1
|
Shukla A, Sharma C, Malik MZ, Singh AK, Aditya AK, Mago P, Shalimar, Ray AK. Deciphering the tripartite interaction of urbanized environment, gut microbiome and cardio-metabolic disease. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124693. [PMID: 40022791 DOI: 10.1016/j.jenvman.2025.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Collapse
Affiliation(s)
- Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Chanchal Sharma
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Translational Medicine, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Center, Mathura, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Lim JJ, Klaassen CD, Cui JY. Deciphering the cell type-specific and zonal distribution of drug-metabolizing enzymes, transporters, and transcription factors in livers of mice using single-cell transcriptomics. Drug Metab Dispos 2025; 53:100029. [PMID: 39919554 DOI: 10.1016/j.dmd.2024.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
The liver contains multiple cell types, including resident cell types and immune cells. The liver is also categorized into 3 zones: periportal (zone 1), midzonal (zone 2), and centrilobular (zone 3). The goal of this study was to characterize the distribution of drug-processing genes (DPGs) in mouse liver using published single-cell and nuclei transcriptomic datasets, which were subjected to zonal deconvolution. Filtering, normalization, clustering, and differential expression analyses were performed using Seurat V5 in R. Hepatocytes were assigned to 3 zones based on known zonal markers and validated with published spatial transcriptomics data. Among the 195 DPGs profiled, most were expressed highest in hepatocytes (61.3%). Interestingly, certain DPGs were expressed most highly in nonparenchymal cells, such as in cholangiocytes (11.2%, eg, carboxylesterase [Ces] 2e, Ces2g), endothelial cells (7.2%, eg, aldo-keto reductase [Akr] 1c19, Akr1e1), Kupffer cells (5.3%, eg, Akr1a1, Akr1b10), stellate cells (5.1%, eg, retinoic acid receptor [Rar] α, Rarβ), myofibroblasts (2.9%, RAR-related orphan receptor [Rar] α), and a few were expressed in immune cell types. In hepatocytes, 72.4% of phase-I enzymes were enriched in zone 3. Phase-II conjugation enzymes such as UDP-glucuronosyltransferases (75%) were enriched in zone 3, whereas sulfotransferases (40%) were enriched in zone 1. Hepatic xenobiotic transporters were enriched in zone 3. The xenobiotic biotransformation-regulating transcription factors were enriched in zone 3 hepatocytes. The enrichment of DPGs in liver cell types, including non-parenchymal cells and zone 1 hepatocytes, may serve as an additional repertoire for xenobiotic biotransformation. SIGNIFICANCE STATEMENT: Our study is among the first to systematically characterize the baseline mRNA enrichment of important drug-processing genes in different cell types and zones in the liver. This finding will aid in further understanding the mechanisms of chemical-induced liver injury with improved resolution and precision.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington; Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington
| | - Curtis Dean Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kanas.
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington; Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington.
| |
Collapse
|
3
|
Kirsch A, Gindlhuber J, Zabini D, Osto E. Bile acids and incretins as modulators of obesity-associated atherosclerosis. Front Cardiovasc Med 2025; 11:1510148. [PMID: 39834741 PMCID: PMC11743266 DOI: 10.3389/fcvm.2024.1510148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Obesity is one of the major global health concerns of the 21st century, associated with many comorbidities such as type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated steatotic liver disease, and early and aggressive atherosclerotic cardiovascular disease, which is the leading cause of death worldwide. Bile acids (BAs) and incretins are gut hormones involved in digestion and absorption of fatty acids, and insulin secretion, respectively. In recent years BAs and incretins are increasingly recognized as key signaling molecules, which target multiple tissues and organs, beyond the gastro-intestinal system. Moreover, incretin-based therapy has revolutionized the treatment of T2DM and obesity. This mini review highlights the current knowledge about dysregulations in BA homeostasis in obesity with a special focus on atherosclerosis as well as athero-modulating roles of incretins and currently available incretin-based therapies.
Collapse
Affiliation(s)
- Andrijana Kirsch
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Juergen Gindlhuber
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Diana Zabini
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Das S, Parigi SM, Luo X, Fransson J, Kern BC, Okhovat A, Diaz OE, Sorini C, Czarnewski P, Webb AT, Morales RA, Lebon S, Monasterio G, Castillo F, Tripathi KP, He N, Pelczar P, Schaltenberg N, De la Fuente M, López-Köstner F, Nylén S, Larsen HL, Kuiper R, Antonson P, Hermoso MA, Huber S, Biton M, Scharaw S, Gustafsson JÅ, Katajisto P, Villablanca EJ. Liver X receptor unlinks intestinal regeneration and tumorigenesis. Nature 2025; 637:1198-1206. [PMID: 39567700 PMCID: PMC11779645 DOI: 10.1038/s41586-024-08247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Uncontrolled regeneration leads to neoplastic transformation1-3. The intestinal epithelium requires precise regulation during continuous homeostatic and damage-induced tissue renewal to prevent neoplastic transformation, suggesting that pathways unlinking tumour growth from regenerative processes must exist. Here, by mining RNA-sequencing datasets from two intestinal damage models4,5 and using pharmacological, transcriptomics and genetic tools, we identified liver X receptor (LXR) pathway activation as a tissue adaptation to damage that reciprocally regulates intestinal regeneration and tumorigenesis. Using single-cell RNA sequencing, intestinal organoids, and gain- and loss-of-function experiments, we demonstrate that LXR activation in intestinal epithelial cells induces amphiregulin (Areg), enhancing regenerative responses. This response is coordinated by the LXR-ligand-producing enzyme CYP27A1, which was upregulated in damaged intestinal crypt niches. Deletion of Cyp27a1 impaired intestinal regeneration, which was rescued by exogenous LXR agonists. Notably, in tumour models, Cyp27a1 deficiency led to increased tumour growth, whereas LXR activation elicited anti-tumour responses dependent on adaptive immunity. Consistently, human colorectal cancer specimens exhibited reduced levels of CYP27A1, LXR target genes, and B and CD8 T cell gene signatures. We therefore identify an epithelial adaptation mechanism to damage, whereby LXR functions as a rheostat, promoting tissue repair while limiting tumorigenesis.
Collapse
Affiliation(s)
- Srustidhar Das
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
| | - S Martina Parigi
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Xinxin Luo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Jennifer Fransson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Bianca C Kern
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ali Okhovat
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Oscar E Diaz
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Chiara Sorini
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Paulo Czarnewski
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Solna, Sweden
| | - Anna T Webb
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Sacha Lebon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gustavo Monasterio
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Francisca Castillo
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Ning He
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Stockholm, Sweden
| | - Penelope Pelczar
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Schaltenberg
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marjorie De la Fuente
- Center of Biomedical Research (CIBMED), School of Medicine, Faculty of Medicine-Clinica Las Condes, Universidad Finis Terrae, Santiago, Chile
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco López-Köstner
- Centro de Enfermedades Digestivas, Programa Enfermedad Inflamatoria Intestinal, Clínica Universidad de Los Andes, Universidad de Los Andes, Santiago, Chile
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hjalte List Larsen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Raoul Kuiper
- Section for Aquatic Biosecurity Research, Norwegian Veterinary Institute, Ås, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Samuel Huber
- I. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Moshe Biton
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Scharaw
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Pekka Katajisto
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
- Center of Molecular Medicine, Stockholm, Sweden.
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Grant ET, De Franco H, Desai MS. Non-SCFA microbial metabolites associated with fiber fermentation and host health. Trends Endocrinol Metab 2025; 36:70-82. [PMID: 38991905 DOI: 10.1016/j.tem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Dietary fiber is degraded by commensal gut microbes to yield host-beneficial short-chain fatty acids (SCFAs), but personalized responses to fiber supplementation highlight a role for other microbial metabolites in shaping host health. In this review we summarize recent findings from dietary fiber intervention studies describing health impacts attributed to microbial metabolites other than SCFAs, particularly secondary bile acids (2°BAs), aromatic amino acid derivatives, neurotransmitters, and B vitamins. We also discuss shifts in microbial metabolism occurring through altered maternal dietary fiber intake and agricultural practices, which warrant further investigation. To optimize the health benefits of dietary fibers, it is essential to survey a range of metabolites and adapt recommendations on a personalized basis, according to the different functional aspects of the microbiome.
Collapse
Affiliation(s)
- Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Hélène De Franco
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology, and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Wang Y, Yu J, Chen B, Jin W, Wang M, Chen X, Jian M, Sun L, Piao C. Bile acids as a key target: traditional Chinese medicine for precision management of insulin resistance in type 2 diabetes mellitus through the gut microbiota-bile acids axis. Front Endocrinol (Lausanne) 2024; 15:1481270. [PMID: 39720247 PMCID: PMC11666381 DOI: 10.3389/fendo.2024.1481270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance (IR) and insufficient insulin secretion. Its characteristic pathophysiological processes involve the interaction of multiple mechanisms. In recent years, globally, the prevalence of T2DM has shown a sharp rise due to profound changes in socio-economic structure, the persistent influence of environmental factors, and the complex role of genetic background. It is worth noting that most T2DM patients show significant IR, which further exacerbates the difficulty of disease progression and prevention. In the process of extensively exploring the pathogenesis of T2DM, the dynamic equilibrium of gut microbes and its diverse metabolic activities have increasingly emphasized its central role in the pathophysiological process of T2DM. Bile acids (BAs) metabolism, as a crucial link between gut microbes and the development of T2DM, not only precisely regulates lipid absorption and metabolism but also profoundly influences glucose homeostasis and energy balance through intricate signaling pathways, thus playing a pivotal role in IR progression in T2DM. This review aims to delve into the specific mechanism through which BAs contribute to the development of IR in T2DM, especially emphasizing how gut microbes mediate the metabolic transformation of BAs based on current traditional Chinese medicine research. Ultimately, it seeks to offer new insights into the prevention and treatment of T2DM. Diet, genetics, and the environment intricately sculpt the gut microbiota and BAs metabolism, influencing T2DM-IR. The research has illuminated the significant impact of single herbal medicine, TCM formulae, and external therapeutic methods such as electroacupuncture on the BAs pool through perturbations in gut microbiota structure. This interaction affects glucose and lipid metabolism as well as insulin sensitivity. Additionally, multiple pathways including BA-FXR-SHP, BA-FXR-FGFR15/19, BA-FXR-NLRP3, BA-TGR5-GLP-1, BAs-TGR5/FXR signaling pathways have been identified through which the BAs pool significantly alter blood glucose levels and improve IR. These findings offer novel approaches for enhancing IR and managing metabolic disorders among patients with T2DM.
Collapse
Affiliation(s)
- Yu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Yu
- Department of Endocrinology, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Binqin Chen
- Applicants with Equivalent Academic Qualifications for Master Degree, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meili Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengqiong Jian
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunli Piao
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
7
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
8
|
Lopez VA, Lim JJ, Seguin RP, Dempsey JL, Kunzman G, Cui JY, Xu L. Oral exposure to benzalkonium chlorides in male and female mice reveals alteration of the gut microbiome and bile acid profile. Toxicol Sci 2024; 202:265-277. [PMID: 39363503 PMCID: PMC11589104 DOI: 10.1093/toxsci/kfae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid (BA) homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d7-C12- and d7-C16-BACs at 120 µg/g/d for 1 wk. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d7-C12- or d7-C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted BA quantitation analysis, we observed decreases in secondary BAs in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary BAs into secondary BAs, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.
Collapse
Affiliation(s)
- Vanessa A Lopez
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joe J Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Ryan P Seguin
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Gabrielle Kunzman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
9
|
Razavi Z, Soltani M, Pazoki-Toroudi H, Dabagh M. Microfluidic systems for modeling digestive cancer: a review of recent progress. Biomed Phys Eng Express 2024; 10:052002. [PMID: 39142294 DOI: 10.1088/2057-1976/ad6f15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Purpose. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.Methods. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.Results. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.Conclusion. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K N Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Centre for Sustainable Business, International Business University, Toronto, Canada
| | | | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, WI 53211, United States of America
| |
Collapse
|
10
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
11
|
Mehvari S, Karimian Fathi N, Saki S, Asadnezhad M, Arzhangi S, Ghodratpour F, Mohseni M, Zare Ashrafi F, Sadeghian S, Boroumand M, Shokohizadeh F, Rostami E, Boroumand R, Najafipour R, Malekzadeh R, Riazalhosseini Y, Akbari M, Lathrop M, Najmabadi H, Hosseini K, Kahrizi K. Contribution of genetic variants in the development of familial premature coronary artery disease in a cohort of cardiac patients. Clin Genet 2024; 105:611-619. [PMID: 38308583 DOI: 10.1111/cge.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Coronary artery disease (CAD), the most prevalent cardiovascular disease, is the leading cause of death worldwide. Heritable factors play a significant role in the pathogenesis of CAD. It has been proposed that approximately one-third of patients with CAD have a positive family history, and individuals with such history are at ~1.5-fold increased risk of CAD in their lifespans. Accordingly, the long-recognized familial clustering of CAD is a strong risk factor for this disease. Our study aimed to identify candidate genetic variants contributing to CAD by studying a cohort of 60 large Iranian families with at least two members in different generations afflicted with premature CAD (PCAD), defined as established disease at ≤45 years in men and ≤55 years in women. Exome sequencing was performed for a subset of the affected individuals, followed by prioritization and Sanger sequencing of candidate variants in all available family members. Subsequently, apparently healthy carriers of potential risk variants underwent coronary computed tomography angiography (CCTA), followed by co-segregation analysis of the combined data. Putative causal variants were identified in seven genes, ABCG8, CD36, CYP27A1, PIK3C2G, RASSF9, RYR2, and ZFYVE21, co-segregating with familial PCAD in seven unrelated families. Among these, PIK3C2G, RASSF9, and ZFYVE21 are novel candidate CAD susceptibility genes. Our findings indicate that rare variants in genes identified in this study are involved in CAD development.
Collapse
Affiliation(s)
- Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nahid Karimian Fathi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Saki
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saeed Sadeghian
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shokohizadeh
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Rostami
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahnama Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- McGill Genome Centre, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Mireault M, Rose CF, Karvellas CJ, Sleno L. Perturbations in human bile acid profiles following drug-induced liver injury investigated using semitargeted high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9731. [PMID: 38469943 DOI: 10.1002/rcm.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
RATIONALE Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in North America. To investigate the effect of drug-induced liver injury (DILI) on circulating bile acid (BA) profiles, serum from ALF patients and healthy controls were analyzed using a semitargeted high-resolution mass spectrometry approach to measure BAs in their unconjugated and amidated forms and their glucuronide and sulfate conjugates. METHODS Human serum samples from 20 healthy volunteers and 34 ALF patients were combined with deuterated BAs and extracted, prior to liquid chromatography high-resolution tandem mass spectrometry analysis. A mix of 46 standards helped assign 26 BAs in human serum by accurate mass and retention time matching. Moreover, other isomers of unconjugated and amidated BAs, as well as glucuronide and sulfate conjugates, were assigned by accurate mass filtering. In vitro incubations of standard BAs provided increased information for certain peaks of interest. RESULTS A total of 275 BA metabolites, with confirmed or putative assignments, were measured in human serum samples. APAP overdose significantly influenced the levels of most BAs, promoting glycine conjugation, and, to a lesser extent, taurine conjugation. When patient outcome was considered, 11 BAs were altered significantly, including multiple sulfated species. Although many of the BAs measured did not have exact structures assigned, several putatively identified BAs of interest were further characterized using in vitro incubations. CONCLUSION An optimized chromatographic separation tailored to BAs of ranging polarities was combined with accurate mass measurements to investigate the effect that DILI has on their complex profiles and metabolism to a much wider extent than previously possible. The analysis of complex BA profiles enabled in-depth analysis of the BA metabolism perturbations in ALF, including certain metabolites related to patient outcomes.
Collapse
Affiliation(s)
- Myriam Mireault
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Constantine J Karvellas
- Department of Critical Care Medicine and Gastroenterology/Hepatology, University of Alberta, Edmonton, Alberta, Canada
| | - Lekha Sleno
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
13
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
14
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Yu X, Zhang Y, Cogliati B, Klaassen CD, Kumar S, Cheng X, Bu P. Distinct bile acid alterations in response to a single administration of PFOA and PFDA in mice. Toxicology 2024; 502:153719. [PMID: 38181850 PMCID: PMC10922993 DOI: 10.1016/j.tox.2023.153719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a group of synthetic chemicals that were once widely used for industrial purposes and in consumer products, are widely found in the environment and in human blood due to their extraordinary resistance to degradation. Once inside the body, PFASs can activate nuclear receptors such as PPARα and CAR. The present study aimed to investigate the impact of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) on liver structure and functions, as well as bile acid homeostasis in mice. A single administration of 0.1 mmole/kg of PFDA, not PFOA, elevated serum ALT and bilirubin levels and caused cholestasis in WT mice. PFDA increased total and various bile acid species in serum but decreased them in the liver. Furthermore, in mouse livers, PFDA, not PFOA, down-regulated mRNA expression of uptake transporters (Ntcp, Oatp1a1, 1a4, 1b2, and 2b1) but induced efflux transporters (Bcrp, Mdr2, and Mrp2-4). In addition, PFDA, not PFOA, decreased Cyp7a1, 7b1, 8b1, and 27a1 mRNA expression in mouse livers with concomitant hepatic accumulation of cholesterol. In contrast, in PPARα-null mice, PFDA did not increase serum ALT, bilirubin, or total bile acids, but produced prominent hepatosteatosis; and the observed PFDA-induced expression changes of transporters and Cyps in WT mice were largely attenuated or abolished. In CAR-null mice, the observed PFDA-induced bile acid alterations in WT mice were mostly sustained. These results indicate that, at the dose employed, PFDA has more negative effects than PFOA on liver function. PPARα appears to play a major role in mediating most of PFDA-induced effects, which were absent or attenuated in PPARα-null mice. Lack of PPARα, however, exacerbated hepatic steatosis. Our findings indicate separated roles of PPARα in mediating the adaptive responses to PFDA: protective against hepatosteatosis but exacerbating cholestasis.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Youcai Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bruno Cogliati
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY 10029, United States; Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, 05508-270, Sao Paulo, Brazil
| | - Curtis D Klaassen
- University of Kansas Medical Center, Kansas City, KS 66103, United States
| | - Sanaya Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Xingguo Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States.
| |
Collapse
|
16
|
Gregor A, Panteva V, Bruckberger S, Auñon-Lopez A, Blahova S, Blahova V, Tevini J, Weber DD, Kofler B, Pignitter M, Duszka K. Energy and macronutrient restriction regulate bile acid homeostasis. J Nutr Biochem 2024; 124:109517. [PMID: 37925090 DOI: 10.1016/j.jnutbio.2023.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As we reported previously, caloric restriction (CR) results in an increased concentration of bile acids (BA) in the intestinal mucosa. We now investigated the background of this phenotype, trying to identify nutrition-related factors modulating BA levels. Male mice were submitted to various types of restrictive diets and BA levels and expression of associated factors were measured. We found that BA concentration is increased in the liver of CR mice, which corresponds to reduced expression of the Shp gene and elevated mRNA levels of Cyp27a1, Bal, and Ntcp, as well as CYP7A1 protein and gene expression. Correlation between decreased concentration of BAs in the feces, increased BAs levels in plasma, and elevated gene expression of BAs transporters in the ileum mucosa suggests enhanced BA uptake in the intestine of CR mice. Corresponding to CR upregulation of liver and ileum mucosa, BA concentration was found in animals submitted to other types of prolonged energy-restricting dietary protocols, including intermittent fasting and fasting-mimicking diet. While over-night fasting had negligible impact on BAs levels. Manipulation of macronutrient levels partly affected BA balance. Low-carbohydrate and ketogenic diet increased BAs in the liver but not in the intestine. Carbohydrate restriction stimulates BA synthesis in the liver, but energy restriction is required for the increase in BA levels in the intestine and its uptake.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Valeriya Panteva
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Stefan Bruckberger
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Sara Blahova
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Viktoria Blahova
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
18
|
Zhu B, Shao C, Xu W, Dai J, Fu G, Hu Y. Effects of Thyroid Powder on Tadpole ( Lithobates catesbeiana) Metamorphosis and Growth: The Role of Lipid Metabolism and Gut Microbiota. Animals (Basel) 2024; 14:208. [PMID: 38254377 PMCID: PMC10812769 DOI: 10.3390/ani14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
A low metamorphosis rate of amphibian larvae, commonly known as tadpoles, limits the farming production of bullfrogs (Lithobates catesbeiana). This study aimed to examine the effects of processed thyroid powder as a feed additive on tadpole metamorphosis, lipid metabolism, and gut microbiota. Five groups of tadpoles were fed with diets containing 0 g/kg (TH0), 1.5 g/kg (TH1.5), 3 g/kg (TH3), 4.5 g/kg (TH4.5), and 6 g/kg (TH6) thyroid powder for 70 days. The results showed that TH increased the average weight of tadpoles during metamorphosis, with the TH6 group having the highest values. The TH4.5 group had the highest metamorphosis rate (p < 0.05). Biochemical tests and Oil Red O staining showed that the lipid (triglyceride) content in the liver decreased after TH supplementation, especially at doses higher than 1.5 g/kg. RT-qPCR revealed that TH at doses higher than 4.5 g/kg significantly up-regulated the transcriptional expression of the pparα, accb, fas, fadd6, acadl, and lcat genes, which are related to lipid metabolism (p < 0.05). These results showed that TH seems to simultaneously promote the synthesis and decomposition of lipid and fatty acids, but ultimately show a decrease in lipids. As for the gut microbiota, it is noteworthy that Verrucomicrobia increased significantly in the TH4.5 and TH6 groups, and the Akkermansia (classified as Verrucomicrobia) was the corresponding genus, which is related to lipid metabolism. Specifically, the metabolic pathways of the gut microbiota were mainly enriched in metabolic-related functions (such as lipid metabolism), and there were significant differences in metabolic and immune pathways between the TH4.5 and TH0 groups (p < 0.05). In summary, TH may enhance lipid metabolism by modulating the gut microbiota (especially Akkermansia), thereby promoting the growth of tadpoles. Consequently, a supplementation of 4.5 g/kg or 6 g/kg of TH is recommended for promoting the metamorphosis and growth of tadpoles.
Collapse
Affiliation(s)
- Bo Zhu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (B.Z.); (C.S.); (W.X.); (J.D.); (G.F.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Chuang Shao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (B.Z.); (C.S.); (W.X.); (J.D.); (G.F.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenjie Xu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (B.Z.); (C.S.); (W.X.); (J.D.); (G.F.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Jihong Dai
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (B.Z.); (C.S.); (W.X.); (J.D.); (G.F.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Guihong Fu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (B.Z.); (C.S.); (W.X.); (J.D.); (G.F.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China; (B.Z.); (C.S.); (W.X.); (J.D.); (G.F.)
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
19
|
Verkade E, Shen W, Hovingh M, Mulder N, de Bruyn K, Koehorst M, de Vries H, Bloks V, Kuipers F, de Boer J. Gut microbiota depletion aggravates bile acid-induced liver pathology in mice with a human-like bile acid composition. Clin Sci (Lond) 2023; 137:1637-1650. [PMID: 37910096 PMCID: PMC10643054 DOI: 10.1042/cs20230812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Cyp2c70-deficient mice have a human-like bile acid (BA) composition due to their inability to convert chenodeoxycholic acid (CDCA) into rodent-specific muricholic acids (MCAs). However, the hydrophobic BA composition in these animals is associated with liver pathology. Although Cyp2c70-ablation has been shown to alter gut microbiome composition, the impact of gut bacteria on liver pathology in Cyp2c70-/- mice remains to be established. Therefore, we treated young-adult male and female wild-type (WT) and Cyp2c70-/- mice with antibiotics (AB) with broad specificity to deplete the gut microbiota and assessed the consequences on BA metabolism and liver pathology. Female Cyp2c70-/- mice did not tolerate AB treatment, necessitating premature termination of the experiment. Male Cyp2c70-/- mice did tolerate AB but showed markedly augmented liver pathology after 6 weeks of treatment. Dramatic downregulation of hepatic Cyp8b1 expression (-99%) caused a reduction in the proportions of 12α-hydroxylated BAs in the circulating BA pools of AB-treated male Cyp2c70-/- mice. Interestingly, the resulting increased BA hydrophobicity strongly correlated with various indicators of liver pathology. Moreover, genetic inactivation of Cyp8b1 in livers of male Cyp2c70-/- mice increased liver pathology, while addition of ursodeoxycholic acid to the diet prevented weight loss and liver pathology in AB-treated female Cyp2c70-/- mice. In conclusion, depletion of gut microbiota in Cyp2c70-/- mice aggravates liver pathology at least in part by increasing the hydrophobicity of the circulating BA pool. These findings highlight that the potential implications of AB administration to cholestatic patients should be evaluated in a systematic manner.
Collapse
Affiliation(s)
- Esther Verkade
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wenqiang Shen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Milaine V. Hovingh
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels L. Mulder
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Krisztina de Bruyn
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilde D. de Vries
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Czuba LC, Malhotra K, Enthoven L, Fay EE, Moreni SL, Mao J, Shi Y, Huang W, Totah RA, Isoherranen N, Hebert MF. CYP2D6 Activity Is Correlated with Changes in Plasma Concentrations of Taurocholic Acid during Pregnancy and Postpartum in CYP2D6 Extensive Metabolizers. Drug Metab Dispos 2023; 51:1474-1482. [PMID: 37550070 PMCID: PMC10586507 DOI: 10.1124/dmd.123.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of >20% of marketed drugs. CYP2D6 expression and activity exhibit high interindividual variability and is induced during pregnancy. The farnesoid X receptor (FXR) is a transcriptional regulator of CYP2D6 that is activated by bile acids. In pregnancy, elevated plasma bile acid concentrations are associated with maternal and fetal risks. However, modest changes in bile acid concentrations may occur during healthy pregnancy, thereby altering FXR signaling. A previous study demonstrated that hepatic tissue concentrations of bile acids positively correlated with the hepatic mRNA expression of CYP2D6. This study sought to characterize the plasma bile acid metabolome in healthy women (n = 47) during midpregnancy (25-28 weeks gestation) and ≥3 months postpartum and to determine if plasma bile acids correlate with CYP2D6 activity. It is hypothesized that during pregnancy, plasma bile acids would favor less hydrophobic bile acids (cholic acid vs. chenodeoxycholic acid) and that plasma concentrations of cholic acid and its conjugates would positively correlate with the urinary ratio of dextrorphan/dextromethorphan. At 25-28 weeks gestation, taurine-conjugated bile acids comprised 23% of the quantified serum bile acids compared with 7% ≥3 months postpartum. Taurocholic acid positively associated with the urinary ratio of dextrorphan/dextromethorphan, a biomarker of CYP2D6 activity. Collectively, these results confirm that the bile acid plasma metabolome differs between pregnancy and postpartum and provide evidence that taurocholic acid may impact CYP2D6 activity during pregnancy. SIGNIFICANCE STATEMENT: Bile acid homeostasis is altered in pregnancy, and plasma concentrations of taurocholic acid positively correlate with CYP2D6 activity. Differences between plasma and/or tissue concentrations of farnesoid X receptor ligands such as bile acids may contribute to the high interindividual variability in CYP2D6 expression and activity.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Karan Malhotra
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Luke Enthoven
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Emily E Fay
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Sue L Moreni
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Jennie Mao
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Yuanyuan Shi
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Weize Huang
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| | - Mary F Hebert
- Department of Pharmaceutics, School of Pharmacy (L.C.C., W.H., N.I.), Department of Pharmacy, School of Pharmacy (K.M., L.E., M.F.H.), Department of Obstetrics and Gynecology, School of Medicine (E.E.F., S.L.M., J.M., M.F.H.), and Department of Medicinal Chemistry, School of Pharmacy (Y.S., R.A.T.), University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Choudhuri S. Long noncoding RNAs: biogenesis, regulation, function, and their emerging significance in toxicology. Toxicol Mech Methods 2023; 33:541-551. [PMID: 36992569 DOI: 10.1080/15376516.2023.2197489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
The repertoire of regulatory noncoding RNAs (ncRNAs) has been enriched by the inclusion of long noncoding RNA (lncRNA) that are longer than 200 nt. Some of the currently known lncRNAs, were reported in the 1990s before the term lncRNA was introduced. These lncRNAs have diverse regulatory functions including regulation of transcription via interactions with proteins and RNAs, chromatin remodeling, translation, posttranslational protein modification, protein trafficking and cell signaling. Predictably, the dysregulation of lncRNA expression due to exposure to toxicants may precipitate adverse health consequences. Dysregulation of lncRNAs has also been implicated in various adverse human health outcomes. There is an increasing agreement that lncRNA expression profiling data needs to be closely examined to determine whether their altered expression can be used as biomarkers of toxicity as well as adverse human health outcomes. This review summarizes the biogenesis, regulation, function of lncRNA and their emerging significance in toxicology and disease conditions. Because our understanding of the lncRNA-toxicity relationship is still evolving, this review discusses this developing field using some examples.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
22
|
Zhang Y, Chen H, Cong W, Zhang K, Jia Y, Wu L. Chronic Heat Stress Affects Bile Acid Profile and Gut Microbiota in Broilers. Int J Mol Sci 2023; 24:10238. [PMID: 37373380 DOI: 10.3390/ijms241210238] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Heat stress (HS) can inhibit the growth performance of broilers and cause substantial economic losses. Alterations in bile acid (BA) pools have been reported to be correlated with chronic HS, yet the specific mechanism and whether it is related to gut microbiota remains unclear. In this study, 40 Rugao Yellow chickens were randomly selected and distributed into two groups (20 broilers in each group) when reaching 56-day age: a chronic heat stress group (HS, 36 ± 1 °C for 8 h per day in the first 7 days and 36 ± 1 °C for 24 h in the last 7 days) and a control group (CN, 24 ± 1 °C for 24 h within 14 days). Compared with the CN group, total BAs' serum content decreased, while cholic acid (CA), chenodeoxycholic acid (CDCA), and taurolithocholic acid (TLCA) increased significantly in HS broilers. Moreover, 12α-hydroxylase (CYP8B1) and bile salt export protein (BSEP) were upregulated in the liver, and the expression of fibroblast growth factor 19 (FGF19) decreased in the ileum of HS broilers. There were also significant changes in gut microbial composition, and the enrichment of Peptoniphilus was positively correlated with the increased serum level of TLCA. These results indicate that chronic HS disrupts the homeostasis of BA metabolism in broilers, which is associated with alterations in gut microbiota.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Cong
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Riddick DS. Fifty Years of Aryl Hydrocarbon Receptor Research as Reflected in the Pages of Drug Metabolism and Disposition. Drug Metab Dispos 2023; 51:657-671. [PMID: 36653119 DOI: 10.1124/dmd.122.001009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The induction of multiple drug-metabolizing enzymes by halogenated and polycyclic aromatic hydrocarbon toxicants is mediated by the aryl hydrocarbon receptor (AHR). This fascinating receptor also has natural dietary and endogenous ligands, and much is now appreciated about the AHR's developmental and physiologic roles, as well as its importance in cancer and other diseases. The past several years has witnessed increasing emphasis on understanding the multifaceted roles of the AHR in the immune system. Most would agree that the "discovery" of the AHR occurred in 1976, with the report of specific binding of a high affinity radioligand in mouse liver, just three years after the launch of the journal Drug Metabolism and Disposition (DMD) in 1973. Over the ensuing 50 years, the AHR and DMD have led parallel and often intersecting lives. The overall goal of this mini-review is to provide a decade-by-decade overview of major historical landmark discoveries in the AHR field and to highlight the numerous contributions made by publications appearing in the pages of DMD. It is hoped that this historical tour might inspire current and future research in the AHR field. SIGNIFICANCE STATEMENT: With the launch of Drug Metabolism and Disposition (DMD) in 1973 and the discovery of the aryl hydrocarbon receptor (AHR) in 1976, the journal and the receptor have led parallel and often intersecting lives over the past 50 years. Tracing the history of the AHR can reveal how knowledge in the field has evolved to the present and highlight the important contributions made by discoveries reported in DMD. This may inspire additional DMD papers reporting future AHR landmark discoveries.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Li W, Liu H, Liang J, Wang T, Liu J, Pi X, Zou W, Qu L. Effects of Atorvastatin on Bile Acid Metabolism in High-fat Diet-fed ApoE -/- Mice. J Cardiovasc Pharmacol 2023; 81:454-462. [PMID: 36995080 DOI: 10.1097/fjc.0000000000001425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
ABSTRACT Statins are considered as the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease, where pleiotropic effects are thought to contribute greatly in addition to the lipid-lowering effect. Bile acid metabolism has been gradually reported to be involved in the antihyperlipidemic and antiatherosclerotic effects of statins, but with inconsistent results and few studies carried out on animal models of atherosclerosis. The study aimed to examine the possible role of bile acid metabolism in the lipid-lowering and antiatherosclerotic effects of atorvastatin (ATO) in high-fat diet-fed ApoE -/- mice. The results showed that the levels of liver and faecal TC as well as ileal and faecal TBA were significantly increased in mice of the model group after 20 weeks of high-fat diet feeding compared with the control group, with significantly downregulated mRNA expression of liver LXR-α, CYP7A1, BSEP, and NTCP. ATO treatment further increased the levels of ileal and faecal TBA and faecal TC, but no obvious effect was observed on serum and liver TBA. In addition, ATO significantly reversed the mRNA levels of liver CYP7A1 and NTCP, and no obvious changes were observed in the expression of LXR-α and BSEP. Our study suggested that statins may enhance the synthesis of bile acids and facilitate the reabsorption of bile acids from the ileum via portal into the liver, possibly through the upregulation of the expression of CYP7A1 and NTCP. The results are helpful in enriching the theoretical basis for the clinical use of statins and have good translational value.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; and
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Pi
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; and
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
26
|
Kastrinou Lampou V, Poller B, Huth F, Fischer A, Kullak-Ublick GA, Arand M, Schadt HS, Camenisch G. Novel insights into bile acid detoxification via CYP, UGT and SULT enzymes. Toxicol In Vitro 2023; 87:105533. [PMID: 36473578 DOI: 10.1016/j.tiv.2022.105533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Bile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC). We showed that CYP3A4 was a crucial step for the metabolism of several BAs and their taurine and glycine conjugated forms and quantitatively described their metabolites. Glucuronidation and sulfation were also identified as important drivers of the BA detoxification process in humans. Moreover, lithocholic acid (LCA), the most hydrophobic BA with the highest toxicity potential, was a substrate for all investigated processes, demonstrating the importance of hepatic metabolism for its clearance. Collectively, this study identified CYP3A4, UGT1A3, UGT2B7 and SULT2A1 as the major contributing (metabolic) processes in the BA detoxification network. Inhibition of these enzymes by drug candidates is therefore considered as a critical mechanism in the manifestation of drug-induced cholestasis in humans and should be addressed during the pre-clinical development.
Collapse
Affiliation(s)
- Vlasia Kastrinou Lampou
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Birk Poller
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Felix Huth
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Fischer
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Heiko S Schadt
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gian Camenisch
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
27
|
Semi-Targeted Profiling of Bile Acids by High-Resolution Mass Spectrometry in a Rat Model of Drug-Induced Liver Injury. Int J Mol Sci 2023; 24:ijms24032489. [PMID: 36768813 PMCID: PMC9917070 DOI: 10.3390/ijms24032489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Using a semi-targeted approach, we have investigated the effect of acetaminophen on circulating bile acid profiles in rats, including many known bile acids and potential isomeric structures, as well as glucuronide and sulfate conjugates. The chromatographic separation was based on an optimized reverse-phase method exhibiting excellent resolution for a complex mix of bile acids using a solid-core C18 column, coupled to a high-resolution quadrupole time-of-flight system. The semi-targeted workflow consisted of first assigning all peaks detectable in samples from 46 known bile acids contained in a standard mix, as well as additional peaks for other bile acid isomers. The presence of glucuronide and sulfate conjugates was also examined based on their elemental formulae and detectable peaks with matching exact masses were added to the list of features for statistical analysis. In this study, rats were administered acetaminophen at four different doses, from 75 to 600 mg/kg, with the highest dose being a good model of drug-induced liver injury. Statistically significant changes were found by comparing bile acid profiles between dosing levels. Some tentatively assigned conjugates were further elucidated using in vitro metabolism incubations with rat liver fractions and standard bile acids. Overall, 13 identified bile acids, 23 tentatively assigned bile acid isomers, and 9 sulfate conjugates were found to increase significantly at the highest acetaminophen dose, and thus could be linked to drug-induced liver injury.
Collapse
|
28
|
Bing H, Li YL. The role of bile acid metabolism in the occurrence and development of NAFLD. Front Mol Biosci 2022; 9:1089359. [PMID: 36589245 PMCID: PMC9798289 DOI: 10.3389/fmolb.2022.1089359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the important causes of cirrhosis and liver cancer, resulting in a huge medical burden worldwide. Currently, effective non-invasive diagnostic indicators and drugs for NAFLD are still lacking. With the development of metabolomics technology, the changes in metabolites during the development of NAFLD have been gradually revealed. Bile acid (BA) is the main endpoint of cholesterol metabolism in the body. In addition, it also acts as a signaling factor to regulate metabolism and inflammation in the body through the farnesyl X receptor and G protein-coupled BA receptor. Studies have shown that BA metabolism is associated with the development of NAFLD, but a large number of animal and clinical studies are still needed. BA homeostasis is maintained through multiple negative feedback loops and the enterohepatic circulation of BA. Recently, treatment of NAFLD by interfering with BA synthesis and metabolism has become a new research direction. Here, we review the changes in BA metabolism and its regulatory mechanisms during the development of NAFLD and describe the potential of studies exploring novel non-invasive diagnostic indicators and therapeutic targets for NAFLD based on BA metabolism.
Collapse
Affiliation(s)
- Hao Bing
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Department of Gastroenterology, Shengjing Hospital Affiliated with China Medical University, Shenyang, Liaoning, China
| | - Yi-Ling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yi-Ling Li,
| |
Collapse
|
29
|
Changes in Disposition of Ezetimibe and Its Active Metabolites Induced by Impaired Hepatic Function: The Influence of Enzyme and Transporter Activities. Pharmaceutics 2022; 14:pharmaceutics14122743. [PMID: 36559237 PMCID: PMC9785202 DOI: 10.3390/pharmaceutics14122743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Ezetimibe (EZE) is a selective cholesterol absorption inhibitor. Hepatic impairment significantly increases the systemic exposure of EZE and its main active phenolic glucuronide, EZE-Ph. Although changes in efflux transporter activity partly explain the changes in EZE-Ph pharmacokinetics, the causes of the changes to EZE and the effects of the administration route on EZE-Ph remain unclear. A carbon tetrachloride (CCl4)-induced hepatic failure rat model was combined with in vitro experiments to explore altered EZE and EZE-Ph disposition caused by hepatic impairment. The plasma exposure of EZE and EZE-Ph increased by 11.1- and 4.4-fold in CCl4-induced rats following an oral administration of 10 mg/kg EZE, and by 2.1- and 16.4-fold after an intravenous injection. The conversion of EZE to EZE-Ph decreased concentration-dependently in CCl4-induced rat liver S9 fractions, but no change was observed in the intestinal metabolism. EZE-Ph was a substrate for multiple efflux and uptake transporters, unlike EZE. In contrast to efflux transporters, no difference was seen in the hepatic uptake of EZE-Ph between control and CCl4-induced rats. However, bile acids that accumulated due to liver injury inhibited the uptake of EZE-Ph by organic anion transporting polypeptides (OATPs) (glycochenodeoxycholic acid and taurochenodeoxycholic acid had IC50 values of 15.1 and 7.94 μM in OATP1B3-overexpressed cells). In conclusion, the increased plasma exposure of the parent drug EZE during hepatic dysfunction was attributed to decreased hepatic glucuronide conjugation, whereas the increased exposure of the metabolite EZE-Ph was mainly related to transporter activity, particularly the inhibitory effects of bile acids on OATPs after oral administration.
Collapse
|
30
|
Desterke C, Chung C, Pan D, Trauner M, Samuel D, Azoulay D, Feray C. Early Deregulation of Cholangiocyte NR0B2 During Primary Sclerosing Cholangitis. GASTRO HEP ADVANCES 2022; 2:49-62. [PMID: 39130146 PMCID: PMC11307415 DOI: 10.1016/j.gastha.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Primary sclerosing cholangitis (PSC) is a probable autoimmune liver disease characterized by persistent and progressive biliary inflammation that leads to biliary infection, cirrhosis, or cholangiocarcinoma. Genome-wide omics data are scarce regarding this severe disease. Methods MEDLINE database gene prioritization by text mining (biliary inflammation, biliary fibrosis, biliary stasis) was integrated in distinct omics data: (1) PSC liver transcriptome training and validation cohorts, (2) farnesoid X receptor (FXR) mice liver transcriptome subjected to an FXR agonist or FXR knockout mice; (3) liver single-cell transcriptome of the Abcb4-/- mice model of PSC. Results A liver molecular network highlighted the involvement of nuclear receptor subfamily 0 group B member 2 (NR0B2) and its associated nuclear receptor FXR in a metabolic cascade that may influence the immune response. NR0B2 upregulation in PSC liver was independent of gender, age, body mass index, liver fibrosis, and PSC complications. Heterogeneity of NR0B2 upregulation was found in cholangiocyte cell types in which the NR0B2-based cell fate decision revealed the involvement of several metabolic pathways for detoxification (sulfur, glutathione derivative, and monocarboxylic acid metabolisms). Genes potentially implicated in carcinogenesis were also discovered on this cholangiocyte trajectory: GSTA3, inhibitor of DNA binding 2, and above all, TMEM45A, a transmembrane molecule from the Golgi apparatus considered as oncogenic in several cancers. Conclusion By revisiting PSC through PubMed data mining, we evidenced the early cholangiocyte deregulation of NR0B2, highlighting a metabolic and premalignant reprogramming of the cholangiocyte cell type. The therapeutic targeting of NR0B2 could potentiate that of FXR and enable action on early events of the disease and prevent its progression.
Collapse
Affiliation(s)
- Christophe Desterke
- Hôpital Paul-Brousse, Institut National de la Santé et de la Recherche Médicale UMRS1310, Université Paris-Saclay, Villejuif, France
| | | | - David Pan
- Gilead Sciences, Inc, Foster City, California
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Didier Samuel
- Hôpital Paul-Brousse, Institut National de la Santé et de la Recherche Médicale UMRS1310, Université Paris-Saclay, Villejuif, France
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| | - Daniel Azoulay
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| | - Cyrille Feray
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
31
|
Deng Y, Luo X, Li X, Xiao Y, Xu B, Tong H. Screening of Biomarkers and Toxicity Mechanisms of Rifampicin-Induced Liver Injury Based on Targeted Bile Acid Metabolomics. Front Pharmacol 2022; 13:925509. [PMID: 35754491 PMCID: PMC9226894 DOI: 10.3389/fphar.2022.925509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Rifampicin (RIF) is a critical first-line drug for tuberculosis. However, long-term or high-dose treatment with RIF can induce severe liver injury; the underlying mechanism of this effect has not yet been clarified. This study was performed to screen reliable and sensitive biomarkers in serum bile acids (BAs) using targeted BA metabolomics and evaluate the toxicity mechanisms underlying RIF-induced liver injury through the farnesoid x receptor (Fxr)-multidrug resistance-associated proteins (Mrps) signaling pathway. Thirty-two Institute of Cancer Research mice were randomly divided into four groups, and normal saline, isoniazid 75 mg/kg + RIF 177 mg/kg (RIF-L), RIF-L, or RIF 442.5 mg/kg (RIF-H) was orally administered by gavage for 21 days. After treatment, changes in serum biochemical parameters, hepatic pathological conditions, BA levels, Fxr expression, and BA transporter levels were measured. RIF caused notable liver injury and increased serum cholic acid (CA) levels. Decline in the serum secondary BAs (deoxycholic acid, lithocholic acid, taurodeoxycholic acid, and tauroursodeoxycholic acid) levels led to liver injury in mice. Serum BAs were subjected to metabolomic assessment using partial least squares discriminant and receiver operating characteristic curve analyses. CA, DCA, LCA, TDCA, and TUDCA are potential biomarkers for early detection of RIF-induced liver injury. Furthermore, RIF-H reduced hepatic BA levels and elevated serum BA levels by suppressing the expression of Fxr and Mrp2 messenger ribonucleic acid (mRNA) while inducing that of Mrp3 and Mrp4 mRNAs. These findings provide evidence for screening additional biomarkers based on targeted BA metabolomics and provide further insights into the pathogenesis of RIF-induced liver injury.
Collapse
Affiliation(s)
- Yang Deng
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Xilin Luo
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Yisha Xiao
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Huan Tong
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| |
Collapse
|
32
|
Special Section on Bile Acids, Drug Metabolism, and Toxicity-Editorial. Drug Metab Dispos 2022; 50:422-424. [PMID: 35410872 DOI: 10.1124/dmd.122.000835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
|
33
|
Shulpekova Y, Shirokova E, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Sinitsyna A, Izotov A, Butkova T, Shulpekova N, Nechaev V, Damulin I, Okhlobystin A, Ivashkin V. A Recent Ten-Year Perspective: Bile Acid Metabolism and Signaling. Molecules 2022; 27:molecules27061983. [PMID: 35335345 PMCID: PMC8953976 DOI: 10.3390/molecules27061983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Bile acids are important physiological agents required for the absorption, distribution, metabolism, and excretion of nutrients. In addition, bile acids act as sensors of intestinal contents, which are determined by the change in the spectrum of bile acids during microbial transformation, as well as by gradual intestinal absorption. Entering the liver through the portal vein, bile acids regulate the activity of nuclear receptors, modify metabolic processes and the rate of formation of new bile acids from cholesterol, and also, in all likelihood, can significantly affect the detoxification of xenobiotics. Bile acids not absorbed by the liver can interact with a variety of cellular recipes in extrahepatic tissues. This provides review information on the synthesis of bile acids in various parts of the digestive tract, its regulation, and the physiological role of bile acids. Moreover, the present study describes the involvement of bile acids in micelle formation, the mechanism of intestinal absorption, and the influence of the intestinal microbiota on this process.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Elena Shirokova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Maria Zharkova
- Department of Hepatology University Clinical Hospital No.2, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Pyotr Tkachenko
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Alexandra Sinitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | | | - Vladimir Nechaev
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Damulin
- Branch of the V. Serbsky National Medical Research Centre for Psychiatry and Narcology, 127994 Moscow, Russia;
| | - Alexey Okhlobystin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| |
Collapse
|
34
|
Callender C, Attaye I, Nieuwdorp M. The Interaction between the Gut Microbiome and Bile Acids in Cardiometabolic Diseases. Metabolites 2022; 12:65. [PMID: 35050187 PMCID: PMC8778259 DOI: 10.3390/metabo12010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Cardio-metabolic diseases (CMD) are a spectrum of diseases (e.g., type 2 diabetes, atherosclerosis, non-alcohol fatty liver disease (NAFLD), and metabolic syndrome) that are among the leading causes of morbidity and mortality worldwide. It has long been known that bile acids (BA), which are endogenously produced signalling molecules from cholesterol, can affect CMD risk and progression and directly affect the gut microbiome (GM). Moreover, studies focusing on the GM and CMD risk have dramatically increased in the past decade. It has also become clear that the GM can function as a "new" endocrine organ. BA and GM have a complex and interdependent relationship with several CMD pathways. This review aims to provide a comprehensive overview of the interplay between BA metabolism, the GM, and CMD risk and progression.
Collapse
Affiliation(s)
- Cengiz Callender
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.A.); (M.N.)
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|