1
|
Hamada Y, Yagi Y. Therapeutic drug monitoring of azole antifungal agents. J Infect Chemother 2025; 31:102535. [PMID: 39374735 DOI: 10.1016/j.jiac.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Deep-seated mycoses are generally opportunistic infections that are difficult to diagnose and treat. They are expected to increase with the spread of advanced medical care and aging populations, thus highlighting the need for safe, effective, and rapid drug-based treatments. Depending on a patient's age, sex, underlying diseases, and immune system status, therapeutic drug monitoring (TDM) may be important for assessing variable pharmacokinetic parameters, as well as preventing drug-drug interactions, adverse events, and breakthrough infections caused by fungal resistance. Azole antifungal agents play an important role in the prevention and treatment of deep-seated fungal infections, with each azoles having its own unique pharmacokinetic properties and specific adverse events. Therefore, it is necessary to use national and international guidelines to build evidence for the expansion of TDM indications. This review focuses on the clinical utility and future perspectives of TDM using azole antifungal agents, in the context of recent evidence in the literature.
Collapse
Affiliation(s)
- Yukihiro Hamada
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan.
| | - Yusuke Yagi
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan; Department of Infection Prevention and Control, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| |
Collapse
|
2
|
Beran K, Abrahamsson B, Charoo N, Cristofoletti R, Holm R, Kambayashi A, Langguth P, Parr A, Polli JE, Shah VP, Dressman J. Biowaiver monographs for immediate-release solid oral dosage forms: Voriconazole. J Pharm Sci 2025; 114:660-680. [PMID: 39547650 DOI: 10.1016/j.xphs.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
According to the ICH M9 Guideline, the triazole antifungal voriconazole is a Biopharmaceutics Classification System (BCS) class II drug, being highly soluble at the highest dose strength but not at the highest single dose. Although the ICH M9 allows for consideration of BCS-based biowaivers in such cases, voriconazole does not meet the additional requirement of dose proportional pharmacokinetics (PK) over the therapeutic dose range. By contrast, if the classification were based on the FDA solubility criteria that were in place prior to ICH M9 (based on the highest dose strength), voriconazole would belong to BCS class I and thus qualify for the BCS-based biowaiver. Since the highest oral dose strength of voriconazole dissolves very rapidly under all BCS conditions, and comparative in vitro dissolution of different tablet formulations aligns with the demonstration of BE in clinical studies, it seems that the ICH Guideline may be unnecessarily restrictive in the case of voriconazole. Therefore, this review discusses potential revisions of eligibility criteria and the extension of biowaiver approvals to encompass a wider range of appropriate drugs. Specifically, a classification system that is more relevant to in vivo conditions, the refined Developability Classification System (rDCS), coupled with biorelevant dissolution testing, may be more applicable to compounds like voriconazole.
Collapse
Affiliation(s)
- Kristian Beran
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - Naseem Charoo
- Aramed, 216-laboratory complex, Dubai Science Park, UAE
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - René Holm
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Odense, Denmark
| | - Atsushi Kambayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Peter Langguth
- Institute of Pharmacy, Johannes Gutenberg University, Mainz, Germany
| | - Alan Parr
- BioCeutics LLC, Acworth, GA 30101, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 20742, USA
| | - Vinod P Shah
- Pharmaceutical Consultant, North Potomac, MD, USA
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Saleh A, Schulz J, Schlender JF, Aulin LBS, Konrad AP, Kluwe F, Mikus G, Huisinga W, Kloft C, Michelet R. Understanding Voriconazole Metabolism: A Middle-Out Physiologically-Based Pharmacokinetic Modelling Framework Integrating In Vitro and Clinical Insights. Clin Pharmacokinet 2024; 63:1609-1630. [PMID: 39476315 PMCID: PMC11573852 DOI: 10.1007/s40262-024-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Voriconazole (VRC), a broad-spectrum antifungal drug, exhibits nonlinear pharmacokinetics (PK) due to saturable metabolic processes, autoinhibition and metabolite-mediated inhibition on their own formation. VRC PK is also characterised by high inter- and intraindividual variability, primarily associated with cytochrome P450 (CYP) 2C19 genetic polymorphism. Additionally, recent in vitro findings indicate that VRC main metabolites, voriconazole N-oxide (NO) and hydroxyvoriconazole (OHVRC), inhibit CYP enzymes responsible for VRC metabolism, adding to its PK variability. This variability poses a significant risk of therapeutic failure or adverse events, which are major challenges in VRC therapy. Understanding the underlying processes and sources of these variabilities is essential for safe and effective therapy. This work aimed to develop a whole-body physiologically-based pharmacokinetic (PBPK) modelling framework that elucidates the complex metabolism of VRC and the impact of its metabolites, NO and OHVRC, on the PK of the parent, leveraging both in vitro and in vivo clinical data in a middle-out approach. METHODS A coupled parent-metabolite PBPK model for VRC, NO and OHVRC was developed in a stepwise manner using PK-Sim® and MoBi®. Based on available in vitro data, NO formation was assumed to be mediated by CYP2C19, CYP3A4, and CYP2C9, while OHVRC formation was attributed solely to CYP3A4. Both metabolites were assumed to be excreted via renal clearance, with hepatic elimination also considered for NO. Inhibition functions were implemented to describe the complex interaction network of VRC autoinhibition and metabolite-mediated inhibition on each CYP enzyme. RESULTS Using a combined bottom-up and middle-out approach, incorporating data from multiple clinical studies and existing literature, the model accurately predicted plasma concentration-time profiles across various intravenous dosing regimens in healthy adults, of different CYP2C19 genotype-predicted phenotypes. All (100%) of the predicted area under the concentration-time curve (AUC) and 94% of maximum concentration (Cmax) values of VRC met the 1.25-fold acceptance criterion, with overall absolute average fold errors of 1.12 and 1.14, respectively. Furthermore, all predicted AUC and Cmax values of NO and OHVRC met the twofold acceptance criterion. CONCLUSION This comprehensive parent-metabolite PBPK model of VRC quantitatively elucidated the complex metabolism of the drug and emphasised the substantial impact of the primary metabolites on VRC PK. The comprehensive approach combining bottom-up and middle-out modelling, thereby accounting for VRC autoinhibition, metabolite-mediated inhibition, and the impact of CYP2C19 genetic polymorphisms, enhances our understanding of VRC PK. Moreover, the model can be pivotal in designing further in vitro experiments, ultimately allowing for extrapolation to paediatric populations, enhance treatment individualisation and improve clinical outcomes.
Collapse
Affiliation(s)
- Ayatallah Saleh
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Josefine Schulz
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | | | - Linda B S Aulin
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Amrei-Pauline Konrad
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Dong L, Zhuang X, Yang T, Yan K, Cai Y. A physiologically based pharmacokinetic model of voriconazole in human CNS-Integrating time-dependent inhibition of CYP3A4, genetic polymorphisms of CYP2C19 and possible transporter mechanisms. Int J Antimicrob Agents 2024; 64:107310. [PMID: 39168418 DOI: 10.1016/j.ijantimicag.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES Voriconazole is a classical antifungal drug that is often used to treat CNS fungal infections due to its permeability through the BBB. However, its clinical use remains challenging because of its narrow therapeutic window and wide inter-individual variability. In this study, we proposed an optimised and validated PBPK model by integrating in vitro, in vivo and clinical data to simulate the distribution and PK process of voriconazole in the CNS, providing guidance for clinical individualised treatment. METHODS The model structure was optimised and tissue-to-plasma partition coefficients were obtained through animal experiments. Using the allometric relationships, the distribution of voriconazole in the human CNS was predicted. The model integrated factors affecting inter-individual variation and drug interactions of voriconazole-polymorphisms in the CYP2C19 gene and auto-inhibition and then was validated using real clinical data. RESULTS The overall AFE value showing model predicted differences was 1.1420 in the healthy population; and in the first prediction of plasma and CSF in actual clinical patients, 89.5% of the values were within the 2-fold error interval, indicating good predictive performance of the model. The bioavailability of voriconazole varied at different doses (39%-86%), and the optimised model conformed to this pattern (46%-83%). CONCLUSIONS Combined with the relevant pharmacodynamic indexes, the PBPK model provides a feasible way for precise medication in patients with CNS infection and improve the treatment effect and prognosis.
Collapse
Affiliation(s)
- Liuhan Dong
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianli Yang
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Kaicheng Yan
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Lehner AF, Johnson SD, Dirikolu L, Johnson M, Buchweitz JP. Mass spectrometric methods for evaluation of voriconazole avian pharmacokinetics and the inhibition of its cytochrome P450-induced metabolism. Toxicol Mech Methods 2024; 34:654-668. [PMID: 38389412 DOI: 10.1080/15376516.2024.2322675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Invasive fungal aspergillosis is a leading cause of morbidity and mortality in many species including avian species such as common ravens (Corvus corax). Methods were developed for mass spectral determination of voriconazole in raven plasma as a means of determining pharmacokinetics of this antifungal agent. Without further development, GC/MS/MS (gas chromatography-tandem quadrupole mass spectrometry) proved to be inferior to LC/MS/MS (liquid chromatography-tandem quadrupole mass spectrometry) for measurement of voriconazole levels in treated raven plasma owing to numerous heat-induced breakdown products despite protection of voriconazole functional groups with trimethylsilyl moieties. LC/MS/MS measurement revealed in multi-dosing experiments that the ravens were capable of rapid or ultrarapid metabolism of voriconazole. This accounted for the animals' inability to raise the drug into the therapeutic range regardless of dosing regimen unless cytochrome P450 (CYP) inhibitors were included. Strategic selection of CYP inhibitors showed that of four selected compounds including cimetidine, enrofloxacin and omeprazole, only ciprofloxacin (Cipro) was able to maintain voriconazole levels in the therapeutic range until the end of the dosing period. The optimal method of administration involved maintenance doses of voriconazole at 6 mg/kg and ciprofloxacin at 20 mg/kg. Higher doses of voriconazole such as 18 mg/kg were also tenable without apparent induction of toxicity. Although most species employ CYP2C19 to metabolize voriconazole, it was necessary to speculate that voriconazole might be subject to metabolism by CYP1A2 in the ravens to explain the utility of ciprofloxacin, a previously unknown enzymatic route. Finally, despite its widespread catalog of CYP inhibitions including CYP1A2 and CYP2C19, cimetidine may be inadequate at enhancing voriconazole levels owing to its known effects on raising gastric pH, a result that may limit voriconazole solubility.
Collapse
Affiliation(s)
- Andreas F Lehner
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sharmie D Johnson
- Department of Veterinary Services, Wildlife World Zoo & Aquarium & Safari Park, Litchfield Park, AZ, USA
| | - Levent Dirikolu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Margaret Johnson
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - John P Buchweitz
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Wang Y, Ye Q, Li P, Huang L, Qi Z, Chen W, Zhan Q, Wang C. Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals (Basel) 2024; 17:665. [PMID: 38931333 PMCID: PMC11206427 DOI: 10.3390/ph17060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS The pharmacokinetic (PK) profiles of voriconazole in intensive care unit (ICU) patients differ from that in other patients. We aimed to develop a population pharmacokinetic (PopPK) model to evaluate the effects of using extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT) and those of various biological covariates on the voriconazole PK profile. METHODS Modeling analyses of the PK parameters were conducted using the nonlinear mixed-effects modeling method (NONMEM) with a two-compartment model. Monte Carlo simulations (MCSs) were performed to observe the probability of target attainment (PTA) when receiving CRRT or not under different dosage regimens, different stratifications of quick C-reactive protein (qCRP), and different minimum inhibitory concentration (MIC) ranges. RESULTS A total of 408 critically ill patients with 746 voriconazole concentration-time data points were included in this study. A two-compartment population PK model with qCRP, CRRT, creatinine clearance rate (CLCR), platelets (PLT), and prothrombin time (PT) as fixed effects was developed using the NONMEM. CONCLUSIONS We found that qCRP, CRRT, CLCR, PLT, and PT affected the voriconazole clearance. The most commonly used clinical regimen of 200 mg q12h was sufficient for the most common sensitive pathogens (MIC ≤ 0.25 mg/L), regardless of whether CRRT was performed and the level of qCRP. When the MIC was 0.5 mg/L, 200 mg q12h was insufficient only when the qCRP was <40 mg/L and CRRT was performed. When the MIC was ≥2 mg/L, a dose of 300 mg q12h could not achieve ≥ 90% PTA, necessitating the evaluation of a higher dose.
Collapse
Affiliation(s)
- Yuqiong Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Qinghua Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Linna Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Zhijiang Qi
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; (Y.W.); (C.W.)
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (Q.Y.); (L.H.); (Z.Q.)
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Xie X, Lan Q, Zhao J, Zhang S, Liu L, Zhang Y, Xu W, Shao M, Peng J, Xia S, Zhu Y, Zhang K, Zhang X, Zhang R, Li J, Dai W, Ge Z, Hu S, Yu C, Wang J, Ma D, Zheng M, Yang H, Xiao G, Rao Z, Lu L, Zhang L, Bai F, Zhao Y, Jiang S, Liu H. Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduct Target Ther 2024; 9:54. [PMID: 38443334 PMCID: PMC10914734 DOI: 10.1038/s41392-024-01758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Respiratory disease caused by coronavirus infection remains a global health crisis. Although several SARS-CoV-2-specific vaccines and direct-acting antivirals are available, their efficacy on emerging coronaviruses in the future, including SARS-CoV-2 variants, might be compromised. Host-targeting antivirals provide preventive and therapeutic strategies to overcome resistance and manage future outbreak of emerging coronaviruses. Cathepsin L (CTSL) and calpain-1 (CAPN1) are host cysteine proteases which play crucial roles in coronaviral entrance into cells and infection-related immune response. Here, two peptidomimetic α-ketoamide compounds, 14a and 14b, were identified as potent dual target inhibitors against CTSL and CAPN1. The X-ray crystal structures of human CTSL and CAPN1 in complex with 14a and 14b revealed the covalent binding of α-ketoamide groups of 14a and 14b to C25 of CTSL and C115 of CAPN1. Both showed potent and broad-spectrum anticoronaviral activities in vitro, and it is worth noting that they exhibited low nanomolar potency against SARS-CoV-2 and its variants of concern (VOCs) with EC50 values ranging from 0.80 to 161.7 nM in various cells. Preliminary mechanistic exploration indicated that they exhibited anticoronaviral activity through blocking viral entrance. Moreover, 14a and 14b exhibited good oral pharmacokinetic properties in mice, rats and dogs, and favorable safety in mice. In addition, both 14a and 14b treatments demonstrated potent antiviral potency against SARS-CoV-2 XBB 1.16 variant infection in a K18-hACE2 transgenic mouse model. And 14b also showed effective antiviral activity against HCoV-OC43 infection in a mouse model with a final survival rate of 60%. Further evaluation showed that 14a and 14b exhibited excellent anti-inflammatory effects in Raw 264.7 mouse macrophages and in mice with acute pneumonia. Taken together, these results suggested that 14a and 14b are promising drug candidates, providing novel insight into developing pan-coronavirus inhibitors with antiviral and anti-inflammatory properties.
Collapse
Affiliation(s)
- Xiong Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Jinyi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Maolin Shao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingjing Peng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Keke Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Xianglei Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruxue Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Wenhao Dai
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Ge
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Shulei Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Changyue Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dakota Ma
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gengfu Xiao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Leike Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| | - Hong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Barrs VR, Hobi S, Wong A, Sandy J, Shubitz LF, Bęczkowski PM. Invasive fungal infections and oomycoses in cats 2. Antifungal therapy. J Feline Med Surg 2024; 26:1098612X231220047. [PMID: 38189264 PMCID: PMC10949877 DOI: 10.1177/1098612x231220047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
CLINICAL RELEVANCE Invasive fungal infections (IFIs) and oomycoses (hereafter termed invasive fungal-like infections [IFLIs]) are characterised by penetration of tissues by fungal elements. The environment is the most common reservoir of infection. IFIs and IFLIs can be frustrating to treat because long treatment times are usually required and, even after attaining clinical cure, there may be a risk of relapse. Owner compliance with medication administration and recheck examinations can also decline over time. In addition, some antifungal drugs are expensive, have variable interpatient pharmacokinetic properties, can only be administered parenterally and/or have common adverse effects (AEs). Despite these limitations, treatment can be very rewarding, especially when an otherwise progressive and fatal disease is cured. AIM In the second of a two-part article series, the spectrum of activity, mechanisms of action, pharmacokinetic and pharmacodynamic properties, and AEs of antifungal drugs are reviewed, and the treatment and prognosis of specific IFIs/IFLIs - dermatophytic pseudomycetoma, cryptococcosis, sino-orbital aspergillosis, coccidioidomycosis, histoplasmosis, sporotrichosis, phaeohyphomycosis, mucormycosis and oomycosis - are discussed. Part 1 reviewed the diagnostic approach to IFIs and IFLIs. EVIDENCE BASE Information on antifungal drugs is drawn from pharmacokinetic studies in cats. Where such studies have not been performed, data from 'preclinical' animals (non-human studies) and human studies are reviewed. The review also draws on the wider published evidence and the authors' combined expertise in feline medicine, mycology, dermatology, clinical pathology and anatomical pathology. ABBREVIATIONS FOR ANTIFUNGAL DRUGS AMB (amphotericin B); FC (flucytosine); FCZ (fluconazole); ISA (isavuconazole); ITZ (itraconazole); KCZ (ketoconazole); PCZ (posaconazole); TRB (terbinafine); VCZ (voriconazole).
Collapse
Affiliation(s)
- Vanessa R Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Angeline Wong
- Shatin Animal Hospital, Tai Wai, New Territories, Hong Kong, SAR China
| | - Jeanine Sandy
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Lisa F Shubitz
- Valley Fever Center for Excellence, The University of Arizona, AZ, USA
| | - Paweł M Bęczkowski
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| |
Collapse
|
9
|
Boglione-Kerrien C, Zerrouki S, Le Bot A, Camus C, Marchand T, Bellissant E, Tron C, Verdier MC, Gangneux JP, Lemaitre F. Can we predict the influence of inflammation on voriconazole exposure? An overview. J Antimicrob Chemother 2023; 78:2630-2636. [PMID: 37796931 DOI: 10.1093/jac/dkad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Voriconazole is a triazole antifungal indicated for invasive fungal infections that exhibits a high degree of inter-individual and intra-individual pharmacokinetic variability. Voriconazole pharmacokinetics is non-linear, making dosage adjustments more difficult. Therapeutic drug monitoring is recommended by measurement of minimum plasma concentrations. Several factors are responsible for the high pharmacokinetic variability of voriconazole: age, feeding (which decreases absorption), liver function, genetic polymorphism of the CYP2C19 gene, drug interactions and inflammation. Invasive fungal infections are indeed very frequently associated with inflammation, which engenders a risk of voriconazole overexposure. Many studies have reviewed this topic in both the adult and paediatric populations, but few studies have focused on the specific point of the prediction, to evaluate the influence of inflammation on voriconazole pharmacokinetics. Predicting the impact of inflammation on voriconazole pharmacokinetics could help optimize antifungal therapy and improve patient management. This review summarizes the existing data on the influence of inflammation on voriconazole pharmacokinetics in adult populations. We also evaluate the role of C-reactive protein, the impact of inflammation on patient metabolic phenotypes, and the tools that can be used to predict the effect of inflammation on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Christelle Boglione-Kerrien
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
| | - Selim Zerrouki
- Rennes University Hospital, Department of Biochemistry, Rennes, France
| | - Audrey Le Bot
- Rennes University Hospital, Department of Infectious Diseases, Rennes, France
| | - Christophe Camus
- Rennes University Hospital, Department of Intensive Care Medicine, Rennes, France
| | - Tony Marchand
- Rennes University Hospital, Department of Clinical Haematology, Rennes, France
| | - Eric Bellissant
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Camille Tron
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Marie-Clémence Verdier
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| | - Jean-Pierre Gangneux
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
- Rennes University Hospital, Department of Parasitology and Mycology, National Reference Centre for Mycoses and Antifungals (LA Asp-C) and European Excellence Centre in Medical Mycology (ECMM EC), Rennes, France
| | - Florian Lemaitre
- Rennes University Hospital, Department of Biological Pharmacology, 2, rue Henri le Guilloux, F-35000 Rennes, France
- INSERM, CIC-P 1414 Clinical Investigation Centre, Rennes, France
- Rennes University Hospital, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) -UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
10
|
Wroński M, Trawiński J, Skibiński R. Electrochemical Simulation of Phase I Hepatic Metabolism of Voriconazole Using a Screen-Printed Iron(II) Phthalocyanine Electrode. Pharmaceutics 2023; 15:2586. [PMID: 38004565 PMCID: PMC10674253 DOI: 10.3390/pharmaceutics15112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the metabolism of pharmaceutical compounds is a fundamental prerequisite for ensuring their safety and efficacy in clinical use. However, conventional methods for monitoring drug metabolism often come with the drawbacks of being time-consuming and costly. In an ongoing quest for innovative approaches, the application of electrochemistry in metabolism studies has gained prominence as a promising approach for the synthesis and analysis of drug transformation products. In this study, we investigated the hepatic metabolism of voriconazole, an antifungal medication, by utilizing human liver microsomes (HLM) assay coupled with LC-MS. Based on the obtained results, the electrochemical parameters were optimized to simulate the biotransformation reactions. Among the various electrodes tested, the chemometric analysis revealed that the iron(II) phthalocyanine electrode was the most effective in catalyzing the formation of all hepatic voriconazole metabolites. These findings exemplify the potential of phthalocyanine electrodes as an efficient and cost-effective tool for simulating the intricate metabolic processes involved in drug biotransformation, offering new possibilities in the field of pharmaceutical research. Additionally, in silico analysis showed that two detected metabolites may exhibit significantly higher acute toxicity and mutagenic potential than the parent compound.
Collapse
Affiliation(s)
| | | | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.W.); (J.T.)
| |
Collapse
|
11
|
Ibrahim ARS, Mansour MK, Ahmed MMA, Ulber R, Zayed A. Metabolism of natural and synthetic bioactive compounds in Cunninghamella fungi and their applications in drug discovery. Bioorg Chem 2023; 140:106801. [PMID: 37643568 DOI: 10.1016/j.bioorg.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Investigation of xenobiotic metabolism is a key step for drug discovery. Since the in vivo investigations may be associated with harmful effects attributed to production of toxic metabolites, it is deemed necessary to predict their structure especially at the preliminary clinical studies. Furthermore, the application of microorganisms that are capable of metabolizing drugs mimic human metabolism and consequently may predict possible metabolites. The genus Cunninghamella has been proven to be a potential candidate, which mimics xenobiotic metabolism occurring inside the human body, including phase I and II metabolic reactions. Moreover, biotransformation with Cunninghamella showed chemical diversity, where a lot of products were detected in relation to the initial substrates after being modified by oxidation, hydroxylation, and conjugation reactions. Some of these products are more bioactive than the parent compounds. The current review presents a comprehensive literature overview regarding the Cunninghamella organisms as biocatalysts, which simulate mammalian metabolism of natural secondary and synthetic compounds.
Collapse
Affiliation(s)
- Abdel-Rahim S Ibrahim
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt
| | - Mai K Mansour
- Department of Medicinal Plants and Natural Products, Egyptian Drug Authority, Giza 11553, Egypt
| | - Mohammed M A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt; Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany.
| |
Collapse
|
12
|
Kluwe F, Michelet R, Huisinga W, Zeitlinger M, Mikus G, Kloft C. Towards Model-Informed Precision Dosing of Voriconazole: Challenging Published Voriconazole Nonlinear Mixed-Effects Models with Real-World Clinical Data. Clin Pharmacokinet 2023; 62:1461-1477. [PMID: 37603216 PMCID: PMC10520167 DOI: 10.1007/s40262-023-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Model-informed precision dosing (MIPD) frequently uses nonlinear mixed-effects (NLME) models to predict and optimize therapy outcomes based on patient characteristics and therapeutic drug monitoring data. MIPD is indicated for compounds with narrow therapeutic range and complex pharmacokinetics (PK), such as voriconazole, a broad-spectrum antifungal drug for prevention and treatment of invasive fungal infections. To provide guidance and recommendations for evidence-based application of MIPD for voriconazole, this work aimed to (i) externally evaluate and compare the predictive performance of a published so-called 'hybrid' model for MIPD (an aggregate model comprising features and prior information from six previously published NLME models) versus two 'standard' NLME models of voriconazole, and (ii) investigate strategies and illustrate the clinical impact of Bayesian forecasting for voriconazole. METHODS A workflow for external evaluation and application of MIPD for voriconazole was implemented. Published voriconazole NLME models were externally evaluated using a comprehensive in-house clinical database comprising nine voriconazole studies and prediction-/simulation-based diagnostics. The NLME models were applied using different Bayesian forecasting strategies to assess the influence of prior observations on model predictivity. RESULTS The overall best predictive performance was obtained using the aggregate model. However, all NLME models showed only modest predictive performance, suggesting that (i) important PK processes were not sufficiently implemented in the structural submodels, (ii) sources of interindividual variability were not entirely captured, and (iii) interoccasion variability was not adequately accounted for. Predictive performance substantially improved by including the most recent voriconazole observations in MIPD. CONCLUSION Our results highlight the potential clinical impact of MIPD for voriconazole and indicate the need for a comprehensive (pre-)clinical database as basis for model development and careful external model evaluation for compounds with complex PK before their successful use in MIPD.
Collapse
Affiliation(s)
- Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 419, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
13
|
Yamamoto T, Ishida M, Kodama N, Saiki Y, Fujiyoshi M, Shimada M. Development of a New Method for Simultaneous Quantitation of Plasma Concentrations of Voriconazole and Voriconazole N-Oxide Using Column-Switching LC-MS/MS and Its Application in Therapeutic Drug Monitoring. Yonago Acta Med 2023; 66:365-374. [PMID: 37621974 PMCID: PMC10444587 DOI: 10.33160/yam.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Background Voriconazole therapy for fungal infections usually continues for several years and is often administered on an outpatient basis. Maintaining the voriconazole plasma concentration in the therapeutic range is highly important for effective therapy; however, it is difficult to obtain sufficient information to assess the voriconazole concentration in outpatients. Therefore, we developed a method to simultaneously measure the plasma concentrations of voriconazole and its major metabolite, voriconazole N-oxide, to obtain rapid results after outpatient blood collection and before medical consultation and to attain a better understanding of adherence and the drug-drug interactions of voriconazole. Methods Fifty microliters of patient plasma was deproteinized with methanol, injected into the liquid chromatography-tandem mass spectrometry system, and purified using an online column. Separation was achieved on an InertSustain C18 column (2.1 mm id × 50 mm, 2 μm) with a mobile phase of 30:70 (0.1% formic acid in water:methanol) at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode. Results The analysis time was 4 min. The calibration curve was linear, in the range of 0.1 μg/mL to 20 μg/mL for voriconazole and 0.05 μg/mL to 10 μg/mL for voriconazole N-oxide, with a coefficient of determination at R2 > 0.999. Conclusion There is no need to dilute the patient's plasma even if the concentration of voriconazole is near the upper limit of measurement. Furthermore, the short measurement-time could immediately inform physicians of the patient's voriconazole concentration during ambulatory medical care. Simultaneous measurement of voriconazole and voriconazole N-oxide may also be useful for the immediate adjustment of voriconazole dosage in outpatients and would help us to understand adherence or drug-drug interactions in plasma voriconazole concentrations.
Collapse
Affiliation(s)
- Tatsuro Yamamoto
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Masako Ishida
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Nao Kodama
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | - Yusuke Saiki
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| | | | - Miki Shimada
- Department of Pharmacy, Tottori University Hospital, Yonago 683-8504, Japan
| |
Collapse
|
14
|
Mushtaq M, Fatima K, Ahmad A, Mohamed Ibrahim O, Faheem M, Shah Y. Pharmacokinetic interaction of voriconazole and clarithromycin in Pakistani healthy male volunteers: a single dose, randomized, crossover, open-label study. Front Pharmacol 2023; 14:1134803. [PMID: 37361220 PMCID: PMC10288581 DOI: 10.3389/fphar.2023.1134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Voriconazole an antifungal drug, has a potential for drug-drug interactions (DDIs) with administered drugs. Clarithromycin is a Cytochromes P450 CYP (3A4 and 2C19) enzyme inhibitor, and voriconazole is a substrate and inhibitor of these two enzymes. Being a substrate of the same enzyme for metabolism and transport, the chemical nature and pKa of both interacting drugs make these drugs better candidates for potential pharmacokinetic drug-drug interactions (PK-DDIs). This study aimed to evaluate the effect of clarithromycin on the pharmacokinetic profile of voriconazole in healthy volunteers. Methods: A single oral dose, open-label, randomized, crossover study was designed for assessing PK-DDI in healthy volunteers, consisting of 2 weeks washout period. Voriconazole, either alone (2 mg × 200 mg, tablet, P/O) or along with clarithromycin (voriconazole 2 mg × 200 mg, tablet + clarithromycin 500 mg, tablet, P/O), was administered to enrolled volunteers in two sequences. The blood samples (approximately 3 cc) were collected from volunteers for up to 24 h. Plasma concentrations of voriconazole were analyzed by an isocratic, reversed-phase high-performance-liquid chromatography ultraviolet-visible detector (RP HPLC UV-Vis) and a non-compartmental method. Results: In the present study, when voriconazole was administered with clarithromycin versus administered alone, a significant increase in peak plasma concentration (Cmax) of voriconazole by 52% (geometric mean ratio GMR: 1.52; 90% CI 1.04, 1.55; p = 0.000) was observed. Similarly, the area under the curve from time zero to infinity (AUC0-∞) and the area under the concentration-time curve from time zero to time-t (AUC0-t) of voriconazole also significantly increased by 21% (GMR: 1.14; 90% CI 9.09, 10.02; p = 0.013), and 16% (GMR: 1.15; 90% CI 8.08, 10.02; p = 0.007), respectively. In addition, the results also showed a reduction in the apparent volume of distribution (Vd) by 23% (GMR: 0.76; 90% CI 5.00, 6.20; p = 0.051), and apparent clearance (CL) by 13% (GMR: 0.87; 90% CI 41.95, 45.73; p = 0.019) of voriconazole. Conclusion: The alterations in PK parameters of voriconazole after concomitant administration of clarithromycin are of clinical significance. Therefore, adjustments in dosage regimens are warranted. In addition, extreme caution and therapeutic drug monitoring are necessary while co-prescribing both drugs. Clinical Trial Registration: clinicalTrials.gov, Identifier NCT05380245.
Collapse
Affiliation(s)
- Mehwish Mushtaq
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Kshaf Fatima
- University Medical and Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Aneeqa Ahmad
- Punjab Medical College, Faisalabad Medical University, Faisalabad, Pakistan
| | - Osama Mohamed Ibrahim
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammad Faheem
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Yasar Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
15
|
Li ZR, Shen CH, Li RD, Wang B, Li J, Niu WJ, Zhang LJ, Zhong MK, Wang ZX, Qiu XY. Individual dose recommendations for drug interaction between tacrolimus and voriconazole in adult liver transplant recipients: A semiphysiologically based population pharmacokinetic modeling approach. Eur J Pharm Sci 2023; 184:106405. [PMID: 36775255 DOI: 10.1016/j.ejps.2023.106405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
The magnitude of drug-drug interaction between tacrolimus and voriconazole is highly variable, and individually tailoring the tacrolimus dose when concomitantly administered with voriconazole remains difficult. This study aimed to develop a semiphysiologically based population pharmacokinetic (semi-PBPK) model and a web-based dashboard to identify the dynamic inhibition of tacrolimus metabolism caused by voriconazole and provide individual tacrolimus regimens for Chinese adult liver transplant recipients. A total of 264 tacrolimus concentrations and 146 voriconazole concentrations were prospectively collected from 32 transplant recipients. A semi-PBPK model with physiological compartments including the gut wall, portal vein, and liver was developed using the nonlinear mixed-effects modeling software NONMEM (version 7.4). A web-based dashboard was established in R software (version 3.6.1) to recommend the individual tacrolimus regimens when concomitantly administered with voriconazole. The reversible inhibition of tacrolimus metabolism caused by voriconazole was investigated in both the liver and the gut wall. Moreover, voriconazole could highly inhibit the CYP3A activity in the gut wall more than in the liver. BMI and postoperative days were identified as significant covariates on intrinsic intestinal and hepatic clearance of tacrolimus, respectively. Age and postoperative days were identified as significant covariates on the volume of distribution of voriconazole. The individual tacrolimus regimens when concomitantly administered with voriconazole could be recommended in the dashboard (https://tac-vor-ddi.shinyapps.io/shinyapp3/). In conclusion, the semi-PBPK model successfully described the dynamic inhibition process between tacrolimus and voriconazole, and the web-based dashboard could provide individual tacrolimus regimens when concomitantly administered with voriconazole.
Collapse
Affiliation(s)
- Zi-Ran Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Cong-Huan Shen
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, Shanghai 200040, China
| | - Rui-Dong Li
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, Shanghai 200040, China
| | - Bei Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juan Li
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, Shanghai 200040, China
| | - Wan-Jie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Li-Jun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zheng-Xin Wang
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, Shanghai 200040, China.
| | - Xiao-Yan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
16
|
Hanzlicek AS, KuKanich KS, Cook AK, Hodges S, Thomason JM, DeSilva R, Ramachandran A, Durkin MM. Clinical utility of fungal culture and antifungal susceptibility in cats and dogs with histoplasmosis. J Vet Intern Med 2023; 37:998-1006. [PMID: 37092675 DOI: 10.1111/jvim.16725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Culture can be used for diagnosis and antifungal susceptibility testing in animals with fungal infections. Limited information is available regarding the diagnostic performance of culture and the susceptibility patterns of Histoplasma spp. isolates. HYPOTHESIS/OBJECTIVES Describe the clinical utility of culture and the susceptibility patterns of Histoplasma spp. isolates causing histoplasmosis in cats and dogs. ANIMALS Seventy-one client-owned animals, including 33 cats and 19 dogs with proven or probable histoplasmosis. METHODS Culture was attempted from tissue or fluid samples. Diagnostic performance of culture, cytopathology, and antigen detection were compared with final diagnosis. Susceptibility to antifungal agents was determined for a subset (11 from dogs, 9 from cats) of culture isolates. RESULTS Culture had a diagnostic sensitivity of 17/33 (52%; 95% confidence interval [CI], 34%-69%) and 15/19 (79%; 95% CI, 61%-97%) and specificity of 6/6 (100%; 95% CI, 54%-100%) and 10/10 (100%; 95% CI, 69%-100%) in cats and dogs, respectively. Culture was not positive in any animal in which cytopathology and antigen testing were negative. Target drug exposure (area under the concentration curve [AUC]/minimum inhibitory concentration [MIC] >25) should be easily achieved for all isolates for itraconazole, voriconazole, or posaconazole. Five of 20 (25%) isolates had fluconazole MIC ≥32 μg/mL and achieving target drug exposure is unlikely. CONCLUSIONS AND CLINICAL IMPORTANCE Fungal culture did not improve diagnostic sensitivity when used with cytopathology and antigen detection. Susceptibility testing might help identify isolates for which fluconazole is less likely to be effective.
Collapse
Affiliation(s)
- Andrew S Hanzlicek
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- MiraVista Diagnostics, Indianapolis, Indiana, USA
| | - Kate S KuKanich
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Audrey K Cook
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Steven Hodges
- Oklahoma Veterinary Specialists, Tulsa, Oklahoma, USA
| | - John M Thomason
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Rupika DeSilva
- Oklahoma Animal Disease Diagnostic Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | | |
Collapse
|
17
|
Boglione-Kerrien C, Morcet J, Scailteux LM, Bénézit F, Camus C, Mear JB, Gangneux JP, Bellissant E, Tron C, Verdier MC, Lemaitre F. Contribution of voriconazole N-oxide plasma concentration measurements to voriconazole therapeutic drug monitoring in patients with invasive fungal infection. Mycoses 2023; 66:396-404. [PMID: 36698317 DOI: 10.1111/myc.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Voriconazole (VRC), a widely used triazole antifungal, exhibits significant inter- and intra-individual pharmacokinetic variability. The main metabolite voriconazole N-oxide (NOX) can provide information on the patient's drug metabolism capacity. OBJECTIVES Our objectives were to implement routine measurement of NOX concentrations and to describe the metabolic ratio (MR), and the contribution of the MR to VRC therapeutic drug monitoring (TDM) by proposing a suggested dosage-adjustment algorithm. PATIENTS AND METHODS Sixty-one patients treated with VRC were prospectively included in the study, and VRC and NOX levels were assayed by LC-MS/MS. A mixed logistic model on repeated measures was implemented to analyse risk factors for the patient's concentration to be outside the therapeutic range. RESULTS Based on 225 measurements, the median and interquartile range were 2.4 μg/ml (1.2; 4.2), 2.1 μg/ml (1.5; 3.0) and 1.0 (0.6; 1.9) for VRC, NOX and the MR, respectively. VRC Cmin <2 μg/ml were associated with a higher MR during the previous visit. MR values >1.15 and <0.48 were determined to be the best predictors for having a VRC Cmin lower than 2 μg/ml and above 5.5 μg/ml, respectively, at the next visit. CONCLUSIONS Measurement of NOX resulted useful for TDM of patients treated with VRC. The MR using NOX informed interpretation and clinical decision-making and is very interesting for complex patients. VRC phenotyping based on the MR is now performed routinely in our institution. A dosing algorithm has been suggested from these results.
Collapse
Affiliation(s)
| | - Jeff Morcet
- Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Lucie-Marie Scailteux
- Department of Clinical Pharmacology, Rennes University Hospital, Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Rennes, France
| | - François Bénézit
- Department of Infectious Diseases, Rennes University Hospital, Rennes, France
| | - Christophe Camus
- Department of Intensive Care Medicine, Rennes University Hospital, Rennes, France
| | - Jean-Baptiste Mear
- Department of Clinical Haematology, Rennes University Hospital, Rennes, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Eric Bellissant
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Camille Tron
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Marie-Clémence Verdier
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| | - Florian Lemaitre
- Department of Biological Pharmacology, CHU Rennes, Rennes, France.,Inserm, CIC-P 1414 Clinical Investigation Centre, Rennes, France
| |
Collapse
|
18
|
Schulz J, Michelet R, Zeitlinger M, Mikus G, Kloft C. Microdialysis of Voriconazole and its N-Oxide Metabolite: Amalgamating Knowledge of Distribution and Metabolism Processes in Humans. Pharm Res 2022; 39:3279-3291. [PMID: 36271205 PMCID: PMC9780129 DOI: 10.1007/s11095-022-03407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/29/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Voriconazole is an essential antifungal drug whose complex pharmacokinetics with high interindividual variability impedes effective and safe therapy. By application of the minimally-invasive sampling technique microdialysis, interstitial space fluid (ISF) concentrations of VRC and its potentially toxic N-oxide metabolite (NO) were assessed to evaluate target-site exposure for further elucidating VRC pharmacokinetics. METHODS Plasma and ISF samples of a clinical trial with an approved VRC dosing regimen were analyzed for VRC and NO concentrations. Concentration-time profiles, exposure assessed as area-under-the-curve (AUC) and metabolic ratios of four healthy adults in plasma and ISF were evaluated regarding the impact of multiple dosing and CYP2C19 genotype. RESULTS VRC and NO revealed distribution into ISF with AUC values being ≤2.82- and 17.7-fold lower compared to plasma, respectively. Intraindividual variability of metabolic ratios was largest after the first VRC dose administration while interindividual variability increased with multiple dosing. The CYP2C19 genotype influenced interindividual differences with a maximum 6- and 24-fold larger AUCNO/AUCVRC ratio between the intermediate and rapid metabolizer in plasma and ISF, respectively. VRC metabolism was saturated/auto-inhibited indicated by substantially decreasing metabolic concentration ratios with increasing VRC concentrations and after multiple dosing. CONCLUSION The feasibility of the simultaneous microdialysis of VRC and NO in vivo was demonstrated and provided new quantitative insights by leveraging distribution and metabolism processes of VRC in humans. The exploratory analysis suggested substantial dissimilarities of VRC and NO pharmacokinetics in plasma and ISF. Ultimately, a thorough understanding of target-site pharmacokinetics might contribute to the optimization of personalized VRC dosing regimens.
Collapse
Affiliation(s)
- Josefine Schulz
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
19
|
Schulz J, Michelet R, Zeitlinger M, Mikus G, Kloft C. Microdialysis of Drug and Drug Metabolite: a Comprehensive In Vitro Analysis for Voriconazole and Voriconazole N-oxide. Pharm Res 2022; 39:2991-3003. [PMID: 36171344 PMCID: PMC9633485 DOI: 10.1007/s11095-022-03292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Voriconazole is a therapeutically challenging antifungal drug associated with high interindividual pharmacokinetic variability. As a prerequisite to performing clinical trials using the minimally-invasive sampling technique microdialysis, a comprehensive in vitro microdialysis characterization of voriconazole (VRC) and its potentially toxic N-oxide metabolite (NO) was performed. METHODS The feasibility of simultaneous microdialysis of VRC and NO was explored in vitro by investigating the relative recovery (RR) of both compounds in the absence and presence of the other. The dependency of RR on compound combination, concentration, microdialysis catheter and study day was evaluated and quantified by linear mixed-effects modeling. RESULTS Median RR of VRC and NO during individual microdialysis were high (87.6% and 91.1%). During simultaneous microdialysis of VRC and NO, median RR did not change (87.9% and 91.1%). The linear mixed-effects model confirmed the absence of significant differences between RR of VRC and NO during individual and simultaneous microdialysis as well as between the two compounds (p > 0.05). No concentration dependency of RR was found (p = 0.284). The study day was the main source of variability (46.3%) while the microdialysis catheter only had a minor effect (4.33%). VRC retrodialysis proved feasible as catheter calibration for both compounds. CONCLUSION These in vitro microdialysis results encourage the application of microdialysis in clinical trials to assess target-site concentrations of VRC and NO. This can support the generation of a coherent understanding of VRC pharmacokinetics and its sources of variability. Ultimately, a better understanding of human VRC pharmacokinetics might contribute to the development of personalized dosing strategies.
Collapse
Affiliation(s)
- Josefine Schulz
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
20
|
Kallee S, Scharf C, Schatz LM, Paal M, Vogeser M, Irlbeck M, Zander J, Zoller M, Liebchen U. Systematic Evaluation of Voriconazole Pharmacokinetic Models without Pharmacogenetic Information for Bayesian Forecasting in Critically Ill Patients. Pharmaceutics 2022; 14:pharmaceutics14091920. [PMID: 36145667 PMCID: PMC9505877 DOI: 10.3390/pharmaceutics14091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Voriconazole (VRC) is used as first line antifungal agent against invasive aspergillosis. Model-based approaches might optimize VRC therapy. This study aimed to investigate the predictive performance of pharmacokinetic models of VRC without pharmacogenetic information for their suitability for model-informed precision dosing. Seven PopPK models were selected from a systematic literature review. A total of 66 measured VRC plasma concentrations from 33 critically ill patients was employed for analysis. The second measurement per patient was used to calculate relative Bias (rBias), mean error (ME), relative root mean squared error (rRMSE) and mean absolute error (MAE) (i) only based on patient characteristics and dosing history (a priori) and (ii) integrating the first measured concentration to predict the second concentration (Bayesian forecasting). The a priori rBias/ME and rRMSE/MAE varied substantially between the models, ranging from −15.4 to 124.6%/−0.70 to 8.01 mg/L and from 89.3 to 139.1%/1.45 to 8.11 mg/L, respectively. The integration of the first TDM sample improved the predictive performance of all models, with the model by Chen (85.0%) showing the best predictive performance (rRMSE: 85.0%; rBias: 4.0%). Our study revealed a certain degree of imprecision for all investigated models, so their sole use is not recommendable. Models with a higher performance would be necessary for clinical use.
Collapse
Affiliation(s)
- Simon Kallee
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lea Marie Schatz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, 48149 Muenster, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Johannes Zander
- Laboratory Dr. Brunner, Luisenstr. 7e, 78464 Konstanz, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-1681160
| |
Collapse
|
21
|
Liang Z, Yu M, Liu Z, Liu F, Jia C, Xiong L, Dai Q, Qin S, Cheng L, Sun F. Inflammation Affects Liver Function and the Metabolism of Voriconazole to Voriconazole-N-Oxide in Adult and Elderly Patients. Front Pharmacol 2022; 13:835871. [PMID: 35462904 PMCID: PMC9019686 DOI: 10.3389/fphar.2022.835871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The inner association of inflammation with voriconazole (VCZ) metabolism has not been fully investigated. We intend to investigate the effects of inflammation on liver function, VCZ trough concentration (C0), C0/dose ratio and the ratio of VCZ to VCZ-N-oxide concentration (C0/CN) in adult and elderly patients. Methods: A single-center retrospective study was conducted among patients who were treated in our hospital between January 2018 and December 2021. For each eligible patient, demographic details, medical history, laboratory parameters, procalcitonin (PCT), C reactive protein (CRP), and interleukin-6 (IL-6) were collected from the medical chart. VCZ CN, TNF-α, IL-1β, IL-8, and IL-10 concentrations were detected in blood samples. Results: A total of 356 patients were included in our study, with 195 patients in the adult cohort (<60 years) and 161 patients in the elderly cohort (≥60 years). In adult patients, CRP and IL-8 levels showed moderate association with VCZ C0/CN ratio (CRP: r = 0.512, p < 0.001; IL-8: r = 0.476, p = 0.002). IL-6 level shallowly associated with VCZ C0/CN ratio both in adult and elderly patients (r = 0.355, p = 0.003; r = 0.386, p = 0.001). A significantly higher VCZ C0, C0/dose ratio and C0/CN ratio was observed in adult patients with severe inflammation compared with patients with moderate inflammation and no to mild inflammation, as reflected by PCT levels (p < 0.05). However, there was no significant difference observed among different inflammation degrees in elderly patients. Lower albumin (AL) and higher total bilirubin (TBIL) were observed along with the degree of inflammation in both adult and elderly patients, as reflected by CRP and PCT levels (p < 0.05). Conclusion: Inflammation may affect the metabolism of VCZ to VCZ-N-oxide both in adult and elderly patients, and decreased plasma AL levels and increased TBIL levels under inflammatory conditions may also alter VCZ metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lin Cheng
- *Correspondence: Lin Cheng, ; Fengjun Sun,
| | | |
Collapse
|
22
|
Reducing the off-target endocrinologic adverse effects of azole antifungals – can it be done? Int J Antimicrob Agents 2022; 59:106587. [DOI: 10.1016/j.ijantimicag.2022.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/08/2022] [Accepted: 04/03/2022] [Indexed: 11/18/2022]
|
23
|
Towards the Elucidation of the Pharmacokinetics of Voriconazole: A Quantitative Characterization of Its Metabolism. Pharmaceutics 2022; 14:pharmaceutics14030477. [PMID: 35335853 PMCID: PMC8948939 DOI: 10.3390/pharmaceutics14030477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The small-molecule drug voriconazole (VRC) shows a complex and not yet fully understood metabolism. Consequently, its in vivo pharmacokinetics are challenging to predict, leading to therapy failures or adverse events. Thus, a quantitative in vitro characterization of the metabolism and inhibition properties of VRC for human CYP enzymes was aimed for. The Michaelis-Menten kinetics of voriconazole N-oxide (NO) formation, the major circulating metabolite, by CYP2C19, CYP2C9 and CYP3A4, was determined in incubations of human recombinant CYP enzymes and liver and intestine microsomes. The contribution of the individual enzymes to NO formation was 63.1% CYP2C19, 13.4% CYP2C9 and 29.5% CYP3A4 as determined by specific CYP inhibition in microsomes and intersystem extrapolation factors. The type of inhibition and inhibitory potential of VRC, NO and hydroxyvoriconazole (OH-VRC), emerging to be formed independently of CYP enzymes, were evaluated by their effects on CYP marker reactions. Time-independent inhibition by VRC, NO and OH-VRC was observed on all three enzymes with NO being the weakest and VRC and OH-VRC being comparably strong inhibitors of CYP2C9 and CYP3A4. CYP2C19 was significantly inhibited by VRC only. Overall, the quantitative in vitro evaluations of the metabolism contributed to the elucidation of the pharmacokinetics of VRC and provided a basis for physiologically-based pharmacokinetic modeling and thus VRC treatment optimization.
Collapse
|
24
|
Robin S, Hassine KB, Muthukumaran J, Jurkovic Mlakar S, Krajinovic M, Nava T, Uppugunduri CRS, Ansari M. A potential implication of UDP-glucuronosyltransferase 2B10 in the detoxification of drugs used in pediatric hematopoietic stem cell transplantation setting: an in silico investigation. BMC Mol Cell Biol 2022; 23:5. [PMID: 35062878 PMCID: PMC8781437 DOI: 10.1186/s12860-021-00402-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment related risk factors such as intensity of conditioning, hepatotoxic co-medication and patient related factors such as genetic variants predispose individuals to develop SOS. The variant allele for SNP rs17146905 in UDP-glucuronosyl transferase 2B10 (UGT2B10) gene was correlated with the occurrence of SOS in an exome-wide association study. UGT2B10 is a phase II drug metabolizing enzyme involved in the N-glucuronidation of tertiary amine containing drugs. Methods To shed light on the functionality of UGT2B10 enzyme in the metabolism of drugs used in pediatric HSCT setting, we performed in silico screening against custom based library of putative ligands. First, a list of potential substrates for in silico analysis was prepared using a systematic consensus-based strategy. The list comprised of drugs and their metabolites used in pediatric HSCT setting. The three-dimensional structure of UGT2B10 was not available from the Research Collaboratory Structural Bioinformatics - Protein Data Bank (RCSB - PDB) repository and thus we predicted the first human UGT2B10 3D model by using multiple template homology modeling with MODELLER Version 9.2 and molecular docking calculations with AutoDock Vina Version 1.2 were implemented to quantify the estimated binding affinity between selected putative substrates or ligands and UGT2B10. Finally, we performed molecular dynamics simulations using GROMACS Version 5.1.4 to confirm the potential UGT2B10 ligands prioritized after molecular docking (exhibiting negative free binding energy). Results Four potential ligands for UGT2B10 namely acetaminophen, lorazepam, mycophenolic acid and voriconazole n-oxide intermediate were identified. Other metabolites of voriconazole satisfied the criteria of being possible ligands of UGT2B10. Except for bilirubin and 4-Hydroxy Voriconazole, all the ligands (particularly voriconazole and hydroxy voriconazole) are oriented in substrate binding site close to the co-factor UDP (mean ± SD; 0.72 ± 0.33 nm). Further in vitro screening of the putative ligands prioritized by in silico pipeline is warranted to understand the nature of the ligands either as inhibitors or substrates of UGT2B10. Conclusions These results may indicate the clinical and pharmacological relevance UGT2B10 in pediatric HSCT setting. With this systematic computational methodology, we provide a rational-, time-, and cost-effective way to identify and prioritize the interesting putative substrates or inhibitors of UGT2B10 for further testing in in vitro experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00402-5.
Collapse
|
25
|
Takahashi T, Jaber MM, Smith AR, Jacobson PA, Fisher J, Kirstein MN. Predictive Value of C-Reactive Protein and Albumin for Temporal Within-Individual Pharmacokinetic Variability of Voriconazole in Pediatric Hematopoietic Cell Transplant Patients. J Clin Pharmacol 2021; 62:855-862. [PMID: 34970774 DOI: 10.1002/jcph.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Voriconazole is a widely used antifungal agent in immunocompromised patients, but its utility is limited by its variable exposure and narrow therapeutic index. Population pharmacokinetic (PK) models have been used to characterize voriconazole PK and derive individualized dosing regimens. However, determinants of temporal within-patient variability of voriconazole PK were not well-established. We aimed to characterize temporal variability of voriconazole PK within individuals and identify predictive clinical factors. This study was conducted as a part of a single-institution, phase I study of intravenous voriconazole in children undergoing HCT (NCT02227797). We analyzed voriconazole PK study data collected at week 1 and again at week 2 after the start of voriconazole therapy in 59 pediatric HCT patients (age <21 years). Population PK analysis using nonlinear mixed effect modeling was performed to analyze temporal within-individual variability of voriconazole PK by incorporating a between-occasion variability term in the model. A two-compartment linear elimination model incorporating body weight and CYP2C19 phenotype described the data. Ratio of individual voriconazole clearance between weeks 1 to 2 ranged from 0.11 to 3.3 (-9.1 to +3.3-fold change). Incorporation of covariate effects by serum C-reactive protein (CRP) and albumin levels decreased between-occasion variability of clearance (coefficient of variation: from 59.5% to 41.2%) and improved the model fit (p<0.05). As significant covariates on voriconazole PK, CRP and albumin concentrations may potentially serve as useful biomarkers as part of therapeutic drug monitoring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Mutaz M Jaber
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Angela R Smith
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - James Fisher
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Mark N Kirstein
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
26
|
Lankalapalli S, Vemuri VD, Tenneti VSVK, Guntaka PR. Bioavailability enhancement of voriconazole using liposomal pastilles: Formulation and experimental design investigation. J Liposome Res 2021; 32:293-307. [PMID: 34923884 DOI: 10.1080/08982104.2021.2011912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oral mucosa offers several advantages in the delivery of therapeutic molecules. It avoids presystemic metabolism, Nanoencapsulation techniques might be applied to conquer physical, chemical challenges and enhance drug penetration, formulation performance, prolonging drug residence time, and improving sensorial feeling. The present investigation is aimed to formulate liposomal pastilles with high bioavailability. Voriconazole Liposomes (VL) were produced by utilizing varied ratios of soya lecithin (SL) and cholesterol (CH) by solvent Injection method. RSM is utilized to identify the optimized formulation, as this design provides a thorough understanding of a process and also has great utilization in originating the robustness of the product. The main impact and interaction terms of the formulation variables were assessed quantitatively utilizing a mathematical-statistical approach indicating that both independent variables have significant ('P' value < 0.05) effects on particle size ('P' value: 0.0142), percentage entrapment efficiency ('P' value: 0.0120), percentage drug release through the dialysis membrane ('P' value: 0.0105), percentage drug release through porcine buccal mucosa ('P' value: 0.0171) and percentage zone of inhibition ('P' value: 0.0305). Optimal liposomal encapsulated in noticed in 15:10 lecithin: cholesterol concentration (VLP-6). Higher Lecithin and Cholesterol quantity in the liposome formulations resulted in lower drug entrapment efficiency and drug release when compared with middle levels of lecithin and cholesterol content formulation. The pastilles were prepared from the optimized liposomal formulation with a modified method reported in British Pharmaceutical Codex, 1907. These liposomal pastilles were subjected to evaluation of physicochemical parameters, In vitro drug release studies, stability studies, and In vivo bioavailability studies in comparison with pure voriconazole pastilles (PVP). The statistical data analysis results indicated that there was a significant difference in Tmax, Ka, t1/2 abs, t1/2 elim, AUC0-24, AUC0-∞, AUMC0-24 and AUMC0-∞, values among PVP and VLP-6. There was no significant difference in Cmax, Kel, MRT0-24 and MRT0-∞values among pure voriconazole pastilles and optimized liposomal formulation.
Collapse
|
27
|
Nagase K, Ishizawa Y, Inoue M, Kokubun M, Yamada S, Kanazawa H. Temperature-responsive spin column for sample preparation using an all-aqueous eluent. Anal Chim Acta 2021; 1179:338806. [PMID: 34535268 DOI: 10.1016/j.aca.2021.338806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
We present a temperature-responsive spin column using an all-aqueous eluent. The method is intended as a simple sample preparation method for protein removal from serum, which is required for serum drug analysis. As packing materials for the spin column, we prepared two types of silica beads via surface-initiated radical polymerization. The large beads (diameter, 40-63 μm) were grafted with a temperature-responsive cationic copolymer, poly(N-isopropylacrylamide-co-N,N-dimethylaminopropyl acrylamide-co-n-butyl methacrylate) (P(NIPAAm-co-DMAPAAm-co-BMA)), and the small beads (diameter, 5 μm) were grafted with a temperature-responsive hydrophobic copolymer, P(NIPAAm-co-BMA). The beads were packed into the spin column as a double layer: P(NIPAAm-co-BMA) silica beads on the bottom and P(NIPAAm-co-DMAPAAm-co-BMA) silica beads on the top. The sample purification efficacy of the prepared spin column was evaluated on a model sample analyte (the antifungal drug voriconazole mixed with blood serum proteins). At 40 °C, the serum proteins and voriconazole were adsorbed on the prepared spin column via hydrophobic and electrostatic interactions. When the temperature was decreased to 4 °C, the adsorbed voriconazole was eluted from the column with the pure water eluent, while the serum proteins remained in the column. This temperature-responsive spin column realizes sample preparation simply by changing the temperature.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| | - Yuta Ishizawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Masakazu Inoue
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Matsurika Kokubun
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Sota Yamada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
28
|
Huang F, Zhou C, Zhang XY, Shen MY, Zhang H, Wang Y, Sun L. Impact of CYP2C19 genotype on voriconazole exposure and effect of voriconazole on the activity of CYP3A in patients with haematological malignancies. Xenobiotica 2021; 51:1199-1206. [PMID: 34402388 DOI: 10.1080/00498254.2021.1969481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Voriconazole (VRC) is a first-line drug for the treatment of invasive fungal infections (IFIs) and an inhibitor of CYP3A activity. The aims of this study are to investigate the influence of related factors on the plasma concentration of voriconazole and the effect of voriconazole on the activity of CYP3A in patients with haematological malignancies.A total of 89 patients received an initial dose of 6 mg/kg followed by 4 mg/kg every 12 h were included in the study. Blood samples were collected before and 2 h after administration for subsequent testing and for the extraction of DNA samples. Voriconazole and voriconazole N-oxide in the plasma were detected by LC-MS/MS. The effect of voriconazole on CYP3A activity was evaluated by the ratio of the endogenous biomarkers 6β-hydroxycortisol and cortisol.During the study period, the overall incidence of adverse reactions was 33.6% (with no deaths). The metabolite type of CYP2C19 and combined use of CYP2C19 enzyme inhibitors both had a significant impact on voriconazole exposure. Voriconazole has a long-lasting and potent inhibitory effect on CYP3A activity. The exposure of CYP3A substrate in combination with metabolic enzyme inhibitors voriconazole could increase. Therefore, the combination uses with voriconazole need to be considered carefully and assessed adequately.
Collapse
Affiliation(s)
- Fengru Huang
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Chen Zhou
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiao-Yan Zhang
- Department of Hematology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Miss Ye Shen
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Hongwen Zhang
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yongqing Wang
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| |
Collapse
|
29
|
Kato I, Ukai Y, Kondo N, Nozu K, Kimura C, Hashimoto K, Mizusawa E, Maki H, Naito A, Kawai M. Identification of Thiazoyl Guanidine Derivatives as Novel Antifungal Agents Inhibiting Ergosterol Biosynthesis for Treatment of Invasive Fungal Infections. J Med Chem 2021; 64:10482-10496. [PMID: 34189911 DOI: 10.1021/acs.jmedchem.1c00883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invasive fungal infections (IFIs) are fatal infections, but treatment options are limited. The clinical efficacies of existing drugs are unsatisfactory because of side effects, drug-drug interaction, unfavorable pharmacokinetic profiles, and emerging drug-resistant fungi. Therefore, the development of antifungal drugs with a new mechanism is an urgent issue. Herein, we report novel aryl guanidine antifungal agents, which inhibit a novel target enzyme in the ergosterol biosynthesis pathway. Structure-activity relationship development and property optimization by reducing lipophilicity led to the discovery of 6h, which showed potent antifungal activity against Aspergillus fumigatus in the presence of serum, improved metabolic stability, and PK properties. In the murine systemic A. fumigatus infection model, 6h exhibited antifungal efficacy equivalent to voriconazole (1e). Furthermore, owing to the inhibition of a novel target in the ergosterol biosynthesis pathway, 6h showed antifungal activity against azole-resistant A. fumigatus.
Collapse
Affiliation(s)
- Issei Kato
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yuuta Ukai
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Noriyasu Kondo
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kohei Nozu
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Chiaki Kimura
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kumi Hashimoto
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Eri Mizusawa
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Hideki Maki
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Akira Naito
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Makoto Kawai
- Shionogi Pharmaceutical Research Center, 1-1 Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
30
|
PLASMA VORICONAZOLE CONCENTRATIONS FOLLOWING SINGLE- AND MULTIPLE-DOSE SUBCUTANEOUS INJECTIONS IN WESTERN POND TURTLES ( ACTINEMYS MARMORATA). J Zoo Wildl Med 2021; 52:538-547. [PMID: 34130396 DOI: 10.1638/2020-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
A recently characterized fungal pathogen, Emydomyces testavorans, has been associated with ulcerative shell disease and significant morbidity in Western pond turtles. Voriconazole is a second-generation triazole antifungal medication that prevents fungal growth through disruption of ergosterol synthesis, causing abnormalities in the fungal cell membrane. Preliminary reports of minimum inhibitory concentrations (MIC) indicate that voriconazole is effective in vitro against E. testavorans. Ultraperformance liquid chromatography was used to measure voriconazole plasma concentrations in blood samples from healthy Western pond turtles after administration of a single SC injection of 10 mg/kg and after multiple doses (10 mg/kg SC q48h for seven doses). The data were analyzed using a naïve pooled approach. Mean (SE) observed time to maximum concentration was 2 (0.18) h for a single dose and 50 (2.2) h for multiple doses; the multiple-dose trial observed mean (SE) maximum concentration was 12.4 (2.2) µg/ml, and observed mean (SE) trough concentration was 1.7 (0.7) µg/ml. Multifocal skin sloughing following the single-dose trial was observed in one turtle and there was a significant increase in polychromatophilic cells amongst the study turtles after the multiple-dose voriconazole trial. No other adverse effects were observed. When voriconazole was administered at 10 mg/kg SC q48h, observed trough plasma concentrations were consistently higher than reported E. testavorans MIC concentrations. Further study is needed to determine the clinical safety and in vivo efficacy of this dose in Western pond turtles.
Collapse
|
31
|
Yasu T, Matsumoto Y, Sugita T. Pharmacokinetics of voriconazole and its alteration by Candida albicans infection in silkworms. J Antibiot (Tokyo) 2021; 74:443-449. [PMID: 34045695 DOI: 10.1038/s41429-021-00428-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/09/2022]
Abstract
Voriconazole (VRCZ) is a triazole antifungal agent used for the treatment and prophylaxis of invasive fungal infections. Therapeutic drug monitoring of VRCZ is widely applied clinically because of the large inter-individual variability that is generally observed in VRCZ exposure. The blood levels of VRCZ are increased during an underlying inflammatory reaction, which is associated with infections. Silkworms are useful experimental animals for evaluating the pharmacokinetics and toxicity of compounds. In this study, we investigated the pharmacokinetic parameters, such as elimination half-life, clearance, and distribution volume of VRCZ using silkworms. The pharmacokinetic parameters of VRCZ were determined based on the concentrations in silkworm hemolymph after injection of VRCZ. The elimination half-life of VRCZ in silkworms was found to be similar to that observed in humans. In addition, we assessed the impact of Candida albicans infection on VRCZ concentrations in a silkworm infection model. The VRCZ concentration at 12 h after injection in the Candida albicans-infected group was significantly higher than that in the non-infected group. In the silkworm infection model, we were able to reproduce the relationship between inflammation and VRCZ blood concentrations, as observed in humans. We demonstrate that silkworms can be an effective alternative model animal for studying the pharmacokinetics of VRCZ. We also show that silkworms can be used to indicate essential infection and inflammation-based pharmacokinetic variations in VRCZ, which is usually observed in the clinic.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
32
|
Pharmacokinetic Drug Interaction between Tofacitinib and Voriconazole in Rats. Pharmaceutics 2021; 13:pharmaceutics13050740. [PMID: 34069798 PMCID: PMC8157262 DOI: 10.3390/pharmaceutics13050740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are prevalent in patients with immune diseases. Voriconazole, a triazole antifungal drug, inhibits the cytochromes CYP3A4 and CYP2C, and tofacitinib, a Janus kinase inhibitor for the treatment of rheumatoid arthritis, is metabolized by CYP3A4 and CYP2C19 in humans. Here, we investigated their interaction during simultaneous administration of both drugs to rats, either intravenously or orally. The area under the plasma concentration–time curve from time zero to time infinity (AUC) of tofacitinib was significantly greater, by 166% and 171%, respectively, and the time-averaged non-renal clearance (CLNR) of tofacitinib was significantly slower (59.5%) than that for tofacitinib alone. An in vitro metabolism study showed non-competitive inhibition of tofacitinib metabolism in the liver and intestine by voriconazole. The concentration/apparent inhibition constant (Ki) ratios of voriconazole were greater than two, indicating that the inhibition of tofacitinib metabolism could be due to the inhibition of the CYP3A1/2 and CYP2C11 enzymes by voriconazole. The pharmacokinetics of voriconazole were not affected by the co-administration of tofacitinib. In conclusion, the significantly greater AUC and slower CLNR of tofacitinib after intravenous and oral administration of both drugs were attributable to the non-competitive inhibition of tofacitinib metabolism via CYP3A1/2 and CYP2C11 by voriconazole in rats.
Collapse
|
33
|
Beredaki MI, Georgiou PC, Siopi M, Kanioura L, Arendrup MC, Mouton JW, Meletiadis J. Voriconazole efficacy against Candida glabrata and Candida krusei: preclinical data using a validated in vitro pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother 2021; 75:140-148. [PMID: 31665417 DOI: 10.1093/jac/dkz425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Voriconazole exhibits in vitro activity against Candida glabrata and Candida krusei (EUCAST/CLSI epidemiological cut-off values 1/0.25 and 1/0.5 mg/L, respectively). Yet, EUCAST found insufficient evidence to set breakpoints for these species. We explored voriconazole pharmacodynamics (PD) in an in vitro dynamic model simulating human pharmacokinetics (PK). METHODS Four C. glabrata and three C. krusei isolates (voriconazole EUCAST and CLSI MICs of 0.03-2 mg/L) were tested in the PK/PD model simulating voriconazole exposures (t½ ∼6 h q12h dosing for 3 days). PK/PD breakpoints were determined calculating the PTA for exposure indices fAUC0-24/MIC associated with half-maximal activity (EI50) using Monte Carlo simulation analysis. RESULTS Fungal load increased from 3.60±0.35 to 8.41±0.24 log10 cfu/mL in the drug-free control, with a maximum effect of ∼1 log10 kill of C. glabrata and C. krusei isolates with MICs of 0.06 and 0.25 mg/L, respectively, at high drug exposures. The 72 h log10 cfu/mL change versus fAUC0-24/MIC relationship followed a sigmoid curve for C. glabrata (R2=0.85-0.87) and C. krusei (R2=0.56-0.76) with EI50 of 49 (32-76) and 52 (33-78) fAUC/MIC for EUCAST and 55 (31-96) and 80 (42-152) fAUC/MIC for CLSI, respectively. The PTAs for C. glabrata and C. krusei isolates with EUCAST/CLSI MICs ≤0.125/≤0.06 mg/L were >95%. Isolates with EUCAST/CLSI MICs of 0.25-1/0.125-0.5 would require trough levels 1-4 mg/L; isolates with higher MICs would not attain the corresponding PK/PD targets without reaching toxicity. CONCLUSIONS The in vitro PK/PD breakpoints for C. glabrata and C. krusei for EUCAST (0.125 mg/L) and CLSI (0.06 mg/L) bisected the WT populations. Trough levels of >4 mg/L, which are not clinically feasible, are necessary for efficacy against WT isolates.
Collapse
Affiliation(s)
- Maria-Ioanna Beredaki
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota-Christina Georgiou
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Siopi
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lamprini Kanioura
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Azmanis P, Pappalardo L, Sara ZAJ, Silvanose C, Naidoo V. Pharmacokinetics of voriconazole after a single intramuscular injection in large falcons (Falco spp.). Med Mycol 2021; 58:661-666. [PMID: 31608415 DOI: 10.1093/mmy/myz102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/17/2019] [Accepted: 10/06/2019] [Indexed: 01/25/2023] Open
Abstract
Voriconazole is one of the main azoles used to treat invasive aspergillosis in falconry raptors and birds. Despite the fact that there are studies for oral and intravenous use of voriconazole in birds, there are none for its effect after intramuscular use. Empirical use of intramuscular voriconazole in falcons, indicated quicker therapy response than the oral one. Aim of this study is to evaluate the in vivo pharmacokinetic disposition of injectable voriconazole after a single intramuscular injection in large falcons (i.e., Gyrfalcons, Saker falcons, Peregrine falcons). No clinical side effects were observed in the falcons. Absorption of voriconazole was rapid (0.5-2 hours) and reached a plasma level (>1 μg/ml) which is above the minimal inhibitory concentration (MIC) for all known Aspergillus strains. This level was maintained for 16 to 20 hours, thus indicating that a single injection of 12.5 mg/kg is not enough if T > MIC is taken into consideration. On a newer aspect, according to the AUC24 unbound: MIC parameter would be indicated that this dose would be rather sufficient for most Aspergillus strains.
Collapse
Affiliation(s)
- P Azmanis
- Dubai Falcon Hospital, Dubai, United Arab Emirates (Azmanis, Silvanose)
| | - L Pappalardo
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah (AUS), United Arab Emirates (Pappalardo, Sara)
| | - Ziad A J Sara
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah (AUS), United Arab Emirates (Pappalardo, Sara)
| | - C Silvanose
- Dubai Falcon Hospital, Dubai, United Arab Emirates (Azmanis, Silvanose)
| | - V Naidoo
- Biomedical Research Center (BRC), Faculty of Veterinary Science, University of Pretoriaz, Republic of South Africa (Naidoo)
| |
Collapse
|
35
|
Wong SN, Chan SWS, Peng X, Xuan B, Lee HW, Tong HHY, Chow SF. Effects of the Glass-Forming Ability and Annealing Conditions on Cocrystallization Behaviors via Rapid Solvent Removal: A Case Study of Voriconazole. Pharmaceutics 2020; 12:E1209. [PMID: 33327381 PMCID: PMC7764899 DOI: 10.3390/pharmaceutics12121209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023] Open
Abstract
The kinetic entrapment of molecules in an amorphous phase is a common obstacle to cocrystal screening using rapid solvent removal, especially for drugs with a moderate or high glass-forming ability (GFA). The aim of this study was to elucidate the effects of the coformer's GFA and annealing conditions on the nature of amorphous phase transformation to the cocrystal counterpart. Attempts were made to cocrystallize voriconazole (VRC) with four structural analogues, namely fumaric acid (FUM), tartaric acid (TAR), malic acid (MAL), and maleic acid (MAE). The overall GFA of VRC binary systems increased with decreasing glass transition temperatures (Tgs) of these diacids, which appeared as a critical parameter for predicting the cocrystallization propensity such that a high-Tg coformer is more desirable. A new 1:1 VRC-TAR cocrystal was successfully produced via a supercooled-mediated re-cocrystallization process, and characterized by PXRD, DSC, and FTIR. The cocrystal purity against the annealing temperature displayed a bell-shaped curve, with a threshold at 40 °C. The isothermal phase purity improved with annealing and adhered to the Kolmogorov-Johnson-Mehl-Avrami kinetics. The superior dissolution behavior of the VRC-TAR cocrystal could minimize VRC precipitation upon gastric emptying. This study offers a simple but useful guide for efficient cocrystal screening based on the Tg of structurally similar coformers, annealing temperature, and time.
Collapse
Affiliation(s)
- Si Nga Wong
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Susan Wing Sze Chan
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Xuexin Peng
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Bianfei Xuan
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Hok Wai Lee
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| | - Henry H. Y. Tong
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China;
| | - Shing Fung Chow
- Li Ka Shing Faculty of Medicine, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China; (S.N.W.); (S.W.S.C.); (B.X.); (H.W.L.)
| |
Collapse
|
36
|
Takahashi T, Smith AR, Jacobson PA, Fisher J, Rubin NT, Kirstein MN. Impact of Obesity on Voriconazole Pharmacokinetics among Pediatric Hematopoietic Cell Transplant Recipients. Antimicrob Agents Chemother 2020; 64:e00653-20. [PMID: 32988816 PMCID: PMC7674053 DOI: 10.1128/aac.00653-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Voriconazole (VCZ) is an antifungal agent with wide inter- and intrapatient pharmacokinetic (PK) variability and narrow therapeutic index. Although obesity was associated with higher VCZ trough concentrations in adults, the impact of obesity had yet to be studied in children. We characterized the PK of VCZ in obese patients by accounting for age and CYP2C19 phenotype. We conducted intensive PK studies of VCZ and VCZ N-oxide metabolite in 44 hematopoietic stem cell transplantation (HSCT) recipients aged 2 to 21 years who received prophylactic intravenous VCZ every 12 hours (q12h). Blood samples were collected at 5 and 30 minutes; at 1, 3, 6, and 9 hours after infusion completion; and immediately before the next infusion start. We estimated PK parameters with noncompartmental analysis and evaluated for an association with obesity by multiple linear regression analysis. The 44 participants included 9 (20%) with obesity. CYP2C19 metabolism phenotypes were identified as normal in 22 (50%), poor/intermediate in 13 (30%), and rapid/ultrarapid in 9 patients (21%). Obesity status significantly affects the VCZ minimum concentration of drug in serum (Cmin) (higher by 1.4 mg/liter; 95% confidence interval [CI], 0.0 to 2.8; P = 0.047) and VCZ metabolism ratio (VCZRATIO) (higher by 0.4; 95% CI, 0.0 to 0.7; P = 0.03), while no association was observed with VCZ area under the curve (AUC) (P = 0.09) after adjusting for clinical factors. A younger age and a CYP2C19 phenotype were associated with lower VCZ AUC. Obesity was associated with decreased metabolism of VCZ to its inactive N-oxide metabolite and, concurrently, increased VCZ Cmin, which is deemed clinically meaningful. Future research should aim to further characterize its effects and determine a proper dosing regimen for the obese.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela R Smith
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James Fisher
- Clinical Pharmacology Analytical Services, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan T Rubin
- Masonic Cancer Center Biostat Core, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark N Kirstein
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
37
|
Takahashi T, Smith AR, Jacobson PA, Fisher J, Rubin NT, Kirstein MN. Impact of Obesity on Voriconazole Pharmacokinetics among Pediatric Hematopoietic Cell Transplant Recipients. Antimicrob Agents Chemother 2020. [PMID: 32988816 DOI: 10.1128/aac.00611-20/suppl_file/aac.00611-20-s0001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Voriconazole (VCZ) is an antifungal agent with wide inter- and intrapatient pharmacokinetic (PK) variability and narrow therapeutic index. Although obesity was associated with higher VCZ trough concentrations in adults, the impact of obesity had yet to be studied in children. We characterized the PK of VCZ in obese patients by accounting for age and CYP2C19 phenotype. We conducted intensive PK studies of VCZ and VCZ N-oxide metabolite in 44 hematopoietic stem cell transplantation (HSCT) recipients aged 2 to 21 years who received prophylactic intravenous VCZ every 12 hours (q12h). Blood samples were collected at 5 and 30 minutes; at 1, 3, 6, and 9 hours after infusion completion; and immediately before the next infusion start. We estimated PK parameters with noncompartmental analysis and evaluated for an association with obesity by multiple linear regression analysis. The 44 participants included 9 (20%) with obesity. CYP2C19 metabolism phenotypes were identified as normal in 22 (50%), poor/intermediate in 13 (30%), and rapid/ultrarapid in 9 patients (21%). Obesity status significantly affects the VCZ minimum concentration of drug in serum (Cmin) (higher by 1.4 mg/liter; 95% confidence interval [CI], 0.0 to 2.8; P = 0.047) and VCZ metabolism ratio (VCZRATIO) (higher by 0.4; 95% CI, 0.0 to 0.7; P = 0.03), while no association was observed with VCZ area under the curve (AUC) (P = 0.09) after adjusting for clinical factors. A younger age and a CYP2C19 phenotype were associated with lower VCZ AUC. Obesity was associated with decreased metabolism of VCZ to its inactive N-oxide metabolite and, concurrently, increased VCZ Cmin, which is deemed clinically meaningful. Future research should aim to further characterize its effects and determine a proper dosing regimen for the obese.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela R Smith
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James Fisher
- Clinical Pharmacology Analytical Services, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan T Rubin
- Masonic Cancer Center Biostat Core, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark N Kirstein
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
38
|
Tomaru A, Toshimoto K, Lee W, Ishigame K, Sugiyama Y. A Simple Decision Tree Suited for Identification of Early Oral Drug Candidates With Likely Pharmacokinetic Nonlinearity by Intestinal CYP3A Saturation. J Pharm Sci 2020; 110:510-516. [PMID: 33137373 DOI: 10.1016/j.xphs.2020.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
To identify oral drugs that likely display nonlinear pharmacokinetics due to saturable metabolism by intestinal CYP3A, our previous report using CYP3A substrate drugs proposed an approach using thresholds for the linear index number (LIN3A = dose/Km; Km, Michaelis-Menten constant for CYP3A) and the intestinal availability (FaFg). Here, we aimed to extend the validity of the previous approach using both CYP3A substrate and non-substrate drugs and to devise a decision tree suited for early drug candidates using in vitro metabolic intrinsic clearance (CLint, vitro) instead of FaFg. Out of 152 oral drugs (including 136 drugs approved in Japan, US or both), type I nonlinearity (in which systemic drug exposure increases in a more than dose-proportional manner) was noted with 82 drugs (54%), among which 58 drugs were identified as CYP3A substrates based on public information. Based on practical feasibility, 41 drugs were selected from CYP3A substrates and subjected to in-house metabolic assessment. The results were used to determine the thresholds for CLint, vitro (0.45 μL/min/pmol CYP3A4) and LIN3A (1.0 L). For four drugs incorrectly predicted, potential mechanisms were looked up. Overall, our proposed decision tree may aid in the identification of early drug candidates with intestinal CYP3A-derived type I nonlinearity.
Collapse
Affiliation(s)
- Atsuko Tomaru
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Keiko Ishigame
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan.
| |
Collapse
|
39
|
Zubiaur P, Kneller LA, Ochoa D, Mejía G, Saiz-Rodríguez M, Borobia AM, Koller D, García IG, Navares-Gómez M, Hempel G, Abad-Santos F. Evaluation of Voriconazole CYP2C19 Phenotype-Guided Dose Adjustments by Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2020; 60:261-270. [PMID: 32939689 DOI: 10.1007/s40262-020-00941-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Controversy exists regarding dose adjustment in patients treated with voriconazole due to the severity of the infections for which it is prescribed. The Dutch Pharmacogenetics Working Group (DPWG) recommends a 50% dose increase or decrease for cytochrome P450 (CYP) 2C19 ultrarapid (UM) or poor (PM) metabolizers, respectively. In contrast, for the previous phenotypes, the Clinical Pharmacogenetics Implementation Consortium (CPIC) voriconazole guideline only recommends a change of treatment. Based on observed data from single-dose bioequivalence studies and steady-state observed concentrations, we aimed to investigate voriconazole dose adjustments by means of physiologically based pharmacokinetic (PBPK) modeling. METHODS PBPK modeling was used to optimize voriconazole single-dose models for each CYP2C19 phenotype, which were extrapolated to steady state and evaluated for concordance with the therapeutic range of voriconazole. Based on optimized models, dose adjustments were evaluated for better adjustment to the therapeutic range. RESULTS Our models suggest that the standard dose may only be appropriate for normal metabolizers (NM), although they would benefit from a 50-100% loading dose increase. Intermediate metabolizers (IMs) and PMs required a daily dose reduction of 50 and 75%, respectively. Rapid metabolizers (RMs) and UMs required a daily dose increase of 100% and 300%, respectively. CONCLUSION The prescription of voriconazole in clinical practice should be personalized according to the CYP2C19 phenotype, followed by therapeutic drug monitoring of plasma concentrations to guide dose adjustment.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Lisa A Kneller
- Institute of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| | - Dolores Ochoa
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
- Research Unit, Fundación Burgos Por La Investigación de La Salud, Hospital Universitario de Burgos, Burgos, Spain
| | - Alberto M Borobia
- School of Medicine, Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
| | - Irene García García
- School of Medicine, Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Münster, Münster, Germany
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), C/Diego de León, 62, 28006, Madrid, Spain.
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
- School of Medicine, Clinical Pharmacology Department, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Lee J, Ng P, Hamandi B, Husain S, Lefebvre MJ, Battistella M. Effect of Therapeutic Drug Monitoring and Cytochrome P450 2C19 Genotyping on Clinical Outcomes of Voriconazole: A Systematic Review. Ann Pharmacother 2020; 55:509-529. [DOI: 10.1177/1060028020948174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives To examine current knowledge on the clinical utility of therapeutic drug monitoring (TDM) in voriconazole therapy, the impact of CYP2C19 genotype on voriconazole plasma concentrations, and the role of CYP2C19 genotyping in voriconazole therapy. Data Sources Three literature searches were conducted for original reports on (1) TDM and voriconazole outcomes and (2) voriconazole and CYP2C19 polymorphisms. Searches were conducted through EMBASE, MEDLINE/PubMed, Scopus, and Cochrane Central Register of Controlled Trials from inception to June 2020. Study Selection and Data Extraction Randomized controlled trials, cohort studies, and case series with ≥10 patients were included. Only full-text references in English were eligible. Data Synthesis A total of 63 studies were reviewed. TDM was recommended because of established concentration and efficacy/toxicity relationships. Voriconazole trough concentrations ≥1.0 mg/L were associated with treatment success; supratherapeutic concentrations were associated with increased neurotoxicity; and hepatotoxicity associations were more prevalent in Asian populations. CYP2C19 polymorphisms significantly affect voriconazole metabolism, but no relationship with efficacy/safety were found. Genotype-guided dosing with TDM was reported to increase chances of achieving therapeutic range. Relevance to Patient Care and Clinical Practice Genotype-guided dosing with TDM is a potential solution to optimizing voriconazole efficacy while avoiding treatment failures and common toxicities. Conclusions Voriconazole plasma concentrations and TDM are treatment outcome predictors, but research is needed to form a consensus target therapeutic range and dosage adjustment guidelines based on plasma concentrations. CYP2C19 polymorphisms are a predictor of voriconazole concentrations and metabolism, but clinical implications are not established. Large-scale, high-methodological-quality trials are required to investigate the role for prospective genotyping and establish CYP2C19-guided voriconazole dosing recommendations.
Collapse
Affiliation(s)
| | - Patrick Ng
- University Health Network, Toronto, ON, Canada
| | - Bassem Hamandi
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | - Shahid Husain
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | | | - Marisa Battistella
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| |
Collapse
|
41
|
Son YW, Choi HN, Che JH, Kang BC, Yun JW. Advances in selecting appropriate non-rodent species for regulatory toxicology research: Policy, ethical, and experimental considerations. Regul Toxicol Pharmacol 2020; 116:104757. [PMID: 32758521 DOI: 10.1016/j.yrtph.2020.104757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
In vivo animal studies are required by regulatory agencies to investigate drug safety before clinical trials. In this review, we summarize the process of selecting a relevant non-rodent species for preclinical studies. The dog is the primary, default non-rodent used in toxicology studies with multiple scientific advantages, including adequate background data and availability. Rabbit has many regulatory advantages as the first non-rodent for the evaluation of reproductive and developmental as well as local toxicity. Recently, minipigs have increasingly replaced dogs and rabbits in toxicology studies due to ethical and scientific advantages including similarity to humans and breeding habits. When these species are not relevant, nonhuman primates (NHPs) can be used as the available animal models, especially in toxicology studies investigating biotherapeutics. Particularly, based on the phylogenetic relationships, the use of New-World marmosets can be considered before Old-World monkeys, especially cynomolgus with robust historical data. Importantly, the use of NHPs should be justified in terms of scientific benefits considering target affinity, expression pattern, and pharmacological cross-reactivity. Strict standards are required for the use of animals. Therefore, this review is helpful for the selection of appropriate non-rodent in regulatory toxicology studies by providing sufficient regulatory, ethical, and scientific data for each species.
Collapse
Affiliation(s)
- Yong-Wook Son
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Ha-Ni Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
42
|
Wang W, Teresa M, Cai J, Zhang C, Wong S, Yan Z, Khojasteh SC, Zhang D. Comparative assessment for rat strain differences in metabolic profiles of 14 drugs in Wistar Han and Sprague Dawley hepatocytes. Xenobiotica 2020; 51:15-23. [PMID: 32713280 DOI: 10.1080/00498254.2020.1795949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Knowledge of inter-strain and inter-gender differences in drug metabolism studies is important for animal selection in pharmacokinetic and toxicological studies. The effects of rat strain and gender in in vitro metabolism were investigated in Sprague Dawley (SD) and Wister Han (WH) rats based on the hepatocyte metabolic profiles of 14 small molecule drugs. Similarities were found between the hepatocyte metabolic clearances of SD and WH strains, suggesting that only one strain can be confidently used for the evaluation of hepatic clearance. Neither strain of rat was preferable over the other to cover human metabolites. Higher similarities in metabolic pathways were found between the same gender than the same strain. Differences in metabolite identities, metabolite formation rates and potential biotransformation pathways were observed between SD and WH rat strains. Eleven metabolites from six drugs were "disproportionally" formed between SD and WH rats. The use of a specific rat strain model and gender for ADME and toxicity testing should, therefore, be carefully considered as metabolic profiles may differ, even though metabolic clearance was similar between SD and WH rats.
Collapse
Affiliation(s)
- Wei Wang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Mulder Teresa
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Jingwei Cai
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Chenghong Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Susan Wong
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Zhengyin Yan
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - S Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
43
|
Bray RN, Raghu CL, Leuin AS, Barry-Heffernan CA, Pritchard JC. Oral administration of voriconazole with surgical fungal plaque debridement for the treatment of sinonasal aspergillosis with cribriform plate lysis in three dogs. J Am Vet Med Assoc 2020; 256:111-116. [PMID: 31841098 DOI: 10.2460/javma.256.1.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION 3 dogs with chronic sinonasal signs (sneezing, nasal discharge, or epistaxis [or a combination of signs]) were examined. CLINICAL FINDINGS For all 3 dogs, CT revealed variable degrees of nasal turbinate destruction and frontal sinus involvement with cribriform plate lysis. Fungal plaques were detected during rhinoscopy or sinusoscopy. Results of fungal culture (2 dogs) or cytologic examination of a plaque specimen (1 dog) supported a diagnosis of sinonasal aspergillosis. TREATMENT AND OUTCOME All dogs underwent surgical rhinotomy or sinusotomy (or both) for fungal plaque debridement followed by oral treatment with voriconazole and periodic physical examinations, clinicopathologic analyses, and assessments of serum drug concentrations for a period ≥ 22 weeks. All dogs had considerable to complete reduction of their clinical signs and tolerated voriconazole treatment with minimal adverse effects. Adverse effects included development of reversible neurotoxicosis (associated with high serum voriconazole concentration) and mildly high serum liver enzyme activities. The dosage of voriconazole administered to achieve therapeutic serum concentrations (2.5 to 3.3 mg/kg [1.1 to 1.5 mg/lb], PO, q 12 h) was substantially lower than dosages suggested by previously published studies in dogs. The 3 dogs remained clinically normal or had mild clinical signs after voriconazole discontinuation for follow-up times of 6 to 15 months. CLINICAL RELEVANCE Findings in these 3 dogs indicated that surgical fungal plaque debridement followed by oral treatment with voriconazole may be an effective treatment option for dogs with sinonasal aspergillosis and cribriform plate lysis. Further evaluation of this treatment regimen with repeated CT examinations and longer follow-up times is warranted.
Collapse
|
44
|
Yamazoe Y, Yamada T, Nagata K. Prediction and Characterization of CYP3A4-mediated Metabolisms of Azole Fungicides: an Application of the Fused-grid Template* system. Food Saf (Tokyo) 2020; 8:34-51. [PMID: 32626635 PMCID: PMC7329915 DOI: 10.14252/foodsafetyfscj.d-20-00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Human CYP3A4 is involved in metabolisms of diverse hydrophobic chemicals. Using the data of therapeutic azole fungicides known to interact with CYP3A4, applicability of CYP3A4 Template system was first confirmed to reconstitute faithfully the interaction on Template. More than twenty numbers of pesticide azoles were then applied to the Template system. All the azole stereo-isomers applied, except for talarozole, interacted through nitrogen atoms of triazole or imidazole parts and sat stably for inhibitions through fulfilling three-essential interactions. For their CYP3A4-mediated oxidations, clear distinctions were suggested among the enantiomers and diastereomers of azole pesticides on Templates. Thus, the stereoisomers would have their-own regio- and stereo-selective profiles of the metabolisms. A combined metabolic profile of each azole obtained with CYP3A4 Template system, however, resembled with the reported profile of the in vivo metabolism in rats. These results suggest the major roles of CYP3A forms on the metabolisms of most of azole pesticides in both rats and humans. Free triazole is a metabolite of azole fungicides having a methylene-spacer between triazole and the rest of the main structures in experimental animals and humans. During the simulation experiments, a placement for the oxidation of a methylene spacer between the triazole and main carbon-skeleton was found to be available throughout the azole fungicides tested on Template. The occurrence of this reaction to lead to triazole-release is thus discussed in relation to the possible involvement of CYP3A forms.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology,
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku,
Sendai 980-8578, Japan
- Division of Risk Assessment, National Institute of Health
Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Takashi Yamada
- Division of Risk Assessment, National Institute of Health
Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Kiyoshi Nagata
- Department of Environmental Health Science, Faculty of
Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku Medical and
Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
45
|
Luo X, Li T, Hu L, Liu S, Zhao H, Zhang J, Feng Y, Huang L. Differential effects of C-reactive protein levels on voriconazole metabolism at three age groups in allogeneic hematopoietic cell transplant recipients. J Chemother 2020; 33:95-105. [PMID: 32441568 DOI: 10.1080/1120009x.2020.1765604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study was to evaluate the impact of inflammation on voriconazole (VRCZ) metabolism at three age groups in the allogeneic hematopoietic cell transplant recipients of the Chinese population. The study was performed with collecting more than one VRCZ trough concentration and C-reactive protein (CRP) levels. Longitudinal analysis, correlation and comparative analysis were conducted to evaluate. A total of 104 patients with 386 VRCZ trough concentration and CRP level measured on the same day were collected. For children, CRP levels significantly associated with VRCZ pharmacokinetics in age 11-18 years but not in age 2-10 years. For adults, VRCZ concentrations were increased slightly by 0.006 mg/L when every 1 mg/L increased in CRP levels. Additionally, meropenem and inflammation might work together to cause a higher VRCZ concentration. Therefore, therapeutic drug monitoring of VRCZ should be warranted at age >10 years in allogeneic hematopoietic cell transplant recipients with elevated CRP level.
Collapse
Affiliation(s)
- Xingxian Luo
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Taifeng Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Silu Liu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Haiyan Zhao
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Jiaqi Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
46
|
Tan X, Baugh K, Bulman ZP, Wenzler E. Review of the Current Management of Urinary Tract Infections due to Fluconazole-Resistant and Non-Albicans Candida Species. CURRENT FUNGAL INFECTION REPORTS 2020. [DOI: 10.1007/s12281-020-00388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Yuan ZQY, Qiao C, Yang ZC, Yu L, Sun LN, Qian Y, Zhang XH, Meng L, Zhang XY, Wang YQ. The Impact of Plasma Protein Binding Characteristics and Unbound Concentration of Voriconazole on Its Adverse Drug Reactions. Front Pharmacol 2020; 11:505. [PMID: 32390847 PMCID: PMC7194128 DOI: 10.3389/fphar.2020.00505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
This study investigated voriconazole (VRC) unbound plasma concentration and its relationship with adverse drug reactions (ADRs) in patients with malignant hematologic disease. Plasma samples were collected from patients or spiked in vitro. A time-saving rapid equilibrium dialysis assay was used for the separation of unbound and bound VRC, following a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis method for drug concentration detection. Liver function and treatment details were collected from the electronic medical records of patients. Protein concentration was determined according to instructions. VRC plasma protein binding rate (PPB) in patient is significantly higher [69.5 ± 6.2%] than that in in-vitro samples, influenced by total drug concentration (Ct), plasma protein concentration, and protein type. The α1-acid glycogen (AAG) has the highest affinity with VRC. Relationship between total PPB of VRC with PPB of individual protein is not a simple addition, but a compressive combination. Unbound drug concentration (Cu) of VRC shows significant relationships with Ct, protein concentration, AST level, metabolism type of CYP2C19 and co-administration of high PPB medicines. Unbound plasma concentration of VRC shows a more sensitive relationship with ADRs than Ct.
Collapse
Affiliation(s)
- Zi-Qing-Yun Yuan
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Qiao
- Hematology Department, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Cheng Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Yu
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Qian
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Hui Zhang
- Department of Pharmacy, the Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Ling Meng
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Yan Zhang
- Hematology Department, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pharmacy, the Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
48
|
Abstract
Neonates and immunosuppressed/immunocompromised pediatric patients are at high risk of invasive fungal diseases. Appropriate antifungal selection and optimized dosing are imperative to the successful prevention and treatment of these life-threatening infections. Conventional amphotericin B was the mainstay of antifungal therapy for many decades, but dose-limiting nephrotoxicity and infusion-related adverse events impeded its use. Despite the development of several new antifungal classes and agents in the past 20 years, and their now routine use in at-risk pediatric populations, data to guide the optimal dosing of antifungals in children are limited. This paper reviews the spectra of activity for approved antifungal agents and summarizes the current literature specific to pediatric patients regarding pharmacokinetic/pharmacodynamic data, dosing, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kevin J Downes
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA.
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian T Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole R Zane
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
49
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
50
|
Stevens VM, Mueller SW, Reynolds PM, MacLaren R, Kiser TH. Extrapolating Antifungal Animal Data to Humans - Is it reliable? CURRENT FUNGAL INFECTION REPORTS 2020; 14:50-62. [PMID: 32201545 PMCID: PMC7083583 DOI: 10.1007/s12281-020-00370-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This article aimed to review animal models of antifungals and identifies human literature to assess if the extrapolation of results is reliable. RECENT FINDINGS Animal studies have helped identify AUC/MIC targets for new drugs and formulations such as isavuconazole and delayed release posaconazole that have translated to successful outcomes in humans. Models have also been influential in the identification of possible combination therapies for the treatment of aspergillosis, such as voriconazole and echinocandins. However, challenges are endured with animal models when it comes to replicating the pharmacokinetics of humans which has been exemplified with the newest itraconazole formulation. Additionally, animal models have displayed a survival benefit with the use of iron chelators and amphotericin for mucormycosis which was not demonstrated in humans. SUMMARY Animal models have been a staple in the development and optimization of antifungal agents. They afford the ability to investigate uncommon diseases, such as invasive fungal infections, that would otherwise take years and many resources to complete. Although there are many benefits of animal models there are also shortcomings. This is why the reliability of extrapolating data from animal models to humans is often scrutinized.
Collapse
Affiliation(s)
- Victoria M Stevens
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Scott W Mueller
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Paul M Reynolds
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Robert MacLaren
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| | - Tyree H Kiser
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 East Montview Boulevard, Mail Stop C238, Aurora, CO 80045, USA
| |
Collapse
|