1
|
Cheng S, Al-Kofahi M, Leeder JS, Brown JT. Population Pharmacokinetic Analysis of Atomoxetine and its Metabolites in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. Clin Pharmacol Ther 2024; 115:1033-1043. [PMID: 38117180 DOI: 10.1002/cpt.3155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Atomoxetine (ATX) is a non-stimulant used to treat attention-deficit/hyperactivity disorder (ADHD) and systemic exposure is highly variable due to polymorphic cytochrome P450 2D6 (CYP2D6) activity. The objective of this study was to characterize the time course of ATX and metabolites (4-hydroxyatomoxetine (4-OH); N-desmethylatomoxetine (NDA); and 2-carboxymethylatomoxetine (2-COOH)) exposure following oral ATX dosing in children with ADHD to support individualized dosing. A nonlinear mixed-effect modeling approach was used to analyze ATX, 4-OH, and NDA plasma and urine, and 2-COOH urine profiles obtained over 24-72 hours from children with ADHD (n = 23) following a single oral ATX dose. Demographics and CYP2D6 activity score (AS) were evaluated as covariates. Simulations were performed to explore the ATX dosing in subjects with various CYP2D6 AS. A simultaneous pharmacokinetic modeling approach was used in which a model for ATX, 4-OH, and NDA in plasma and urine, and 2-COOH in urine was developed. Plasma ATX, 4-OH, and NDA were modeled using two-compartment models with first-order elimination. CYP2D6 AS was a significant determinant of ATX apparent oral clearance (CL/F), fraction metabolized to 4-OH, and systemic exposure of NDA. CL/F of ATX varied almost 7-fold across the CYP2D6 AS groups: AS 2: 20.02 L/hour; AS 1: 19.00 L/hour; AS 0.5: 7.47 L/hour; and AS 0: 3.10 L/hour. The developed model closely captures observed ATX, 4-OH, and NDA plasma and urine, and 2-COOH urine profiles. Application of the model shows the potential for AS-based dosing recommendations for improved individualized dosing.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahmoud Al-Kofahi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City and University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jacob T Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, Minnesota, USA
| |
Collapse
|
2
|
Abumelha HM, Alorabi AQ, Alessa H, Alamrani NA, Alharbi A, Keshk AA, El-Metwaly NM. Novel Iron Oxide Nanoparticle-Fortified Carbon Paste Electrode for the Sensitive Voltammetric Determination of Atomoxetine. ACS OMEGA 2023; 8:19006-19015. [PMID: 37273581 PMCID: PMC10233827 DOI: 10.1021/acsomega.3c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Herein, the fabrication and full characterization of a novel atomoxetine (ATX) voltammetric carbon paste electrode (CPE) fortified with iron oxide nanoparticles (FeONPs) is demonstrated. Modification of the carbon paste matrix with the metallic oxide nanostructure provides proper electrocatalytic activity against the oxidation of ATX molecules at the carbon paste surface, resulting in a noticeable improvement in the performance of the sensor. At the recommended pH value, ATX recorded an irreversible anodic peak at 1.17 V, following a diffusion-controlled reaction mechanism. Differential pulse voltammograms exhibited peak heights linearly correlated to the ATX content within a wide concentration range from 45 to 8680 ng mL-1, with the limit of detection reaching 11.55 ng mL-1. The electrooxidation mechanism of the ATX molecule was proposed to be the oxidation of the terminal amino group accompanied by the transfer of two electrons and two protons. The fabricated FeONPs/CPE sensors exhibited enhanced selectivity and sensitivity and therefore can be introduced for voltammetric assaying of atomoxetine-indifferent pharmaceutical and biological samples in the presence of its degradation products and metabolites.
Collapse
Affiliation(s)
- Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali Q. Alorabi
- Department
of Chemistry, Faculty of Sciences, Al-Baha
University, P.O. Box 1988, Albaha 65799, Saudi Arabia
| | - Hussain Alessa
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Nasser A. Alamrani
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | - Arwa Alharbi
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Ali A. Keshk
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Tynelius N, Bundgaard C, Müller CE. Evaluation of a Five-Probe Metabolic Control Cocktail in Long-Term Cocultured Human Hepatocytes. J Pharm Sci 2023:S0022-3549(23)00099-0. [PMID: 36893963 DOI: 10.1016/j.xphs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023]
Abstract
Hepatocyte cocultures like HepatoPac have become more frequently used for the assessment of the intrinsic clearance of slowly metabolised drugs during drug discovery due to a superiority in enzymatic activity over time compared to liver microsomal fractions and suspended primary hepatocytes. However, the relatively high cost and practical limitations prevent several quality control compounds to be included in studies and the activities of many important metabolic enzymes are consequently often not monitored. In this study, we have evaluated the possibility for a cocktail approach of quality control compounds in the human HepatoPac system to ensure adequate activity of the major metabolising enzymes. Five reference compounds were selected based on their known metabolic substrate profile in order to capture major CYP and non-CYP metabolic pathways in the incubation cocktail. The intrinsic clearance of the reference compounds when incubated as singlets or in a cocktail was compared and no considerable difference was observed. We show here that a cocktail approach of quality control compounds allows for easy and efficient evaluation of the metabolic competency of the hepatic coculture system over an extended incubation period.
Collapse
Affiliation(s)
- Nanna Tynelius
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | | | - Claudia E Müller
- Translational DMPK, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark.
| |
Collapse
|
4
|
Chatterjee M, Saha S, Maitra S, Ray A, Sinha S, Mukhopadhyay K. Post-treatment symptomatic improvement of the eastern Indian ADHD probands is influenced by CYP2D6 genetic variations. Drug Metab Pers Ther 2023; 38:45-56. [PMID: 36169235 DOI: 10.1515/dmpt-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Symptomatic remediation from attention deficit hyperactivity disorder (ADHD)-associated traits is achieved by treatment with methylphenidate (MPH)/atomoxetine (ATX). We have analyzed the association of functional CYP2D6 variations, rs1065852, rs3892097, rs1135840, and rs1058164, with ADHD in the Indian subjects. METHODS Subjects were recruited following the Diagnostic and Statistical Manual for Mental Disorders. Trait scores were obtained from the Conner's Parents Rating Scale-Revised. After obtaining informed consent, blood was collected for DNA isolation, and genotyping was performed by PCR or TaqMan-based methods. Probands were treated with MPH or ATX based on age, symptoms, and drug availability. Treatment outcome was assessed using a structured questionnaire. Data obtained was analyzed to identify the association of CYP2D6 variations and the SLC6A3 rs28363170 with the treatment outcome. RESULTS The frequency of rs1135840 "G" and rs1065852 "G" was higher in the male ADHD probands. Bias in parental transmission (p=0.007) and association with higher trait scores were observed for rs1065852 "A". Independent influence of rs1065852 on ADHD was also observed. Probands carrying rs1065852 'GG', rs1135840 'CG', and rs28363170 10R exhibited significant symptomatic improvement with MPH, while probands with rs1135840 'CC' and rs28363170 9R showed improvement after ATX treatment. CONCLUSIONS ADHD probands having specific CYP2D6 genetic variations respond differentially to pharmaceutical intervention.
Collapse
Affiliation(s)
- Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | | | - Anirban Ray
- Department of Psychiatry, Institute of Psychiatry, Kolkata, West Bengal, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Personalizing atomoxetine dosing in children with ADHD: what can we learn from current supporting evidence. Eur J Clin Pharmacol 2023; 79:349-370. [PMID: 36645468 DOI: 10.1007/s00228-022-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE There is marked heterogeneity in treatment response of atomoxetine in patients with attention deficit/hyperactivity disorder (ADHD), especially for the pediatric population. This review aims to evaluate current evidence to characterize the dose-exposure relationship, establish clinically relevant metrics for systemic exposure to atomoxetine, define a therapeutic exposure range, and to provide a dose-adaptation strategy before implementing personalized dosing for atomoxetine in children with ADHD. METHODS A comprehensive search was performed across electronic databases (PubMed and Embase) covering the period of January 1, 1985 to July 10, 2022, to summarize recent advances in the pharmacokinetics, pharmacogenomics/pharmacogenetics (PGx), therapeutic drug monitoring (TDM), physiologically based pharmacokinetics (PBPK), and population pharmacokinetics (PPK) of atomoxetine in children with ADHD. RESULTS Some factors affecting the pharmacokinetics of atomoxetine were summarized, including food, CYP2D6 and CYP2C19 phenotypes, and drug‒drug interactions (DDIs). The association between treatment response and genetic polymorphisms of genes encoding pharmacological targets, such as norepinephrine transporter (NET/SLC6A2) and dopamine β hydroxylase (DBH), was also discussed. Based on well-developed and validated assays for monitoring plasma concentrations of atomoxetine, the therapeutic reference range in pediatric patients with ADHD proposed by several studies was summarized. However, supporting evidence on the relationship between systemic atomoxetine exposure levels and clinical response was far from sufficient. CONCLUSION Personalizing atomoxetine dosage may be even more complex than anticipated thus far, but elucidating the best way to tailor the non-stimulant to a patient's individual need will be achieved by combining two strategies: detailed research in linking the pharmacokinetics and pharmacodynamics in pediatric patients, and better understanding in nature and causes of ADHD, as well as environmental stressors.
Collapse
|
6
|
Physiologically Based Pharmacokinetic Modeling to Describe the CYP2D6 Activity Score-Dependent Metabolism of Paroxetine, Atomoxetine and Risperidone. Pharmaceutics 2022; 14:pharmaceutics14081734. [PMID: 36015360 PMCID: PMC9414337 DOI: 10.3390/pharmaceutics14081734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The cytochrome P450 2D6 (CYP2D6) genotype is the single most important determinant of CYP2D6 activity as well as interindividual and interpopulation variability in CYP2D6 activity. Here, the CYP2D6 activity score provides an established tool to categorize the large number of CYP2D6 alleles by activity and facilitates the process of genotype-to-phenotype translation. Compared to the broad traditional phenotype categories, the CYP2D6 activity score additionally serves as a superior scale of CYP2D6 activity due to its finer graduation. Physiologically based pharmacokinetic (PBPK) models have been successfully used to describe and predict the activity score-dependent metabolism of CYP2D6 substrates. This study aimed to describe CYP2D6 drug–gene interactions (DGIs) of important CYP2D6 substrates paroxetine, atomoxetine and risperidone by developing a substrate-independent approach to model their activity score-dependent metabolism. The models were developed in PK-Sim®, using a total of 57 plasma concentration–time profiles, and showed good performance, especially in DGI scenarios where 10/12, 5/5 and 7/7 of DGI AUClast ratios and 9/12, 5/5 and 7/7 of DGI Cmax ratios were within the prediction success limits. Finally, the models were used to predict their compound’s exposure for different CYP2D6 activity scores during steady state. Here, predicted DGI AUCss ratios were 3.4, 13.6 and 2.0 (poor metabolizers; activity score = 0) and 0.2, 0.5 and 0.95 (ultrarapid metabolizers; activity score = 3) for paroxetine, atomoxetine and risperidone active moiety (risperidone + 9-hydroxyrisperidone), respectively.
Collapse
|
7
|
Law R, Lewis D, Hain D, Daut R, DelBello MP, Frazier JA, Newcorn JH, Nurmi E, Cogan ES, Wagner S, Johnson H, Lanchbury J. Characterisation of seven medications approved for attention-deficit/hyperactivity disorder using in vitro models of hepatic metabolism. Xenobiotica 2022; 52:676-686. [PMID: 36317558 DOI: 10.1080/00498254.2022.2141151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The metabolism of most medications approved for the treatment of attention deficit/hyperactivity disorder (ADHD) is not fully understood.In vitro studies using cryopreserved, plated human hepatocytes (cPHHs) and pooled human liver microsomes (HLMs) were performed to more thoroughly characterise the metabolism of several ADHD medications.The use of enzyme-specific chemical inhibitors indicated a role for CYP2D6 in atomoxetine (ATX) metabolism, and roles for CYP3A4/5 in guanfacine (GUA) metabolism.The 4-hydroxy-atomoxetine and N-desmethyl-atomoxetine pathways represented 98.4% and 1.5% of ATX metabolism in cPHHs, respectively. The 3-OH-guanfacine pathway represented at least 2.6% of GUA metabolism in cPHHs, and 71% in HLMs.The major metabolising enzyme for methylphenidate (MPH) and dexmethylphenidate (dMPH) could not be identified using these methods because these compounds were too unstable. Hydrolysis of these medications was spontaneous and did not require the presence of protein to occur.Clonidine (CLD), amphetamine (AMPH), and dextroamphetamine (dAMPH) did not deplete substantially in cPHHs nor HLMs, suggesting that these compounds may not undergo considerable hepatic metabolism. The major circulating metabolites of AMPH and dAMPH (benzoic acid and hippuric acid) were not observed in either system, and therefore could not be characterised. Additionally, inhibition experiments suggested a very minimal role for CYP2D6 in CLD and AMPH metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Erika Nurmi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
8
|
Alsmadi MM, Al Eitan LN, Idkaidek NM, Alzoubi KH. The Development of a PBPK Model for Atomoxetine Using Levels in Plasma, Saliva and Brain Extracellular Fluid in Patients with Normal and Deteriorated Kidney Function. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:704-716. [PMID: 35043773 DOI: 10.2174/1871527320666210621102437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Atomoxetine is a treatment for attention-deficit hyperactivity disorder. It inhibits Norepinephrine Transporters (NET) in the brain. Renal impairment can reduce hepatic CYP2D6 activity and atomoxetine elimination which may increase its body exposure. Atomoxetine can be secreted in saliva. OBJECTIVE The objective of this work was to test the hypothesis that atomoxetine saliva levels (sATX) can be used to predict ATX brain Extracellular Fluid (bECF) levels and their pharmacological effects in healthy subjects and those with End-Stage Renal Disease (ESRD). METHODS The pharmacokinetics of atomoxetine after intravenous administration to rats with chemically induced acute and chronic renal impairments were investigated. A physiologically-based pharmacokinetic (PBPK) model was built and verified in rats using previously published measured atomoxetine levels in plasma and brain tissue. The rat PBPK model was then scaled to humans and verified using published measured atomoxetine levels in plasma, saliva, and bECF. RESULTS The rat PBPK model predicted the observed reduced atomoxetine clearance due to renal impairment in rats. The PBPK model predicted atomoxetine exposure in human plasma, sATX and bECF. Additionally, it predicted that ATX bECF levels needed to inhibit NET are achieved at 80 mg dose. In ESRD patients, the developed PBPK model predicted that the previously reported 65% increase in plasma exposure in these patients can be associated with a 63% increase in bECF. The PBPK simulations showed that there is a significant correlation between sATX and bECF in human. CONCLUSION Saliva levels can be used to predict atomoxetine pharmacological response.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N Al Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE.,Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
9
|
A view of response and resistance to atomoxetine treatment in children with ADHD: effects of CYP2C19 polymorphisms and BDNF levels. Eur J Clin Pharmacol 2022; 78:1095-1104. [PMID: 35486119 DOI: 10.1007/s00228-022-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Although several genes have previously been studied about the treatment of Attention Deficit Hyperactivity Disorder (ADHD), the number of studies investigating the effects of genes on atomoxetine (ATX) treatment is very limited. In this study, we aimed to investigate the effect of CYP2C19 polymorphisms, which have a role in ATX biotransformation, on the treatment response and also to assess whether there is a relationship between BDNF and treatment response in children and adolescents with ADHD. METHODS One hundred children with ADHD and 100 healthy controls (HCs) were included in this study. The treatment response was assessed 2 months after the start of the ATX treatment. DNA samples from peripheral venous blood were replicated using PCR and analyzed using the ILLUMINA next-generation sequencing method. The resulting fastqs were analyzed using Basespace's Variant Interpreter Program. Plasma BDNF levels were evaluated with ELISA kits. RESULTS Treatment response was found to be lower in both heterozygous and homozygous carriers of the c.681G > A (CYP2C19*2) polymorphism. When the BDNF level was compared, it was found to be significantly higher in the ADHD group compared to HCs. Also, BDNF has a stronger predictive value for assessing resistance to ATX treatment. CONCLUSIONS To our knowledge, this is the first study to assess the effects of CYP2C19 polymorphisms and BDNF levels together on ATX treatment in children. Further studies with an extensive population are needed to better understand the effects of CYP2C19 polymorphisms on treatment and side effects, as well as the effects of BDNF levels.
Collapse
|
10
|
Ruppert K, Geffert C, Clement HW, Bachmann C, Haberhausen M, Schulz E, Fleischhaker C, Biscaldi-Schäfer M. Therapeutic drug monitoring of atomoxetine in children and adolescents with attention-deficit/ hyperactivity disorder: a naturalistic study. J Neural Transm (Vienna) 2022; 129:945-959. [PMID: 35391568 PMCID: PMC9217867 DOI: 10.1007/s00702-022-02483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022]
Abstract
The selective norepinephrine reuptake inhibitor atomoxetine is potentially among the first-line pharmacotherapy options for ADHD. Therapeutic drug monitoring (TDM) with the quantification and interpretation of atomoxetine serum concentrations is used to determine an individual dose followed by an optimal effectiveness and minimal side effects. The aim of this retrospective pharmacokinetic–pharmacodynamic analysis was to derive age-appropriate recommendations for the implementation of TDM to improve the efficacy and tolerability of atomoxetine in children and adolescents. Using the analytical method of high-performance liquid chromatography with UV detection, 94 serum concentrations of 74 patients between 6 and 21 years of age were determined. Therapeutic effectiveness and side effects were evaluated according to the categories “low”, “moderate”, and “significant”. As part of TDM, a time interval with maximum concentrations of 1–3 h after the administration of atomoxetine was determined for blood sampling. In this time interval, a significant correlation between the weight-normalized dose and the serum concentrations was found. The efficacy as well as the tolerability proved to be mainly moderate or significant. A preliminary therapeutic reference range was between 100 and 400 ng/ml. Naturalistic studies have limitations. Therefore, and due to a limited study population, the results have to be regarded as preliminary observations that must be confirmed in further studies. The preliminary therapeutic reference range for children and adolescents proved to be narrower than the reference range for adult patients. However, due to good efficacy and tolerability an exact reference range remained difficult to determine.
Collapse
Affiliation(s)
- Katrin Ruppert
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Hans-Willi Clement
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christian Bachmann
- Department of Child and Adolescent Psychiatry, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Michael Haberhausen
- Department of Child and Adolescent Psychiatry, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Eberhard Schulz
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christian Fleischhaker
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Monica Biscaldi-Schäfer
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
11
|
Differential Molecular Responses of Zebrafish Larvae to Fluoxetine and Norfluoxetine. WATER 2022. [DOI: 10.3390/w14030417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The occurrence of psychopharmaceuticals in aquatic ecosystems is a growing problem. Fluoxetine (FL) and its metabolite norfluoxetine (NF) are selective serotonin reuptake inhibitors. Although they may be potentially harmful to non-target species, available knowledge on the effects of NF is sparse, relative to FL. This study aimed at contributing to the body of knowledge about the modes-of-action (MoA) of these compounds and their underlying mechanisms eliciting hazardous effects during the early development of the teleost model zebrafish (Danio rerio). One hour post-fertilisation (hpf), embryos were exposed up to 80 hpf to these compounds at levels found in surface waters and higher (FL, 0.0015 and 0.05 µM; NF, 0.00006 and 0.0014 µM). Developmental anomalies were observed at 8, 32 and 80 hpf. Larvae were collected at 80 hpf to assess the expression of 34 genes related to FL and NF MoA and metabolism, using qPCR (quantitative reverse transcription PCR). Results showed that both compounds elicited an increased frequency of embryos exhibiting abnormal pigmentation, relative to controls. Gene expression alterations were more pronounced in FL- than in NF-exposed larvae. Cluster Analysis revealed two groups of genes discriminating between the drugs. for their marked opposing responses. Globally, downregulation of gene expression was typical of FL, whilst upregulation or no alteration was found for NF. These clusters identified were linked to the adrenergic pathway and to the retinoid and peroxisome proliferator-activated nuclear receptors. Overall, our data contradict the prevailing notion that NF is more toxic than FL and unveiled the expression levels of genes drd2b, 5-ht2c and abcc2 as possible markers of exposure to FL.
Collapse
|
12
|
You Y, Wang X, Ma K, Li J, Peng Y, Zheng J. Metabolic Activation of Atomoxetine Mediated by Cytochrome P450 2D6. Chem Res Toxicol 2021; 34:2135-2144. [PMID: 34431675 DOI: 10.1021/acs.chemrestox.1c00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomoxetine (ATX) is a neurological drug widely used for the treatment of attention deficit-hyperactivity disorder. Liver injury has been documented in patients administered ATX. The mechanism of ATX's toxic action is less clear. This study is aimed to characterize reactive metabolites of ATX in vitro and in vivo to assist our understanding of the mechanisms of ATX hepatotoxicity. A hydroxylated metabolite, along with an O-dealkylation metabolite, was found in ATX-supplemented rat liver microsome incubations. Additionally, two glutathione (GSH) conjugates and two N-acetylcysteine (NAC) conjugates were observed in rat liver microsome incubations containing ATX, NADPH, and GSH or NAC. The corresponding GSH conjugates and NAC conjugates were found in bile and urine of ATX-treated rats, respectively. Recombinant P450 enzyme incubation study demonstrated that CYP2D6 dominated the metabolic activation of ATX. The insights gained from this study may be of assistance to illuminate the mechanisms of ATX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yutong You
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Kaiqi Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jiaru Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
13
|
Xia Y, Guo HL, Hu YH, Long JY, Chen J, Chen F, Ji X. Determination of atomoxetine levels in human plasma using LC-MS/MS and clinical application to Chinese children with ADHD based on CPIC guidelines. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2434-2441. [PMID: 33998618 DOI: 10.1039/d1ay00521a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Clinical Pharmacogenetic Implementation Consortium (CPIC) guidelines for personalized atomoxetine therapy are based on the CYP2D6 genotype information and the peak plasma concentrations of atomoxetine. Therefore, a highly rapid, sensitive, and reproducible method is critical for the clinical implementation of the guidelines. In this study, an LC-MS/MS approach was developed and validated for the determination of atomoxetine levels in human plasma using atomoxetine-d3 as the internal standard. Samples were prepared by simple protein precipitation method with MeOH. The analyte was separated using a Kinetex C18 column (2.1 mm × 50 mm, 2.6 μm, Phenomenex) with a flow rate of 0.25 mL min-1, using a gradient elution. A MeOH and water solution containing 5 mM ammonium acetate and 0.1 mM formic acid (pH 6.26) was used as the mobile phase and successfully solved the problem of inconsistent retention time between the plasma samples and the solution samples of atomoxetine. Detection was performed under positive-electrospray-ion multiple reaction-monitoring mode using the 256.4 → 43.8 and 259.3 → 47.0 transitions for atomoxetine and atomoxetine-d3, respectively. Linearity was achieved using an extremely wide range, from 0.500 to 2000 ng mL-1 in plasma. The intra- and inter-batch precision and accuracy, dilution accuracy, recovery, and stability of the method were all within the acceptable limits and no matrix effect was observed. With a complex needle wash solution containing ACN : MeOH : isopropanol : H2O (4 : 4:1 : 1, v/v/v/v), carryover contamination was eliminated successfully. This method was successfully implemented on pediatric patients with attention-deficit/hyperactivity disorder and provided valuable information to enable clinicians to do dose selection and titration.
Collapse
Affiliation(s)
- Ying Xia
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jung EH, Lee YJ, Kim DH, Kang P, Lim CW, Cho CK, Jang CG, Lee SY, Bae JW. Effects of paroxetine on the pharmacokinetics of atomoxetine and its metabolites in different CYP2D6 genotypes. Arch Pharm Res 2020; 43:1356-1363. [PMID: 33245517 DOI: 10.1007/s12272-020-01300-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the effects of paroxetine, a potent inhibitor of CYP2D6, on the pharmacokinetics of atomoxetine and its two metabolites, 4-hydroxyatomoxetine and N-desmethylatomoxetine, in different CYP2D6 genotypes. Twenty-six healthy subjects were recruited and divided into CYP2D6*wt/*wt (*wt=*1 or *2, n = 10), CYP2D6*wt/*10 (n = 9), and CYP2D6*10/*10 groups (n = 7). In atomoxetine phase, all subjects received a single oral dose of atomoxetine (20 mg). In paroxetine phase, after administration of a single oral dose of paroxetine (20 mg) for six consecutive days, all subjects received a single oral dose of atomoxetine with paroxetine. Plasma concentrations of atomoxetine and its metabolites were determined up to 24 h after dosing. During atomoxetine phase, there were significant differences in Cmax and AUC0-24 of atomoxetine and N-desmethylatomoxetine among three genotype groups, whereas significant differences were not found in relation to CYP2D6*10 allele after administration of paroxetine. AUC ratios of 4-hydroxyatomoxetine and N-desmethylatomoxetine to atomoxetine were significantly different among three genotype groups during atomoxetine phase (all, P < 0.001), but after paroxetine treatment significant differences were not found. After paroxetine treatment, AUC0-24 of atomoxetine was increased by 2.3-, 1.7-, and 1.3-fold, in CYP2D6*wt/*wt, CYP2D6*wt/*10, and CYP2D6*10/*10 groups in comparison to atomoxetine phase, respectively. AUC ratio of 4-hydroxyatomoxetine to atomoxetine in each group was significantly decreased, whereas AUC ratio of N-desmethylatomoxetine to atomoxetine significantly increased after administration of paroxetine. In conclusion, paroxetine coadministration significantly affected pharmacokinetic parameters of atomoxetine and its two metabolites, 4-hydroxyatomoxetine and N-desmethylatomoxetine. When atomoxetine was administered alone, Cmax, AUC0-24 and CL/F of atomoxetine were significantly different among the three CYP2D6 genotype groups. However, after paroxetine coadministration, no significant differences in these pharmacokinetic parameters were observed among the CYP2D6 genotype groups.
Collapse
Affiliation(s)
- Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong-Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang Woo Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
15
|
MacKenzie KR, Zhao M, Barzi M, Wang J, Bissig KD, Maletic-Savatic M, Jung SY, Li F. Metabolic profiling of norepinephrine reuptake inhibitor atomoxetine. Eur J Pharm Sci 2020; 153:105488. [PMID: 32712217 PMCID: PMC7506503 DOI: 10.1016/j.ejps.2020.105488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Atomoxetine (ATX), a selective and potent inhibitor of the presynaptic norepinephrine transporter, is used mainly to treat attention-deficit hyperactivity disorder. Although multiple adverse effects associated with ATX have been reported including severe liver injuries, the mechanisms of ATX-related toxicity remain largely unknown. Metabolism frequently contributes to adverse effects of a drug through reactive metabolites, and the bioactivation status of ATX is still not investigated yet. Here, we systematically investigated ATX metabolism, bioactivation, species difference in human, mouse, and rat liver microsomes (HLM, MLM, and RLM) and in mice using metabolomic approaches as mice and rats are commonly used animal models for the studies of drug toxicity. We identified thirty one ATX metabolites and adducts in LMs and mice, 16 of which are novel. In LMs, we uncovered two methoxyamine-trapped aldehydes, two cyclization metabolites, detoluene-ATX, and ATX-N-hydroxylation for the first time. Detoluene-ATX and one cyclization metabolite were also observed in mice. Using chemical inhibitors and recombinant CYP enzymes, we demonstrated that CYP2C8 and CYP2B6 mainly contribute to the formation of aldehyde; CYP2D6 is the dominant enzyme for the formation of ATX cyclization and detoluene-ATX; CYP3A4 is major enzyme responsible for the hydroxylamine formation. The findings concerning aldehydes should be very useful to further elucidate the mechanistic aspects of adverse effects associated with ATX from metabolic angles. Additionally, the species differences for each metabolite should be helpful to investigate the contribution of specific metabolites to ATX toxicity and possible drug-drug interactions in suitable models.
Collapse
Affiliation(s)
- Kevin R MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mingkun Zhao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Protti M, Mandrioli R, Marasca C, Cavalli A, Serretti A, Mercolini L. New‐generation, non‐SSRI antidepressants: Drug‐drug interactions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med Res Rev 2020; 40:1794-1832. [DOI: 10.1002/med.21671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/18/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Pharmaco‐Toxicological Analysis Laboratory (PTA Lab)Alma Mater Studiorum ‐ University of Bologna Bologna Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi)Alma Mater Studiorum ‐ University of BolognaRimini Italy
| | - Camilla Marasca
- Department of Pharmacy and Biotechnology (FaBiT), Pharmaco‐Toxicological Analysis Laboratory (PTA Lab)Alma Mater Studiorum ‐ University of Bologna Bologna Italy
- Computational and Chemical BiologyFondazione Istituto Italiano di Tecnologia (IIT) Genoa Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology (FaBiT), Pharmaco‐Toxicological Analysis Laboratory (PTA Lab)Alma Mater Studiorum ‐ University of Bologna Bologna Italy
- Computational and Chemical BiologyFondazione Istituto Italiano di Tecnologia (IIT) Genoa Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences (DIBINEM)Alma Mater Studiorum ‐ University of Bologna Bologna Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Pharmaco‐Toxicological Analysis Laboratory (PTA Lab)Alma Mater Studiorum ‐ University of Bologna Bologna Italy
| |
Collapse
|
17
|
Elsayed NA, Yamamoto KM, Froehlich TE. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 2020; 34:389-414. [PMID: 32133580 PMCID: PMC8083895 DOI: 10.1007/s40263-020-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple stimulant and non-stimulant medications are approved for the treatment of attention-deficit/hyperactivity disorder (ADHD), one of the most prevalent childhood neurodevelopmental disorders. Choosing among the available agents and determining the most effective ADHD medication for a given child can be a time-consuming process due to the high inter-individual variability in treatment efficacy. As a result, there is growing interest in identifying predictors of ADHD medication response in children through the burgeoning field of pharmacogenomics. This article reviews childhood ADHD pharmacogenomics efficacy studies published during the last decade (2009-2019), which have largely focused on pharmacodynamic candidate gene investigations of methylphenidate and atomoxetine response, with a smaller number investigating pharmacokinetic candidate genes and genome-wide approaches. Findings from studies which have advanced the field of ADHD pharmacogenomics through investigation of meta-analytic approaches and gene-gene interactions are also overviewed. Despite recent progress, no one genetic variant or currently available pharmacogenomics test has demonstrated clinical utility in pinpointing the optimal ADHD medication for a given individual patient, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Nada A Elsayed
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaila M Yamamoto
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Tanya E Froehlich
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Notsu Y, Shimizu M, Sasaki T, Nakano A, Ota M, Yoshida S, Yamazaki H. Simple pharmacokinetic models accounting for drug monitoring results of atomoxetine and its 4-hydroxylated metabolites in Japanese pediatric patients genotyped for cytochrome P450 2D6. Drug Metab Pharmacokinet 2019; 35:191-200. [PMID: 32184039 DOI: 10.1016/j.dmpk.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/30/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023]
Abstract
Atomoxetine is an approved medicine for attention-deficit/hyperactivity disorder and a cytochrome P450 2D6 (CYP2D6) probe substrate. Simple physiologically based pharmacokinetic (PBPK) models and compartment models were set up to account for drug monitoring results of 33 Japanese patients (6-15 years of age) to help establish the correct dosage for the evaluation of clinical outcomes. The steady-state one-point drug monitoring data for the most participants indicated the extensive biotransformation of atomoxetine to 4-hydroxyatomoxetine under individually prescribed doses of atomoxetine. However, 5 participants (with impaired CYP2D6 activity scores based on the CYP2D6 genotypes) showed high plasma concentrations of atomoxetine (0.53-1.5 μM) compared with those of total 4-hydroxyatomoxetine (0.49-1.4 μM). Results from full PBPK models using the in-built Japanese pediatric system of software Simcyp, one-compartment models, and new simple PBPK models (using parameters that reflected the subjects' small body size and normal/reduced CYP2D6-dependent clearance) could overlay one-point measured drug/metabolite plasma concentrations from almost common 28 participants within threefold ranges. Validated one-compartment or simple PBPK models can be used to predict steady-state plasma concentrations of atomoxetine and/or its primary metabolites in Japanese pediatric patients (>6 years) who took a variety of individualized doses in a clinical setting.
Collapse
Affiliation(s)
- Yuki Notsu
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tatsuro Sasaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Ayane Nakano
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Miki Ota
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Sayaka Yoshida
- Nara Prefecture General Medical Center, Nara, 630-8581, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
19
|
Brown JT, Bishop JR, Sangkuhl K, Nurmi EL, Mueller DJ, Dinh JC, Gaedigk A, Klein TE, Caudle KE, McCracken JT, de Leon J, Leeder JS. Clinical Pharmacogenetics Implementation Consortium Guideline for Cytochrome P450 (CYP)2D6 Genotype and Atomoxetine Therapy. Clin Pharmacol Ther 2019; 106:94-102. [PMID: 30801677 PMCID: PMC6612570 DOI: 10.1002/cpt.1409] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
Atomoxetine is a nonstimulant medication used to treat attention-deficit/hyperactivity disorder (ADHD). Cytochrome P450 (CYP)2D6 polymorphisms influence the metabolism of atomoxetine thereby affecting drug efficacy and safety. We summarize evidence from the published literature supporting these associations and provide therapeutic recommendations for atomoxetine based on CYP2D6 genotype (updates at www.cpicpgx.org).
Collapse
Affiliation(s)
- Jacob T. Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, MN, USA
| | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, and Department of Psychiatry, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel J. Mueller
- Department of Psychiatry, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Jean C. Dinh
- Department of Pediatrics, Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Andrea Gaedigk
- Department of Pediatrics, Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Kelly E. Caudle
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - James T. McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jose de Leon
- University of Kentucky Mental Health Research Center, Eastern State Hospital, Lexington, KY, USA
| | - J. Steven Leeder
- Department of Pediatrics, Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, MO, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
20
|
Chan TS, Yu H, Moore A, Khetani SR, Tweedie D. Meeting the Challenge of Predicting Hepatic Clearance of Compounds Slowly Metabolized by Cytochrome P450 Using a Novel Hepatocyte Model, HepatoPac. Drug Metab Dispos 2018; 47:58-66. [PMID: 30552098 DOI: 10.1124/dmd.113.053397fullarticlecorrection] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022] Open
Abstract
Generating accurate in vitro intrinsic clearance data is an important aspect of predicting in vivo human clearance. Primary hepatocytes in suspension are routinely used to predict in vivo clearance; however, incubation times have typically been limited to 4-6 hours, which is not long enough to accurately evaluate the metabolic stability of slowly metabolized compounds. HepatoPac is a micropatterened hepatocyte-fibroblast coculture system that can be used for continuous incubations of up to 7 days. This study evaluated the ability of human HepatoPac to predict the in vivo clearance (CL) of 17 commercially available compounds with low to intermediate clearance (<12 ml/min/kg). In vitro half-life for disappearance of each compound was converted to hepatic clearance using the well stirred model, with and without correction for plasma protein binding. Hepatic CL, using three individual donors, was accurately predicted for 11 of 17 compounds (59%; predicted clearance within 2-fold of observed human in vivo clearance values). The accuracy of prediction increased to 82% (14 of 17 compounds) with an acceptance criterion defined as within 3-fold. When considering only low clearance compounds (<5 ml/min per kg), which represented 10 of the 17 compounds, the accuracy of prediction was 70% within 2-fold and 100% within 3-fold. In addition, the turnover of three slowly metabolized compounds (alprazolam, meloxicam, and tolbutamide) in HepatoPac was directly compared with turnover in suspended hepatocytes. The turnover of alprazolam and tolbutamide was approximately 2-fold greater using HepatoPac compared with suspended hepatocytes, which was roughly in line with the extrapolated values (correcting for the longer incubation time and lower cell number with HepatoPac). HepatoPac, but not suspended hepatocytes, demonstrated significant turnover of meloxicam. These results demonstrate the utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds.
Collapse
Affiliation(s)
- Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Hongbin Yu
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Amanda Moore
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Salman R Khetani
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Donald Tweedie
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| |
Collapse
|
21
|
Kim SH, Byeon JY, Kim YH, Lee CM, Lee YJ, Jang CG, Lee SY. Physiologically based pharmacokinetic modelling of atomoxetine with regard to CYP2D6 genotypes. Sci Rep 2018; 8:12405. [PMID: 30120390 PMCID: PMC6098032 DOI: 10.1038/s41598-018-30841-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/07/2018] [Indexed: 01/20/2023] Open
Abstract
Atomoxetine is a norepinephrine reuptake inhibitor indicated in the treatment of attention-deficit/hyperactivity disorder. It is primarily metabolized by CYP2D6 to its equipotent metabolite, 4-hydroxyatomoxetine, which promptly undergoes further glucuronidation to an inactive 4-HAT-O-glucuronide. Clinical trials have shown that decreased CYP2D6 activity leads to substantially elevated atomoxetine exposure and increase in adverse reactions. The aim of this study was to to develop a pharmacologically based pharmacokinetic (PBPK) model of atomoxetine in different CYP2D6 genotypes. A single 20 mg dose of atomoxetine was given to 19 healthy Korean individuals with CYP2D6*wt/*wt (*wt = *1 or *2) or CYP2D6*10/*10 genotype. Based on the results of this pharmacokinetic study, a PBPK model for CYP2D6*wt/*wt individuals was developed. This model was scaled to those with CYP2D6*10/*10 genotype, as well as CYP2D6 poor metabolisers. We validated this model by comparing the predicted pharmacokinetic parameters with diverse results from the literature. The presented PBPK model describes the pharmacokinetics after single and repeated oral atomoxetine doses with regard to CYP2D6 genotype and phenotype. This model could be utilized for identification of appropriate dosages of atomoxetine in patients with reduced CYP2D6 activity to minimize the adverse events, and to enable personalised medicine.
Collapse
Affiliation(s)
- Se-Hyung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Young Byeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choong-Min Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
22
|
De Crescenzo F, Ziganshina LE, Yudina EV, Kaplan YC, Ciabattini M, Wei Y, Hoyle CHV. Noradrenaline reuptake inhibitors (NRIs) for attention deficit hyperactivity disorder (ADHD) in adults. Hippokratia 2018. [DOI: 10.1002/14651858.cd013044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Franco De Crescenzo
- Catholic University of the Sacred Heart; Institute of Psychiatry and Psychology; L.go A. Gemelli 8 Rome Italy 00168
| | - Liliya Eugenevna Ziganshina
- Kazan (Volga region) Federal University; Research & Education Centre for Evidence-Based Medicine Cochrane Russia; 18 Kremlevskaya Street, 420008 14-15 Malaya Krasnaya Street, 420015 Kazan Tatarstan Russian Federation
- Kazan (Volga region) Federal University; Department of Basic and Clinical Pharmacology; Kazan Russian Federation
| | - Ekaterina V Yudina
- Kazan (Volga region) Federal University; Research & Education Centre for Evidence-Based Medicine Cochrane Russia; 18 Kremlevskaya Street, 420008 14-15 Malaya Krasnaya Street, 420015 Kazan Tatarstan Russian Federation
- Kazan (Volga region) Federal University; Department of Basic and Clinical Pharmacology; Kazan Russian Federation
| | - Yusuf Cem Kaplan
- Izmir Katip Celebi University School of Medicine; Department of Pharmacology; Izmir Turkey 35360
| | | | - Yinghui Wei
- University of Plymouth; Centre for Mathematical Sciences, School of Computing, Electronics and Mathematics; Plymouth UK
| | - Charles HV Hoyle
- Kazan (Volga region) Federal University; Research & Education Centre for Evidence-Based Medicine Cochrane Russia; 18 Kremlevskaya Street, 420008 14-15 Malaya Krasnaya Street, 420015 Kazan Tatarstan Russian Federation
| |
Collapse
|
23
|
Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 2: Solving substrate interactions of CYP1A2 with non-PAH substrates on the template system. Drug Metab Pharmacokinet 2017; 32:229-247. [DOI: 10.1016/j.dmpk.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 05/17/2017] [Indexed: 01/02/2023]
|
24
|
Huang W, Nakano M, Sager J, Ragueneau-Majlessi I, Isoherranen N. Physiologically Based Pharmacokinetic Model of the CYP2D6 Probe Atomoxetine: Extrapolation to Special Populations and Drug-Drug Interactions. Drug Metab Dispos 2017; 45:1156-1165. [PMID: 28860113 DOI: 10.1124/dmd.117.076455] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/28/2017] [Indexed: 01/18/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling of drug disposition and drug-drug interactions (DDIs) has become a key component of drug development. PBPK modeling has also been considered as an approach to predict drug disposition in special populations. However, whether models developed and validated in healthy populations can be extrapolated to special populations is not well established. The goal of this study was to determine whether a drug-specific PBPK model validated using healthy populations could be used to predict drug disposition in specific populations and in organ impairment patients. A full PBPK model of atomoxetine was developed using a training set of pharmacokinetic (PK) data from CYP2D6 genotyped individuals. The model was validated using drug-specific acceptance criteria and a test set of 14 healthy subject PK studies. Population PBPK models were then challenged by simulating the effects of ethnicity, DDIs, pediatrics, and renal and hepatic impairment on atomoxetine PK. Atomoxetine disposition was successfully predicted in 100% of healthy subject studies, 88% of studies in Asians, 79% of DDI studies, and 100% of pediatric studies. However, the atomoxetine area under the plasma concentration versus time curve (AUC) was overpredicted by 3- to 4-fold in end stage renal disease and hepatic impairment. The results show that validated PBPK models can be extrapolated to different ethnicities, DDIs, and pediatrics but not to renal and hepatic impairment patients, likely due to incomplete understanding of the physiologic changes in these conditions. These results show that systematic modeling efforts can be used to further refine population models to improve the predictive value in this area.
Collapse
Affiliation(s)
- Weize Huang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Mariko Nakano
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Jennifer Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | | | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Todor I, Muntean D, Neag M, Bocsan C, Buzoianu A, Vlase L, Leucuta D, Gheldiu AM, Popa A, Briciu C. The Influence of CYP2D6 Phenotype on the Pharmacokinetic Profile of Atomoxetine in Caucasian Healthy Subjects. ACTA MEDICA MARISIENSIS 2017. [DOI: 10.1515/amma-2017-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Objective: To analyze a potential phenotypic variation within the studied group based on the pharmacokinetic profile of atomoxetine and its active metabolite, and to further investigate the impact of CYP2D6 phenotype on atomoxetine pharmacokinetics. Methods: The study was conducted as an open-label, non-randomized clinical trial which included 43 Caucasian healthy volunteers. Each subject received a single oral dose of atomoxetine 25 mg. Subsequently, atomoxetine and 4-hydroxyatomoxetine-O-glucuronide (glucuronidated active metabolite) plasma concentrations were determined and a noncompartmental method was used to calculate the pharmacokinetic parameters of both compounds. Further on, the CYP2D6 metabolic phenotype was assessed using the area under the curve (AUC) metabolic ratio (atomoxetine/ 4-hydroxyatomoxetine-O-glucuronide) and specific statistical tests (Lilliefors (Kolgomorov-Smirnov) and Anderson-Darling test). The phenotypic differences in atomoxetine disposition were identified based on the pharmacokinetic profile of the parent drug and its metabolite. Results: The statistical analysis revealed that the AUC metabolic ratio data set did not follow a normal distribution. As a result, two different phenotypes were identified, respectively the poor metabolizer (PM) group which included 3 individuals and the extensive metabolizer (EM) group which comprised the remaining 40 subjects. Also, it was demonstrated that the metabolic phenotype significantly influenced atomoxetine pharmacokinetics, as PMs presented a 4.5-fold higher exposure to the parent drug and a 3.2-fold lower exposure to its metabolite in comparison to EMs. Conclusions: The pharmacokinetic and statistical analysis emphasized the existence of 2 metabolic phenotypes: EMs and PMs. Furthermore, it was proved that the interphenotype variability had a marked influence on atomoxetine pharmacokinetic profile.
Collapse
Affiliation(s)
- Ioana Todor
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Cluj-Napoca , Romania
| | - Dana Muntean
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Cluj-Napoca , Romania
| | - Maria Neag
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca , Romania
| | - Corina Bocsan
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca , Romania
| | - Anca Buzoianu
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca , Romania
| | - Laurian Vlase
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Cluj-Napoca , Romania
| | - Daniel Leucuta
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Department of Medical Informatics and Biostatistics, Cluj-Napoca , Romania
| | - Ana-Maria Gheldiu
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Cluj-Napoca , Romania
| | - Adina Popa
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Pharmacy, Department of Clinical Pharmacy, Cluj-Napoca , Romania
| | - Corina Briciu
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Faculty of Pharmacy, Department of Clinical Pharmacy, Cluj-Napoca , Romania
| |
Collapse
|
26
|
Dinh JC, Pearce RE, Van Haandel L, Gaedigk A, Leeder JS. Characterization of Atomoxetine Biotransformation and Implications for Development of PBPK Models for Dose Individualization in Children. Drug Metab Dispos 2016; 44:1070-9. [PMID: 27052878 PMCID: PMC4931890 DOI: 10.1124/dmd.116.069518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/04/2016] [Indexed: 11/22/2022] Open
Abstract
Atomoxetine (ATX) is a second-line nonstimulant medication used to control symptoms of attention deficit hyperactivity disorder (ADHD). Inconsistent therapeutic efficacy has been reported with ATX, which may be related to variable CYP2D6-mediated drug clearance. We characterized ATX metabolism in a panel of human liver samples as a basis for a bottom-up PBPK model to aid in ATX exposure prediction and control. Km, Vmax, and Clint values in pooled human liver microsomes (HLMs) were 2.4 µM, 479 pmol/min/mg protein, and 202 µl/min/mg protein, respectively. Mean population values of kinetic parameters are not adequate to describe variability in a population, given that Km, Vmax, and Clint values from single-donor HLMs ranged from 0.93 to 79.2 µM, 20.0 to 1600 pmol/min/mg protein, and 0.3 to 936 µl/min/mg protein. All kinetic parameters were calculated from 4-hydroxyatomoxetine (4-OH-ATX) formation. CYP2E1 and CYP3A contributed to 4-OH-ATX formation in livers with CYP2D6 intermediate and poor metabolizer status. In HLMs with lower CYP2D6 activity levels, 2-hydroxymethylatomoxetine (2-CH2OH-ATX) formation became a more predominant pathway of metabolism, which appeared to be catalyzed by CYP2B6. ATX biotransformation at clinically relevant plasma concentrations was characterized in a panel of pediatric HLM (n = 116) samples by evaluating primary metabolites. Competing pathways of ATX metabolism [N-desmethylatomoxetine (NDM-ATX) and 2-CH2OH-ATX formation] had increasing importance in livers with lesser CYP2D6 activity, but, overall ATX clearance was still compromised. Modeling ATX exposure to individualize therapy would require comprehensive knowledge of factors that affect CYP2D6 activity as well as an understanding of competing pathways, particularly for individuals with lower CYP2D6 activity.
Collapse
Affiliation(s)
- Jean C Dinh
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation (J.C.D., L.V.H., R.E.P., A.G., J.S.L.), Department of Pediatrics, Children's Mercy Hospital (L.V.H., R.E.P., A.G., J.S.L.), University of Kansas Medical Center (J.S.L.), and Department of Pharmacology (A.G., R.E.P., J.S.L.), University of Missouri-Kansas City, Kansas City, Missouri
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation (J.C.D., L.V.H., R.E.P., A.G., J.S.L.), Department of Pediatrics, Children's Mercy Hospital (L.V.H., R.E.P., A.G., J.S.L.), University of Kansas Medical Center (J.S.L.), and Department of Pharmacology (A.G., R.E.P., J.S.L.), University of Missouri-Kansas City, Kansas City, Missouri
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation (J.C.D., L.V.H., R.E.P., A.G., J.S.L.), Department of Pediatrics, Children's Mercy Hospital (L.V.H., R.E.P., A.G., J.S.L.), University of Kansas Medical Center (J.S.L.), and Department of Pharmacology (A.G., R.E.P., J.S.L.), University of Missouri-Kansas City, Kansas City, Missouri
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation (J.C.D., L.V.H., R.E.P., A.G., J.S.L.), Department of Pediatrics, Children's Mercy Hospital (L.V.H., R.E.P., A.G., J.S.L.), University of Kansas Medical Center (J.S.L.), and Department of Pharmacology (A.G., R.E.P., J.S.L.), University of Missouri-Kansas City, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation (J.C.D., L.V.H., R.E.P., A.G., J.S.L.), Department of Pediatrics, Children's Mercy Hospital (L.V.H., R.E.P., A.G., J.S.L.), University of Kansas Medical Center (J.S.L.), and Department of Pharmacology (A.G., R.E.P., J.S.L.), University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
27
|
The Effect of Myricetin on Pharmacokinetics of Atomoxetine and its Metabolite 4-Hydroxyatomoxetine In Vivo and In Vitro. Eur J Drug Metab Pharmacokinet 2016; 42:261-268. [DOI: 10.1007/s13318-016-0347-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Yu G, Li GF, Markowitz JS. Atomoxetine: A Review of Its Pharmacokinetics and Pharmacogenomics Relative to Drug Disposition. J Child Adolesc Psychopharmacol 2016; 26:314-26. [PMID: 26859445 PMCID: PMC4876529 DOI: 10.1089/cap.2015.0137] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Atomoxetine is a selective norepinephrine (NE) reuptake inhibitor approved for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children (≥6 years of age), adolescents, and adults. Its metabolism and disposition are fairly complex, and primarily governed by cytochrome P450 (CYP) 2D6 (CYP2D6), whose protein expression varies substantially from person to person, and by race and ethnicity because of genetic polymorphism. These differences can be substantial, resulting in 8-10-fold differences in atomoxetine exposure between CYP2D6 poor metabolizers and extensive metabolizers. In this review, we have attempted to revisit and analyze all published clinical pharmacokinetic data on atomoxetine inclusive of public access documents from the new drug application submitted to the United States Food and Drug Administration (FDA). The present review focuses on atomoxetine metabolism, disposition, and genetic polymorphisms of CYP2D6 as they specifically relate to atomoxetine, and provides an in-depth discussion of the fundamental pharmacokinetics of the drug including its absorption, distribution, metabolism, and excretion in pediatric and adult populations. Further, a summary of relationships between genetic variants of CYP2D6 and to some degree, CYP2C19, are provided with respect to atomoxetine plasma concentrations, central nervous system (CNS) pharmacokinetics, and associated clinical implications for pharmacotherapy. Lastly, dosage adjustments based on pharmacokinetic principles are discussed.
Collapse
Affiliation(s)
- Guo Yu
- Laboratory of Pharmacogenomics and Pharmacokinetic Research, Subei People's Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guo-Fu Li
- Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai, China
| | - John S. Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
- Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Complementary and Alternative Medicine use in Pediatric Attention-Deficit Hyperactivity Disorder (ADHD): Reviewing the Safety and Efficacy of Herbal Medicines. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2016. [DOI: 10.1007/s40474-016-0074-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Brown JT, Abdel-Rahman SM, van Haandel L, Gaedigk A, Lin YS, Leeder JS. Single dose, CYP2D6 genotype-stratified pharmacokinetic study of atomoxetine in children with ADHD. Clin Pharmacol Ther 2016; 99:642-50. [PMID: 26660002 DOI: 10.1002/cpt.319] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 01/22/2023]
Abstract
The effect of CYP2D6 genotype on the dose-exposure relationship for atomoxetine has not been well characterized in children. Children 6-17 years of age diagnosed with attention-deficit hyperactivity disorder (ADHD) were stratified by CYP2D6 genotype into groups with 0 (poor metabolizers [PMs], n = 4), 0.5 (intermediate metabolizers [IMs], n = 3), one (extensive metabolizer [EM]1, n = 8) or two (EM2, n = 8) functional alleles and administered a single 0.5 mg/kg oral dose of atomoxetine (ATX). Plasma and urine samples were collected for 24 (IM, EM1, and EM2) or 72 hours (PMs). Dose-corrected ATX systemic exposure (area under the curve [AUC]0-∞ ) varied 29.6-fold across the study cohort, ranging from 4.4 ± 2.7 μM*h in EM2s to 5.8 ± 1.7 μM*h, 16.3 ± 2.9 μM*h, and 50.2 ± 7.3 μM*h in EM1s, IMs, and PMs, respectively (P < 0.0001). Simulated steady state profiles at the maximum US Food and Drug Administration (FDA)-recommended dose suggest that most patients are unlikely to attain adequate ATX exposures. These data support the need for individualized dosing strategies for more effective use of the medication.
Collapse
Affiliation(s)
- J T Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, Minnesota, USA
| | - S M Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City and University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - L van Haandel
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City and University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - A Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City and University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Y S Lin
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - J S Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City and University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
31
|
Todor I, Popa A, Neag M, Muntean D, Bocsan C, Buzoianu A, Vlase L, Gheldiu AM, Chira R, Briciu C. The influence of paroxetine on the pharmacokinetics of atomoxetine and its main metabolite. ACTA ACUST UNITED AC 2016; 88:513-20. [PMID: 26733750 PMCID: PMC4689245 DOI: 10.15386/cjmed-488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 11/23/2022]
Abstract
Background and aims To evaluate the effects of paroxetine on the pharmacokinetics of atomoxetine and its main metabolite, 4-hydroxyatomoxetine-O-glucuronide, after coadministration of atomoxetine and paroxetine in healthy volunteers. Methods 22 healthy volunteers, extensive metabolizers, took part in this open-label, non-randomized, clinical trial. The study consisted of two periods: Reference, when a single oral dose of 25 mg atomoxetine was administrated to each subject and Test, when 25 mg atomoxetine and 20 mg paroxetine were coadministered. Between the two periods, the volunteers received an oral daily dose of 20–40 mg paroxetine, for 6 days. Atomoxetine and 4-hydroxyatomoxetine-O-glucuronide plasma concentrations were determined within the first 48 hours following drug administration. The pharmacokinetic parameters of both compounds were assessed using a non-compartmental method and the analysis of variance aimed at identifying any statistical significant differences between the pharmacokinetic parameters of atomoxetine and its main metabolite, corresponding to each study period. Results Paroxetine modified the pharmacokinetic parameters of atomoxetine. Cmax increased from 221.26±94.93 to 372.53±128.28 ng/mL, while AUC0-t and AUC0-∞ also increased from 1151.19±686.52 to 6452.37±3388.76 ng*h/mL, and from 1229.15±751.04 to 7111.74±4195.17 ng*h/mL respectively. The main metabolite pharmacokinetics was also influenced by paroxetine intake, namely Cmax, AUC0-t and AUC0-∞ decreased from 688.76±270.27 to 131.01±100.43 ng*h/mL, and from 4810.93±845.06 to 2606.04±923.88 and from 4928.55±853.25 to 3029.82 ±941.84 respectively. Conclusions Multiple-dose paroxetine intake significantly influenced atomoxetine and its active metabolite pharmacokinetics, causing a 5.8-fold increased exposure to atomoxetine and 1.6-fold reduced exposure to 4-hydroxyatomoxetine-O-glucuronide.
Collapse
Affiliation(s)
- Ioana Todor
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Popa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ruxandra Chira
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Corina Briciu
- Department of Clinical Pharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Schaefer M, Schänzle G, Bischoff D, Süssmuth RD. Upcyte Human Hepatocytes: a Potent In Vitro Tool for the Prediction of Hepatic Clearance of Metabolically Stable Compounds. ACTA ACUST UNITED AC 2015; 44:435-44. [PMID: 26712819 DOI: 10.1124/dmd.115.067348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022]
Abstract
In vitro models based on primary human hepatocytes (PHH) have been advanced for clearance (CL) prediction of metabolically stable compounds, representing state-of-the-art assay systems for drug discovery and development. Yet, limited cell availability and large interindividual variability of metabolic profiles remain shortcomings of PHH. Upcyte human hepatocytes (UHH) represent a novel hepatic cell system derived from PHH, exhibiting proliferative capacity for approximately 35 population doublings. UHH from three donors were evaluated during culture for up to 18 days, investigating relative mRNA expression and in situ enzyme activity of cytochrome P450s (P450s), UDP-glucuronosyltransferases, and sulfotransferases. Furthermore, UHH were used for predicting hepatic CL of 21 marketed low to intermediate CL drugs. In a typical experiment, expansion from 3.9 × 10(6) up to 8.5 × 10(7) cells was achieved during subculture. When maintained at confluence, transcripts of major P450s were expressed at donor-specific levels with sustained activities for the majority of isoforms, showing generally low CYP1A2 and high CYP2B6 activity levels. For donor 151-03, CL prediction based on depletion experiments resulted in an average fold error of 2.0, and 80% of compounds being predicted within twofold to in vivo CL for a subset of 10 low CL drugs. UHH showed sustained and consistent activity of drug-metabolizing enzymes (DME), resulting in highly reproducible CL prediction performance. In conclusion, UHH show promising potential as alternative to PHH for standardized in vitro applications in discovery research based on their stable, hepatocyte-like DME phenotype and virtually unlimited cell availability.
Collapse
Affiliation(s)
- Michelle Schaefer
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Gerhard Schänzle
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Daniel Bischoff
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Roderich D Süssmuth
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| |
Collapse
|
33
|
Brown JT, Bishop JR. Atomoxetine pharmacogenetics: associations with pharmacokinetics, treatment response and tolerability. Pharmacogenomics 2015; 16:1513-20. [PMID: 26314574 DOI: 10.2217/pgs.15.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atomoxetine is indicated for the treatment of attention deficit hyperactivity disorder and is predominantly metabolized by the CYP2D6 enzyme. Differences in pharmacokinetic parameters as well as clinical treatment outcomes across CYP2D6 genotype groups have resulted in dosing recommendations within the product label, but clinical studies supporting the use of genotype guided dosing are currently lacking. Furthermore, pharmacokinetic and clinical studies have primarily focused on extensive as compared with poor metabolizers, with little information known about other metabolizer categories as well as genes involved in the pharmacodynamics of atomoxetine. This review describes the pharmacogenetic associations with atomoxetine pharmacokinetics, treatment response and tolerability with considerations for the clinical utility of this information.
Collapse
Affiliation(s)
- Jacob T Brown
- Department of Pharmacy Practice & Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55802, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Byeon JY, Kim YH, Na HS, Jang JH, Kim SH, Lee YJ, Bae JW, Kim IS, Jang CG, Chung MW, Lee SY. Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites. Arch Pharm Res 2015; 38:2083-91. [DOI: 10.1007/s12272-015-0646-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
|
35
|
Fijal BA, Guo Y, Li SG, Ahl J, Goto T, Tanaka Y, Nisenbaum LK, Upadhyaya HP. CYP2D6 predicted metabolizer status and safety in adult patients with attention-deficit hyperactivity disorder participating in a large placebo-controlled atomoxetine maintenance of response clinical trial. J Clin Pharmacol 2015; 55:1167-74. [PMID: 25919121 DOI: 10.1002/jcph.530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/22/2015] [Indexed: 01/31/2023]
Abstract
Atomoxetine, which is indicated for treatment of attention-deficit hyperactivity disorder (ADHD), is predominantly metabolized by genetically polymorphic cytochrome P450 2D6 (CYP2D6). Based on identified CYP2D6 genotypes, individuals can be categorized into 4 phenotypic metabolizer groups as ultrarapid, extensive, intermediate, and poor. Previous studies have focused on observed differences between poor and extensive metabolizers, but it is not well understood whether the safety profile of intermediate metabolizers differs from that of ultrarapid and extensive metabolizers. This study compared safety and tolerability among the different CYP2D6 metabolizer groups in the 12-week open-label phase of an atomoxetine study in adult patients with ADHD. Genotyping identified 1039 patients as extensive/ultrarapid metabolizers, 780 patients as intermediate metabolizers, and 117 patients as poor metabolizers. Common (≥5% frequency) treatment-emergent adverse events did not significantly differ between extensive/ultrarapid and intermediate metabolizers (odds ratios were <2.0 or >0.5). Poor metabolizers had higher frequencies of dry mouth, erectile dysfunction, hyperhidrosis, insomnia, and urinary retention compared with the other metabolizer groups. There were no significant differences between extensive/ultrarapid and intermediate metabolizers in changes from baseline in vital signs. These results suggest that data from CYP2D6 intermediate and extensive/ultrarapid metabolizers can be combined when considering safety analyses related to atomoxetine.
Collapse
Affiliation(s)
| | | | - Si G Li
- BioStatSolutions, Inc., Frederick, MD, USA
| | - Jonna Ahl
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Yoko Tanaka
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | |
Collapse
|
36
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Yamaguchi H, Nagumo K, Nakashima T, Kinugawa Y, Kumaki S. Life-threatening QT prolongation in a boy with attention-deficit/hyperactivity disorder on atomoxetine. Eur J Pediatr 2014; 173:1631-4. [PMID: 24233333 DOI: 10.1007/s00431-013-2206-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/23/2013] [Indexed: 11/24/2022]
Abstract
As a noncentral nerve-stimulating agent blocking reuptake of noradrenalin, atomoxetine is used for treatment of attention-deficit/hyperactivity disorder (ADHD). Because it has less potential for addiction and abuse and improves core symptoms of ADHD, it is commonly prescribed in many children and adolescents internationally. Its common side effects include headache, abdominal pain, decreased appetite, and weight loss. In addition, cardiac effects such as tachycardia and hypertension have also been reported. In this case report, an 11-year-old Japanese boy with a past medical history of ADHD on atomoxetine for more than 2 years presented with a loss of consciousness. Initial electrocardiogram (ECG) showed significant QT prolongation, and 9 h later, it worsened, along with bradycardia, inversed T waves, and multiple premature ventricle contractions (PVCs). Transthoracic echocardiography showed akinesis with dilation and systolic ballooning of the left ventricle's (LV) apical segment (Takotsubo cardiomyopathy). At that point, bisoprolol and transcutaneous pacing were started. After 5 days, transcutaneous pacing was discontinued due to improvement in his cardiac rhythm. He continued to remain asymptomatic for the next year, while his QT interval returned to normal. Conclusion: This case report suggests a serious side effect of atomoxetine, and to avoid life-threatening cardiovascular events for children and adolescents with ADHD on atomoxetine, prior screening for cardiovascular conditions by ECG with close monitoring is necessary.
Collapse
|
38
|
Peng YS, Liu B, Wang RF, Zhao QT, Xu W, Yang XW. Hepatic metabolism: a key component of herbal drugs research. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 17:89-106. [PMID: 25296190 DOI: 10.1080/10286020.2014.960856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Liver is the largest metabolic organ for a wide range of endogenous and exogenous compounds and plays a crucial part in the pharmacokinetics and pharmacodynamics through various metabolic reactions. This review provides a progressive description of hepatic metabolism of herbal drugs with respect to metabolic types and investigational methods. In addition, the problems encountered during the research process are discussed.
Collapse
Affiliation(s)
- Yu-Shuai Peng
- a School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100102 , China
| | | | | | | | | | | |
Collapse
|
39
|
Sager JE, Lutz JD, Foti RS, Davis C, Kunze KL, Isoherranen N. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther 2014; 95:653-62. [PMID: 24569517 PMCID: PMC4029899 DOI: 10.1038/clpt.2014.50] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/14/2014] [Indexed: 01/14/2023]
Abstract
Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were unaffected by 2-week dosing of fluoxetine, whereas the AUCs of dextromethorphan and omeprazole were increased by 27- and 7.1-fold, respectively. This observed discrepancy between in vitro risk assessment and in vivo drug-drug interaction (DDI) profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions, and CYP3A4 induction. The dynamic models predicted all DDIs with less than twofold error. This study demonstrates that complex DDIs that involve multiple mechanisms, pathways, and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro.
Collapse
Affiliation(s)
- J E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - J D Lutz
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - R S Foti
- Department of Pharmacokinetics and Drug Metabolism, Amgen, Seattle, Washington, USA
| | - C Davis
- Division of Nephrology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - K L Kunze
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - N Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
Abstract
Atomoxetine is a selective norepinephrine reuptake inhibitor indicated for the treatment of attention-deficit/hyperactivity disorder. Atomoxetine metabolism is mediated by CYP2D6 and CYP2C19. This study aimed to investigate the effect of the CYP2C19 genetic polymorphism on the pharmacokinetics of atomoxetine and its metabolites, 4-hydroxyatomoxetine and N-desmethylatomoxetine. A single 40-mg oral dose of atomoxetine was administered to 40 subjects with different CYP2C19 genotypes (all participants carried the CYP2D6*1/*10 genotype). Concentrations of atomoxetine and its metabolites were analyzed using high-performance liquid chromatography with tandem mass spectrometry in plasma samples that were collected up to 24 hours after drug intake. For atomoxetine, the CYP2C19 poor metabolizer (PM) group showed significantly increased maximum plasma concentration and AUC0-∞ (area under the plasma concentration-time curve from 0 to infinity) and decreased apparent oral clearance compared with samples of the CYP2C19 extensive metabolizer (EM) and intermediate metabolizer (IM) groups (P < 0.001 for all). The half-life of atomoxetine in the CYP2C19PM group was also significantly longer than in the other genotype groups (P < 0.01 for CYP2C19EM and P < 0.05 for CYP2C19IM groups). The maximum plasma concentration and AUC 0-∞ of 4-hydroxyatomoxetine were significantly higher in the CYP2C19PM group compared with those in the CYP2C19EM and IM groups (P < 0.001 for CYP2C19EM and P < 0.05 for CYP2C19IM, respectively), whereas the corresponding values for N-desmethylatomoxetine in the CYP2C19PM group were significantly lower than those in the 2 genotype groups (P < 0.001 for both genotype groups). These results suggest that the genetic polymorphisms of CYP2C19 significantly affect the pharmacokinetics of atomoxetine.
Collapse
|
41
|
Choi CI, Jang CG, Bae JW, Lee SY. Validation of an analytical LC-MS/MS method in human plasma for the pharmacokinetic study of atomoxetine. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813110051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Chan TS, Yu H, Moore A, Khetani SR, Kehtani SR, Tweedie D. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metab Dispos 2013; 41:2024-32. [PMID: 23959596 DOI: 10.1124/dmd.113.053397] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Generating accurate in vitro intrinsic clearance data is an important aspect of predicting in vivo human clearance. Primary hepatocytes in suspension are routinely used to predict in vivo clearance; however, incubation times have typically been limited to 4-6 hours, which is not long enough to accurately evaluate the metabolic stability of slowly metabolized compounds. HepatoPac is a micropatterened hepatocyte-fibroblast coculture system that can be used for continuous incubations of up to 7 days. This study evaluated the ability of human HepatoPac to predict the in vivo clearance (CL) of 17 commercially available compounds with low to intermediate clearance (<12 ml/min per kg). In vitro half-life for disappearance of each compound was converted to hepatic clearance using the well stirred model, with and without correction for plasma protein binding. Hepatic CL, using three individual donors, was accurately predicted for 10 of 17 compounds (59%; predicted clearance within 2-fold of observed human in vivo clearance values). The accuracy of prediction increased to 76% (13 of 17 compounds) with an acceptance criterion defined as within 3-fold. When considering only low clearance compounds (<5 ml/min per kg), which represented 10 of the 17 compounds, the accuracy of prediction was 60% within 2-fold and 90% within 3-fold. In addition, the turnover of three slowly metabolized compounds (alprazolam, meloxicam, and tolbutamide) in HepatoPac was directly compared with turnover in suspended hepatocytes. The turnover of alprazolam and tolbutamide was approximately 2-fold greater using HepatoPac compared with suspended hepatocytes, which was roughly in line with the extrapolated values (correcting for the longer incubation time and lower cell number with HepatoPac). HepatoPac, but not suspended hepatocytes, demonstrated significant turnover of meloxicam. These results demonstrate the utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds.
Collapse
Affiliation(s)
- Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | | | | | | | | | | |
Collapse
|
43
|
Ding YS, Naganawa M, Gallezot JD, Nabulsi N, Lin SF, Ropchan J, Weinzimmer D, McCarthy TJ, Carson RE, Huang Y, Laruelle M. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. Neuroimage 2013; 86:164-71. [PMID: 23933039 DOI: 10.1016/j.neuroimage.2013.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/07/2013] [Accepted: 08/01/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Atomoxetine (ATX), a drug for treatment of depression and ADHD, has a high affinity for the norepinephrine transporter (NET); however, our previous study showed it had a blocking effect similar to fluoxetine on binding of [(11)C]DASB, a selective serotonin transporter (SERT) ligand. Whether the therapeutic effects of ATX are due to inhibition of either or both transporters is not known. Here we report our comparative PET imaging studies with [(11)C]MRB (a NET ligand) and [(11)C]AFM (a SERT ligand) to evaluate in vivo IC50 values of ATX in monkeys. METHODS Rhesus monkeys were scanned up to four times with each tracer with up to four doses of ATX. ATX or saline (placebo) infusion began 2h before each PET scan, lasting until the end of the 2-h scan. The final infusion rates were 0.01-0.12mg/kg/h and 0.045-1.054mg/kg/h for the NET and SERT studies, respectively. ATX plasma levels and metabolite-corrected arterial input functions were measured. Distribution volumes (VT) and IC50 values were estimated. RESULTS ATX displayed dose-dependent occupancy on both NET and SERT, with a higher occupancy on NET: IC50 of 31±10 and 99±21ng/mL plasma for NET and SERT, respectively. At a clinically relevant dose (1.0-1.8mg/kg, approx. 300-600ng/mL plasma), ATX would occupy >90% of NET and >85% of SERT. This extrapolation assumes comparable free fraction of ATX in humans and non-human primates. CONCLUSION Our data suggests that ATX at clinically relevant doses greatly occupies both NET and SERT. Thus, therapeutic modes of ATX action for treatment of depression and ADHD may be more complex than selective blockade of NET.
Collapse
Affiliation(s)
- Y-S Ding
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA; Department of Psychiatry and Radiology, New York University, New York, NY, USA.
| | - M Naganawa
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - J-D Gallezot
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - N Nabulsi
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - S-F Lin
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - J Ropchan
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - D Weinzimmer
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | | | - R E Carson
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Y Huang
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - M Laruelle
- New Medicines, UCB Pharma S.A., Brussels, Belgium
| |
Collapse
|
44
|
Spiller HA, Hays HL, Aleguas A. Overdose of drugs for attention-deficit hyperactivity disorder: clinical presentation, mechanisms of toxicity, and management. CNS Drugs 2013; 27:531-43. [PMID: 23757186 DOI: 10.1007/s40263-013-0084-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prevalence of attention-deficit hyperactivity disorder (ADHD) in the USA is estimated at approximately 4-9% in children and 4% in adults. It is estimated that prescriptions for ADHD medications are written for more than 2.7 million children per year. In 2010, US poison centers reported 17,000 human exposures to ADHD medications, with 80% occurring in children <19 years old and 20% in adults. The drugs used for the treatment of ADHD are diverse but can be roughly separated into two groups: the stimulants such as amphetamine, methylphenidate, and modafinil; and the non-stimulants such as atomoxetine, guanfacine, and clonidine. This review focuses on mechanisms of toxicity after overdose with ADHD medications, clinical effects from overdose, and management. Amphetamine, dextroamphetamine, and methylphenidate act as substrates for the cellular monoamine transporter, especially the dopamine transporter (DAT) and less so the norepinephrine (NET) and serotonin transporter. The mechanism of toxicity is primarily related to excessive extracellular dopamine, norepinephrine, and serotonin. The primary clinical syndrome involves prominent neurological and cardiovascular effects, but secondary complications can involve renal, muscle, pulmonary, and gastrointestinal (GI) effects. In overdose, the patient may present with mydriasis, tremor, agitation, hyperreflexia, combative behavior, confusion, hallucinations, delirium, anxiety, paranoia, movement disorders, and seizures. The management of amphetamine, dextroamphetamine, and methylphenidate overdose is largely supportive, with a focus on interruption of the sympathomimetic syndrome with judicious use of benzodiazepines. In cases where agitation, delirium, and movement disorders are unresponsive to benzodiazepines, second-line therapies include antipsychotics such as ziprasidone or haloperidol, central alpha-adrenoreceptor agonists such as dexmedetomidine, or propofol. Modafinil is not US FDA approved for treatment of ADHD; however, it has been shown to improve ADHD signs and symptoms and has been used as an off-label pharmaceutical for this diagnosis in both adults and children. The mechanism of action of modafinil is complex and not fully understood. It is known to cause an increase in extracellular concentrations of dopamine, norepinephrine, and serotonin in the neocortex. Overdose with modafinil is generally of moderate severity, with reported ingestions of doses up to 8 g. The most common neurological effects include increased anxiety, agitation, headache, dizziness, insomnia, tremors, and dystonia. The management of modafinil overdose is largely supportive, with a focus on sedation, and control of dyskinesias and blood pressure. Atomoxetine is a selective presynaptic norepinephrine transporter inhibitor. The clinical presentation after overdose with atomoxetine has generally been mild. The primary effects have been drowsiness, agitation, hyperactivity, GI upset, tremor, hyperreflexia, tachycardia hypertension, and seizure. The management of atomoxetine overdose is largely supportive, with a focus on sedation, and control of dyskinesias and seizures. Clonidine is a synthetic imidazole derivative with both central and peripheral alpha-adrenergic agonist actions. The primary clinical syndrome involves prominent neurological and cardiovascular effects, with the most commonly reported features of depressed sensorium, bradycardia, and hypotension. While clonidine is an anti-hypertensive medication, a paradoxical hypertension may occur early with overdose. The clinical syndrome after overdose of guanfacine may be mixed depending on central or peripheral alpha-adrenoreceptor effects. Initial clinical effects may be drowsiness, lethargy, dry mouth, and diaphoresis. Cardiovascular effects may depend on time post-ingestion and may present as hypotension or hypertension. The management of guanfacine overdose is largely supportive, with a focus on support of blood pressure. Overdose with ADHD medications can produce major morbidity, with many cases requiring intensive care medicine and prolonged hospital stays. However, fatalities are rare with appropriate care.
Collapse
|
45
|
Matsui A, Azuma J, Witcher JW, Long AJ, Sauer JM, Smith BP, DeSante KA, Read HA, Takahashi M, Nakano M. Pharmacokinetics, Safety, and Tolerability of Atomoxetine and Effect ofCYP2D6*10/*10Genotype in Healthy Japanese Men. J Clin Pharmacol 2013; 52:388-403. [DOI: 10.1177/0091270011398657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Jernigan MG, Kipp GM, Rather A, Jenkins MT, Chung AM. Clinical implications and management of drug-drug interactions between antiretroviral agents and psychotropic medications. Ment Health Clin 2013. [DOI: 10.9740/mhc.n139874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Medications used in the treatment of human immunodeficiency virus (HIV) often have drug-drug interactions which complicate treatment of psychiatric illnesses in HIV-infected patients. Protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) are the two classes of HIV medications most likely to be involved with interactions, with the majority occurring via the cytochrome P450 (CYP450) system. These interactions can result in either increased or decreased exposure to psychotropic and antiretroviral medications, often requiring dosage adjustments and increased monitoring. This article reviews some of the major drug interactions with antiretroviral agents.
Collapse
|
47
|
Amphetamine positive urine toxicology screen secondary to atomoxetine. Case Rep Psychiatry 2013; 2013:381261. [PMID: 23424703 PMCID: PMC3570929 DOI: 10.1155/2013/381261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/01/2013] [Indexed: 12/01/2022] Open
Abstract
The aim of this paper is to report the first case of atomoxetine leading to false-positive urine drug screen. An otherwise healthy 27-year-old female with a history of attention deficit hyperactivity disorder (ADHD) treated with atomoxetine had an acute onset tonic-clonic seizure. On arrival to the hospital, a urine toxicological drug screen with immunochemical cloned enzyme donor immunoassay (CEDIA) was performed. Results were positive for amphetamines; however, the presence of these substances could not be confirmed with urine gas chromatography-mass spectrometry (GC-MS). She denied any illicit drug use, herbal medications, or supplements, and her other prescription medications have not been previously known to cause a false-positive result for amphetamines. While stimulant treatments for ADHD could certainly result in a positive result on urine screen for amphetamines, there have been no reports of false-positive results for amphetamines secondary to patients using atomoxetine. We implicate atomoxetine, and/or its metabolites, as a compound or compounds which may interfere with urine drug immunoassays leading to false-positive results for amphetamines CEDIA assays.
Collapse
|
48
|
Papaseit E, Marchei E, Farré M, Garcia-Algar O, Pacifici R, Pichini S. Concentrations of atomoxetine and its metabolites in plasma and oral fluid from paediatric patients with attention deficit/hyperactivity disorder. Drug Test Anal 2012; 5:446-52. [DOI: 10.1002/dta.1370] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/15/2012] [Accepted: 04/16/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Esther Papaseit
- Human Pharmacology and Neurosciences, Neuroscience Program; Institut de Recerca Hospital del Mar - IMIM and Universitat Autònoma de Barcelona; Barcelona; Spain
| | - Emilia Marchei
- Department of Therapeutic Research and Medicines Evaluation; Istituto Superiore di Sanitá; Rome; Italy
| | - Magí Farré
- Human Pharmacology and Neurosciences, Neuroscience Program; Institut de Recerca Hospital del Mar - IMIM and Universitat Autònoma de Barcelona; Barcelona; Spain
| | - Oscar Garcia-Algar
- Unitat de Recerca Infància i Entorn (URIE); Retic Samid, IMIM-Hospital del Mar; Barcelona; Spain
| | - Roberta Pacifici
- Department of Therapeutic Research and Medicines Evaluation; Istituto Superiore di Sanitá; Rome; Italy
| | - Simona Pichini
- Department of Therapeutic Research and Medicines Evaluation; Istituto Superiore di Sanitá; Rome; Italy
| |
Collapse
|
49
|
Development and validation of a liquid chromatography–tandem mass spectrometry assay for hair analysis of atomoxetine and its metabolites: Application in clinical practice. Forensic Sci Int 2012; 218:62-7. [DOI: 10.1016/j.forsciint.2011.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 04/20/2011] [Indexed: 11/17/2022]
|
50
|
Li CSW, Zhang L, Haske T, Dounay A, Gray D, Barta N, Brodfuehrer J, Lepsy C, Campbell B. Mechanism-based pharmacokinetic/pharmacodynamic modeling of rat prefrontal cortical dopamine response to dual acting norepinephrine reuptake inhibitor and 5-HT1A partial agonist. AAPS JOURNAL 2012; 14:365-76. [PMID: 22454087 DOI: 10.1208/s12248-012-9343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
Evidence suggests that compounds possessing both norepinephrine reuptake inhibition and 5-HT(1A) partial agonism (NRI/5-HT(1A)) activities may have a greater efficacy in treating neuropsychiatric disorders than compounds possessing either activity alone. The objectives of the present study were first to characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship of the plasma concentrations of atomoxetine (NRI) and buspirone (5-HT(1A) partial agonist), administered alone and in combination, on the prefrontal cortex dopamine levels in rats, and second to use the model developed to characterize the PK/PD relationship of novel NRI/5-HT(1A) compounds, PF-04269339 and PF-03529936, in a NRI/5-HT(1A) drug discovery program. Maximal dopamine elevation was twofold higher after administration of atomoxetine and buspirone in combination, PF-04269339, or PF-03529936 than after administration of atomoxetine or buspirone alone. A mechanism-based extended indirect response model characterized the time profiles of the prefrontal cortex dopamine response to atomoxetine and buspirone, administered alone or in combination. After fixing three mechanism-specific pharmacodynamic parameters (I (max) and γ2 for NRI and γ1 for 5-HT(1A)) based on the model for atomoxetine and/or buspirone, the model fitted the exposure-response profiles of PF-04269339 and PF-03529936 well. Good in vitro-to-in vivo correlation was demonstrated with the compound-specific pharmacodynamic parameters (IC(50) for NRI and SC(50) and S (max) for 5-HT(1A)) across the compounds. In summary, a piecewise modeling approach was used successfully for the characterization of the PK/PD relationship of novel NRI/5-HT(1A) compounds on prefrontal cortex dopamine levels in rats. The application and value of the mechanism-based modeling in the dual pharmacology drug discovery program are also discussed.
Collapse
Affiliation(s)
- Cheryl Shuang-wu Li
- Department of Pharmacokinetics Dynamics and Metabolism, Global Research and Development, Pfizer Inc., Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|