1
|
Izat N, Bolleddula J, Carione P, Huertas Valentin L, Jones RS, Kulkarni P, Moss D, Peterkin VC, Tian DD, Treyer A, Venkatakrishnan K, Zientek MA, Barber J, Houston JB, Galetin A, Scotcher D. Establishing a physiologically based pharmacokinetic framework for aldehyde oxidase and dual aldehyde oxidase-CYP substrates. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39444174 DOI: 10.1002/psp4.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Aldehyde oxidase (AO) contributes to the clearance of many approved and investigational small molecule drugs, which are often dual substrates of AO and drug-metabolizing enzymes such as cytochrome P450s (CYPs). As such, the lack of established framework for quantitative translation of the clinical pharmacologic correlates of AO-mediated clearance represents an unmet need. This study aimed to evaluate the utility of physiologically based pharmacokinetic (PBPK) modeling in the development of AO and dual AO-CYP substrates. PBPK models were developed for capmatinib, idelalisib, lenvatinib, zaleplon, ziprasidone, and zoniporide, incorporating in vitro functional data from human liver subcellular fractions and human hepatocytes. Prediction of metabolic elimination with/without the additional empirical scaling factors (ESFs) was assessed. Clinical pharmacokinetics, human mass balance, and drug-drug interaction (DDI) studies with CYP3A4 modulators, where available, were used to refine/verify the models. Due to the lack of clinically significant AO-DDIs with known AO inhibitors, the fraction metabolized by AO (fmAO) was verified indirectly. Clearance predictions were improved by using ESFs (GMFE ≤1.4-fold versus up to fivefold with physiologically-based scaling only). Observed fmi from mass balance studies were crucial for model verification/refinement, as illustrated by capmatinib, where the fmAO (40%) was otherwise underpredicted up to fourfold. Subsequently, independent DDI studies with ketoconazole, itraconazole, rifampicin, and carbamazepine verified the fmCYP3A4, with predicted ratios of the area under the concentration-time curve (AUCR) within 1.5-fold of the observations. In conclusion, this study provides a novel PBPK-based framework for predicting AO-mediated pharmacokinetics and quantitative assessment of clinical DDI risks for dual AO-CYP substrates within a totality-of-evidence approach.
Collapse
Affiliation(s)
- Nihan Izat
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK
| | | | | | | | | | | | - Darren Moss
- Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | - Dan-Dan Tian
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Andrea Treyer
- Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | | | - Jill Barber
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
3
|
Stancil SL, Pearce RE, Staggs VS, Leeder JS. Ontogeny of Scaling Factors for Pediatric Physiologically Based Pharmacokinetic Modeling and Simulation: Cytosolic Protein Per Gram of Liver. Drug Metab Dispos 2023; 51:1578-1582. [PMID: 37735064 PMCID: PMC10658907 DOI: 10.1124/dmd.123.001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Scaling factors are necessary for translating in vitro drug biotransformation data to in vivo clearance values in physiologically-based pharmacokinetic modeling and simulation. Values for microsomal protein per gram of liver are available from several sources for use as a scaling factor to estimate hepatic clearance from microsomal drug biotransformation data. However, data regarding the distribution of cytosolic protein per gram of liver (CPPGL) values across the lifespan are limited, and sparse pediatric data have been published to date. Thus, CPPGL was determined in 160 liver samples from pediatric (n = 129) and adult (n = 31) donors obtained from multiple sources: the University of Maryland Brain and Tissue Bank, tissue retrieval services at the University of Minnesota and University of Pittsburgh, and Sekisui-XenoTech. Tissues were homogenized and subjected to differential centrifugation to isolate cytosolic fractions. Cytosolic protein content was determined by BCA assay. CPPGL varied from two- to sixfold within each age group/developmental stage. Tissue source and sex did not contribute substantially to variability in protein content. Regression analyses revealed minimal change in CPPGL over the first two decades of life (logCPPGL increases 0.1 mg/g per decade). A mean ± S.D. CPPGL value of 44.4 ± 17.4 mg/g or median 41.0 mg/g is representative of values observed between birth and early adulthood (0-18 years, n = 129). SIGNIFICANCE STATEMENT: Cytosolic protein per gram of liver (CPPGL) is a scaling factor required for physiologically based pharmacokinetic modeling and simulation of drug biotransformation by cytosolic enzymes, but pediatric data are limited. Although CPPGL varies from two- to sixfold within developmental stages, a value of 44.4 ± 17.4 mg/g (mean ± S.D.) is representative of the pediatric period (0-18 years, n = 129).
Collapse
Affiliation(s)
- Stephani L Stancil
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Vincent S Staggs
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
4
|
Barber J, Al-Majdoub ZM, Couto N, Howard M, Elmorsi Y, Scotcher D, Alizai N, de Wildt S, Stader F, Sepp A, Rostami-Hodjegan A, Achour B. Toward systems-informed models for biologics disposition: covariates of the abundance of the neonatal Fc Receptor (FcRn) in human tissues and implications for pharmacokinetic modelling. Eur J Pharm Sci 2023; 182:106375. [PMID: 36626943 DOI: 10.1016/j.ejps.2023.106375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Biologics are a fast-growing therapeutic class, with intertwined pharmacokinetics and pharmacodynamics, affected by the abundance and function of the FcRn receptor. While many investigators assume adequacy of classical models, such as allometry, for pharmacokinetic characterization of biologics, advocates of physiologically-based pharmacokinetics (PBPK) propose consideration of known systems parameters that affect the fate of biologics to enable a priori predictions, which go beyond allometry. The aim of this study was to deploy a systems-informed modelling approach to predict the disposition of Fc-containing biologics. We used global proteomics to quantify the FcRn receptor [p51 and β2-microglobulin (B2M) subunits] in 167 samples of human tissue (liver, intestine, kidney and skin) and assessed covariates of its expression. FcRn p51 subunit was highest in liver relative to other tissues, and B2M was 1-2 orders of magnitude more abundant than FcRn p51 across all sets. There were no sex-related differences, while higher expression was confirmed in neonate liver compared with adult liver. Trends of expression in liver and kidney indicated a moderate effect of body mass index, which should be confirmed in a larger sample size. Expression of FcRn p51 subunit was approximately 2-fold lower in histologically normal liver tissue adjacent to cancer compared with healthy liver. FcRn mRNA in plasma-derived exosomes correlated moderately with protein abundance in matching liver tissue, opening the possibility of use as a potential clinical tool. Predicted effects of trends in FcRn abundance in healthy and disease (cancer and psoriasis) populations using trastuzumab and efalizumab PBPK models were in line with clinical observations, and global sensitivity analysis revealed endogenous IgG plasma concentration and tissue FcRn abundance as key systems parameters influencing exposure to Fc-conjugated biologics.
Collapse
Affiliation(s)
- Jill Barber
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Martyn Howard
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Yasmine Elmorsi
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | | | - Saskia de Wildt
- Radboud University Medical Center, Radboud University, Nijmegen, the Netherlands
| | - Felix Stader
- Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Armin Sepp
- Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom; Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, 495A Avedisian Hall, 7 Greenhouse Road, Kingston, RI 02881, United States.
| |
Collapse
|
5
|
Wang Z, Wang G, Ren J. Using a Mathematical Modeling To Simulate Pharmacokinetics and Urinary Glucose Excretion of Luseogliflozin and Explore the Role of SGLT1/2 in Renal Glucose Reabsorption. ACS OMEGA 2022; 7:48427-48437. [PMID: 36591124 PMCID: PMC9798748 DOI: 10.1021/acsomega.2c06483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
(1) Purpose: To develop a mathematical model combining physiologically based pharmacokinetic and urinary glucose excretion (PBPK-UGE) to simultaneously predict pharmacokinetic (PK) and UGE changes of luseogliflozin (LUS) as well as to explore the role of sodium-glucose cotransporters (SGLT1 and SGLT2) in renal glucose reabsorption (RGR) in humans. (2) Methods: The PBPK-UGE model was built using physicochemical and biochemical properties, binding kinetics data, affinity to SGLTs for glucose, and physiological parameters of renal tubules. (3) Results: The simulations using this model clarified that SGLT1/2 contributed 15 and 85%, respectively, to RGR in the absence of LUS. However, in the presence of LUS, the contribution proportion of SGLT1 rose to 52-76% in healthy individuals and 55-83% in T2DM patients, and that of SGLT2 reduced to 24-48 and 17-45%, respectively. Furthermore, this model supported the underlying mechanism that only 23-40% inhibition of the total RGR with 5 mg of LUS is resulted from SGLT1's compensatory effect and the reabsorption activity of unbound SGLT2. (4) Conclusion: This PBPK-UGE model can predict PK and UGE in healthy individuals and T2DM patients and can also analyze the contribution of SGLT1/2 to RGR with and without LUS.
Collapse
Affiliation(s)
- Zhongjian Wang
- Pharnexcloud
Digital Technology Co., Ltd., Chengdu, Sichuan610093, China
| | - Guopeng Wang
- Zhongcai
Health (Beijing) Biological Technology Development Co., Ltd., Beijing101500, China
| | - Jiawei Ren
- North
China Electric Power University Hospital, Beijing102206, China
| |
Collapse
|
6
|
Wu C, Li B, Meng S, Qie L, Zhang J, Wang G, Ren CC. Prediction for optimal dosage of pazopanib under various clinical situations using physiologically based pharmacokinetic modeling. Front Pharmacol 2022; 13:963311. [PMID: 36172188 PMCID: PMC9510668 DOI: 10.3389/fphar.2022.963311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to apply a physiologically based pharmacokinetic (PBPK) model to predict optimal dosing regimens of pazopanib (PAZ) for safe and effective administration when co-administered with CYP3A4 inhibitors, acid-reducing agents, food, and administered in patients with hepatic impairment. Here, we have successfully developed the population PBPK model and the predicted PK variables by this model matched well with the clinically observed data. Most ratios of prediction to observation were between 0.5 and 2.0. Suitable dosage modifications of PAZ have been identified using the PBPK simulations in various situations, i.e., 200 mg once daily (OD) or 100 mg twice daily (BID) when co-administered with the two CYP3A4 inhibitors, 200 mg BID when simultaneously administered with food or 800 mg OD when avoiding food uptake simultaneously. Additionally, the PBPK model also suggested that dosing does not need to be adjusted when co-administered with esomeprazole and administration in patients with wild hepatic impairment. Furthermore, the PBPK model also suggested that PAZ is not recommended to be administered in patients with severe hepatic impairment. In summary, the present PBPK model can determine the optimal dosing adjustment recommendations in multiple clinical uses, which cannot be achieved by only focusing on AUC linear change of PK.
Collapse
Affiliation(s)
- Chunnuan Wu
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Bole Li
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shuai Meng
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Linghui Qie
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jie Zhang
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Jie Zhang, ; Guopeng Wang, ; Cong Cong Ren,
| | - Guopeng Wang
- Zhongcai Health Biological Technology Development Co., Ltd., Beijing, China
- *Correspondence: Jie Zhang, ; Guopeng Wang, ; Cong Cong Ren,
| | - Cong Cong Ren
- Department of pharmacy, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Jie Zhang, ; Guopeng Wang, ; Cong Cong Ren,
| |
Collapse
|
7
|
Dubinsky S, Malik P, Hajducek DM, Edginton A. Determining the Effects of Chronic Kidney Disease on Organic Anion Transporter1/3 Activity Through Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2022; 61:997-1012. [PMID: 35508593 DOI: 10.1007/s40262-022-01121-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE The renal excretion of drugs via organic anion transporters 1 and 3 (OAT1/3) is significantly decreased in patients with renal impairment. This study uses physiologically based pharmacokinetic models to quantify the reduction in OAT1/3-mediated secretion of drugs throughout varying stages of chronic kidney disease. METHODS Physiologically based pharmacokinetic models were constructed for four OAT1/3 substrates in healthy individuals: acyclovir, meropenem, furosemide, and ciprofloxacin. Observed data from drug-drug interaction studies with probenecid, a potent OAT1/3 inhibitor, were used to parameterize the contribution of OAT1/3 to the renal elimination of each drug. The models were then translated to patients with chronic kidney disease by accounting for changes in glomerular filtration rate, kidney volume, renal blood flow, plasma protein binding, and hematocrit. Additionally, a relationship was derived between the estimated glomerular filtration rate and the reduction in OAT1/3-mediated secretion of drugs based on the renal extraction ratios of ƿ-aminohippuric acid in patients with varying degrees of renal impairment. The relationship was evaluated in silico by evaluating the predictive performance of each final model in describing the pharmacokinetics (PK) of drugs across stages of chronic kidney disease. RESULTS OAT1/3-mediated renal excretion of drugs was found to be decreased by 27-49%, 50-68%, and 70-96% in stage 3, stage 4, and stage 5 of chronic kidney disease, respectively. In support of the parameterization, physiologically based pharmacokinetic models of four OAT1/3 substrates were able to adequately characterize the PK in patients with different degrees of renal impairment. Total exposure after intravenous administration was predicted within a 1.5-fold error and 85% of the observed data points fell within a 1.5-fold prediction error. The models modestly under-predicted plasma concentrations in patients with end-stage renal disease undergoing intermittent hemodialysis. However, results should be interpreted with caution because of the limited number of molecules analyzed and the sparse sampling in observed chronic kidney disease pharmacokinetic studies. CONCLUSIONS A quantitative understanding of the reduction in OAT1/3-mediated excretion of drugs in differing stages of renal impairment will contribute to better predictive accuracy for physiologically based pharmacokinetic models in drug development, assisting with clinical trial planning and potentially sparing this population from unnecessary toxic exposures.
Collapse
Affiliation(s)
- Samuel Dubinsky
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Paul Malik
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Andrea Edginton
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
8
|
Wang Z, Liu W, Li X, Chen H, Qi D, Pan F, Liu H, Yu S, Yi B, Wang G, Liu Y. Physiologically based pharmacokinetic combined JAK2 occupancy modelling to simulate PK and PD of baricitinib with kidney transporter inhibitors and in patients with hepatic/renal impairment. Regul Toxicol Pharmacol 2022; 133:105210. [PMID: 35700864 DOI: 10.1016/j.yrtph.2022.105210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Our aim is to build a physiologically based pharmacokinetic and JAK2 occupancy model (PBPK-JO) to simultaneously predict pharmacokinetic (PK) and pharmacodynamic (PD) changes of baricitinib (BAR) in healthy humans when co-administrated with kidney transporters OAT3 and MATE2-K inhibitors, and in patients with hepatic and renal impairment. METHODS Probenecid and vandetanib were selected as OAT3 and MATE2-K competitive inhibitors, respectively. The PBPK-JO model was built using physicochemical and biochemical properties of BAR, and then verified by observed clinical PK. Finally, the model was applied to determine optimal dosing regimens in various clinical situations. RESULTS Here, we have successfully simulated PK and JAK2 occupancy profiles in humans by PBPK-JO model. Moreover, this modelling reproduced every observed PK data, and every mean relative deviation (MRD) was below 2. The simulation suggested that PK of BAR had a significant change (2.22-fold increase), however PD only had a slight increase of 1.14-fold. Additionally, the simulation also suggested that vandetanib was almost unlikely to affect the PK and PD of BAR. In simulations of hepatic and renal impairment patients, the predictions suggested that significant changes in the PK and PD of BAR occurred. However, there was a lower fold increase in JAK2 occupancy than in PK in patients relative to healthy individuals. CONCLUSION Administration dose adjustment of BAR when co-administrated with OAT3 inhibitors or in patients with hepatic or renal impairment should combine PK and PD changes of BAR, instead of only considering PK alteration.
Collapse
Affiliation(s)
- Zhongjian Wang
- Pharnexcloud Digital Technology Co., Ltd., Chengdu, Sichuan, 610093, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Hongjiao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Dongying Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Fulu Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Huining Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shuang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Bowen Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, 101500, China.
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
9
|
Ahmed AN, Rostami-Hodjegan A, Barber J, Al-Majdoub ZM. Examining Physiologically-Based Pharmacokinetic (PBPK) Model Assumptions for Cross-Tissue Similarity of Kcat: The Case Example of Uridine 5'-diphosphate Glucuronosyltransferase (UGT). Drug Metab Dispos 2022; 50:1119-1125. [PMID: 35636771 DOI: 10.1124/dmd.121.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
The default assumption during in vitro in vivo extrapolation (IVIVE) to predict metabolic clearance in physiologically-based pharmacokinetics (PBPK) is that protein expression and activity have the same relationship in various tissues. This assumption is examined for uridine 5'-diphosphate glucuronosyltransferases (UGTs), a case example where expression and, hence, metabolic activity are distributed across various tissues. Our literature analysis presents overwhelming evidence of a greater UGT activity per unit of enzyme (higher kcat) in kidney and intestinal tissues relative to liver (greater than 200-fold for UGT2B7). This analysis is based on application of abundance values reported using similar proteomic techniques and within the same laboratory. Our findings call into question the practice of assuming similar kcat during IVIVE estimations as part of PBPK, and call for a systematic assessment of the kcat of various enzymes across different organs. The analysis focused on compiling data for probe substrates that were common for two or more of the studied tissues, to allow for reliable comparison of cross-tissue enzyme kinetics; this meant that UGT enzymes included in the study were limited to UGT1A1, 1A3, 1A6, 1A9 and 2B7. Significantly, UGT1A9 (n=24) and the liver (n=27) were each found to account for around half of the total dataset; these were found to correlate, with hepatic UGT1A9 data found in 15 of the studies, highlighting the need for more research into extrahepatic tissues and other UGT isoforms. Significance Statement During PBPK modelling (in vitro in vivo extrapolation) of drug clearance, the default assumption is that the activity per unit of enzyme (kcat) is the same in all tissues. The analysis provides preliminary evidence that this may not be the case, and that renal and intestinal tissues may have almost 250-fold greater UGT activity per unit of enzyme than liver tissues.
Collapse
Affiliation(s)
- Anika N Ahmed
- Centre for Applied Pharmacokinetic Research,, The University of Manchester, United Kingdom
| | - Amin Rostami-Hodjegan
- Systems Pharmacology, Manchester Pharmacy School, University of Manchester, United Kingdom
| | - Jill Barber
- Pharmacy and Pharmaceutical Sciences, University of Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Division of Pharmacy and Optometry, University of Manchester, United Kingdom
| |
Collapse
|
10
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
11
|
Physiologically Based Pharmacokinetic (PBPK) Modeling of Clopidogrel and Its Four Relevant Metabolites for CYP2B6, CYP2C8, CYP2C19, and CYP3A4 Drug–Drug–Gene Interaction Predictions. Pharmaceutics 2022; 14:pharmaceutics14050915. [PMID: 35631502 PMCID: PMC9145019 DOI: 10.3390/pharmaceutics14050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The antiplatelet agent clopidogrel is listed by the FDA as a strong clinical index inhibitor of cytochrome P450 (CYP) 2C8 and weak clinical inhibitor of CYP2B6. Moreover, clopidogrel is a substrate of—among others—CYP2C19 and CYP3A4. This work presents the development of a whole-body physiologically based pharmacokinetic (PBPK) model of clopidogrel including the relevant metabolites, clopidogrel carboxylic acid, clopidogrel acyl glucuronide, 2-oxo-clopidogrel, and the active thiol metabolite, with subsequent application for drug–gene interaction (DGI) and drug–drug interaction (DDI) predictions. Model building was performed in PK-Sim® using 66 plasma concentration-time profiles of clopidogrel and its metabolites. The comprehensive parent-metabolite model covers biotransformation via carboxylesterase (CES) 1, CES2, CYP2C19, CYP3A4, and uridine 5′-diphospho-glucuronosyltransferase 2B7. Moreover, CYP2C19 was incorporated for normal, intermediate, and poor metabolizer phenotypes. Good predictive performance of the model was demonstrated for the DGI involving CYP2C19, with 17/19 predicted DGI AUClast and 19/19 predicted DGI Cmax ratios within 2-fold of their observed values. Furthermore, DDIs involving bupropion, omeprazole, montelukast, pioglitazone, repaglinide, and rifampicin showed 13/13 predicted DDI AUClast and 13/13 predicted DDI Cmax ratios within 2-fold of their observed ratios. After publication, the model will be made publicly accessible in the Open Systems Pharmacology repository.
Collapse
|
12
|
Al-Majdoub ZM, Scotcher D, Achour B, Barber J, Galetin A, Rostami-Hodjegan A. Quantitative Proteomic Map of Enzymes and Transporters in the Human Kidney: Stepping Closer to Mechanistic Kidney Models to Define Local Kinetics. Clin Pharmacol Ther 2021; 110:1389-1400. [PMID: 34390491 DOI: 10.1002/cpt.2396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
The applications of translational modeling of local drug concentrations in various organs had a sharp increase over the last decade. These are part of the model-informed drug development initiative, adopted by the pharmaceutical industry and promoted by drug regulatory agencies. With respect to the kidney, the models serve as a bridge for understanding animal vs. human observations related to renal drug disposition and any consequential adverse effects. However, quantitative data on key drug-metabolizing enzymes and transporters relevant for predicting renal drug disposition are limited. Using targeted and global quantitative proteomics, we determined the abundance of multiple enzymes and transporters in 20 human kidney cortex samples. Nine enzymes and 22 transporters were quantified (8 for the first time in the kidneys). In addition, > 4,000 proteins were identified and used to form an open database. CYP2B6, CYP3A5, and CYP4F2 showed comparable, but generally low expression, whereas UGT1A9 and UGT2B7 levels were the highest. Significant correlation between abundance and activity (measured by mycophenolic acid clearance) was observed for UGT1A9 (Rs = 0.65, P = 0.004) and UGT2B7 (Rs = 0.70, P = 0.023). Expression of P-gp ≈ MATE-1 and OATP4C1 transporters were high. Strong intercorrelations were observed between several transporters (P-gp/MRP4, MRP2/OAT3, and OAT3/OAT4); no correlation in expression was apparent for functionally related transporters (OCT2/MATEs). This study extends our knowledge of pharmacologically relevant proteins in the kidney cortex, with implications on more prudent use of mechanistic kidney models under the general framework of quantitative systems pharmacology and toxicology.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Certara UK (Simcyp Division), Sheffield, UK
| |
Collapse
|
13
|
Omura K, Motoki K, Kobashi S, Miyata K, Yamano K, Iwanaga T. Identification of human UDP-glucuronosyltransferase and sulfotransferase as responsible for the metabolism of dotinurad, a novel selective urate reabsorption inhibitor. Drug Metab Dispos 2021; 49:1016-1024. [PMID: 34380635 DOI: 10.1124/dmd.120.000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
Dotinurad, a novel selective urate reabsorption inhibitor, is used to treat hyperuricemia. In humans, orally administered dotinurad is excreted mainly as glucuronide and sulfate conjugates in urine. To identify the isoforms of UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) involved in dotinurad glucuronidation and sulfation, microsome and cytosol fractions of liver, intestine, kidney, and lung tissues (cytosol only) were analyzed along with recombinant human UGT and SULT isoforms. Dotinurad was mainly metabolized to its glucuronide conjugate by human liver microsomes (HLMs), and the glucuronidation followed the two-enzyme Michaelis-Menten equation. Among the recombinant human UGT isoforms expressed in the liver, UGT1A1, UGT1A3, UGT1A9, and UGT2B7 catalyzed dotinurad glucuronidation. Based on inhibition analysis using HLMs, bilirubin, imipramine, and diflunisal decreased glucuronosyltransferase activities by 45.5, 22.3, and 22.2%, respectively. Diflunisal and 3'-azido-3'-deoxythymidine, in the presence of 1% BSA, decreased glucuronosyltransferase activities by 21.1 and 13.4%, respectively. Dotinurad was metabolized to its sulfate conjugate by human liver cytosol (HLC) and human intestinal cytosol (HIC) samples, with the sulfation reaction in HLC samples following the two-enzyme Michaelis-Menten equation and that in HIC samples following the Michaelis-Menten equation. All eight recombinant human SULT isoforms used herein catalyzed dotinurad sulfation. Gavestinel decreased sulfotransferase activity by 15.3% in HLC samples, and salbutamol decreased sulfotransferase activity by 68.4% in HIC samples. These results suggest that dotinurad glucuronidation is catalyzed mainly by UGT1A1, UGT1A3, UGT1A9, and UGT2B7, whereas its sulfation is catalyzed by many SULT isoforms, including SULT1B1 and SULT1A3. Significance Statement The identification of enzymes involved in drug metabolism is important to predicting drug-drug interactions (DDIs) and interindividual variability for safe drug use. The present study revealed that dotinurad glucuronidation is catalyzed mainly by UGT1A1, UGT1A3, UGT1A9, and UGT2B7 and that its sulfation is catalyzed by many SULT isoforms, including SULT1B1 and SULT1A3. Therefore, dotinurad, a selective urate reabsorption inhibitor, is considered safe for use with a small risk of DDIs and low interindividual variability.
Collapse
Affiliation(s)
- Koichi Omura
- Research Institute, FUJI YAKUHIN CO., LTD., Japan
| | | | | | - Kengo Miyata
- Research Institute, FUJI YAKUHIN CO., LTD., Japan
| | | | | |
Collapse
|
14
|
Kozminski KD, Selimkhanov J, Heyward S, Zientek MA. Contribution of Extrahepatic Aldehyde Oxidase Activity to Human Clearance. Drug Metab Dispos 2021; 49:743-749. [PMID: 34162687 DOI: 10.1124/dmd.120.000313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/10/2021] [Indexed: 11/22/2022] Open
Abstract
Aldehyde oxidase (AOX) is a soluble, cytosolic enzyme that metabolizes various N-heterocyclic compounds and organic aldehydes. It has wide tissue distribution with highest levels found in liver, kidney, and lung. Human clearance projections of AOX substrates by in vitro assessments in isolated liver fractions (cytosol, S9) and even hepatocytes have been largely underpredictive of clinical outcomes. Various hypotheses have been suggested as to why this is the case. One explanation is that extrahepatic AOX expression contributes measurably to AOX clearance and is at least partially responsible for the often observed underpredictions. Although AOX expression has been confirmed in several extrahepatic tissues, activities therein and potential contribution to overall human clearance have not been thoroughly studied. In this work, the AOX enzyme activity using the S9 fractions of select extrahepatic human tissues (kidney, lung, vasculature, and intestine) were measured using carbazeran as a probe substrate. Measured activities were scaled to a whole-body clearance using best-available parameters and compared with liver S9 fractions. Here, the combined scaled AOX clearance obtained from the kidney, lung, vasculature, and intestine is very low and amounted to <1% of liver. This work suggests that AOX metabolism from extrahepatic sources plays little role in the underprediction of activity in human. One of the notable outcomes of this work has been the first direct demonstration of AOX activity in human vasculature. SIGNIFICANCE STATEMENT: This work demonstrates aldehyde oxidase (AOX) activity is measurable in a variety of extrahepatic human tissues, including vasculature, yet activities and potential contributions to human clearance are relatively low and insignificant when compared with the liver. Additionally, the modeling of the tissue-specific in vitro kinetic data suggests that AOX may be influenced by the tissue it resides in and thus show different affinity, activity, and modified activity over time.
Collapse
Affiliation(s)
- Kirk D Kozminski
- Takeda Pharmaceuticals Limited, San Diego, California (K.D.K., J.S., M.A.Z.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Jangir Selimkhanov
- Takeda Pharmaceuticals Limited, San Diego, California (K.D.K., J.S., M.A.Z.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Scott Heyward
- Takeda Pharmaceuticals Limited, San Diego, California (K.D.K., J.S., M.A.Z.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Michael A Zientek
- Takeda Pharmaceuticals Limited, San Diego, California (K.D.K., J.S., M.A.Z.); and BioIVT, Baltimore, Maryland (S.H.)
| |
Collapse
|
15
|
Kumar AR, Prasad B, Bhatt DK, Mathialagan S, Varma MVS, Unadkat JD. In Vivo-to-In Vitro Extrapolation of Transporter-Mediated Renal Clearance: Relative Expression Factor Versus Relative Activity Factor Approach. Drug Metab Dispos 2021; 49:470-478. [PMID: 33824168 DOI: 10.1124/dmd.121.000367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
About 30% of approved drugs are cleared predominantly by renal clearance (CLr). Of these, many are secreted by transporters. For these drugs, in vitro-to-in vivo extrapolation of transporter-mediated renal secretory clearance (CLsec,plasma) is important to prospectively predict their renal clearance and to assess the impact of drug-drug interactions and pharmacogenetics on their pharmacokinetics. Here we compared the ability of the relative expression factor (REF) and the relative activity factor (RAF) approaches to quantitatively predict the in vivo CLsec,plasma of 26 organic anion transporter (OAT) substrates assuming that OAT-mediated uptake is the rate-determining step in the CLsec,plasma of the drugs. The REF approach requires protein quantification of each transporter in the tissue (e.g., kidney) and transporter-expressing cells, whereas the RAF approach requires the use of a transporter-selective probe substrate (both in vitro and in vivo) for each transporter of interest. For the REF approach, 50% and 69% of the CLsec,plasma predictions were within 2- and 3-fold of the observed values, respectively; the corresponding values for the RAF approach were 65% and 81%. We found no significant difference between the two approaches in their predictive capability (as measured by accuracy and bias) of the CLsec,plasma or CLr of OAT drugs. We recommend that the REF and RAF approaches can be used interchangeably to predict OAT-mediated CLsec,plasma Further research is warranted to evaluate the ability of the REF or RAF approach to predict CLsec,plasma of drugs when uptake is not the rate-determining step. SIGNIFICANCE STATEMENT: This is the first direct comparison of the relative expression factor (REF) and relative activity factor (RAF) approaches to predict transporter-mediated renal clearance (CLr). The RAF, but not REF, approach requires transporter-selective probes and that the basolateral uptake is the rate-determining step in the CLr of drugs. Given that there is no difference in predictive capability of the REF and RAF approach for organic anion transporter-mediated CLr, the REF approach should be explored further to assess its ability to predict CLr when basolateral uptake is not the sole rate-determining step.
Collapse
Affiliation(s)
- Aditya R Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Deepak Kumar Bhatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Sumathy Mathialagan
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Manthena V S Varma
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (A.R.K., B.P., D.K.B., J.D.U.); and Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut (S.M., M.V.S.V.)
| |
Collapse
|
16
|
Vriend J, Pye KR, Brown C. In vitro models for accurate prediction of renal tubular xenobiotic transport in vivo. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
18
|
Doerksen MJ, Jones RS, Coughtrie MWH, Collier AC. Parameterization of Microsomal and Cytosolic Scaling Factors: Methodological and Biological Considerations for Scalar Derivation and Validation. Eur J Drug Metab Pharmacokinet 2020; 46:173-183. [PMID: 33340340 DOI: 10.1007/s13318-020-00666-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2020] [Indexed: 12/22/2022]
Abstract
Mathematical models that can predict the kinetics of compounds have been increasingly adopted for drug development and risk assessment. Data for these models may be generated from in vitro experimental systems containing enzymes contributing to metabolic clearance, such as subcellular tissue fractions including microsomes and cytosol. Extrapolation from these systems is facilitated by common scaling factors, known as microsomal protein per gram (MPPG) and cytosolic protein per gram (CPPG). Historically, parameterization of MPPG and CPPG has employed the use of recovery factors, commonly benchmarked to cytochromes P450 which work well in some contexts, but could be problematic for other enzymes. Here, we propose absolute quantification of protein content and supplementary assays to evaluate microsomal/cytosolic purity that should be employed. Examples include calculation of microsomal latency by mannose-6-phosphatase activity and immunoblotting of subcellular fractions with fraction-specific markers. Further considerations include tissue source, as disease states can affect enzyme expression and activity, and the methodology used for scalar parameterization. Regional- and organ-specific expression of enzymes, in addition to differences in organ physiology, is another important consideration. Because most efforts have focused on the liver that is, for the most part, homogeneous, derived scalars may not capture the heterogeneity of other major tissues contributing to xenobiotic metabolism including the kidneys and small intestine. Better understanding of these scalars, and how to appropriately derive them from extrahepatic tissues can provide support to the inferences made with physiologically based pharmacokinetic modeling, increase its accuracy in characterizing in vivo drug pharmacokinetics, and improve confidence in go-no-go decisions for clinical trials.
Collapse
Affiliation(s)
- Michael J Doerksen
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert S Jones
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Michael W H Coughtrie
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
19
|
Al‐Majdoub ZM, Achour B, Couto N, Howard M, Elmorsi Y, Scotcher D, Alrubia S, El‐Khateeb E, Vasilogianni A, Alohali N, Neuhoff S, Schmitt L, Rostami‐Hodjegan A, Barber J. Mass spectrometry-based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin. FEBS Lett 2020; 594:4134-4150. [PMID: 33128234 PMCID: PMC7756589 DOI: 10.1002/1873-3468.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
ABC transporters (ATP-binding cassette transporter) traffic drugs and their metabolites across membranes, making ABC transporter expression levels a key factor regulating local drug concentrations in different tissues and individuals. Yet, quantification of ABC transporters remains challenging because they are large and low-abundance transmembrane proteins. Here, we analysed 200 samples of crude and membrane-enriched fractions from human liver, kidney, intestine, brain microvessels and skin, by label-free quantitative mass spectrometry. We identified 32 (out of 48) ABC transporters: ABCD3 was the most abundant in liver, whereas ABCA8, ABCB2/TAP1 and ABCE1 were detected in all tissues. Interestingly, this atlas unveiled that ABCB2/TAP1 may have TAP2-independent functions in the brain and that biliary atresia (BA) and control livers have quite different ABC transporter profiles. We propose that meaningful biological information can be derived from a direct comparison of these data sets.
Collapse
Affiliation(s)
- Zubida M. Al‐Majdoub
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Narciso Couto
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Martyn Howard
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Yasmine Elmorsi
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Sarah Alrubia
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Chemistry DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Eman El‐Khateeb
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | | | - Noura Alohali
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Practice DepartmentCollege of PharmacyPrincess Noura Bint Abdul Rahman UniversityRiyadhSaudi Arabia
| | | | - Lutz Schmitt
- Institute of BiochemistryHeinrich Heine University DüsseldorfGermany
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Simcyp DivisionCertara UK LtdSheffieldUK
| | - Jill Barber
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| |
Collapse
|
20
|
Scotcher D, Arya V, Yang X, Zhao P, Zhang L, Huang S, Rostami‐Hodjegan A, Galetin A. A Novel Physiologically Based Model of Creatinine Renal Disposition to Integrate Current Knowledge of Systems Parameters and Clinical Observations. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:310-321. [PMID: 32441889 PMCID: PMC7306622 DOI: 10.1002/psp4.12509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/16/2020] [Indexed: 01/11/2023]
Abstract
Creatinine is the most common clinical biomarker of renal function. As a substrate for renal transporters, its secretion is susceptible to inhibition by drugs, resulting in transient increase in serum creatinine and false impression of damage to kidney. Novel physiologically based models for creatinine were developed here and (dis)qualified in a stepwise manner until consistency with clinical data. Data from a matrix of studies were integrated, including systems data (common to all models), proteomics-informed in vitro-in vivo extrapolation of all relevant transporter clearances, exogenous administration of creatinine (to estimate endogenous synthesis rate), and inhibition of different renal transporters (11 perpetrator drugs considered for qualification during creatinine model development and verification on independent data sets). The proteomics-informed bottom-up approach resulted in the underprediction of creatinine renal secretion. Subsequently, creatinine-trimethoprim clinical data were used to inform key model parameters in a reverse translation manner, highlighting best practices and challenges for middle-out optimization of mechanistic models.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
| | - Vikram Arya
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Xinning Yang
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ping Zhao
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Lei Zhang
- Office of Research and StandardsOffice of Generic DrugsCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical PharmacologyOffice of Translational SciencesCentre for Drug Evaluation and ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
- CertaraSheffieldUK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic ResearchUniversity of ManchesterManchesterUK
| |
Collapse
|
21
|
Clewell HJ, Campbell JL, Van Landingham C, Franzen A, Yoon M, Dodd DE, Andersen ME, Gentry PR. Incorporation of in vitro metabolism data and physiologically based pharmacokinetic modeling in a risk assessment for chloroprene. Inhal Toxicol 2020; 31:468-483. [PMID: 31992090 DOI: 10.1080/08958378.2020.1715513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: To develop a physiologically based pharmacokinetic (PBPK) model for chloroprene in the mouse, rat and human, relying only on in vitro data to estimate tissue metabolism rates and partitioning, and to apply the model to calculate an inhalation unit risk (IUR) for chloroprene.Materials and methods: Female B6C3F1 mice were the most sensitive species/gender for lung tumors in the 2-year bioassay conducted with chloroprene. The PBPK model included tissue metabolism rate constants for chloroprene estimated from results of in vitro gas uptake studies using liver and lung microsomes. To assess the validity of the PBPK model, a 6-hr, nose-only chloroprene inhalation study was conducted with female B6C3F1 mice in which both chloroprene blood concentrations and ventilation rates were measured. The PBPK model was then used to predict dose measures - amounts of chloroprene metabolized in lungs per unit time - in mice and humans.Results: The mouse PBPK model accurately predicted in vivo pharmacokinetic data from the 6-hr, nose-only chloroprene inhalation study. The PBPK model was used to conduct a cancer risk assessment based on metabolism of chloroprene to reactive epoxides in the lung, the target tissue in mice. The IUR was over100-fold lower than the IUR from the EPA Integrated Risk Information System (IRIS), which was based on inhaled chloroprene concentration. The different result from the PBPK model risk assessment arises from use of the more relevant tissue dose metric, amount metabolized, rather than inhaled concentrationDiscussion and conclusions: The revised chloroprene PBPK model is based on the best available science, including new test animal in vivo validation, updated literature review and a Markov-Chain Monte Carlo analysis to assess parameter uncertainty. Relying on both mouse and human metabolism data also provides an important advancement in the use of quantitative in vitro to in vivo extrapolation (QIVIVE). Inclusion of the best available science is especially important when deriving a toxicity value based on species extrapolation for the potential carcinogenicity of a reactive metabolite.
Collapse
Affiliation(s)
| | | | | | | | | | - Darol E Dodd
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA
| | - Melvin E Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
22
|
van der Made TK, Fedecostante M, Scotcher D, Rostami-Hodjegan A, Sastre Toraño J, Middel I, Koster AS, Gerritsen KG, Jankowski V, Jankowski J, Hoenderop JGJ, Masereeuw R, Galetin A. Quantitative Translation of Microfluidic Transporter in Vitro Data to in Vivo Reveals Impaired Albumin-Facilitated Indoxyl Sulfate Secretion in Chronic Kidney Disease. Mol Pharm 2019; 16:4551-4562. [PMID: 31525064 DOI: 10.1021/acs.molpharmaceut.9b00681] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoxyl sulfate (IxS), a highly albumin-bound uremic solute, accumulates in chronic kidney disease (CKD) due to reduced renal clearance. This study was designed to specifically investigate the role of human serum albumin (HSA) in IxS renal secretion via organic anion transporter 1 (OAT1) in a microfluidic system and subsequently apply quantitative translation of in vitro data to predict extent of change in IxS renal clearance in CKD stage IV relative to healthy. Conditionally immortalized human proximal tubule epithelial cells overexpressing OAT1 were incubated with IxS (5-200 μM) in the HSA-free medium or in the presence of either HSA or CKD-modified HSA. IxS uptake in the presence of HSA resulted in more than 20-fold decrease in OAT1 affinity (Km,u) and 37-fold greater in vitro unbound intrinsic clearance (CLint,u) versus albumin-free condition. In the presence of CKD-modified albumin, Km,u increased four-fold and IxS CLint,u decreased almost seven-fold relative to HSA. Fold-change in parameters exceeded differences in IxS binding between albumin conditions, indicating additional mechanism and facilitating role of albumin in IxS OAT1-mediated uptake. Quantitative translation of IxS in vitro OAT1-mediated CLint,u predicted a 60% decrease in IxS renal elimination as a result of CKD, in agreement with the observed data (80%). The findings of the current study emphasize the role of albumin in IxS transport via OAT1 and explored the impact of modifications in albumin on renal excretion via active secretion in CKD. For the first time, this study performed quantitative translation of transporter kinetic data generated in a novel microfluidic in vitro system to a clinically relevant setting. Knowledge gaps and future directions in quantitative translation of renal drug disposition from microphysiological systems are discussed.
Collapse
Affiliation(s)
- Thomas K van der Made
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| | | | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K.,Simcyp Division , Certara UK Limited , Sheffield S1 2BJ , U.K
| | | | | | | | - Karin G Gerritsen
- Department of Nephrology and Hypertension , University Medical Center Utrecht , Utrecht 3508 GA , The Netherlands
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research , RWTH Aachen University Hospital , Aachen 52074 , Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research , RWTH Aachen University Hospital , Aachen 52074 , Germany.,School for Cardiovascular Diseases , Maastricht University , Universiteitssingel 50 , Maastricht 6229 ER , The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| |
Collapse
|
23
|
Choi GW, Lee YB, Cho HY. Interpretation of Non-Clinical Data for Prediction of Human Pharmacokinetic Parameters: In Vitro-In Vivo Extrapolation and Allometric Scaling. Pharmaceutics 2019; 11:E168. [PMID: 30959827 PMCID: PMC6523982 DOI: 10.3390/pharmaceutics11040168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Extrapolation of pharmacokinetic (PK) parameters from in vitro or in vivo animal to human is one of the main tasks in the drug development process. Translational approaches provide evidence for go or no-go decision-making during drug discovery and the development process, and the prediction of human PKs prior to the first-in-human clinical trials. In vitro-in vivo extrapolation and allometric scaling are the choice of method for projection to human situations. Although these methods are useful tools for the estimation of PK parameters, it is a challenge to apply these methods since underlying biochemical, mathematical, physiological, and background knowledge of PKs are required. In addition, it is difficult to select an appropriate methodology depending on the data available. Therefore, this review covers the principles of PK parameters pertaining to the clearance, volume of distribution, elimination half-life, absorption rate constant, and prediction method from the original idea to recently developed models in order to introduce optimal models for the prediction of PK parameters.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea.
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Korea.
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea.
| |
Collapse
|
24
|
Naritomi Y, Sanoh S, Ohta S. Utility of Chimeric Mice with Humanized Liver for Predicting Human Pharmacokinetics in Drug Discovery: Comparison with in Vitro– in Vivo Extrapolation and Allometric Scaling. Biol Pharm Bull 2019; 42:327-336. [DOI: 10.1248/bpb.b18-00754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoichi Naritomi
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
25
|
Al-Majdoub ZM, Al Feteisi H, Achour B, Warwood S, Neuhoff S, Rostami-Hodjegan A, Barber J. Proteomic Quantification of Human Blood-Brain Barrier SLC and ABC Transporters in Healthy Individuals and Dementia Patients. Mol Pharm 2019; 16:1220-1233. [PMID: 30735053 DOI: 10.1021/acs.molpharmaceut.8b01189] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis by controlling traffic of molecules from the circulation into the brain. This function is predominantly dependent on proteins expressed at the BBB, especially transporters and tight junction proteins. Alterations to the level and function of BBB proteins can impact the susceptibility of the central nervous system to exposure to xenobiotics in the systemic circulation with potential consequent effects on brain function. In this study, expression profiles of drug transporters and solute carriers in the BBB were assessed in tissues from healthy individuals ( n = 12), Alzheimer's patients ( n = 5), and dementia with Lewy bodies patients ( n = 5), using targeted, accurate mass retention time (AMRT) and global proteomic methods. A total of 53 transporters were quantified, 19 for the first time in the BBB. A further 20 novel transporters were identified but not quantified. The global proteomic method identified another 3333 BBB proteins. Transporter abundances, taken together with the scaling factor, microvessel protein content per unit tissue (BMvPGB also measured here), can be used in quantitative systems pharmacology models predicting drug disposition in the brain and permitting dose adjustment (precision dosing) in special populations of patients, such as those with dementia. Even in this small study, we see differences in transporter profile between healthy and diseased brain tissue.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Hajar Al Feteisi
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility , University of Manchester , Manchester M13 9PT , U.K
| | - Sibylle Neuhoff
- Certara UK Limited , Simcyp Division , Level 2-Acero, 1 Concourse Way , Sheffield S1 2BJ , U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K.,Certara UK Limited , Simcyp Division , Level 2-Acero, 1 Concourse Way , Sheffield S1 2BJ , U.K
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| |
Collapse
|
26
|
Xu M, Saxena N, Vrana M, Zhang H, Kumar V, Billington S, Khojasteh C, Heyward S, Unadkat JD, Prasad B. Targeted LC-MS/MS Proteomics-Based Strategy To Characterize in Vitro Models Used in Drug Metabolism and Transport Studies. Anal Chem 2018; 90:11873-11882. [PMID: 30204418 DOI: 10.1021/acs.analchem.8b01913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Subcellular fractionation of tissue homogenate provides enriched in vitro models (e.g., microsomes, cytosol, or membranes), which are routinely used in the drug metabolism or transporter activity and protein abundance studies. However, batch-to-batch or interlaboratory variability in the recovery, enrichment, and purity of the subcellular fractions can affect performance of in vitro models leading to inaccurate in vitro to in vivo extrapolation (IVIVE) of drug clearance. To evaluate the quality of subcellular fractions, we developed a simple, targeted, and sensitive LC-MS/MS proteomics-based strategy, which relies on determination of protein markers of various cellular organelles, i.e., plasma membrane, cytosol, nuclei, mitochondria, endoplasmic reticulum (ER), lysosomes, peroxisomes, cytoskeleton, and exosomes. Application of the quantitative proteomics method confirmed a significant effect of processing variables (i.e., homogenization method and centrifugation speed) on the recovery, enrichment, and purity of isolated proteins in microsomes and cytosol. Particularly, markers of endoplasmic reticulum lumen and mitochondrial lumen were enriched in the cytosolic fractions as a result of their release during homogenization. Similarly, the relative recovery and composition of the total membrane fraction isolated from cell vs tissue samples was quantitatively different and should be considered in IVIVE. Further, analysis of exosomes isolated from sandwich-cultured hepatocyte media showed the effect of culture duration on compositions of purified exosomes. Therefore, the quantitative proteomics-based strategy developed here can be applied for efficient and simultaneous determination of multiple protein markers of various cellular organelles when compared to antibody- or activity-based assays and can be used for quality control of subcellular fractionation procedures including in vitro model development for drug metabolism and transport studies.
Collapse
Affiliation(s)
- Meijuan Xu
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States.,Department of Clinical Pharmacology , Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , China
| | - Neha Saxena
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Marc Vrana
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Haeyoung Zhang
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Vineet Kumar
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Sarah Billington
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics Department , Genentech, Inc. , South San Francisco , California 94080 , United States
| | | | - Jashvant D Unadkat
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Bhagwat Prasad
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
27
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Di L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin Drug Discov 2017; 12:1105-1115. [DOI: 10.1080/17460441.2017.1367280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| |
Collapse
|