1
|
Li H, Fan X, Ding X, Zhang QY. Tissue-, Region-, and Gene-Specific Induction of Microsomal Epoxide Hydrolase Expression and Activity in the Mouse Intestine by Arsenic in Drinking Water. Drug Metab Dispos 2024; 52:681-689. [PMID: 38719743 PMCID: PMC11185820 DOI: 10.1124/dmd.124.001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 06/19/2024] Open
Abstract
This study aimed to characterize the effects of arsenic exposure on the expression of microsomal epoxide hydrolase (mEH or EPHX1) and soluble epoxide hydrolase (sEH or EPHX2) in the liver and small intestine. C57BL/6 mice were exposed to sodium arsenite in drinking water at various doses for up to 28 days. Intestinal, but not hepatic, mEH mRNA and protein expression was induced by arsenic at 25 ppm, in both males and females, whereas hepatic mEH expression was induced by arsenic at 50 or 100 ppm. The induction of mEH was gene specific, as the arsenic exposure did not induce sEH expression in either tissue. Within the small intestine, mEH expression was induced only in the proximal, but not the distal segments. The induction of intestinal mEH was accompanied by increases in microsomal enzymatic activities toward a model mEH substrate, cis-stilbene oxide, and an epoxide-containing drug, oprozomib, in vitro, and by increases in the levels of PR-176, the main hydrolysis metabolite of oprozomib, in the proximal small intestine of oprozomib-treated mice. These findings suggest that intestinal mEH, playing a major role in converting xenobiotic epoxides to less reactive diols, but not sEH, preferring endogenous epoxides as substrates, is relevant to the adverse effects of arsenic exposure, and that further studies of the interactions between drinking water arsenic exposure and the disposition or possible adverse effects of epoxide-containing drugs and other xenobiotic compounds in the intestine are warranted. SIGNIFICANCE STATEMENT: Consumption of arsenic-contaminated water has been associated with increased risks of various adverse health effects, such as diabetes, in humans. The small intestinal epithelial cells are the main site of absorption of ingested arsenic, but they are not well characterized for arsenic exposure-related changes. This study identified gene expression changes in the small intestine that may be mechanistically linked to the adverse effects of arsenic exposure and possible interactions between arsenic ingestion and the pharmacokinetics of epoxide-containing drugs in vivo.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
2
|
Fujino C, Kuzu T, Kubo Y, Hayashi K, Ueshima S, Katsura T. Attenuation of phenobarbital-induced cytochrome P450 expression in carbon tetrachloride-induced hepatitis in mice models. Biopharm Drug Dispos 2023; 44:351-357. [PMID: 37032489 DOI: 10.1002/bdd.2356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
Certain pathological conditions, such as inflammation, are known to affect basal cytochrome P450 (CYP) expression by modulating transcriptional regulation, and the pharmacokinetics of drugs can vary among patients. However, changes in drug-induced CYP expression under pathological conditions have not been elucidated in detail. Here, we investigated the effects of hepatic inflammation and injury on phenobarbital-induced expression of CYP isoforms in mice. Phenobarbital was administered once as a CYP inducer in the carbon tetrachloride-induced hepatitis model mice. The mRNA expression levels of Cyp3a11 and Cyp2b10 in the liver and small intestine were measured using reverse transcription polymerase chain reaction. The enzymatic activity of CYP3A in liver S9 was evaluated using midazolam as the substrate. Phenobarbital increased the mRNA expression of Cyp3a11 and Cyp2b10 in the liver of healthy mice, but not in the small intestine. Increased mRNA expression of hepatic Cyp3a11 and Cyp2b10 by phenobarbital was significantly suppressed in the hepatitis model mice. Hepatitis also suppressed the increased CYP3A enzymatic activity induced by phenobarbital in liver S9, consistent with the results of Cyp3a11 mRNA expression. These results suggest that the inducibility of CYP by phenobarbital may vary in patients with hepatitis, indicating that pharmacokinetic drug-drug interactions can be altered under certain pathological conditions.
Collapse
Affiliation(s)
- Chieri Fujino
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu-shi, Shiga, Japan
| | - Taiki Kuzu
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu-shi, Shiga, Japan
| | - Yukine Kubo
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu-shi, Shiga, Japan
| | - Kurumi Hayashi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu-shi, Shiga, Japan
| | - Satoshi Ueshima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu-shi, Shiga, Japan
| | - Toshiya Katsura
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu-shi, Shiga, Japan
| |
Collapse
|
3
|
Nguepi Tsopmejio IS, Yuan J, Diao Z, Fan W, Wei J, Zhao C, Li Y, Song H. Auricularia polytricha and Flammulina velutipes reduce liver injury in DSS-induced Inflammatory Bowel Disease by improving inflammation, oxidative stress, and apoptosis through the regulation of TLR4/NF-κB signaling pathways. J Nutr Biochem 2023; 111:109190. [PMID: 36272692 DOI: 10.1016/j.jnutbio.2022.109190] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022]
Abstract
Auricularia polytricha and Flammulina velutipes are two dietary mushrooms mostly consumed in China and known for their traditional use on gastric ulceration and to boost bowel movement. Considering the gut-liver axis, which has been recognized for its role in the autoimmune modulation, and the implications of the intestinal barrier in the pathogenesis of liver diseases that remain unclear, the therapeutic effects of A. polytricha (APE) and F. velutipes (FVE) on inflammatory bowel disease (IBD)-induced liver injury in mice was investigated as well as their potential mechanism via the signaling pathways they could involve. 3% DSS was administered to the mice in drinking water, to induce ulcerative colitis, followed by oral administration of APE and FVE. The biochemical, oxidative stress and inflammatory parameters, mRNA and protein expressions were assessed. The results revealed that DSS-induced liver histopathological changes were ameliorated by APE and FVE treatment. APE and FVE administration also improved the ALT and AST activity as well as the pro-inflammatory cytokines and oxidative factors. Data also showed that, in addition to their regulation of tight junctions' disruption, APE and FVE attenuated genes and proteins expression involved in apoptosis, lipid metabolism, and bile acid homeostasis via inhibiting TLR4/NF-κB and caspase signaling pathways and stimulating Keap1/Nrf2 signaling pathways. In conclusion, APE and FVE regulated liver injury on DSS-induced ulcerative colitis by alleviating inflammation, oxidative stress, and apoptosis, suggesting that they could be used as therapeutic alternatives against liver diseases in addition to their functions as dietary supplements.
Collapse
Affiliation(s)
- Ivan Stève Nguepi Tsopmejio
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China;; Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Centre, Cameroon
| | - Jing Yuan
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China
| | - Zipeng Diao
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China
| | - Wentao Fan
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China
| | - Jiali Wei
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China
| | - Cong Zhao
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China
| | - Yuting Li
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China;.
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Changchun, Jilin, P. R. China;; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, Jilin, P. R. China.
| |
Collapse
|
4
|
Li H, Fan X, Wu X, Han W, Amistadi MK, Liu P, Zhang D, Chorover J, Ding X, Zhang QY. Differential Effects of Arsenic in Drinking Water on Mouse Hepatic and Intestinal Heme Oxygenase-1 Expression. Antioxidants (Basel) 2022; 11:1835. [PMID: 36139908 PMCID: PMC9495312 DOI: 10.3390/antiox11091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic exposure has been associated with the risks of various diseases, including cancers and metabolic diseases. The aim of this study was to examine the effects of arsenic exposure via drinking water on the expression of heme oxygenase-1 (HO-1), a major responsive gene to arsenic-induced oxidative stress, in mouse intestinal epithelial cells which is the first site of exposure for ingested arsenic, and the liver, a known target of arsenic toxicity. The expression of HO-1 was determined at mRNA, protein, or enzymic activity levels in mice exposed to sodium arsenite through drinking water, at various doses (0, 2.5, 10, 25, 100 ppm), and for various time periods (1, 3, 7, or 28 days). HO-1 was significantly induced in the intestine, but not liver, at arsenic doses of 25 ppm or lower. The intestinal HO-1 induction was seen in both males and females, plateaued within 1-3 days of exposure, and was accompanied by increases in microsomal HO activity. In mice exposed to 25-ppm of arsenite for 7 days, total arsenic and As(III) levels in intestinal epithelial cells were significantly higher than in the liver. These findings identify intestinal epithelial cells as likely preferential targets for arsenic toxicity and support further studies on the functional consequences of intestinal HO-1 induction.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Weiguo Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Mary Kay Amistadi
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department of Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
6
|
Fan X, Ding X, Zhang QY. Hepatic and intestinal biotransformation gene expression and drug disposition in a dextran sulfate sodium-induced colitis mouse model. Acta Pharm Sin B 2020; 10:123-135. [PMID: 31993311 PMCID: PMC6976992 DOI: 10.1016/j.apsb.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
We examined the impact of gut inflammation on the expression of cytochrome P450 (P450) and other biotransformation genes in male mice using a dextran sulfate sodium (DSS)-induced colitis model. Several P450 isoforms, including CYP1A, CYP2B, CYP2C, and CYP3A, were down-regulated, accompanied by decreases in microsomal metabolism of diclofenac and nifedipine, in the liver and small intestine. The impact of the colitis on in vivo clearance of oral drugs varied for four different drugs tested: a small decrease for nifedipine, a relatively large decrease for lovastatin, but no change for pravastatin, and a large decrease in the absorption of cyclosporine A. To further assess the scope of influence of gut inflammation on gene expression, we performed genome-wide expression analysis using RNA-seq, which showed down-regulation of many CYPs, non-CYP phase-I enzymes, phase-II enzymes and transporters, and up-regulation of many other members of these gene families, in both liver and intestine of adult C57BL/6 mice, by DSS-induced colitis. Overall, our results indicate that gut inflammation suppresses the expression of many P450s and other biotransformation genes in the intestine and liver, and alters the pharmacokinetics for some but not all drugs, potentially affecting therapeutic efficacy or causing adverse effects in a drug-specific fashion.
Collapse
|
7
|
Park E, Kim HK, Jee J, Hahn S, Jeong S, Yoo J. Development of organoid-based drug metabolism model. Toxicol Appl Pharmacol 2019; 385:114790. [DOI: 10.1016/j.taap.2019.114790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
|
8
|
Jia K, Zhang D, Jia Q, Zhang Q. Regulation of Fgf15 expression in the intestine by glucocorticoid receptor. Mol Med Rep 2019; 19:2953-2959. [PMID: 30720089 PMCID: PMC6423556 DOI: 10.3892/mmr.2019.9915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/31/2018] [Indexed: 01/20/2023] Open
Abstract
Fibroblast growth factor 15 (FGF15) was previously identified to be highly expressed in the ileum and functions as an endocrine factor to regulate bile acid synthesis in the liver. FGF15 targets its receptor fibroblast growth factor receptor 4 in the liver and serves important roles in energy metabolism, including bile acid homeostasis, glucose metabolism and protein synthesis. The expression of FGF15 is known to be regulated by the transcription factor farnesoid X receptor (FXR). In the present study, reverse transcription-quantitative polymerase chain reaction was used for measuring Fgf15 expression from the animal and tissue culture experiments, and it was identified that dexamethasone, a drug widely used in anti-inflammation therapy, and a classical inducer of glucocorticoid receptor (GR)- and pregnane X receptor (PXR)-target genes, may downregulate Fgf15 expression in the ileum. GR was identified to be highly expressed in the ileum by western blot analysis. Furthermore, it was demonstrated that the downregulation of Fgf15 by dexamethasone is due to the repression of ileal FXR activity via GR; however, not PXR, in the ileum. The present results provide insight for a better understanding of the adverse effects associated with dexamethasone therapy.
Collapse
Affiliation(s)
- Kunzhi Jia
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Danping Zhang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, School of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qing‑Yu Zhang
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York, Albany, NY 12201, USA
| |
Collapse
|
9
|
Damiri B, Baldwin WS. Cyp2b-Knockdown Mice Poorly Metabolize Corn Oil and Are Age-Dependent Obese. Lipids 2018; 53:871-884. [PMID: 30421529 DOI: 10.1002/lipd.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023]
Abstract
We previously made a RNAi-based cytochrome P450 2b (Cyp2b)-knockdown (Cyp2b-KD) mouse to determine the in vivo role of the Cyp2b subfamily in xenobiotic detoxification. Further studies reported here indicate a role for Cyp2b in unsaturated fatty-acid (UFA) metabolism and in turn obesity. Mice were treated intraperitoneally (i.p.) with 100 μL corn oil as a carrier or the potent Cyp2b-inducer 3,3',5,5'-Tetrachloro-1,4-bis(pyridyloxy)benzene (TCPOBOP (TC)) dissolved in corn oil. Surprisingly, female Cyp2b-KD mice but not male mice showed increased liver lipid accumulation. Male Cyp2b-KD mice had higher serum triacylglycerols, cholesterol, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) than wildtype (WT) mice; females had higher cholesterol, LDL, and HDL. Thus, Cyp2b-KD mice are unable to clear a high bolus dose of corn oil, potentially because the Cyp2b-KD mice were unable to metabolize the UFA in the corn oil. Therefore, WT and Cyp2b-KD mice were housed for 35 weeks and necropsies performed to test whether Cyp2b-KD mice develop age onset obesity. Cyp2b-KD mice exhibited a significant increase in body weight caused by an increase in white adipose tissue deposition relative to WT mice. Serum cholesterol, triacylglycerol, LDL, and VLDL were significantly greater in 35-week-old Cyp2b-KD males compared to WT males; only serum triacylglycerol and LDL were higher in females. In conclusion, changes in Cyp2b expression led to perturbation in lipid metabolism and depuration in Cyp2b-KD mice. This suggests that Cyp2b is more than a detoxification enzyme, but also involved in the metabolism of UFA, as Cyp2b-KD mice have increased the body weight, fat deposition, and serum lipids.
Collapse
Affiliation(s)
- Basma Damiri
- Medicine and Health Sciences Faculty, Drugs and Toxicology Division, An-Najah National University, Omar Ibn Al-Khattab St., PO Box 7, Nablus, West Bank, Palestinian Territories
| | - William S Baldwin
- Biological Sciences, Clemson University, 132 Long Hall St., Clemson, SC 29634, USA.,Environmental Toxicology Program, 132 Long Hall St., Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Wei Y, Wang D, Chen M, Ouyang Z, Wang S, Gu J. Extrahepatic cytochrome P450s play an insignificant role in triptolide-induced toxicity. Chin Med 2018; 13:23. [PMID: 29713369 PMCID: PMC5913882 DOI: 10.1186/s13020-018-0179-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/12/2018] [Indexed: 01/10/2023] Open
Abstract
Background Triptolide, an active ingredient of Chinese medicine plant Tripterygium wilfordii Hook.f., has been shown to exert anti-tumor, immunosuppressive, anti-inflammatory, and anti-fertility pharmacological effects. However, triptolide also causes severe side effects, which are manifested as toxicities in multiple organs. The aim of this study was to analyze the role of extrahepatic cytochrome P450 enzymes in triptolide-induced toxicity. Methods Xh-CL mouse model with normal liver, but low extrahepatic P450 expression levels was used in this study. Xh-CL mice and C57BL/6 (wildtype, WT) mice were treated with 200 μg/kg triptolide intraperitoneally every other day for 30 days. The serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST), creatine (Cre), and blood urea nitrogen (BUN) were detected by kits. The changes of tissue were observed with H&E staining. Two groups of mice (Xh-CL and WT animals), were received a single dose of 1 mg/kg TP by oral gavage for pharmacokinetic analysis. Results Xh-CL mice displayed higher serum levels of ALT, AST, Cre, and BUN compared to untreated Xh-CL mice. The organ-to-body weight ratio for spleen was high, while that for testes was low. Histopathological changes were observed in multiple organs. However, compared with triptolide-treated WT mice, no significant differences in either blood chemistry or histopathology were recorded. Furthermore, pharmacokinetic studies showed no significant differences between triptolide-treated Xh-CL and WT mice. Conclusions Our findings suggest that sub-chronic triptolide treatment can induce toxicities in mouse kidney, spleen, and testis with or without normal local P450 functions. Therefore, extrahepatic P450s play an insignificant role in triptolide-induced toxicity. Electronic supplementary material The online version of this article (10.1186/s13020-018-0179-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Wei
- 1School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu People's Republic of China
| | - Dujun Wang
- 1School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu People's Republic of China
| | - Meng Chen
- 2Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH USA
| | - Zhen Ouyang
- 1School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu People's Republic of China
| | - Shuo Wang
- 1School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu People's Republic of China
| | - Jun Gu
- 3Wadsworth Center, New York State Department of Health, 1400 Washington Ave, Albany, NY USA.,4School of Public Health, State University of New York at Albany, Albany, NY USA
| |
Collapse
|
11
|
Li L, Zhang QY, Ding X. A CYP2B6-humanized mouse model and its potential applications. Drug Metab Pharmacokinet 2018; 33:2-8. [PMID: 29402634 DOI: 10.1016/j.dmpk.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 01/03/2023]
Abstract
CYP2B6 is a human microsomal cytochrome P450 enzyme with broad substrate selectivity. CYP2B6 is the only functional member of the human CYP2B gene subfamily, which differs from the situation in rodents, such as mouse, where multiple functional Cyp2b genes are expressed. Recent studies with Cyp2b knockout or knockdown mouse models have yielded insights into the in vivo roles of mouse CYP2B enzymes in drug disposition and xenobiotic toxicity. A CYP2B6-humanized mouse model (CYP2A13/2B6/2F1-transgenic/Cyp2abfgs-null), which expresses human CYP2B6 in the liver, and human CYP2A13 and CYP2F1 in the respiratory tract, but not any of the mouse Cyp2b genes, has also been established. In the CYP2B6-humanized mouse, the CYP2B6 transgene is expressed primarily in the liver, where it was found to be active toward prototype CYP2B6 substrate drugs. The regulatory elements of the CYP2B6 transgene appear to be compatible with mouse nuclear receptors that mediate CYP2B induction. Therefore, the CYP2B6-humanized mouse is a valuable animal model for studying the impact of CYP2B6 expression or induction on drug metabolism, drug efficacy, drug-drug interaction, and drug/xenobiotic toxicity. In this mini-review, we provide a brief background on CYP2B6 and the Cyp2b-knockout and CYP2B6-humanized mice, and discuss the potential applications and limitations of the current models.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, NY, 12201, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
12
|
Li L, Bao X, Zhang QY, Negishi M, Ding X. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice. Drug Metab Dispos 2017; 45:977-981. [PMID: 28546505 DOI: 10.1124/dmd.117.076406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022] Open
Abstract
Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs-null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs-null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice.
Collapse
Affiliation(s)
- Lei Li
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Xiaochen Bao
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Qing-Yu Zhang
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Masahiko Negishi
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Xinxin Ding
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| |
Collapse
|
13
|
Ho MCD, Ring N, Amaral K, Doshi U, Li AP. Human Enterocytes as an In Vitro Model for the Evaluation of Intestinal Drug Metabolism: Characterization of Drug-Metabolizing Enzyme Activities of Cryopreserved Human Enterocytes from Twenty-Four Donors. Drug Metab Dispos 2017; 45:686-691. [PMID: 28396528 DOI: 10.1124/dmd.116.074377] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
We report in this work successful isolation and cryopreservation of enterocytes from human small intestine. The enterocytes were isolated by enzyme digestion of the intestinal lumen, followed by partial purification via differential centrifugation. The enterocytes were cryopreserved directly after isolation without culturing to maximize retention of in vivo drug-metabolizing enzyme activities. Post-thaw viability of the cryopreserved enterocytes was consistently over 80% based on trypan blue exclusion. Cryopreserved enterocytes pooled from eight donors (four male and four female) were evaluated for their metabolism of 14 pathway-selective substrates: CYP1A2 (phenacetin hydroxylation), CYP2A6 (coumarin 7-hydroxylation), CYP2B6 (bupropion hydroxylation), CYP2C8 (paclitaxel 6α-hydroxylation), CYP2C9 (diclofenac 4-hydroxylation), CYP2C19 (S-mephenytoin 4-hydroxylation), CYP2D6 (dextromethorphan hydroxylation), CYP2E1 (chlorzoxazone 6-hydroxylation), CYP3A4 (midazolam 1'-hydroxylation and testosterone 6β-hydroxylation), CYP2J2 (astemizole O-demethylation), UDP-glucuronosyltransferase (UGT; 7-hydroxycoumarin glucuronidation), sulfotransferase (SULT; 7-hydroxycoumarin sulfation), and carboxylesterase 2 (CES2; irinotecan hydrolysis) activities. Quantifiable activities were observed for CYP2C8, CYP2C9, CYP2C19, CYP2E1, CYP3A4, CYPJ2, CES2, UGT, and SULT, but not for CYP1A2, CYP2A6, CYP2B6, and CYP2D6. Enterocytes from all 24 donors were then individually evaluated for the quantifiable drug metabolism pathways. All demonstrated quantifiable activities with the expected individual variations. Our results suggest that cryopreserved human enterocytes represent a physiologically relevant and convenient in vitro experimental system for the evaluation of intestinal metabolism, akin to cryopreserved human hepatocytes for hepatic metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Albert P Li
- In Vitro ADMET Laboratories, Columbia, Maryland
| |
Collapse
|
14
|
Xie F, Ding X, Zhang QY. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin B 2016; 6:374-383. [PMID: 27709006 PMCID: PMC5045550 DOI: 10.1016/j.apsb.2016.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Oral administration is the most commonly used route for drug treatment. Intestinal cytochrome P450 (CYP)-mediated metabolism can eliminate a large proportion of some orally administered drugs before they reach systemic circulation, while leaving the passage of other drugs unimpeded. A better understanding of the ability of intestinal P450 enzymes to metabolize various clinical drugs in both humans and preclinical animal species, including the identification of the CYP enzymes expressed, their regulation, and the relative importance of intestinal metabolism compared to hepatic metabolism, is important for improving bioavailability of current drugs and new drugs in development. Here, we briefly review the expression of drug-metabolizing P450 enzymes in the small intestine of humans and several preclinical animal species, and provide an update of the various factors or events that regulate intestinal P450 expression, including a cross talk between the liver and the intestine. We further compare various clinical and preclinical approaches for assessing the impact of intestinal drug metabolism on bioavailability, and discuss the utility of the intestinal epithelium–specific NADPH-cytochrome P450 reductase-null (IECN) mouse as a useful model for studying in vivo roles of intestinal P450 in the disposition of orally administered drugs.
Collapse
|
15
|
Long AS, Lemieux CL, Arlt VM, White PA. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay. Toxicol Appl Pharmacol 2016; 290:31-42. [PMID: 26603514 PMCID: PMC4712826 DOI: 10.1016/j.taap.2015.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures of male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity=100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity=56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed.
Collapse
Affiliation(s)
- Alexandra S Long
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Christine L Lemieux
- Air Health Science Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Paul A White
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
16
|
Huang H, Al-Shabrawey M, Wang MH. Cyclooxygenase- and cytochrome P450-derived eicosanoids in stroke. Prostaglandins Other Lipid Mediat 2015; 122:45-53. [PMID: 26747234 DOI: 10.1016/j.prostaglandins.2015.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX) and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in cardiovascular diseases and stroke. Evidence has demonstrated the important functions of these eicosanoids in regulating cerebral vascular tone, cerebral blood flow, and autoregulation of cerebral circulation. Although COX-2 inhibitors have been suggested as potential treatments for stroke, adverse events, including an increased risk of stroke, occur following long-term use of coxibs. It is important to note that prolonged treatment with rofecoxib increased circulating levels of 20-hydroxyeicosatetraenoic acid (20-HETE), and 20-HETE blockade is a possible strategy to prevent coxib-induced stroke events. It appears that 20-HETE has detrimental effects in the brain, and that its blockade exerts cerebroprotection against ischemic stroke and subarachnoid hemorrhage (SAH). There is clear evidence that activation of EP2 and EP4 receptors exerts cerebroprotection against ischemic stroke. Several elegant studies have contributed to defining the importance of stabilizing the levels of epoxyeicosatrienoic acids (EETs), by inhibiting or deleting soluble epoxide hydrolase (sEH), in stroke research. These reports support the notion that sEH blockade is cerebroprotective against ischemic stroke and SAH. Here, we summarize recent findings implicating these eicosanoid pathways in cerebral vascular function and stroke. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of ischemic stroke and SAH.
Collapse
Affiliation(s)
- Hui Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China; Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mohamed Al-Shabrawey
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University, Augusta, GA 30912, United states
| | - Mong-Heng Wang
- Department of Physiology, Georgia Regents University, Augusta, GA 30912, United states.
| |
Collapse
|
17
|
Turesky RJ, Konorev D, Fan X, Tang Y, Yao L, Ding X, Xie F, Zhu Y, Zhang QY. Effect of Cytochrome P450 Reductase Deficiency on 2-Amino-9H-pyrido[2,3-b]indole Metabolism and DNA Adduct Formation in Liver and Extrahepatic Tissues of Mice. Chem Res Toxicol 2015; 28:2400-10. [PMID: 26583703 PMCID: PMC4703101 DOI: 10.1021/acs.chemrestox.5b00405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Amino-9H-pyrido[2,3-b]indole (AαC), a carcinogen formed during the combustion of tobacco and cooking of meat, undergoes cytochrome P450 (P450) metabolism to form the DNA adduct N-(deoxyguanosin-8-yl)-2-amino-9H-pyrido[2,3-b]indole (dG-C8-AαC). We evaluated the roles of P450 expressed in the liver and intestine to bioactivate AαC by employing male B6 wild-type (WT) mice, liver-specific P450 reductase (Cpr)-null (LCN) mice, and intestinal epithelium-specific Cpr-null (IECN) mice. Pharmacokinetic parameters were determined for AαC, 2-amino-9H-pyrido[2,3-b]indol-3-yl sulfate (AαC-3-OSO3H), and N(2)-(β-1-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N(2)-Glu) with animals dosed by gavage with AαC (13.6 mg/kg). The uptake of AαC was rapid with no difference in the plasma half-lives (t1/2) of AαC, AαC-3-OSO3H, and AαC-N(2)-Glu among mouse models. The maximal plasma concentrations (Cmax) and the areas under concentration-time curve (AUC0-24h) of AαC and AαC-N(2)-Glu were 4-24-fold higher in LCN than in WT mice, but they were not different between WT and IECN mice. These findings are consistent with the ablation of hepatic P450 activity in LCN mice. However, the Cmax and AUC0-24h of AαC-3-OSO3H in plasma were not substantially different among the mouse models. Similar pharmacokinetic parameters were obtained with WT and LCN mice treated with a lower AαC dose (1.36 mg kg(-1)). dG-C8-AαC was detected at similar levels in the livers of all three mouse models at the high AαC dose; levels of dG-C8-AαC in colon, bladder, and lung were greater in LCN than in WT mice and were the same in colon of IECN and WT mice. At the low AαC dose, dG-C8-AαC occurred at ∼ 40% lower levels in liver of LCN mouse than in WT mouse liver, but adduct levels remained higher in extrahepatic tissues of LCN mice. Therefore, hepatic P450 plays an important role in detoxication of AαC, but other hepatic or extrahepatic enzymes contribute to the bioactivation of AαC. P450s expressed in the intestine do not appreciably contribute to bioactivation of AαC in mice.
Collapse
Affiliation(s)
- Robert J Turesky
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Dmitri Konorev
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Xiaoyu Fan
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Yijin Tang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Lihua Yao
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Xinxin Ding
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute , Albany, New York 12203, United States
| | - Fang Xie
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| |
Collapse
|
18
|
Zhu Y, Xie F, Ding L, Fan X, Ding X, Zhang QY. Intestinal epithelium-specific knockout of the cytochrome P450 reductase gene exacerbates dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther 2015; 354:10-7. [PMID: 25926522 DOI: 10.1124/jpet.115.223263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
The potential involvement of intestinal microsomal cytochrome P450 (P450) enzymes in defending against colon inflammation and injury was studied in mice treated with dextran sulfate sodium (DSS) to induce colitis. Wild-type (WT) mice and mice with intestinal epithelium (IE)-specific deletion of the P450 reductase gene (IE-Cpr-null) were compared. IE-Cpr-null mice have little microsomal P450 activity in IE cells. DSS treatment (2.5% in drinking water for 6 days) caused more severe colon inflammation, as evidenced by the presence of higher levels of myeloperoxidase and proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-6, and IL-1β], and greater weight loss, colonic tissue damage, and colon shortening, in IE-Cpr-null mice than in WT mice. The IE-Cpr-null mice were deficient in colonic corticosterone (CC) synthesis, as indicated by the inability of ex vivo cultured colonic tissues from DSS-treated IE-Cpr-null mice (in contrast to DSS-treated WT mice) to show increased CC production, compared with vehicle-treated mice, and by the ability of added deoxycorticosterone (DOC), a precursor of CC biosynthesis via mitochondrial CYP11B1, to restore ex vivo CC production by colonic tissues from DSS-treated null mice. Intriguingly, null (but not WT) mice failed to show increased serum CC levels following DSS treatment. Nevertheless, cotreatment of DSS-exposed mice with DOC, which did not restore DSS-induced increase in serum CC, abolished the hypersensitivity of IE-Cpr-null mice to DSS-induced colon injury. Taken together, our results strongly support the notion that microsomal P450 enzymes in the intestine play an important role in protecting colon epithelium from DSS-induced inflammation and injury, possibly through increased local CC synthesis in response to DSS challenge.
Collapse
Affiliation(s)
- Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Fang Xie
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Liang Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Xiaoyu Fan
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Y.Z., F.X., L.D., X.F., X.D., Q.-Y.Z.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| |
Collapse
|
19
|
Grimsley A, Foster A, Gallagher R, Hutchison M, Lundqvist A, Pickup K, Wilson ID, Samuelsson K. A comparison of the metabolism of midazolam in C57BL/6J and hepatic reductase null (HRN) mice. Biochem Pharmacol 2014; 92:701-11. [DOI: 10.1016/j.bcp.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/10/2023]
|
20
|
Liu Z, Li L, Wu H, Hu J, Ma J, Zhang QY, Ding X. Characterization of CYP2B6 in a CYP2B6-humanized mouse model: inducibility in the liver by phenobarbital and dexamethasone and role in nicotine metabolism in vivo. Drug Metab Dispos 2014; 43:208-16. [PMID: 25409894 DOI: 10.1124/dmd.114.061812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to further characterize the expression and function of human CYP2B6 in a recently generated CYP2A13/2B6/2F1-transgenic (TG) mouse model, in which CYP2B6 is expressed selectively in the liver. The inducibility of CYP2B6 by phenobarbital (PB) and dexamethasone (DEX), known inducers of CYP2B6 in human liver, was examined in the TG mice, as well as in TG/Cyp2abfgs-null (or "CYP2B6-humanized") mice. Hepatic expression of CYP2B6 mRNA and protein was greatly induced by PB or DEX treatment in both TG and TG/Cyp2abfgs-null mice. Function of the transgenic CYP2B6 was first studied using bupropion as a probe substrate. In PB-treated mice, the rates of hepatic microsomal hydroxybupropion formation (at 50 μM bupropion) were >4-fold higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice (for both male and female mice); the rate difference was accompanied by a 5-fold higher catalytic efficiency in the TG/Cyp2abfgs-null mice and was abolished by an antibody to CYP2B6. The ability of CYP2B6 to metabolize nicotine was then examined, both in vitro and in vivo. The rates of hepatic microsomal cotinine formation from nicotine were significantly higher in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice, pretreated with PB or DEX. Furthermore, systemic nicotine metabolism was faster in TG/Cyp2abfgs-null than in Cyp2abfgs-null mice. Thus, the transgenic CYP2B6 was inducible and functional, and, in the absence of mouse CYP2A and CYP2B enzymes, it contributed to nicotine metabolism in vivo. The CYP2B6-humanized mouse will be valuable for studies on in vivo roles of hepatic CYP2B6 in xenobiotic metabolism and toxicity.
Collapse
Affiliation(s)
- Zhihua Liu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Hong Wu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Jing Hu
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Jun Ma
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (Z.L., L.L., H.W., J.H., J.M., Q.-Y.Z., X.D.); and College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.)
| |
Collapse
|
21
|
Li L, Megaraj V, Wei Y, Ding X. Identification of cytochrome P450 enzymes critical for lung tumorigenesis by the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): insights from a novel Cyp2abfgs-null mouse. Carcinogenesis 2014; 35:2584-91. [PMID: 25173884 PMCID: PMC4216058 DOI: 10.1093/carcin/bgu182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/07/2014] [Accepted: 08/20/2014] [Indexed: 11/14/2022] Open
Abstract
Cytochrome P450 (P450) enzymes encoded by the mouse Cyp2abfgs gene cluster are preferentially expressed in the respiratory tract. Previous studies have demonstrated that pulmonary P450-mediated bioactivation is necessary for lung tumorigenesis induced by the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and that CYP2A5 mediates a noteworthy fraction, but not all, of NNK bioactivation in the lung. The aim of this study was to determine whether other P450s encoded by the Cyp2abfgs gene cluster also play significant roles in NNK lung tumorigenesis. A novel Cyp2abfgs-null mouse was generated, in which all Cyp2a, 2b, 2g, 2f and 2s genes are deleted. The Cyp2abfgs-null mouse was viable, fertile and without discernible physiological abnormalities or compensatory increases in the expression of other P450s. NNK bioactivation in vitro and NNK-induced DNA adduction and lung tumorigenesis in vivo were determined for wild-type (WT) and Cyp2abfgs-null mice; the results were compared with previous findings from Cyp2a5-null mice. The Cyp2abfgs-null mice exhibited significantly lower rates of NNK bioactivation in lung and liver microsomes, compared with either WT or Cyp2a5-null mice. The levels of lung O(6)-methyl guanine DNA adduct were also substantially reduced in Cyp2abfgs-null mice, compared with either WT or Cyp2a5-null mice. Moreover, the Cyp2abfgs-null mice were largely resistant to NNK-induced lung tumorigenesis at both low (50mg/kg) and high (200mg/kg) NNK doses, in contrast to the WT or Cyp2a5-null mice. These results indicate for the first time that, collectively, the CYP2A, 2B, 2F, 2G, and 2S enzymes are indispensable for NNK-induced lung tumorigenesis.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA and
| | - Vandana Megaraj
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA and
| | - Yuan Wei
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA and
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA and Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
22
|
Ahlawat S, Xie F, Zhu Y, D'Hondt R, Ding X, Zhang QY, Mantis NJ. Mice deficient in intestinal epithelium cytochrome P450 reductase are prone to acute toxin-induced mucosal damage. Sci Rep 2014; 4:5551. [PMID: 24989705 PMCID: PMC4080431 DOI: 10.1038/srep05551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are a superfamily of heme-containing enzymes involved in the metabolism of various endogenous compounds, including retinoids, glucocorticoids, and eicosanoids, that are postulated to participate in the maintenance and/or development of inflammatory and immune reactions in the intestinal mucosa. To investigate the role of P450 enzymes in intestinal inflammation and immunity, we took advantage of IE-Cpr-null mice, which are deficient in intestinal epithelium of NADPH-cytochrome P450 reductase (CPR), the obligate redox partner of all microsomal P450 enzymes. We report that IE-Cpr-null mice, following an acute toxin challenge, had higher levels of pro-inflammatory chemokines and increased tissue damage compared to wild-type mice. IE-Cpr-null mice had normal Peyer's patch numbers and elicited normal secretory IgA (SIgA) responses. However, SIgA baseline levels in IE-Cpr-null mice were consistently elevated over WT littermates. While neither retinoic acid nor glucocorticoid levels in serum and intestinal homogenates were altered in IE-Cpr-null mice, basal levels of arachidonic acid metabolites (11,12-DiHETE and 14,15-DiHETE) with known anti-inflammatory property were significantly lower compared to WT controls. Overall, these findings reveal immunological and metabolic changes resulting from a genetic deficiency in CPR expression in the intestine, and support a role for microsomal P450 enzymes in mucosal homeostasis and immunity.
Collapse
Affiliation(s)
- Sarita Ahlawat
- 1] Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY [2]
| | - Fang Xie
- 1] Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY [2]
| | - Yi Zhu
- 1] Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY [2] Departments of Environmental Health Sciences, University at Albany, Albany, NY 12208
| | - Rebecca D'Hondt
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Xinxin Ding
- 1] Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY [2] Departments of Environmental Health Sciences, University at Albany, Albany, NY 12208 [3] Biomedical Sciences, University at Albany, Albany, NY 12208
| | - Qing-Yu Zhang
- 1] Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY [2] Departments of Environmental Health Sciences, University at Albany, Albany, NY 12208
| | - Nicholas J Mantis
- 1] Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY [2] Biomedical Sciences, University at Albany, Albany, NY 12208
| |
Collapse
|
23
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [PMID: 24637348 DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
24
|
Megaraj V, Ding X, Fang C, Kovalchuk N, Zhu Y, Zhang QY. Role of hepatic and intestinal p450 enzymes in the metabolic activation of the colon carcinogen azoxymethane in mice. Chem Res Toxicol 2014; 27:656-62. [PMID: 24552495 PMCID: PMC4002058 DOI: 10.1021/tx4004769] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
P450-mediated
bioactivation of azoxymethane (AOM), a colon carcinogen,
leads to the formation of DNA adducts, of which O6-methylguanine (O6-mG) is the most mutagenic
and contributes to colon tumorigenesis. To determine whether P450
enzymes of the liver and intestine both contribute to AOM bioactivation in vivo, we compared tissue levels of AOM-induced DNA adducts,
microsomal AOM metabolic activities, and incidences of colonic aberrant
crypt foci (ACF) among wild-type (WT), liver-specific P450 reductase
(Cpr)-null (LCN), and intestinal epithelium-specific Cpr-null (IECN)
mice. At 6 h following AOM treatment (at 14 mg/kg, s.c.), O6-mG and N7-mG levels were highest in the liver, followed
by the colon, and then small intestine in WT mice. As expected, hepatic
adduct levels were significantly lower (by >60%) in LCN mice but
unchanged
in IECN mice, whereas small-intestinal adduct levels were unchanged
or increased in LCN mice but lower (by >50%) in IECN mice compared
to that in WT mice. However, colonic adduct levels were unchanged
in IECN mice compared to that in WT mice and increased in LCN mice
(by 1.5–2.9-fold). The tissue-specific impact of the CPR loss
in IECN and LCN mice on microsomal AOM metabolic activity was confirmed
by rates of formation of formaldehyde and N7-mG in vitro. Furthermore, the incidence of ACF, a lesion preceding
colon cancer, was similar in the three mouse strains. Thus, AOM-induced
colonic DNA damage and ACF formation is not solely dependent on either
hepatic or intestinal microsomal P450 enzymes. P450 enzymes in both
the liver and intestine likely contribute to AOM-induced colon carcinogenesis.
Collapse
Affiliation(s)
- Vandana Megaraj
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | | | | | | | | | | |
Collapse
|
25
|
Hersman EM, Bumpus NN. A targeted proteomics approach for profiling murine cytochrome P450 expression. J Pharmacol Exp Ther 2014; 349:221-8. [PMID: 24594750 DOI: 10.1124/jpet.113.212456] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cytochrome P450 (P450) superfamily of enzymes plays a prominent role in drug metabolism. Although mice are a widely used preclinical model in pharmacology, the expression of murine P450 enzymes at the protein level has yet to be fully defined. Twenty-seven proteins belonging to P450 subfamilies 1A, 2A, 2B, 2C, 2D, 2E, 2F, 2J, 2U, 3A, 4A, 4B, 4F, and 4V were readily detectable in Balb/c mouse tissue using a global mass spectrometry-based proteomics approach. Subsequently, a targeted mass spectrometry-based assay was developed to simultaneously quantify these enzymes in ranges of femtomoles of P450 per microgram of total protein concentration range. This screen was applied to mouse liver microsomes and tissue lysates of kidney, lung, intestine, heart, and brain isolated from mixed-sex fetuses; male and female mice that were 3-4 weeks, 9-10 weeks, and 8-10 months of age; and pregnant mice. CYP1A2 was consistently more abundant in male mouse liver microsomes compared with age-matched females. Hepatic expression of CYP2B9 was more abundant in 3- to 4-week-old male and female mice than in mice of other ages; in addition, CYP2B9 was the only enzyme that was detectable at higher levels in pregnant mouse liver microsomes compared with age-matched females. Interestingly, sexually dimorphic expression of CYP2B9, 2D26, 2E1, and 4B1 was observed in kidney only. The targeted proteomics assay described here can be broadly used as a tool for investigating the expression patterns of P450 enzymes in mice.
Collapse
Affiliation(s)
- Elisabeth M Hersman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
26
|
Zhu Y, Ding X, Fang C, Zhang QY. Regulation of intestinal cytochrome P450 expression by hepatic cytochrome P450: possible involvement of fibroblast growth factor 15 and impact on systemic drug exposure. Mol Pharmacol 2013; 85:139-47. [PMID: 24184963 DOI: 10.1124/mol.113.088914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue-specific deletion of the gene for NADPH-cytochrome P450 (P450) reductase (CPR), the essential electron donor to all microsomal P450 enzymes, in either liver or intestine, leads to upregulation of many P450 genes in the tissue with the Cpr deletion. Here, by studying the liver-specific Cpr-null (LCN) mouse, we examined whether an interorgan regulatory pathway exists, such that a loss of hepatic CPR would cause compensatory changes in intestinal P450 expression and capacity for first-pass metabolism of oral drugs. We show for the first time that intestinal expression of CYP2B, 2C, and 3A proteins was increased in LCN mice by 2- to 3-fold compared with wild-type (WT) mice, accompanied by significant increases in small intestinal microsomal lovastatin-hydroxylase activity and systemic clearance of oral lovastatin (at 5 mg/kg). Additional studies showed that the hepatic Cpr deletion, which caused large decreases in bile acid (BA) levels in the liver, intestine, plasma, and intestinal content, led to drastic decreases in the mRNA levels of intestinal fibroblast growth factor 15 (FGF15), a target gene of the BA receptor farnesoid X receptor. Furthermore, treatment of mice with FGF19 (the human counterpart of mouse FGF15) abolished the difference between WT and LCN mice in small intestinal (SI) CYP3A levels at 6 hours after the treatment. Our findings reveal a previously unrecognized direct role of intestinal FGF15/19 in the regulation of SI P450 expression and may have profound implications for the prediction of drug exposure in patients with compromised hepatic P450 function.
Collapse
Affiliation(s)
- Yi Zhu
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York
| | | | | | | |
Collapse
|
27
|
Crowell SR, Sharma AK, Amin S, Soelberg JJ, Sadler NC, Wright AT, Baird WM, Williams DE, Corley RA. Impact of pregnancy on the pharmacokinetics of dibenzo[def,p]chrysene in mice. Toxicol Sci 2013; 135:48-62. [PMID: 23744095 PMCID: PMC3748759 DOI: 10.1093/toxsci/kft124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated during combustion. Dibenzo[def,p]chrysene (DBC) is a high molecular weight PAH classified as a 2B carcinogen by the International Agency for Research on Cancer. DBC crosses the placenta in exposed mice, causing carcinogenicity in offspring. We present pharmacokinetic data of DBC in pregnant and nonpregnant mice. Pregnant (gestational day 17) and nonpregnant female B6129SF1/J mice were exposed to 15mg/kg DBC by oral gavage. Subgroups of mice were sacrificed up to 48h postdosing, and blood, excreta, and tissues were analyzed for DBC and its major diol and tetrol metabolites. Elevated maximum concentrations and areas under the curve of DBC and its metabolites were observed in blood and tissues of pregnant animals compared with naïve mice. Using a physiologically based pharmacokinetic (PBPK) model, we found observed differences in pharmacokinetics could not be attributed solely to changes in tissue volumes and blood flows that occur during pregnancy. Measurement of enzyme activity in naïve and pregnant mice by activity-based protein profiling indicated a 2- to 10-fold reduction in activities of many of the enzymes relevant to PAH metabolism. Incorporating this reduction into the PBPK model improved model predictions. Concentrations of DBC in fetuses were one to two orders of magnitude below maternal blood concentrations, whereas metabolite concentrations closely resembled those observed in maternal blood.
Collapse
Affiliation(s)
- Susan Ritger Crowell
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Incorporation of ABCB1-mediated transport into a physiologically-based pharmacokinetic model of docetaxel in mice. J Pharmacokinet Pharmacodyn 2013; 40:437-49. [PMID: 23616082 DOI: 10.1007/s10928-013-9317-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
Docetaxel is one of the most widely used anticancer agents. While this taxane has proven to be an effective chemotherapeutic drug, noteworthy challenges exist in relation to docetaxel administration due to the considerable interindividual variability in efficacy and toxicity associated with the use of this compound, largely attributable to differences between individuals in their ability to metabolize and eliminate docetaxel. Regarding the latter, the ATP-binding cassette transporter B1 (ABCB1, PGP, MDR1) is primarily responsible for docetaxel elimination. To further understand the role of ABCB1 in the biodistribution of docetaxel in mice, we utilized physiologically-based pharmacokinetic (PBPK) modeling that included ABCB1-mediated transport in relevant tissues. Transporter function was evaluated by studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/b constitutive knockout (KO) mice and incorporating this concentration-time data into a PBPK model comprised of eight tissue compartments (plasma, brain, heart, lung, kidney, intestine, liver and slowly perfused tissues) and, in addition to ABCB1-mediated transport, included intravenous drug administration, specific binding to intracellular tubulin, intestinal and hepatic metabolism, glomerular filtration and tubular reabsorption. For all tissues in both the FVB and KO cohorts, the PBPK model simulations closely mirrored the observed data. Furthermore, both models predicted AUC values that were with 15 % of the observed AUC values, indicating that our model-simulated drug exposures accurately reflected the observed tissue exposures. Overall, our PBPK model furthers the understanding of the role of ABCB1 in the biodistribution of docetaxel. Additionally, this exemplary model structure can be applied to investigate the pharmacokinetics of other ABCB1 transporter substrates.
Collapse
|
29
|
Hudachek SF, Gustafson DL. Physiologically based pharmacokinetic model of lapatinib developed in mice and scaled to humans. J Pharmacokinet Pharmacodyn 2013; 40:157-76. [PMID: 23315145 DOI: 10.1007/s10928-012-9295-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/22/2012] [Indexed: 02/05/2023]
Abstract
Lapatinib is an oral 4-anilinoquinazoline derivative that dually inhibits epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2). This drug is a mere decade old and has only been approved by the FDA for the treatment of breast cancer since 2007. Consequently, the intricacies of the pharmacokinetics are still being elucidated. In the work presented herein, we determined the biodistribution of orally administered lapatinib in mouse plasma, brain, heart, lung, kidney, intestine, liver, muscle and adipose tissue. Using this data, we subsequently developed a physiologically based pharmacokinetic (PBPK) model of lapatinib in mice that accurately predicted the tissue concentrations after doses of 30, 60 and 90 mg/kg. By taking into account interspecies differences in physiology and physiochemistry, we then extrapolated the mouse PBPK model to humans. Our model predictions closely reflected lapatinib plasma pharmacokinetics in healthy subjects. Additionally, we were also able to simulate the pharmacokinetics of this drug in the plasma of patients with solid malignancies by incorporating a decrease in liver metabolism into the model. Finally, our PBPK model also facilitated the estimation of various human tissue exposures to lapatinib, which harmonize with the organ-specific toxicities observed in clinical trials. This first-generation PBPK model of lapatinib can be further improved with a greater understanding of lapatinib absorption, distribution, metabolism and excretion garnered from subsequent in vitro and in vivo studies and expanded to include other pharmacokinetic determinants, including efflux transporters, metabolite generation, combination dosing, etc., to better predict lapatinib disposition in both mouse and man.
Collapse
Affiliation(s)
- Susan F Hudachek
- Department of Clinical Sciences, Animal Cancer Center, Colorado State University, Fort Collins, CO, USA.
| | | |
Collapse
|
30
|
Kazuki Y, Kobayashi K, Aueviriyavit S, Oshima T, Kuroiwa Y, Tsukazaki Y, Senda N, Kawakami H, Ohtsuki S, Abe S, Takiguchi M, Hoshiya H, Kajitani N, Takehara S, Kubo K, Terasaki T, Chiba K, Tomizuka K, Oshimura M. Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism in humans. Hum Mol Genet 2012; 22:578-92. [PMID: 23125282 DOI: 10.1093/hmg/dds468] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human CYP3A is the most abundant P450 isozyme present in the human liver and small intestine, and metabolizes around 50% of medical drugs on the market. The human CYP3A subfamily comprises four members (CYP3A4, CYP3A5, CYP3A7, CYP3A43) encoded on human chromosome 7. However, transgenic mouse lines carrying the entire human CYP3A cluster have not been constructed because of limitations in conventional cloning techniques. Here, we show that the introduction of a human artificial chromosome (HAC) containing the entire genomic human CYP3A locus recapitulates tissue- and stage-specific expression of human CYP3A genes and xenobiotic metabolism in mice. About 700 kb of the entire CYP3A genomic segment was cloned into a HAC (CYP3A-HAC), and trans-chromosomic (Tc) mice carrying a single copy of germline-transmittable CYP3A-HAC were generated via a chromosome-engineering technique. The tissue- and stage-specific expression profiles of CYP3A genes were consistent with those seen in humans. We further generated mice carrying the CYP3A-HAC in the background homozygous for targeted deletion of most endogenous Cyp3a genes. In this mouse strain with 'fully humanized' CYP3A genes, the kinetics of triazolam metabolism, CYP3A-mediated mechanism-based inactivation effects and formation of fetal-specific metabolites of dehydroepiandrosterone observed in humans were well reproduced. Thus, these mice are likely to be valuable in evaluating novel drugs metabolized by CYP3A enzymes and in studying the regulation of human CYP3A gene expression. Furthermore, this system can also be used for generating Tc mice carrying other human metabolic genes.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wei Y, Li L, Zhou X, Zhang QY, Dunbar A, Liu F, Kluetzman K, Yang W, Ding X. Generation and characterization of a novel Cyp2a(4/5)bgs-null mouse model. Drug Metab Dispos 2012; 41:132-40. [PMID: 23073733 DOI: 10.1124/dmd.112.048736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Knockout mouse models targeting various cytochrome P450 (P450 or CYP) genes are valuable for determining P450's biologic functions, including roles in drug metabolism and chemical toxicity. In this study, a novel Cyp2a(4/5)bgs-null mouse model was generated, in which a 1.2-megabase pair genomic fragment containing nine Cyp genes in mouse chromosome 7 (including, sequentially, Cyp2a5, 2g1, 2b19, 2b23, 2a4, 2b9, 2b13, 2b10, and 2s1) are deleted, through Cre-mediated recombination in vivo. The resultant mouse strain was viable and fertile, without any developmental deficits or morphologic abnormalities. Deletion of the constitutive genes in the cluster was confirmed by polymerase chain reaction analysis of the genes and the mRNAs in tissues known to express each gene. The loss of this gene cluster led to significant decreases in microsomal activities toward testosterone hydroxylation in various tissues examined, including olfactory mucosa (OM), lung, liver, and brain. In addition, systemic clearance of pentobarbital was decreased in Cyp2a(4/5)bgs-null mice, as indicated by >60% increases in pentobarbital-induced sleeping time, compared with wild-type (WT) mice. This novel Cyp2a(4/5)bgs-null mouse model will be valuable for in vivo studies of drug metabolism and chemical toxicities in various tissues, including the liver, lung, brain, intestine, kidney, skin, and OM, where one or more of the targeted Cyp genes are known to be expressed in WT mice. The model will also be valuable for preparation of humanized mice that express human CYP2A6, CYP2A13, CYP2B6, or CYP2S1, and as a knockout mouse model for five non-P450 genes (Vmn1r184, Nalp9c, Nalp4a, Nalp9a, and Vmn1r185) that were also deleted.
Collapse
Affiliation(s)
- Yuan Wei
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhu Y, Zhang QY. Role of intestinal cytochrome p450 enzymes in diclofenac-induced toxicity in the small intestine. J Pharmacol Exp Ther 2012; 343:362-70. [PMID: 22892338 DOI: 10.1124/jpet.112.198077] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to determine the role of small intestinal (SI) cytochrome P450 (P450) enzymes in the metabolic activation of diclofenac (DCF), a widely used nonsteroidal anti-inflammatory drug, and DCF-induced intestinal toxicity. DCF induces intestinal ulcers in humans and mice, but the underlying mechanisms, including the necessity for drug bioactivation in the target tissues and the sources and identities of reactive intermediates, are not fully understood. We found that the number of DCF-induced (at 50 mg/kg p.o.) intestinal ulcers was significantly smaller in an intestinal epithelium (IE)-specific P450 reductase (CPR) knockout (IE-Cpr-null) mouse model, which has little P450 activity in the IE, than in wild-type (WT) mice, determined at 14 h after DCF administration. The involvement of intestinal P450 enzymes was confirmed by large reductions (>80-90%) in the rates of in vitro formation, in SI microsomal reactions, of hydroxylated DCF metabolites and reactive intermediates, trapped as DCF-glutathione (GSH) conjugates, in the IE-Cpr-null, compared with WT mice. The SI levels of DCF-GSH conjugates (at 4 h after dosing) and DCF-protein adducts (at 14 h after dosing) were significantly lower in IE-Cpr-null than in WT mice. In additional experiments, we found that pretreatment of mice with grapefruit juice, which is known to inhibit SI P450 activity, ameliorated DCF-induced intestinal toxicity in WT mice. Our results not only strongly support the notion that SI P450 enzymes play an important role in DCF-induced intestinal toxicity, but also illustrate the possibility of preventing DCF-induced intestinal toxicity through dietary intervention.
Collapse
Affiliation(s)
- Yi Zhu
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | | |
Collapse
|
33
|
Zancanella V, Giantin M, Lopparelli RM, Nebbia C, Dacasto M. Constitutive expression and phenobarbital modulation of drug metabolizing enzymes and related nuclear receptors in cattle liver and extra-hepatic tissues. Xenobiotica 2012; 42:1096-109. [PMID: 22694178 DOI: 10.3109/00498254.2012.694493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In humans and rodents, phenobarbital (PB) induces hepatic and extra-hepatic drug metabolizing enzymes (DMEs) through the activation of specific nuclear receptors (NRs). In contrast, few data about PB transcriptional effects in veterinary species are available. The constitutive expression and modulation of PB-responsive NR and DME genes, following an oral PB challenge, were investigated in cattle liver and extra-hepatic tissues (duodenum, kidney, lung, testis, adrenal and muscle). Likewise to humans and rodents, target genes were expressed to a lower extent compared to the liver with few exceptions. Phenobarbital significantly affected hepatic CYP2B22, 2C31, 2C87, 3A and UDP-glucuronosyltransferase 1A1-like, glutathione S-transferase A1-like and sulfotransferase 1A1-like (SULT1A1-like) mRNAs and apoprotein amounts; in extra-hepatic tissues, only duodenum showed a significant down-regulation of SULT1A1-like gene and apoprotein. Nuclear receptor mRNAs were never affected by PB. Presented data are the first evidence about the constitutive expression of foremost DME and NR genes in cattle extra-hepatic tissues, and the data obtained following a PB challenge are suggestive of species-differences in drug metabolism; altogether, these information are of value for the extrapolation of pharmacotoxicological data among species, the characterization of drug-drug interactions as well as the animal and consumer's risk caused by harmful residues formation.
Collapse
Affiliation(s)
- Vanessa Zancanella
- Dipartimento di Biomedicina Comparata e Alimentazione, Agripolis Legnaro, Padova, Italy
| | | | | | | | | |
Collapse
|
34
|
D'Agostino J, Ding X, Zhang P, Jia K, Fang C, Zhu Y, Spink DC, Zhang QY. Potential biological functions of cytochrome P450 reductase-dependent enzymes in small intestine: novel link to expression of major histocompatibility complex class II genes. J Biol Chem 2012; 287:17777-17788. [PMID: 22453923 DOI: 10.1074/jbc.m112.354274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P450 reductase (POR) is essential for the functioning of microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. The biological roles of the POR-dependent enzymes in the intestine have not been defined, despite the wealth of knowledge on the biochemical properties of the various oxygenases. In this study, cDNA microarray analysis revealed significant changes in gene expression in enterocytes isolated from the small intestine of intestinal epithelium-specific Por knock-out (named IE-Cpr-null) mice compared with that observed in wild-type (WT) littermates. Gene ontology analyses revealed significant changes in terms related to P450s, transporters, cholesterol biosynthesis, and, unexpectedly, antigen presentation/processing. The genomic changes were confirmed at either mRNA or protein level for selected genes, including those of the major histocompatibility complex class II (MHC II). Cholesterol biosynthetic activity was greatly reduced in the enterocytes of the IE-Cpr-null mice, as evidenced by the accumulation of the lanosterol metabolite, 24-dihydrolanosterol. However, no differences in either circulating or enterocyte cholesterol levels were observed between IE-Cpr-null and WT mice. Interestingly, the levels of the cholesterol precursor farnesyl pyrophosphate and its derivative geranylgeranyl pyrophosphate were also increased in the enterocytes of the IE-Cpr-null mice. Furthermore, the expression of STAT1 (signal transducer and activator of transcription 1), a downstream target of geranylgeranyl pyrophosphate signaling, was enhanced. STAT1 is an activator of CIITA, the class II transactivator for MHC II expression; CIITA expression was concomitantly increased in IE-Cpr-null mice. Overall, these findings provide a novel and mechanistic link between POR-dependent enzymes and the expression of MHC II genes in the small intestine.
Collapse
Affiliation(s)
- Jaime D'Agostino
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Peng Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Kunzhi Jia
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Cheng Fang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Yi Zhu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - David C Spink
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201-0509.
| |
Collapse
|
35
|
Crowell SR, Amin SG, Anderson KA, Krishnegowda G, Sharma AK, Soelberg JJ, Williams DE, Corley RA. Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def,p]chrysene in rodents. Toxicol Appl Pharmacol 2011; 257:365-76. [PMID: 22001385 DOI: 10.1016/j.taap.2011.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 11/24/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges. Our research efforts have focused upon experimental approaches and initial development of PBPK models for the prototypic PAH, B[a]P, and the more potent, albeit less studied transplacental carcinogen, dibenzo[def,p]chrysene (DBC). For both compounds, model compartments included arterial and venous blood, flow limited lung, liver, richly perfused and poorly perfused tissues, diffusion limited fat, and a two compartment theoretical gut (for oral exposures). Hepatic and pulmonary metabolism was described for both compounds, as were fractional binding in blood and fecal clearance. Partition coefficients for parent PAH along with their diol and tetraol metabolites were estimated using published algorithms and verified experimentally for the hydroxylated metabolites. The preliminary PBPK models were able to describe many, but not all, of the available data sets, comprising multiple routes of exposure (oral, intravenous) and nominal doses spanning several orders of magnitude.
Collapse
Affiliation(s)
- Susan Ritger Crowell
- Biological Monitoring and Modeling Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Komura H, Iwaki M. In vitro and in vivo small intestinal metabolism of CYP3A and UGT substrates in preclinical animals species and humans: species differences. Drug Metab Rev 2011; 43:476-98. [PMID: 21859377 DOI: 10.3109/03602532.2011.597401] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Intestinal first-pass metabolism has a great impact on the bioavailability of cytochrome P450 3A4 (CYP3A) and/or uridine 5'-diphosphate (UDP)-glucoronosyltranferase (UGT) substrates in humans. In vitro and in vivo intestinal metabolism studies are essential for clarifying pharmacokinetics in animal species and for predicting the effects of human intestinal metabolism. We review species differences in intestinal metabolism both in vitro and in vivo. Based on mRNA expression levels, the major intestinal CYP3A isoform is CYP3A4 for humans, CYP3A4 (3A8) for monkeys, CYP3A9 for rats, cyp3a13 for mice, and CYP3A12 for dogs. Additionally, the intestinal-specific UGT would be UGT1A10 for humans, UGT1A8 for monkeys, and UGT1A7 for rats. In vitro and in vivo intestinal metabolism of CYP3A substrates were larger in monkeys than in humans, although a correlation in intestinal availability between monkeys and humans has been reported. Little information is available regarding species differences in in vitro and in vivo UGT activities; however, UGT-mediated in vivo intestinal metabolism has been demonstrated for raloxifene in humans and for baicalein in rats. Further assessment of intestinal metabolism, particularly for UGT substrates, is required to clarify the entire picture of species differences.
Collapse
Affiliation(s)
- Hiroshi Komura
- Drug Metabolism and Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan.
| | | |
Collapse
|
37
|
Soto-Gutierrez A, Basma H, Navarro-Alvarez N, Uygun BE, Yarmush ML, Kobayashi N, Fox IJ. Differentiating stem cells into liver. Biotechnol Genet Eng Rev 2011; 25:149-63. [PMID: 21412354 DOI: 10.5661/bger-25-149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Research involving differentiated embryonic stem (ES) cells may revolutionize the study of liver disease, improve the drug discovery process, and assist in the development of stem-cell-based clinical therapies. Generation of ES cell-derived hepatic tissue has benefited from an understanding of the cytokines, growth factors and biochemical compounds that are essential in liver development, and this knowledge has been used to mimic some aspects of embryonic development in vitro. Although great progress has been made in differentiating human ES cells into liver cells, current protocols have not yet produced cells with the phenotype of a mature hepatocyte. There is a significant need to formally establish criteria that would define what constitutes a functional human stem cell-derived hepatocyte. Here, we explore current challenges and future opportunities in development and use of ES cell-derived liver cells. ES-derived hepatocytes could be used to better understand liver biology, begin the process of "personalizing" health care, and to treat some forms of liver disease.
Collapse
Affiliation(s)
- Alejandroo Soto-Gutierrez
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhu Y, D'Agostino J, Zhang QY. Role of intestinal cytochrome P450 (P450) in modulating the bioavailability of oral lovastatin: insights from studies on the intestinal epithelium-specific P450 reductase knockout mouse. Drug Metab Dispos 2011; 39:939-43. [PMID: 21349922 DOI: 10.1124/dmd.110.037861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The extents to which small intestinal (SI) cytochrome P450 (P450) enzymes control the bioavailability of oral drugs are not well defined, particularly for drugs that are substrates for both P450 and the P-glycoprotein (P-gp). In this study, we have determined the role of SI P450 in the clearance of orally administered lovastatin (LVS), an anti-hypercholesterolemia drug, using an intestinal epithelium (IE)-specific P450 reductase knockout (IE-Cpr-null) mouse model. In the IE-Cpr-null mouse, which has little P450 activities in the IE, the oral bioavailability of LVS was substantially higher than that in wild-type (WT) mice (15 and 5%, respectively). In control experiments, the clearance rates were not different between the two strains, either for intraperitoneally dosed LVS, which bypasses SI metabolism, or for orally administered pravastatin, which is known to be poorly metabolized by P450. Thus, our results demonstrate a predominant role of SI P450 enzymes in the first-pass clearance of oral LVS. The absence of IE P450 activities in the IE-Cpr-null mice also facilitated the identification of the molecular targets for orally administered grapefruit juice (GFJ), which is known to inhibit LVS clearance in humans. We found that pretreatment of mice with oral GFJ enhanced the systemic exposure of LVS in WT, but not in IE-Cpr-null mice, a result suggesting that the main target of GFJ action in the small intestine is P450, but not P-gp.
Collapse
Affiliation(s)
- Yi Zhu
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| | | | | |
Collapse
|
39
|
Fang C, Zhang QY. The role of small-intestinal P450 enzymes in protection against systemic exposure of orally administered benzo[a]pyrene. J Pharmacol Exp Ther 2010; 334:156-63. [PMID: 20400470 DOI: 10.1124/jpet.110.167742] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An intestinal epithelium-specific cytochrome P450 (P450) reductase (CPR)-knockout (IE-Cpr-null) mouse and a liver-specific CPR-knockout (liver-Cpr-null) mouse were studied for determination of the respective roles of P450 enzymes in the liver and small intestine (SI) in the clearance of orally administered benzo[a]pyrene (BaP). Pharmacokinetic analysis of blood BaP levels indicated significantly lower rates of BaP clearance in IE-Cpr-null than in wild-type (WT) mice, after oral BaP (30 mg/kg) treatment. In contrast, clearance rates for intraperitoneal BaP (45 mg/kg) were not different between IE-Cpr-null and WT mice. Furthermore, there was no significant difference between liver-Cpr-null and WT mice in BaP clearance, after either intraperitoneal or oral BaP administration. Thus, small-intestinal P450-mediated first-pass metabolism is a key determinant of the systemic bioavailability of oral BaP. In addition, we observed greater differences in the rates of clearance of oral BaP, between WT and IE-Cpr-null mice, in mice pretreated with beta-naphthoflavone, to induce CYP1A1 expression, than in untreated mice. The onset of induction (at 2 h after dosing) of CYP1A1 protein expression by oral BaP administration was earlier in the SI than in extra-gut organs analyzed; for liver, lung, and kidney, induction was not observed until 4 h after dosing. Furthermore, BaP tissue burdens in SI and extra-gut organs of IE-Cpr-null mice were greater than burdens in corresponding organs of WT mice, at 6 or 24 h after BaP administration. Taken together, these findings strongly support the concept that small-intestinal CYP1A1 induction is a critical factor in protection against systemic exposure to oral BaP.
Collapse
Affiliation(s)
- Cheng Fang
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | | |
Collapse
|
40
|
Shin HC, Kim HR, Cho HJ, Yi H, Cho SM, Lee DG, Abd El-Aty AM, Kim JS, Sun D, Amidon GL. Comparative gene expression of intestinal metabolizing enzymes. Biopharm Drug Dispos 2010; 30:411-21. [PMID: 19746353 DOI: 10.1002/bdd.675] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.
Collapse
Affiliation(s)
- Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, Konkuk University, Seoul 143-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatic stem cells and liver development. Methods Mol Biol 2010; 640:181-236. [PMID: 20645053 DOI: 10.1007/978-1-60761-688-7_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | |
Collapse
|
42
|
Masumoto S, Akimoto Y, Oike H, Kobori M. Dietary phloridzin reduces blood glucose levels and reverses Sglt1 expression in the small intestine in streptozotocin-induced diabetic mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4651-4656. [PMID: 19413312 DOI: 10.1021/jf9008197] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phloridzin is a dihydrochalcone typically contained in apples. In this study, it is shown that a diet containing 0.5% phloridzin significantly reduced the blood glucose levels in streptozotocin (STZ)-induced diabetic mice after 14 days. We detected phloridzin in the plasma of STZ-induced diabetic mice fed the phloridzin diet for 14 days, although its concentration was much lower than that of the phloridzin metabolites. A quantitative RT-PCR analysis showed a reversal of STZ induction of the sodium/glucose cotransporter gene Sglt1 and the drug-metabolizing enzyme genes Cyp2b10 and Ephx1 in the small intestine of mice fed a 0.5% phloridzin diet. These mice also showed a reversal of the STZ-mediated renal induction of the glucose-regulated facilitated glucose transporter gene Glut2. Dietary phloridzin improved the abnormal elevations in blood glucose levels and the overexpression of Sglt1, Cyp2b10, and Ephx1 in the small intestine of STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Saeko Masumoto
- National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
43
|
Zhang QY, Fang C, Zhang J, Dunbar D, Kaminsky L, Ding X. An intestinal epithelium-specific cytochrome P450 (P450) reductase-knockout mouse model: direct evidence for a role of intestinal p450s in first-pass clearance of oral nifedipine. Drug Metab Dispos 2008; 37:651-7. [PMID: 19056912 DOI: 10.1124/dmd.108.025429] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To determine the in vivo function of intestinal cytochrome P450 (P450) enzymes, we have generated an intestinal epithelium (IE)-specific P450 reductase gene (Cpr) knockout mouse model (designated IE-Cpr-null). In the IE-Cpr-null mouse, CPR expression was abolished in IE cells; however, CPR expression was not altered in other tissues examined. The loss of CPR expression in the small intestine (SI) led to increased expression of several P450 proteins examined, including CYP1A1, CYP2B, CYP2C, and CYP3A. It is interesting to note that the expression of CYP1A1 was also increased in the liver, kidney, and lung of the IE-Cpr-null mice compared with wild-type (WT) littermates, a result strongly supporting the notion that SI metabolism of putative dietary CYP1A1 inducers can influence the systemic bioavailability of these inducers. The rates of SI microsomal metabolism of nifedipine (NFP) in the IE-Cpr-null mice were approximately 10% of the rates in WT littermates, despite the compensatory expression of multiple P450 enzymes in the SI. Furthermore, the area under the concentration-time curve (AUC) values for blood NFP (dosed at 10 mg/kg) levels were 1.6-fold higher in IE-Cpr-null mice than in WT littermates when NFP was given orally; in contrast, the AUC values were comparable for the two strains when NFP was given intravenously. This result directly showed that P450-catalyzed NFP metabolism in the SI plays an important role in the first-pass clearance of oral NFP. Our findings indicate that the IE-Cpr-null mouse model can be used to study the in vivo function of intestinal P450 enzymes in the clearance of oral drugs and other xenobiotics.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Guarisco J, Hall J, Coulombe R. Butylated hydroxytoluene chemoprevention of aflatoxicosis – Effects on aflatoxin B1 bioavailability, hepatic DNA adduct formation, and biliary excretion. Food Chem Toxicol 2008; 46:3727-31. [DOI: 10.1016/j.fct.2008.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/22/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022]
|
45
|
Masubuchi Y, Sugiyama S, Horie T. Th1/Th2 cytokine balance as a determinant of acetaminophen-induced liver injury. Chem Biol Interact 2008; 179:273-9. [PMID: 19014921 DOI: 10.1016/j.cbi.2008.10.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 12/11/2022]
Abstract
Inflammation is an important pathophysiological event in drug-induced liver injury, which is subsequent to metabolic activation and covalent binding of the reactive metabolites to target proteins. Cytokines are recognized as pro- and anti-inflammatory mediators involved in the progression and regression of the toxicity. We thus hypothesized that disturbed balance of Th1/Th2 cytokines exacerbated the drug-induced hepatotoxicity. Acetaminophen-induced liver injury was investigated in two mouse strains, C57BL/6 and BALB/c, which develop predominantly Th1 and Th2 responses, respectively. More severe liver injury after intraperitoneal administration of acetaminophen was observed in C57BL/6 mice than in BALB/c mice. There was no strain difference in metabolism of acetaminophen into its reactive metabolite, N-acetyl-p-benzoquinone imine, which was assessed by early glutathione consumption. Liver mRNA expression of tumor necrosis factor-alpha (TNF-alpha) and IL-6 were measured as pro- and anti-inflammatory cytokines, respectively. TNF-alpha was highly induced 24 h after administration of acetaminophen in C57BL/6 mice, whereas no change in BALB/c mice. On the other hand, liver IL-6 mRNA expression in BALB/c mice was higher than C57BL/6 mice 24 h after the administration. In addition, treatment of CD-1 mice, another susceptible strain, with an anti-inflammatory polyphenol, resveratrol, protected mice against the acetaminophen-induced liver injury, and the mice with attenuated toxicity revealed lower expression of TNF-alpha and higher expression of IL-6. It is therefore suggested that acetaminophen-induced liver injury is associated with Th1-dominant response in Th1/Th2 cytokine balance, and TNF-alpha may play a pathological role in the toxicity.
Collapse
Affiliation(s)
- Yasuhiro Masubuchi
- Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | | | | |
Collapse
|
46
|
Halberg RB, Larsen MC, Elmergreen TL, Ko AY, Irving AA, Clipson L, Jefcoate CR. Cyp1b1 exerts opposing effects on intestinal tumorigenesis via exogenous and endogenous substrates. Cancer Res 2008; 68:7394-402. [PMID: 18794127 DOI: 10.1158/0008-5472.can-07-6750] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 1B1 (Cyp1b1) metabolism contributes to physiologic functions during embryogenesis but also to carcinogenic activation of polycyclic aromatic hydrocarbons (PAH). We generated Cyp1b1-deficient mice carrying the Min allele of the adenomatous polyposis coli gene. These Cyp1b1-deficient Min mice developed twice as many tumors as Min controls, which, however, remained similar in size and histology. Tumors from older (130 days) Cyp1b1-deficient Min mice selectively exhibited focal areas of nuclear atypia associated with less organized epithelia. The metabolism of endogenous substrates by Cyp1b1, therefore, suppresses tumor initiation but also affects progression. Treatment of Min mice with 7,12-dimethylbenzanthracene (DMBA) doubled both tumor multiplicity and size within 20 days but not when mice lacked Cyp1b1. This was paralleled by an abnormal staining of crypts with beta-catenin, phospho-IkappaB kinase, and RelA, which may represent an early stage of tumorigenesis similar to aberrant crypt formation. Cyp1b1 deletion did not affect circulating DMBA and metabolites. Cyp1b1 expression was higher in the tumors compared with normal small intestines. Increased tumorigenesis may, therefore, arise from generation of DMBA metabolites by Cyp1b1 in the developing tumors. Benzo(a)pyrene (BP), which is similarly activated by Cyp1b1 in vitro, did not affect tumorigenesis in Min mice. By contrast, BP and DMBA each suppressed tumor multiplicity in the absence of Cyp1b1. Cyp1b1 metabolism of DMBA and endogenous oxygenation products may each affect a tumor-promoting nuclear factor-kappaB activation, whereas Ah receptor activation by PAH affects suppression. Tumorigenesis may, therefore, depend on activation of PAH by Cyp1b1 and on offsetting suppression by Cyp1b1 of endogenous tumor-enhancing substrates.
Collapse
Affiliation(s)
- Richard B Halberg
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Komura H, Iwaki M. Species Differences in In Vitro and In Vivo Small Intestinal Metabolism of CYP3A Substrates. J Pharm Sci 2008; 97:1775-800. [PMID: 17853429 DOI: 10.1002/jps.21121] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intestinal first-pass metabolism has a great impact on the bioavailability of CYP3A substrates in humans, and the in vivo impact has quantitatively been evaluated using CYP3A inhibitors or inducers. In vitro and in vivo preclinical investigations for intestinal metabolism are essential in clarifying pharmacokinetic behavior in animal species and predicting the effect of intestinal metabolism in the human. In this review, we will discuss species differences in intestinal CYP3A enzymes, and CYP3A-mdediated intestinal elimination. Identical CYP3A4 enzyme is expressed in human intestine and liver, but different CYP3A enzymes in both tissues of the mouse and rat are found, that is, respective intestinal enzyme is considered as cyp3a13 and CYP3A62. There is little information on CYP3A enzymes in the monkey and dog intestine, unlike the liver. In vitro metabolic activities of midazolam and nisoldipine are higher in the human and monkey than in the rat. In vivo assessment of cyclosporine, midazolam, nifedipine, tacrolimus, and verapamil has been reported in various species (monkey, rat, mouse, and/or dog) including the human. For midazolam, the monkey shows significant in vivo intestinal metabolism, as evidenced in the human. The monkey might be an appropriate animal model for evaluating small intestinal first-pass metabolism of CYP3A substrates.
Collapse
Affiliation(s)
- Hiroshi Komura
- Department of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | | |
Collapse
|
48
|
Uno S, Dragin N, Miller ML, Dalton TP, Gonzalez FJ, Nebert DW. Basal and inducible CYP1 mRNA quantitation and protein localization throughout the mouse gastrointestinal tract. Free Radic Biol Med 2008; 44:570-83. [PMID: 17997381 PMCID: PMC2754765 DOI: 10.1016/j.freeradbiomed.2007.10.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/10/2007] [Accepted: 10/13/2007] [Indexed: 01/04/2023]
Abstract
The CYP1A1, CYP1A2, and CYP1B1 enzymes are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); metabolism of BaP by these enzymes leads to electrophilic intermediates and genotoxicity. Throughout the gastrointestinal (GI) tract, we systematically compared basal and inducible levels of the CYP1 mRNAs by Q-PCR, and localized the CYP1 proteins by immunohistochemistry. Cyp1(+/+) wild-type were compared with the Cyp1a1(-/-), Cyp1a2(-/-), and Cyp1b1(-/-) single-knockout and Cyp1a1/1b1(-/-) and Cyp1a2/1b1(-/-) double-knockout mice. Oral BaP was compared with intraperitoneal TCDD. In general, maximal CYP1A1 mRNA levels were 3-10 times greater than CYP1B1, which were 3-10 times greater than CYP1A2 mRNA levels. Highest inducible concentrations of CYP1A1 and CYP1A2 occurred in proximal small intestine, whereas the highest basal and inducible levels of CYP1B1 mRNA occurred in esophagus, forestomach, and glandular stomach. Ablation of either Cyp1a2 or Cyp1b1 gene resulted in a compensatory increase in CYP1A1 mRNA - but only in small intestine. Also in small intestine, although BaP- and TCDD-mediated CYP1A1 inductions were roughly equivalent, oral BaP-mediated CYP1A2 mRNA induction was approximately 40-fold greater than TCDD-mediated CYP1A2 induction. CYP1B1 induction by TCDD in Cyp1(+/+) and Cyp1a2(-/-) mice was 4-5 times higher than that by BaP; however, in Cyp1a1(-/-) animals CYP1B1 induction by TCDD or BaP was approximately equivalent. CYP1A1 and CYP1A2 proteins were generally localized nearer to the lumen than CYP1B1 proteins, in both squamous and glandular epithelial cells. These GI tract data suggest that the inducible CYP1A1 enzyme, both in concentration and in location, might act as a "shield" in detoxifying oral BaP and, hence, protecting the animal.
Collapse
Affiliation(s)
- Shigeyuki Uno
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Nadine Dragin
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Marian L. Miller
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Timothy P. Dalton
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel W. Nebert
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
- Corresponding author. Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA. Fax: +1 513 558 3562. E-mail address: (D.W. Nebert)
| |
Collapse
|
49
|
Bulckaen H, Prévost G, Boulanger E, Robitaille G, Roquet V, Gaxatte C, Garçon G, Corman B, Gosset P, Shirali P, Creusy C, Puisieux F. Low-dose aspirin prevents age-related endothelial dysfunction in a mouse model of physiological aging. Am J Physiol Heart Circ Physiol 2008; 294:H1562-70. [PMID: 18223195 DOI: 10.1152/ajpheart.00241.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The age-related impairment of endothelium-dependent vasodilatation contributes to increased cardiovascular risk in the elderly. For primary and secondary prevention, aspirin can reduce the incidence of cardiovascular events in this patient population. The present work evaluated the effect of low-dose aspirin on age-related endothelial dysfunction in C57B/J6 aging mice and investigated its protective antioxidative effect. Age-related endothelial dysfunction was assessed by the response to acetylcholine of phenylephrine-induced precontracted aortic segments isolated from 12-, 36-, 60-, and 84-wk-old mice. The effect of low-dose aspirin was examined in mice presenting a decrease in endothelial-dependent relaxation (EDR). The effects of age and aspirin treatment on structural changes were determined in mouse aortic sections. The effect of aspirin on the oxidative stress markers malondialdehyde and 8-hydroxy-2'-deoxyguanosine (8-OhdG) was also quantified. Compared with that of 12-wk-old mice, the EDR was significantly reduced in 60- and 84-wk-old mice (P < 0.05); 68-wk-old mice treated with aspirin displayed a higher EDR compared with control mice of the same age (83.9 +/- 4 vs. 66.3 +/- 5%; P < 0.05). Aspirin treatment decreased 8-OHdG levels (P < 0.05), but no significant effect on intima/media thickness ratio was observed. The protective effect of aspirin was not observed when treatment was initiated in older mice (96 wk of age). It was found that low-dose aspirin is able to prevent age-related endothelial dysfunction in aging mice. However, the absence of this effect in the older age groups demonstrates that treatment should be initiated early on. The underlying mechanism may involve the protective effect of aspirin against oxidative stress.
Collapse
Affiliation(s)
- Hélène Bulckaen
- Dept. of Internal Medicine and Geriatrics, Lille Catholic Institute Hospital, 59160 Lomme, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wright AT, Cravatt BF. Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo. ACTA ACUST UNITED AC 2007; 14:1043-51. [PMID: 17884636 PMCID: PMC2044501 DOI: 10.1016/j.chembiol.2007.08.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/13/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by posttranslational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a "clickable" handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small-molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class.
Collapse
Affiliation(s)
- Aaron T Wright
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|