA
| | - J Brian Houston
- Division of Pharmacy & Optometry, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, 752 36, Uppsala, Sweden
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
17
|
Unger MS, Schumacher L, Enzlein T, Weigt D, Zamek-Gliszczynski MJ, Schwab M, Nies AT, Drewes G, Schulz S, Reinhard FBM, Hopf C. Direct Automated MALDI Mass Spectrometry Analysis of Cellular Transporter Function: Inhibition of OATP2B1 Uptake by 294 Drugs. Anal Chem 2020; 92:11851-11859. [DOI: 10.1021/acs.analchem.0c02186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melissa S. Unger
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Lena Schumacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Maciej J. Zamek-Gliszczynski
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gerard Drewes
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Sandra Schulz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | | | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
18
|
Sidharta PN, Dingemanse J. Effects of Multiple‐Dose Administration of Aprocitentan on the Pharmacokinetics of Rosuvastatin. Clin Pharmacol Drug Dev 2020; 9:995-1002. [DOI: 10.1002/cpdd.815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Patricia N. Sidharta
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| |
Collapse
|
19
|
Oral absorption of voriconazole is affected by SLCO2B1 c.*396T>C genetic polymorphism in CYP2C19 poor metabolizers. THE PHARMACOGENOMICS JOURNAL 2020; 20:792-800. [PMID: 32461666 DOI: 10.1038/s41397-020-0166-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 11/08/2022]
Abstract
High pharmacokinetic variability of voriconazole is mainly explained by CYP2C19 phenotype, but there are still unknown factors affecting the variability. In this study, the effect of solute carrier organic anion transporter family member 2B1 (SLCO2B1) genotype on the pharmacokinetics (PKs) of voriconazole was evaluated in 12 healthy CYP2C19 poor metabolizers after a single administration of voriconazole 200 mg intravenously and orally. In addition, the influence of CYP3A4 enzyme activity was also explored. The oral absorption of voriconazole was decreased and delayed in the subjects with the SLCO2B1 c.*396T>C variant compared to the subjects with wild type. However, the CYP3A activity markers measured in this study did not show significant association with metabolism of voriconazole. The results suggest that the SLCO2B1 c.*396T>C may be associated with the decreased function of intestinal OATP2B1, and it could contribute to interindividual PK variability of voriconazole.
Collapse
|
20
|
Shi J, Sun C, Huang H, Lin W, Gao J, Lin Y, Zhang Z, Huo X, Tian X, Yu Z, Zhang B, Ma X. β-Glucuronidase- and OATP2B1-mediated drug interaction of scutellarin in Dengzhan Xixin Injection: A formulation aspect. Drug Dev Res 2020; 81:609-619. [PMID: 32220026 DOI: 10.1002/ddr.21661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022]
Abstract
Scutellarin is the major and active constituent of Dengzhan Xixin Injection (DZXX), a traditional Chinese medicine prepared from the aqueous extract of Erigeron breviscapus and widely used for the treatment of various cerebrovascular diseases in clinic. In present study, the possible pharmacokinetic differences of scutellarin after intravenous administration of scutellarin alone or DZXX were explored. Additional, the potential roles of β-glucuronidase (GLU) and OATP2B1 in drug-drug interaction (DDI) between scutellarin and constituents of DZXX were further evaluated in vitro. The plasma concentration, urinary and biliary excretion of scutellarin in rats after administration of DZXX, were significantly higher than those received scutellarin, while pharmacokinetic profile of Apigenin 7-O-glucuronide (AG) in rats was similar no matter AG or DZXX group. Furthermore, higher concentration in brain and plasma, however, lower level of scutellarin in intestine were observed after intravenous administration of DZXX. Finally, AG and caffeoylquinic acid esters were found to significantly inhibit GLU and OATP2B1 in vitro, which might explain, at least in part, the pharmacokinetic DDI between scutellarin and other chemical constituents in DZXX. The findings provided deep insight into the prescription-formulating principle in DZXX for treating the cerebrovascular diseases.
Collapse
Affiliation(s)
- Jinxin Shi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China.,Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chengpeng Sun
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huilian Huang
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenhui Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanhe Lin
- Yunnan Biovalley Pharmaceutical Company, Kunming, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiaokui Huo
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Baojing Zhang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
Chen M, Hu S, Li Y, Gibson AA, Fu Q, Baker SD, Sparreboom A. Role of Oatp2b1 in Drug Absorption and Drug-Drug Interactions. Drug Metab Dispos 2020; 48:419-425. [PMID: 32114507 DOI: 10.1124/dmd.119.090316] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The organic anion transporting polypeptide (OATP)2B1 is localized on the basolateral membrane of hepatocytes and is expressed in enterocytes. Based on its distribution pattern and functional similarity to OATP1B-type transporters, OATP2B1 might have a role in the absorption and disposition of a range of xenobiotics. Although several prescription drugs, including hydroxymethylglutaryl-coenzyme A-CoA reductase inhibitors (statins) such as fluvastatin, are OATP2B1 substrates in vitro, evidence supporting the in vivo relevance of this transporter remains limited, and most has relied on substrate-inhibitor interactions resulting in altered pharmacokinetic properties of the victim drugs. To address this knowledge deficit, we developed and characterized an Oatp2b1-deficient mouse model and evaluated the impact of this transporter on the absorption and disposition of fluvastatin. Consistent with the intestinal localization of Oatp2b1, we found that the genetic deletion or pharmacological inhibition of Oatp2b1 was associated with decreased absorption of fluvastatin by 2- to 3-fold. The availability of a viable Oatp2b1-deficient mouse model provides an opportunity to unequivocally determine the contribution of this transporter to the absorption and drug-drug interaction potential of drugs. SIGNIFICANCE STATEMENT: The current investigation suggests that mice deficient in Oatp2b1 provide a valuable tool to study the in vivo importance of this transporter. In addition, our studies have identified novel potent inhibitors of OATP2B1 among the class of tyrosine kinase inhibitors, a rapidly expanding class of drugs used in various therapeutic areas that may cause drug-drug interactions with OATP2B1 substrates.
Collapse
Affiliation(s)
- Mingqing Chen
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yang Li
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alice A Gibson
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Qiang Fu
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sharyn D Baker
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Experimental Cancer Pharmacology Laboratory, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
Kondo A, Narumi K, Okuhara K, Takahashi Y, Furugen A, Kobayashi M, Iseki K. Black tea extract and theaflavin derivatives affect the pharmacokinetics of rosuvastatin by modulating organic anion transporting polypeptide (OATP) 2B1 activity. Biopharm Drug Dispos 2020; 40:302-306. [PMID: 31400238 DOI: 10.1002/bdd.2202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
Abstract
Theaflavins (TFs) are derived from black tea, an important source of dietary polyphenols. Although the potential interactions between dietary polyphenols and drugs have been demonstrated through in vitro and in vivo studies, little information is available concerning the influence of TFs on drug disposition. Organic anion transporting polypeptide 2B1 (OATP2B1) is expressed in human enterocytes and plays a role in the intestinal absorption of numerous drugs. The current study evaluated the effects of black tea extracts on the pharmacokinetics of rosuvastatin in rats, and investigated the effect of four major TFs (theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate and theaflavin-3,3'-digallate) on the transport activity of OATP2B1. Black tea extracts significantly decreased the maximum plasma concentration (Cmax ) and area under the plasma concentration-time curve (AUC0 -8 ) of rosuvastatin by 48% and 37%, respectively (p < 0.001 and p < 0.01, respectively). Moreover, OATP2B1-mediated rosuvastatin and estrone-3-sulfate uptake was significantly reduced in the presence of TFs. A kinetic study revealed that the uptake efficiency (in terms of Vmax /Km ) of rosuvastatin was decreased following treatment with TFs. Black tea extracts also reduced OATP2B1-mediated rosuvastatin uptake. These results suggest that black tea reduces the plasma concentrations of rosuvastatin by inhibiting the intestinal OATP2B1-mediated transport of rosuvastatin.
Collapse
Affiliation(s)
- Ayuko Kondo
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Keisuke Okuhara
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuka Takahashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.,Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| |
Collapse
|
23
|
Unger MS, Mudunuru J, Schwab M, Hopf C, Drewes G, Nies AT, Zamek-Gliszczynski MJ, Reinhard FBM. Clinically Relevant OATP2B1 Inhibitors in Marketed Drug Space. Mol Pharm 2020; 17:488-498. [PMID: 31834804 DOI: 10.1021/acs.molpharmaceut.9b00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OATP2B1 is an intestinal and hepatic drug uptake transporter. Intestinal OATP2B1 has been elucidated as the mechanism of unexpected clinical drug-drug interactions (DDIs), where drug exposure was unexpectedly decreased with unchanged half-life. Hepatic OATP2B1 may be an understudied clinical DDI mechanism. The aim of the present work was to understand the prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors in marketed drug space. HEK293 cells stably overexpressing human OATP2B1 or vector control were generated and cultured for 72 h in a 96-well format. OATP2B1-mediated uptake of dibromofluorescein (DBF) was found to be optimal at 10 μM concentration and 30 min incubation time. A total of 294 drugs (top 300 marketed drugs, excluding biologics and restricted drugs, supplemented with ∼100 small-molecule drugs) were screened for OATP2B1 inhibition at 10 μM. Drugs demonstrating ≥50% inhibition in this screen were advanced for IC50 determination, which was extrapolated to clinical intestinal and hepatic OATP2B1 inhibition as per 2017 FDA DDI guidance. Of the 294 drugs screened, 67 elicited ≥50% inhibition of OATP2B1-mediated DBF uptake at 10 μM screening concentration. For the 67 drugs flagged in the single-concentration inhibition screen, upon evaluation of a full concentration range, IC50 values could be determined for 58 drugs. OATP2B1 IC50 values established for these 58 drugs were extrapolated as potentially clinically relevant at the intestinal level for 38 orally administered drugs (Igut/IC50 ≥ 10), and 17 were flagged as potential clinical inhibitors of hepatic OATP2B1 uptake (1 + Iin,max,u/IC50 ≥ 1.1). This analysis of 294 drugs demonstrated prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors to be 13 and 6%, respectively. As OATP2B1-inhibitor drugs are not exceedingly rare, these results suggest that clinical OATP2B1 DDIs have been rarely observed because OATP2B1 is uncommonly the predominant determinant of drug disposition.
Collapse
Affiliation(s)
- Melissa S Unger
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Jennypher Mudunuru
- Drug Metabolism and Disposition , GlaxoSmithKline , Collegeville , Pennsylvania 19426 , United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry , University of Tübingen , 72074 Tübingen , Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) and Institute of Medical Technology , Heidelberg University and Mannheim University of Applied Sciences , 68163 Mannheim , Germany
| | - Gerard Drewes
- Cellzome, a GlaxoSmithKline Company , 69117 Heidelberg , Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , University of Tübingen , 70376 Stuttgart , Germany
| | | | | |
Collapse
|
24
|
Medwid S, Li MM, Knauer MJ, Lin K, Mansell SE, Schmerk CL, Zhu C, Griffin KE, Yousif MD, Dresser GK, Schwarz UI, Kim RB, Tirona RG. Fexofenadine and Rosuvastatin Pharmacokinetics in Mice with Targeted Disruption of Organic Anion Transporting Polypeptide 2B1. Drug Metab Dispos 2019; 47:832-842. [DOI: 10.1124/dmd.119.087619] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023] Open
|
25
|
Longitudinal Impacts of Gastric Bypass Surgery on Pharmacodynamics and Pharmacokinetics of Statins. Obes Surg 2019; 29:2571-2583. [PMID: 31004269 DOI: 10.1007/s11695-019-03885-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Undergoing Roux-en-Y gastric bypass (RYGB) is expected to affect orally administered drug absorption. Statins are commonly prescribed to patients with obesity for the prevention of atherosclerotic cardiovascular diseases by lowering cholesterol. This is the first longitudinal prospective study on impacts of RYGB on weight loss, pharmacodynamics, and pharmacokinetics of atorvastatin, rosuvastatin, and simvastatin, and their active metabolites, up to 1-year post-surgery. METHODS Forty-six patients were recruited, five patients on atorvastatin, twelve on rosuvastatin, nine on simvastatin, and twenty on no statin. The concentrations of atorvastatin, rosuvastatin, and simvastatin with their active metabolites were monitored. RESULTS Mean plasma concentrations of atorvastatin and metabolites and rosuvastatin normalized by the unit dose [(nM)/(mg/kg)] decreased by 3- to 6-month post-surgery. Conversely, simvastatin and its metabolite concentrations increased up to 6-month post-surgery, then declined to preoperative levels by 1-year post-surgery. The metabolisms of atorvastatin to hydroxyl-metabolites and simvastatin to simvastatin acid were decreased after RYGB. The weight loss and PD outcomes were comparable between statin and non-statin groups suggesting the key impacts were from RYGB. The discontinuation or reduction of dose of atorvastatin or rosuvastatin post-RYGB exhibited rebounds of LDL levels in some subjects, but the rebound was not apparent with patients on simvastatin pre-surgery. CONCLUSION Discontinuations of statin dosing post-RYGB require LDL monitoring and reducing the dose to half seems to have better results. Patients on statin treatment post-RYGB should be followed-up closely based on our pharmacokinetic findings, to ensure therapeutic effects of the treatment with minimal adverse effects.
Collapse
|
26
|
Organic anion transporting polypeptide 2B1 – More than a glass-full of drug interactions. Pharmacol Ther 2019; 196:204-215. [DOI: 10.1016/j.pharmthera.2018.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Safar Z, Kis E, Erdo F, Zolnerciks JK, Krajcsi P. ABCG2/BCRP: variants, transporter interaction profile of substrates and inhibitors. Expert Opin Drug Metab Toxicol 2019; 15:313-328. [PMID: 30856014 DOI: 10.1080/17425255.2019.1591373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION ABCG2 has a broad substrate specificity and is one of the most important efflux proteins modulating pharmacokinetics of drugs, nutrients and toxicokinetics of toxicants. ABCG2 is an important player in transporter-mediated drug-drug interactions (tDDI). Areas covered: The aims of the review are i) to cover transporter interaction profile of substrates and inhibitors that can be utilized to test interaction of drug candidates with ABCG2, ii) to highlight main characteristics of in vitro testing and iii) to describe the structural basis of the broad substrate specificity of the protein. Preclinical data utilizing Abcg2/Bcrp1 knockouts and clinical studies showing effect of ABCG2 c.421C>A polymorphism on pharmacokinetics of drugs have provided evidence for a broad array of drug substrates and support drug - ABCG2 interaction testing. A consensus on using rosuvastatin and sulfasalazine as intestinal substrates for clinical studies is in the formation. Other substrates relevant to the therapeutic area can be considered. Monolayer efflux assays and vesicular transport assays have been extensively utilized in vitro. Expert opinion: Clinical substrates display complex pharmacokinetics due to broad interaction profiles with multiple transporters and metabolic enzymes. Substrate-dependent inhibition has been observed for several inhibitors. Harmonization of in vitro and in vivo testing makes sense. However, rosuvastatin and sulfasalazine are not efficiently transported in either MDCKII or LLC-PK1-based monolayers. Caco-2 monolayer assays and vesicular transport assays are potential alternatives.
Collapse
Affiliation(s)
| | - Emese Kis
- a SOLVO Biotechnology , Szeged , Hungary
| | - Franciska Erdo
- b Faculty of Information Technology and Bionics , Pázmány Péter Catholic University , Budapest , Hungary
| | | | - Peter Krajcsi
- a SOLVO Biotechnology , Szeged , Hungary.,d Department of Morphology and Physiology. Faculty of Health Sciences , Semmelweis University , Budapest , Hungary
| |
Collapse
|
28
|
Oswald S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharmacol Ther 2019; 195:39-53. [DOI: 10.1016/j.pharmthera.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Bauer M, Traxl A, Matsuda A, Karch R, Philippe C, Nics L, Klebermass EM, Wulkersdorfer B, Weber M, Poschner S, Tournier N, Jäger W, Wadsak W, Hacker M, Wanek T, Zeitlinger M, Langer O. Effect of Rifampicin on the Distribution of [ 11C]Erlotinib to the Liver, a Translational PET Study in Humans and in Mice. Mol Pharm 2018; 15:4589-4598. [PMID: 30180590 DOI: 10.1021/acs.molpharmaceut.8b00588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic anion-transporting polypeptides (OATPs) mediate the uptake of various drugs from blood into the liver in the basolateral membrane of hepatocytes. Positron emission tomography (PET) is a potentially powerful tool to assess the activity of hepatic OATPs in vivo, but its utility critically depends on the availability of transporter-selective probe substrates. We have shown before that among the three OATPs expressed in hepatocytes (OATP1B1, OATP1B3, and OATP2B1), [11C]erlotinib is selectively transported by OATP2B1. In contrast to OATP1B1 and OATP1B3, OATP2B1 has not been thoroughly explored yet, and no specific probe substrates are currently available. To assess if the prototypical OATP inhibitor rifampicin can inhibit liver uptake of [11C]erlotinib in vivo, we performed [11C]erlotinib PET scans in six healthy volunteers without and with intravenous pretreatment with rifampicin (600 mg). In addition, FVB mice underwent [11C]erlotinib PET scans without and with concurrent intravenous infusion of high-dose rifampicin (100 mg/kg). Rifampicin caused a moderate reduction in the liver distribution of [11C]erlotinib in humans, while a more pronounced effect of rifampicin was observed in mice, in which rifampicin plasma concentrations were higher than in humans. In vitro uptake experiments in an OATP2B1-overexpressing cell line indicated that rifampicin inhibited OATP2B1 transport of [11C]erlotinib in a concentration-dependent manner with a half-maximum inhibitory concentration of 72.0 ± 1.4 μM. Our results suggest that rifampicin-inhibitable uptake transporter(s) contributed to the liver distribution of [11C]erlotinib in humans and mice and that [11C]erlotinib PET in combination with rifampicin may be used to measure the activity of this/these uptake transporter(s) in vivo. Furthermore, our data suggest that a standard clinical dose of rifampicin may exert in vivo a moderate inhibitory effect on hepatic OATP2B1.
Collapse
Affiliation(s)
| | - Alexander Traxl
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | | | | | | | | | | | | | | | - Stefan Poschner
- Department of Clinical Pharmacy and Diagnostics , University of Vienna , A-1090 Vienna , Austria
| | - Nicolas Tournier
- IMIV, CEA, Inserm, CNRS , Université Paris-Sud, Université Paris Saclay, CEA-SHFJ , 91401 Orsay , France
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics , University of Vienna , A-1090 Vienna , Austria
| | - Wolfgang Wadsak
- Center for Biomarker Research in Medicine - CBmed GmbH , 8010 Graz , Austria
| | | | - Thomas Wanek
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| | | | - Oliver Langer
- Center for Health & Bioresources , AIT Austrian Institute of Technology GmbH , 2444 Seibersdorf , Austria
| |
Collapse
|
30
|
Zamek-Gliszczynski MJ, Taub ME, Chothe PP, Chu X, Giacomini KM, Kim RB, Ray AS, Stocker SL, Unadkat JD, Wittwer MB, Xia C, Yee SW, Zhang L, Zhang Y. Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin Pharmacol Ther 2018; 104:890-899. [PMID: 30091177 DOI: 10.1002/cpt.1112] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
This white paper provides updated International Transporter Consortium (ITC) recommendations on transporters that are important in drug development following the 3rd ITC workshop. New additions include prospective evaluation of organic cation transporter 1 (OCT1) and retrospective evaluation of organic anion transporting polypeptide (OATP)2B1 because of their important roles in drug absorption, disposition, and effects. For the first time, the ITC underscores the importance of transporters involved in drug-induced vitamin deficiency (THTR2) and those involved in the disposition of biomarkers of organ function (OAT2 and bile acid transporters).
Collapse
Affiliation(s)
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim, Ridgefield, Connecticut, USA
| | - Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Adrian S Ray
- Clinical Research, Gilead Sciences, Foster City, California, USA
| | - Sophie L Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia & St Vincent's Clinical School, UNSW Sydney, NSW, Australia
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Cindy Xia
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International, Cambridge, Massachusetts, USA
| | - Sook-Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte, Wilmington, Delaware, USA
| | | |
Collapse
|
31
|
Yee SW, Brackman DJ, Ennis EA, Sugiyama Y, Kamdem LK, Blanchard R, Galetin A, Zhang L, Giacomini KM. Influence of Transporter Polymorphisms on Drug Disposition and Response: A Perspective From the International Transporter Consortium. Clin Pharmacol Ther 2018; 104:803-817. [PMID: 29679469 DOI: 10.1002/cpt.1098] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Advances in genomic technologies have led to a wealth of information identifying genetic polymorphisms in membrane transporters, specifically how these polymorphisms affect drug disposition and response. This review describes the current perspective of the International Transporter Consortium (ITC) on clinically important polymorphisms in membrane transporters. ITC suggests that, in addition to previously recommended polymorphisms in ABCG2 (BCRP) and SLCO1B1 (OATP1B1), polymorphisms in the emerging transporter, SLC22A1 (OCT1), be considered during drug development. Collectively, polymorphisms in these transporters are important determinants of interindividual differences in the levels, toxicities, and response to many drugs.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Deanna J Brackman
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Elizabeth A Ennis
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan
| | - Landry K Kamdem
- Department of Pharmaceutical Sciences, Harding University College of Pharmacy, Searcy, Arkansas, USA
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, UK
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California, USA.,Institute of Human Genetics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
Gidal BE, Mintzer S, Schwab M, Schutz R, Kharidia J, Blum D, Grinnell T, Sunkaraneni S. Evidence for a pharmacokinetic interaction between eslicarbazepine and rosuvastatin: Potential effects on xenobiotic transporters. Epilepsy Res 2017. [DOI: 10.1016/j.eplepsyres.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J Pharm Sci 2017; 106:2312-2325. [DOI: 10.1016/j.xphs.2017.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|