1
|
Viswan NA, Tribut A, Gasparyan M, Radulescu O, Bhalla US. Mathematical basis and toolchain for hierarchical optimization of biochemical networks. PLoS Comput Biol 2024; 20:e1012624. [PMID: 39621764 PMCID: PMC11637339 DOI: 10.1371/journal.pcbi.1012624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Biological signalling systems are complex, and efforts to build mechanistic models must confront a huge parameter space, indirect and sparse data, and frequently encounter multiscale and multiphysics phenomena. We present HOSS, a framework for Hierarchical Optimization of Systems Simulations, to address such problems. HOSS operates by breaking down extensive systems models into individual pathway blocks organized in a nested hierarchy. At the first level, dependencies are solely on signalling inputs, and subsequent levels rely only on the preceding ones. We demonstrate that each independent pathway in every level can be efficiently optimized. Once optimized, its parameters are held constant while the pathway serves as input for succeeding levels. We develop an algorithmic approach to identify the necessary nested hierarchies for the application of HOSS in any given biochemical network. Furthermore, we devise two parallelizable variants that generate numerous model instances using stochastic scrambling of parameters during initial and intermediate stages of optimization. Our results indicate that these variants produce superior models and offer an estimate of solution degeneracy. Additionally, we showcase the effectiveness of the optimization methods for both abstracted, event-based simulations and ODE-based models.
Collapse
Affiliation(s)
- Nisha Ann Viswan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Alexandre Tribut
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS and INSERM, Montpellier, France
- Ecole Centrale de Nantes, Nantes, France
| | - Manvel Gasparyan
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS and INSERM, Montpellier, France
| | - Ovidiu Radulescu
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS and INSERM, Montpellier, France
| | - Upinder S. Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
2
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
3
|
Chapman NA, Dupré DJ, Rainey JK. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem Cell Biol 2014; 92:431-40. [PMID: 25275559 DOI: 10.1139/bcb-2014-0072] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The apelin receptor (AR or APJ) is a class A (rhodopsin-like) G-protein-coupled receptor with wide distribution throughout the human body. Activation of the AR by its cognate peptide ligand, apelin, induces diverse physiological effects including vasoconstriction and dilation, strengthening of heart muscle contractility, angiogenesis, and regulation of energy metabolism and fluid homeostasis. Recently, another endogenous peptidic activator of the AR, Toddler/ELABELA, was identified as having a crucial role in zebrafish (Danio rerio) embryonic development. The AR is also implicated in pathologies including cardiovascular disease, diabetes, obesity, and cancer, making it a promising therapeutic target. Despite its established importance, the precise roles of AR signalling remain poorly understood. Moreover, little is known about the mechanisms of peptide-AR activation. Additional complexity arises from modulation of the AR by 2 endogenous peptide ligands, both with multiple bioactive isoforms of variable length and distribution. The various apelin and Toddler/ELABELA isoforms may also produce distinct cellular effects. Further complexity arises through formation of functionally distinct heterodimers between the AR and other G-protein-coupled receptors. This minireview outlines key (patho)physiological actions of the AR, addresses what is known about signal transduction downstream of AR activation, and concludes by discussing unique properties of the endogenous peptidic ligands of the AR.
Collapse
Affiliation(s)
- Nigel A Chapman
- a Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | | |
Collapse
|
4
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
5
|
Di Florio A, Sancho V, Moreno P, Fave GD, Jensen RT. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:573-82. [PMID: 23220008 PMCID: PMC3556220 DOI: 10.1016/j.bbamcr.2012.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 02/07/2023]
Abstract
Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.
Collapse
Affiliation(s)
- Alessia Di Florio
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Veronica Sancho
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, II Medical School, University La Sapienza, S. Andrea Hospital, Via Di Grottarossa 00189, Rome, Italy
| | - Robert T. Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
6
|
Kramarenko II, Morinelli TA, Bunni MA, Raymond JR, Garnovskaya MN. The bradykinin B(2) receptor induces multiple cellular responses leading to the proliferation of human renal carcinoma cell lines. Cancer Manag Res 2012; 4:195-205. [PMID: 22904641 PMCID: PMC3421467 DOI: 10.2147/cmar.s31847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The vasoactive peptide bradykinin (BK) acts as a potent growth factor for normal kidney cells, but there have been few studies on the role of BK in renal cell carcinomas. Purpose In this study, we tested the hypothesis that BK also acts as a mitogen in kidney carcinomas, and explored the effects of BK in human renal carcinoma A498 cells. Methods The presence of mRNAs for BK B1 and BK B2 receptors in A498 cells was demonstrated by reverse transcription–polymerase chain reaction. To study BK signaling pathways, we employed fluorescent measurements of intracellular Ca2+, measured changes in extracellular pH as a reflection of Na+/H+ exchange (NHE) with a Cytosensor microphysiometer, and assessed extracellular signal-regulated kinase (ERK) activation by Western blotting. Results Exposure to 100 nM of BK resulted in the rapid elevation of intracellular Ca2+, caused a ≥30% increase in NHE activity, and a ≥300% increase in ERK phosphorylation. All BK signals were blocked by HOE140, a BK B2 receptor antagonist, but not by a B1 receptor antagonist. Inhibitor studies suggest that BK-induced ERK activation requires phospholipase C and protein kinase C activities, and is Ca2+/calmodulin-dependent. The amiloride analog 5-(N-methyl-N-isobutyl)-amiloride (MIA) blocked short-term NHE activation and inhibited ERK phosphorylation, suggesting that NHE is critical for ERK activation by BK. BK induced an approximately 40% increase in the proliferation of A498 cells as assessed by bromodeoxyuridine uptake. This effect was blocked by the ERK inhibitor PD98059, and was dependent on NHE activity. Conclusion We conclude that BK exerts mitogenic effects in A498 cells via the BK B2 receptor activation of growth-associated NHE and ERK.
Collapse
Affiliation(s)
- Inga I Kramarenko
- Department of Medicine (Nephrology Division), Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | |
Collapse
|
7
|
Cheng CY, Tseng HC, Yang CM. Bradykinin-mediated cell proliferation depends on transactivation of EGF receptor in corneal fibroblasts. J Cell Physiol 2012; 227:1367-81. [PMID: 21604274 DOI: 10.1002/jcp.22849] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts.
Collapse
Affiliation(s)
- Ching-Yi Cheng
- Department of Biomedical Engineering, Chung Yuan Christian University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
8
|
Ulu N, Gurdal H, Landheer SW, Duin M, Guc MO, Buikema H, Henning RH. α1-Adrenoceptor-mediated contraction of rat aorta is partly mediated via transactivation of the epidermal growth factor receptor. Br J Pharmacol 2011; 161:1301-10. [PMID: 20977469 DOI: 10.1111/j.1476-5381.2010.00829.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE High level of plasma catecholamines is a risk factor for vascular diseases such as hypertension and atherosclerosis. Catecholamines induce hypertrophy of vascular smooth muscle through α(1) -adrenoceptors, which in cell culture involves the transactivation of epidermal growth factor receptor (EGFR). We hypothesized that EGFR transactivation was also involved in contractions of rat aorta mediated by α(1) -adrenoceptors. EXPERIMENTAL APPROACH Thoracic aorta was isolated from 12-14 week old male Wistar rats. In vitro aortic contractile responses to cumulative doses of phenylephrine were characterized in the absence and presence of the EGFR kinase inhibitors, AG1478 and DAPH, in intact and endothelium-denuded rings. Involvement of signal transduction pathways was investigated by using heparin and inhibitors of Src, matrix metalloproteinase (MMP), extracellular signal-regulated kinase (ERK)1/2 and phosphatidyl inositol 3-kinase (PI3K). Phosphorylation of EGFR and ERK1/2 was measured after short-term phenylephrine or EGF stimulation in aorta segments in the presence of AG1478 and the PI3K inhibitor, wortmannin. KEY RESULTS AG1478 and DAPH concentration dependently attenuated phenylephrine-induced contractile responses in intact or endothelium-denuded aortic rings. Inhibition of PI3K (wortmannin and LY294002) but not heparin or inhibitors of Src or MMP, prevented the effect of AG1478 on the responses to phenylephrine. Phenylephrine induced phosphorylation of EGFR, which was partially blocked by AG1478. Phenylephrine also increased phosphorylation of ERK1/2, time-dependently and was blocked by AG1478 and wortmannin. CONCLUSIONS AND IMPLICATIONS Contractions of rat thoracic aorta mediated by α(1) -adrenoceptors involved transactivation of EGFR, mediated via a PI3K and ERK1/2 dependent pathway.
Collapse
Affiliation(s)
- N Ulu
- Department of Clinical Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
9
|
Kramarenko II, Bunni MA, Raymond JR, Garnovskaya MN. Bradykinin B2 receptor interacts with integrin alpha5beta1 to transactivate epidermal growth factor receptor in kidney cells. Mol Pharmacol 2010; 78:126-34. [PMID: 20385709 PMCID: PMC2912058 DOI: 10.1124/mol.110.064840] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/12/2010] [Indexed: 11/22/2022] Open
Abstract
We have shown previously that the vasoactive peptide bradykinin (BK) stimulates proliferation of a cultured murine cell model of the inner medullary collecting duct (mIMCD-3 cells) via transactivation of epidermal growth factor receptor (EGFR) by a mechanism that involves matrix metalloproteinases (collagenase-2 and -3). Because collagenases lack an integral membrane domain, we hypothesized that receptors for extracellular matrix proteins, integrins, may play a role in BK-induced signaling by targeting collagenases to the membrane, thus forming a functional signaling complex. BK-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) in mIMCD-3 cells was reduced by approximately 65% by synthetic peptides containing an Arg-Gly-Asp sequence, supporting roles for integrins in BK-induced signaling. Neutralizing antibody against alpha5beta1 integrin partially (approximately 60%) blocked BK-induced ERK activation but did not affect EGF-induced ERK activation. Silencing of alpha5 and beta1 expression by transfecting cells with small interfering RNAs (siRNA) significantly decreased BK-induced ERK activation (approximately 80%) and EGFR phosphorylation (approximately 50%). This effect was even more pronounced in cells that were cotransfected with siRNAs directed against both collagenases and alpha5beta1 integrin. On the basis of our results, we suggested that integrin alpha5beta1 is involved in BK-induced signaling in mIMCD-3 cells. Using immunoprecipitation/Western blotting, we demonstrated association of BK B(2) receptor with alpha5beta1 integrin upon BK treatment. Furthermore, BK induced association of alpha5beta1 integrin with EGFR. These data provide the first evidence that specific integrins are involved in BK B(2) receptor-induced signaling in kidney cells, and ultimately might lead to development of new strategies for treatment of renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Inga I Kramarenko
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425-6290, USA
| | | | | | | |
Collapse
|
10
|
Osorio JC, Cheema FH, Martens TP, Mahmut N, Kinnear C, Gonzalez AMD, Bonney W, Homma S, Liao JK, Mital S. Simvastatin reverses cardiac hypertrophy caused by disruption of the bradykinin 2 receptor. Can J Physiol Pharmacol 2008; 86:633-42. [PMID: 18758513 DOI: 10.1139/y08-068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bradykinin 2 receptor (B2R) deficiency predisposes to cardiac hypertrophy and hypertension. The pathways mediating these effects are not known. Two-month-old B2R knockout (KO) and wild-type (WT) mice were assigned to 4 treatment groups (n = 12-14/group): control (vehicle); nitro-L-arginine methyl ester (L-NAME) an NO synthase inhibitor; simvastatin (SIM), an NO synthase activator; and SIM+L-NAME. Serial echocardiography was performed and blood pressure (BP) at 6 weeks was recorded using a micromanometer. Myocardial eNOS and mitogen-activated protein kinase (MAPK, including ERK, p38, and JNK) protein expression were measured. Results showed that (i) B2RKO mice had significantly lower ejection fraction than did WT mice (61% +/- 1% vs. 73% +/- 1%), lower myocardial eNOS and phospho-eNOS, normal systolic BP, and higher LV mass, phospho-p38, and JNK; (ii) L-NAME increased systolic BP in KO mice (117 +/- 19 mm Hg) but not in WT mice and exacerbated LV hypertrophy and dysfunction; and (iii) in KO mice, SIM decreased hypertrophy, p38, and JNK, improved function, increased capillary eNOS and phospho-eNOS, and prevented L-NAME-induced LV hypertrophy without lowering BP. We conclude that disruption of the B2R causes maladaptive cardiac hypertrophy with myocardial eNOS downregulation and MAPK upregulation. SIM reverses these abnormalities and prevents the development of primary cardiac hypertrophy as well as hypertrophy secondary to L-NAME-induced hypertension.
Collapse
|
11
|
Kramarenko II, Bunni MA, Morinelli TA, Raymond JR, Garnovskaya MN. Identification of functional bradykinin B(2) receptors endogenously expressed in HEK293 cells. Biochem Pharmacol 2008; 77:269-76. [PMID: 18938142 DOI: 10.1016/j.bcp.2008.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
Abstract
The human embryonic kidney (HEK) 293 cell line is widely used in cell biology research. Although HEK293 cells have been meticulously studied, our knowledge about endogenous G protein-coupled receptors (GPCR) in these cells is incomplete. While studying the effects of bradykinin (BK), a potent growth factor for renal cells, we unexpectedly discovered that BK activates extracellular signal-regulated protein kinase 1 and 2 (ERK) in HEK293 cells. Thus, we hypothesized that HEK293 cells possess endogenous BK receptors. RT-PCR demonstrated the presence of mRNAs for BK B(1) and BK B(2) receptors in HEK293 cells. Western blotting with BK B(1) and BK B(2) receptor antibodies confirmed this result at the protein level. To establish that BK receptors are functional, we employed fluorescent measurements of intracellular Ca(2+), measured changes in extracellular acidification rate (ECAR) as a reflection of the Na(+)/H(+) exchange (NHE) with a Cytosensortrade microphysiometer, and assessed ERK activation by Western blotting with a phospho-specific ERK antibody. Exposure of HEK293 cells to BK produced a concentration-dependent rise in intracellular Ca(2+) (EC(50)=36.5+/-8.0 x 10(-9)M), a rapid increase in tyrosine phosphorylation of ERK (EC(50)=9.8+/-0.4 x 10(-9)M), and elevation in ECAR by approximately 20%. All of these signals were blocked by HOE-140 (B(2) receptor antagonist) but not by des-Arg(10)-HOE-140 (B(1) receptor antagonist). We conclude that HEK293 cells express endogenous functional BK B(2) receptors, which couple to the mobilization of intracellular Ca(2+), increases in ECAR and increases in ERK phosphorylation.
Collapse
Affiliation(s)
- Inga I Kramarenko
- Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | | | | | | | | |
Collapse
|
12
|
Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J Neurosci 2008; 28:4533-40. [PMID: 18434532 DOI: 10.1523/jneurosci.5349-07.2008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bradykinin potentiates synaptic glutamate release and action in the spinal cord via presynaptic and postsynaptic B(2) receptors, contributing thereby to activity-dependent central sensitization and pain hypersensitivity (Wang et al., 2005). We have now examined the signaling pathways that are responsible for the postsynaptic modulatory actions of bradykinin on glutamatergic action and transmission in superficial dorsal horn neurons. B(2) receptors are coexpressed in dorsal horn neurons with protein kinase A (PKA) and the delta isoform of protein kinase C (PKC), and we find that the augmentation by bradykinin of AMPA and NMDA receptor-mediated currents in lamina II neurons requires coactivation of both PKC and PKA. The activation of PKA is downstream of COX1 (cyclooxygenase-1). Extracellular signal-regulated kinase (ERK) activation is involved after the PKC and PKA coactivation, and intrathecal administration of bradykinin induces a thermal hyperalgesia in vivo, which is reduced by inhibition of ERK, PKA, and PKC. We conclude that bradykinin, by activating multiple kinases in dorsal horn neurons, potentiates glutamatergic synaptic transmission to produce pain hypersensitivity.
Collapse
|
13
|
Xiao Z, Ma X, Jiang Y, Zhao Z, Lai B, Liao J, Yue J, Fang X. Single-molecule study of lateral mobility of epidermal growth factor receptor 2/HER2 on activation. J Phys Chem B 2008; 112:4140-5. [PMID: 18324805 DOI: 10.1021/jp710302j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transmembrane protein HER2, a member of the epidermal growth factor receptor family of tyrosine kinase, plays important roles in many fundamental cellular processes as well as the pathogenesis of many cancers. In this work, we have applied the single-molecule fluorescence microscopic method to study lateral mobility change of HER2 on activation by imaging and tracking individual GFP-tagged HER2 molecules on the membrane of living cells. The single HER2 molecules displayed different diffusion rates and modes. It was interesting to find that the mobility of HER2 increased upon stimulation by heregulin beta1, the specific ligand of HER3. The faster diffusion was related to the tyrosine phosphorylation of HER2 or EGFR. The results provided new information for the understanding of HER2 activation and molecular mechanism of signal transduction through HER2/HER3 heterodimerization.
Collapse
Affiliation(s)
- Zeyu Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, 100080
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Berg KA, Patwardhan AM, Sanchez TA, Silva YM, Hargreaves KM, Clarke WP. Rapid modulation of micro-opioid receptor signaling in primary sensory neurons. J Pharmacol Exp Ther 2007; 321:839-47. [PMID: 17347322 DOI: 10.1124/jpet.106.116681] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Management of pain by opioid analgesics is confounded by central adverse effects that limit clinical dosages. Consequently, there is considerable interest to understand peripheral analgesic effects of opioids. The actions of opioids on peripheral sensory neurons have been difficult to study because of a general lack of effect of opioid agonists on nociceptor function in culture despite documented presence of opioid receptors. In this study, the micro-opioid receptor agonist, [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO), did not alter guanosine 5'-O-(3-[(35)S]thio)-triphosphate (GTPgamma[(35)S]) binding, adenylyl cyclase activity, or neuropeptide release in primary cultures of rat trigeminal ganglion (TG). However, after brief exposure to bradykinin (BK), DAMGO stimulated GTPgamma[(35)S] binding and inhibited both prostaglandin E(2) (PGE(2))-stimulated adenylyl cyclase activity and BK/PGE(2)-stimulated neuropeptide release. The effect of BK was blocked by the B(2) antagonist HOE 140 [D-Arg[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-bradykinin], but not by the B(1) antagonist, Lys-[Leu8]des-Arg9-BK, and was mimicked by the protease-activated receptor-2 agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH(2), and by activation of protein kinase C (PKC) or by administration of arachidonic acid (AA). The enhanced responsiveness of micro-opioid receptor signaling by BK priming was blocked by both cyclooxygenase and PKC inhibitors; however, the effect of AA was blocked only by a cyclooxygenase inhibitor. The results indicate that micro-opioid receptor signaling in primary sensory TG neurons is enhanced by activation of phospholipase C-coupled receptors via a cyclooxygenase-dependent AA metabolite that is downstream of PKC.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Arachidonic Acid/pharmacology
- Bradykinin/pharmacology
- Calcitonin Gene-Related Peptide/metabolism
- Capsaicin/pharmacology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprostone/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Inositol Phosphates/metabolism
- Male
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Phorbol 12,13-Dibutyrate/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Bradykinin B2/agonists
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Receptor, PAR-2/agonists
- Receptor, PAR-2/metabolism
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Kelly A Berg
- Department of Pharmacology, MS 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
15
|
Cohen MV, Philipp S, Krieg T, Cui L, Kuno A, Solodushko V, Downey JM. Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. J Mol Cell Cardiol 2007; 42:842-51. [PMID: 17292392 PMCID: PMC1950851 DOI: 10.1016/j.yjmcc.2007.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/29/2022]
Abstract
We previously reported that pharmacological preconditioning of rabbit hearts with acetylcholine involves activation of phosphatidylinositol 3-kinase (PI3-K) through transactivation of the epidermal growth factor receptor (EGFR). Transactivation is thought to be initiated by cleavage of membrane-bound pro-heparin-binding EGF-like growth factor (HB-EGF) by a membrane metalloproteinase thus releasing HB-EGF which binds to the EGFR. This pathway leads to redox signaling with the generation of reactive oxygen species (ROS) by mitochondria. We tested whether preconditioning's physiological triggers, bradykinin and opioid, also signal through the EGFR. Both bradykinin and the synthetic delta-opioid agonist DADLE increased ROS production in isolated cardiomyocytes by approximately 50%. DADLE's effect was abrogated by either metalloproteinase inhibitor III (MPI) or the diphtheria toxin mutant CRM-197 which blocks heparin-binding EGF shedding indicating that DADLE signals through EGFR transactivation. MPI also blocked DADLE's infarct-sparing effect in whole hearts. Additionally, blocking Src kinase (a component of the EGFR's signaling complex) with PP2 or PI3-K with wortmannin blocked DADLE's effect on cardiomyocyte ROS production and PP2 blocked DADLE's salvage of ischemic myocardium. Finally, DADLE increased phosphorylation of Akt and extracellular signal-regulated protein kinases (ERK) 1/2 in left ventricular myocardium, and this increase was blocked by the EGFR antagonist AG1478. On the other hand, neither MPI nor CRM-197 prevented bradykinin from increasing ROS production, and MPI did not affect bradykinin's infarct-sparing effect in intact hearts. Conversely, both PP2 and wortmannin blocked bradykinin's effect on ROS generation and also aborted bradykinin's cardioprotective effect in intact hearts. While bradykinin also increased phosphorylation of Akt and ERK in myocardium, that increase was not affected by AG1478. Hence bradykinin, unlike acetylcholine or opioid, does not transactivate EGFR, although all 3 agonists do signal through Src and PI3-K.
Collapse
Affiliation(s)
- Michael V Cohen
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL 36688, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mukhin YV, Gooz M, Raymond JR, Garnovskaya MN. Collagenase-2 and -3 mediate epidermal growth factor receptor transactivation by bradykinin B2 receptor in kidney cells. J Pharmacol Exp Ther 2006; 318:1033-43. [PMID: 16717107 DOI: 10.1124/jpet.106.104000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that stimulation of extracellular signal-regulated protein kinase (ERK) by bradykinin (BK) in murine inner medullary collecting duct (mIMCD)-3 cells is mediated by epidermal growth factor receptor (EGFR) transactivation. The mechanism of EGFR transactivation seemed to be novel, because it does not require phospholipase C, Ca(2+), calmodulin, protein kinase C, G alpha(i) subunits, or EGFR-B(2) receptor heterodimerization. In this study, we demonstrated the involvement of matrix metalloproteinases (MMPs) in B(2) receptor-induced EGFR transactivation using their broad-spectrum inhibitors batimastat and N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (Galardin) (GM-6001). Selective inhibitors for collagenase-2 and -3 (MMP-8 and MMP-13, respectively) blocked BK-induced EGFR phosphorylation and ERK activation, whereas inhibitors for MMP-1, -2, -3, -7, or -9 were without effect. Transfection of mIMCD-3 cells with MMP-8 small interfering RNA (siRNA) resulted in approximately 50% decrease of BK-induced ERK activation. A neutralizing antibody against MMP-13 as well as transfection with MMP-13 siRNA produced a similar effect. Inhibition of both collagenases resulted in approximately 65% decrease of BK-induced ERK activation, supporting roles for both enzymes. Stimulation of mIMCD-3 cells with 10 nM BK increased the activity of collagenases in concentrated culture media within 10 min. Moreover, recombinant MMP-13 and MMP-8, when applied to mIMCD-3 cells for 10 min without BK, stimulated tyrosine phosphorylation of EGFR and caused approximately 250% increase over basal ERK phosphorylation comparable with BK-induced ERK activation. Collagenases-induced ERK activation was inhibited by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478) and thus dependent on EGFR tyrosine kinase activity. This study demonstrates a novel role for collagenase-2 and -3 in signaling of the G(q)-coupled BK B(2) receptor in mIMCD-3 cells.
Collapse
Affiliation(s)
- Yurii V Mukhin
- Ralph H. Johnson Veterans Affairs Medical Center, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425-2227, USA
| | | | | | | |
Collapse
|
17
|
Fan H, Stefkova J, El-Dahr SS. Susceptibility to metanephric apoptosis in bradykinin B2 receptor null mice via the p53-Bax pathway. Am J Physiol Renal Physiol 2006; 291:F670-82. [PMID: 16571598 DOI: 10.1152/ajprenal.00037.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In response to gestational high salt intake, BdkrB2−/− embryos acquire an aberrant renal phenotype mimicking renal dysplasia in humans. Genetic analysis identified p53 as a mediator of the renal dysplasia in salt-stressed BdkrB2−/− mice, acting partly via repression of terminal epithelial differentiation genes. The present study tested the hypothesis that inactivation of BdkrB2 predisposes the salt-stressed embryo to p53-mediated metanephric apoptosis. Newborn BdkrB2−/− pups exhibited hyperphosphorylation of metanephric p53 on serine 20 (mouse serine 23), a modification known to increase p53 stability and apoptotic activity. As a result, there was widespread, ectopic expression of p53 in the BdkrB2−/− kidney. However, no differences were found in the apoptosis index or gene expression in BdkrB2−/− and +/+ kidneys, indicating that p53 stabilization as a result of BdkrB2 inactivation is not sufficient to induce metanephric apoptosis. On gestational salt stress, fulminant metanephric apoptosis and enhanced Bax gene expression occurred in BdkrB2−/− but not their +/− or +/+ littermates. Germline deletion of p53 from BdkrB2−/− mice prevented Bax activation and normalized the apoptosis index. Rescue of metanephric apoptosis in BdkrB2−/− mice was similarly achieved by Bax gene deletion. Aberrant apoptosis in salt-stressed BdkrB2−/− mice was triggered on embryonic day E15.5 and involved both ureteric bud (UB) and metanephric mesenchyme-derived nephron elements. Cultured E12.5 salt-stressed BdkrB2−/− metanephroi manifested stunted UB branching compared with +/− and +/+ littermates; the abnormal UB branching was corrected by p53 deletion. Our results suggest a model whereby a seemingly silent genetic mutation of BdkrB2 predisposes mice to renal dysplasia by creating a “preapoptotic” state through p53 activation.
Collapse
Affiliation(s)
- Hao Fan
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
18
|
Patwardhan AM, Berg KA, Akopain AN, Jeske NA, Gamper N, Clarke WP, Hargreaves KM. Bradykinin-induced functional competence and trafficking of the delta-opioid receptor in trigeminal nociceptors. J Neurosci 2006; 25:8825-32. [PMID: 16192372 PMCID: PMC6725594 DOI: 10.1523/jneurosci.0160-05.2005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peripheral opioid analgesia is increased substantially after inflammation. We evaluated the hypothesis that an inflammatory mediator, bradykinin (BK), evokes functional competence of the delta-opioid receptor (DOR) for inhibiting trigeminal ganglia (TG) sensory neurons. We also evaluated whether BK evokes trafficking of the DOR to the plasma membrane. Rat TG cultures were pretreated with BK (10 microm) or vehicle, and the effects of DOR agonists ([D-Pen2,5]-enkephalin or [D-Ala2, D-Leu5]-enkephalin) on BK (10 microm)/prostagladin E2 (PGE2; 1 microm)-stimulated immunoreactive calcitonin gene-related peptide (iCGRP) release or PGE2 (1 microm)-stimulated cAMP accumulation were measured. The effect of BK treatment on opioid receptor trafficking was evaluated by DOR immunohistochemistry, cell-surface DOR biotinylation, and live imaging of neurons transfected with mDOR-green fluorescent protein. BK pretreatment rapidly and significantly increased DOR agonist inhibition of evoked iCGRP release and cAMP accumulation. These effects of BK pretreatment were blocked by a B2 receptor antagonist (HOE-140; 10 microm) or a protein kinase C (PKC) inhibitor [bisindolymaleimide (BIS); 1 microm]. Moreover, BK treatment rapidly and significantly increased the accumulation of DOR in the plasma membrane. However, BK-induced trafficking of DOR was not reversed by pretreatment with BIS, nor was trafficking evoked by application of a PKC activator PMA (200 nm). These data suggest that BK, in a PKC-dependent manner, induces rapid functional competence of DOR for inhibiting TG nociceptors and in a PKC-independent manner rapidly induces trafficking of DOR to the plasma membrane. These findings indicate that exposure to certain inflammatory mediators rapidly alters the signaling properties and neuronal localization of DOR, possibly contributing to peripheral opioid analgesia.
Collapse
MESH Headings
- Animals
- Bradykinin/pharmacology
- Bradykinin/physiology
- Cell Membrane/metabolism
- Enzyme Activation/physiology
- Green Fluorescent Proteins/genetics
- In Vitro Techniques
- Inflammation Mediators/pharmacology
- Inflammation Mediators/physiology
- Male
- Neural Inhibition/physiology
- Neurons, Afferent/metabolism
- Nociceptors/metabolism
- Nociceptors/physiology
- Protein Kinase C/metabolism
- Protein Transport/drug effects
- Protein Transport/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Bradykinin B2/metabolism
- Receptor, Bradykinin B2/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, delta/physiology
- Recombinant Fusion Proteins/metabolism
- Trigeminal Ganglion/metabolism
- Trigeminal Ganglion/physiology
Collapse
Affiliation(s)
- Amol M Patwardhan
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hus-Citharel A, Iturrioz X, Corvol P, Marchetti J, Llorens-Cortes C. Tyrosine kinase and mitogen-activated protein kinase/extracellularly regulated kinase differentially regulate intracellular calcium concentration responses to angiotensin II/III and bradykinin in rat cortical thick ascending limb. Endocrinology 2006; 147:451-63. [PMID: 16210376 DOI: 10.1210/en.2005-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cortical thick ascending limb (CTAL) coexpresses angiotensin (Ang) II/Ang III receptor type 1A (AT(1A)-R) and bradykinin (BK) receptor type 2 (B2-R). In several cell types, these two receptors share the same signaling pathways, although their physiological functions are often opposite. In CTAL, little is known about the intracellular transduction events leading to the final physiological response induced by these two peptides. We investigated and compared in this segment the action of Ang II/III and BK on intracellular calcium concentration ([Ca2+]i) response and metabolic CO2 production, an index of Na+ transport, by using inhibitors of protein kinase C (bisindolylmaleimide), Src tyrosine kinase (herbimycin A and PP2), and MAPK/ERK (PD98059 and UO126). Ang II/III and BK (10(-7) mol/liter) released Ca2+ from the same intracellular pools but activated different Ca2+ entry pathways. Ang II/III- or BK-induced [Ca2+]i increases were similarly potentiated by bisindolylmaleimide. Herbimycin A and PP2 decreased similarly the [Ca2+]i responses induced by Ang II/III and BK. In contrast, PD98059 and UO126 affected the effects of BK to a larger extent than those of Ang II/III. Especially, the Ca2+ influx induced by BK was more strongly inhibited than that induced by Ang II/III in the presence of both compounds. The Na+ transport was inhibited by BK and stimulated by Ang II/III. The inhibitory action of BK on Na+ transport was blocked by UO126, whereas the stimulatory response of Ang II/III was potentiated by UO126 but blocked by bisindolylmaleimide. These data suggest that the inhibitory effect of BK on Na+ transport seems to be directly mediated by an increase in Ca2+ influx dependent on MAPK/ERK pathway activation. In contrast, the stimulatory effect of Ang II/III on Na+ transport is more complex and involves PKC and MAPK/ERK pathways.
Collapse
Affiliation(s)
- Annette Hus-Citharel
- Institut National de la Santé et de la Recherche Médicale Unité 691, Collège de France, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
20
|
Schlemper V, Medeiros R, Ferreira J, Campos MM, Calixto JB. Mechanisms underlying the relaxation response induced by bradykinin in the epithelium-intact guinea-pig trachea in vitro. Br J Pharmacol 2005; 145:740-50. [PMID: 15852038 PMCID: PMC1576187 DOI: 10.1038/sj.bjp.0706222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this study, we investigated some of the signalling pathways involved in bradykinin (BK)-induced relaxation in epithelium-intact strips of the guinea-pig trachea (GPT + E). BK induced time- and concentration-dependent relaxation of GPT + E. Similar responses were observed for prostaglandin E2 (PGE2) or the combination of subthreshold concentrations of BK plus PGE2. The nonselective cyclooxygenase (COX) inhibitors indomethacin or pyroxicam, or the selective COX-2 inhibitors DFU, NS 398 or rofecoxib, but not the selective COX-1 inhibitor SC 560, all abolished BK-induced relaxation. The tyrosine kinase inhibitors herbimycin A and AG 490 also abolished BK-induced relaxation in GPT + E. The nonselective nitric oxide synthase (NOS) inhibitor 7-NINA concentration-dependently inhibited BK effects. BK-induced relaxation was prevented by the selective antagonists for EP3 (L 826266), but not by EP1 (SC 19221), EP1/EP2 (AH 6809) or EP4 (L161982) receptor antagonists. Otherwise, the selective inhibitors of protein kinases A, G and C, mitogen-activated protein kinases, phospholipases C and A2, nuclear factor-kappaB or potassium channels all failed to significantly interfere with BK-mediated relaxation.BK caused a marked increase in PGE2 levels, an effect that was prevented by NS 398, HOE 140 or AG 490. COX-2 expression did not differ in preparations with or without epithelium, and it was not changed by BK stimulation. However, incubation with BK significantly increased the endothelial NOS (eNOS) and neuronal NOS (nNOS) expression, independent of the epithelium integrity. Our results indicate that BK-induced relaxation in GPT + E depends on prostanoids (probably PGE2 acting via EP3 receptors) and NO release and seems to involve complex interactions between kinin B2 receptors, COX-2, nNOS, eNOS and tyrosine kinases.
Collapse
Affiliation(s)
- Valfredo Schlemper
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
- Department of Biological and Health Sciences, Universidade do Planalto Catarinense – UNIPLAC, Lages, SC, Brazil
| | - Rodrigo Medeiros
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
| | - Juliano Ferreira
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
| | - Maria M Campos
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
| | - João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brazil
- Author for correspondence:
| |
Collapse
|
21
|
Tiwari MM, Prather PL, Mayeux PR. Mechanism of bradykinin-induced Ca2+ mobilization in murine proximal tubule epithelial cells. J Pharmacol Exp Ther 2005; 313:798-805. [PMID: 15665141 DOI: 10.1124/jpet.104.080408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the recognized physiological role of bradykinin (BK) in the kidney in maintaining glomerular and tubule function and its role in pathological states such as endotoxemia, diabetes, and other diseases, relatively little is known about the mechanisms by which BK can impact kidney function. Furthermore, the signaling of BK receptors in the murine nephron has not been fully characterized. The present studies were undertaken to examine BK-stimulated Ca(2+) signaling using Fura-2 in the murine proximal tubule epithelial cell line TKPTS. BK produced a concentration-dependent rise in intracellular Ca(2+) ([Ca(2+)])(i) (pEC(50) = 8.39 +/- 0.04). Selective antagonists showed the rise in [Ca(2+)](i) was mediated through B2 receptors. The rise in [Ca(2+)](i) was rapid and reversible and was maximally stimulated at 1 microM (697 +/- 70 nM above basal level of 115 +/- 6 nM). Studies with thapsigargin and EGTA showed Ca(2+) mobilization was dependent on two events: release and influx. Both U73122 (1-[6-[[17-beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) [a phospholipase C (PLC) inhibitor] and genistein (a tyrosine kinase inhibitor) partially inhibited BK-stimulated rise in [Ca(2+)](i). When combined, both agents produced a further decrease, suggesting multiple pathways for PLC activation may be involved. The ability of Ni(2+) to inhibit influx indicated the activation of a Ca(2+) release-activated channel (CRAC). Ca(2+) mobilization did not seem to be affected by cyclic nucleotides or protein kinase C. In summary, the TKPTS murine proximal tubule cell line expresses functional B2 receptors linked to Ca(2+) mobilization that is dependent on phospholipase C and activation of CRAC.
Collapse
Affiliation(s)
- Manish M Tiwari
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | | | | |
Collapse
|
22
|
Chen BC, Yu CC, Lei HC, Chang MS, Hsu MJ, Huang CL, Chen MC, Sheu JR, Chen TF, Chen TL, Inoue H, Lin CH. Bradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:5219-28. [PMID: 15470067 DOI: 10.4049/jimmunol.173.8.5219] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, we investigated the signaling pathways involved in bradykinin (BK)-induced NF-kappaB activation and cyclooxygenase-2 (COX-2) expression in human airway epithelial cells (A549). BK caused concentration- and time-dependent increase in COX-2 expression, which was attenuated by a selective B2 BK receptor antagonist (HOE140), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), an NF-kappaB inhibitor (pyrrolidine dithiocarbate), and an IkappaB protease inhibitor (L-1-tosylamido-2-phenylethyl chloromethyl ketone). The B1 BK receptor antagonist (Lys-(Leu8)des-Arg9-BK) had no effect on COX-2 induction by BK. BK-induced increase in COX-2-luciferase activity was inhibited by cells transfected with the kappaB site deletion of COX-2 construct. BK-induced Ras activation was inhibited by manumycin A. Raf-1 phosphorylation at Ser338 by BK was inhibited by manumycin A and GW 5074. BK-induced ERK activation was inhibited by HOE140, manumycin A, GW 5074, and PD 098059. Stimulation of cells with BK activated IkappaB kinase alphabeta (IKKalphabeta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex, and kappaB-luciferase activity. BK-mediated increase in IKKalphabeta activity and formation of the NF-kappaB-specific DNA-protein complex were inhibited by HOE140, a Ras dominant-negative mutant (RasN17), manumycin A, GW 5074, and PD 098059. Our results demonstrated for the first time that BK, acting through B2 BK receptor, induces activation of the Ras/Raf-1/ERK pathway, which in turn initiates IKKalphabeta and NF-kappaB activation, and ultimately induces COX-2 expression in human airway epithelial cell line (A549).
Collapse
Affiliation(s)
- Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, Wada K. Kinin receptors in cultured rat microglia. Neurochem Int 2004; 45:437-42. [PMID: 15145558 DOI: 10.1016/j.neuint.2003.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/29/2003] [Accepted: 07/29/2003] [Indexed: 11/30/2022]
Abstract
Kinins are produced and act at the site of injury and inflammation in various tissues. They are likely to initiate a particular cascade of inflammatory events, which evokes physiological and pathophysiological responses including an increase in blood flow and plasma leakage. In the central nervous system (CNS), kinins are potent stimulators of the production and release of pro-inflammatory mediators represented by prostanoids and cytotoxins. They are known to induce neural tissue damage. Many of the cytotoxins such as cytokines and free radicals and prostanoids are released from glial cells. Among glial cells, astrocytes and oligodendrocytes are known to possess bradykinin (BK) B(2) receptors that phosphoinositide (PI) turnover and raise intracellular Ca(2+) concentration. The presence of bradykinin receptors in microglia has been of great significance. We recently showed that rat primary microglia express kinin receptors. In resting microglia, B(2) receptors but not B(1) receptors are expressed. When the microglia are activated by bradykinin, B(1) receptors are up-regulated, while B(2) receptors are down-regulated. As observed in other glial cells, electrophysiological measurements suggest that B(2) receptors in phosphoinositide turnover and intracellular Ca(2+) concentration in microglia. Release of cytotoxins is likely consequent upon the activation of BK receptors. Our study provides the first evidence that microglia express functional kinin receptors and suggests that microglia play an important role in CNS inflammatory responses.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Garnovskaya MN, Mukhin YV, Vlasova TM, Grewal JS, Ullian ME, Tholanikunnel BG, Raymond JR. Mitogen-induced Rapid Phosphorylation of Serine 795 of the Retinoblastoma Gene Product in Vascular Smooth Muscle Cells Involves ERK Activation. J Biol Chem 2004; 279:24899-905. [PMID: 15069084 DOI: 10.1074/jbc.m311622200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We examined the relationship between mitogen-activated MEK (mitogen and extracellular signal-regulated protein kinase kinase) and phosphorylation of the gene product encoded by retinoblastoma (hereafter referred to as Rb) in vascular smooth muscle cells. Brief treatment of the cells with 100 nm angiotensin II or 1 microm serotonin resulted in serine phosphorylation of Rb that was equal in magnitude to that induced by treating cells for 20 h with 10% fetal bovine serum ( approximately 3 x basal). There was no detectable rapid phosphorylation of two close cousins of Rb, p107 and p130. Phosphorylation state-specific antisera demonstrated that the rapid phosphorylation occurred on Ser(795), but not on Ser(249), Thr(252), Thr(373), Ser(780), Ser(807), or Ser(811). Phosphorylation of Rb Ser(795) peaked at 10 min, lagging behind phosphorylation of MEK and ERK (extracellular signal-regulated protein kinase). Rb Ser(795) phosphorylation could be blocked by PD98059, a MEK inhibitor, and greatly attenuated by apigenin, an inhibitor of the Ras --> Raf --> MEK --> ERK pathway. The effect also appears to be mediated by CDK4. Immunoprecipitation/immunoblot studies revealed that serotonin and angiotensin II induced complex formation between CDK4, cyclin D1, and phosphorylated ERK. These studies show a rapid, novel, and selective phosphorylation of Rb Ser(795) by mitogens and demonstrate an unexpected rapid linkage between the actions of the Ras --> Raf --> MEK --> ERK pathway and the phosphorylation state of Rb.
Collapse
Affiliation(s)
- Maria N Garnovskaya
- Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center and Department of Medicine (Nephrology Division) of the Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mukhin YV, Garnovskaya MN, Ullian ME, Raymond JR. ERK Is Regulated by Sodium-Proton Exchanger in Rat Aortic Vascular Smooth Muscle Cells. J Biol Chem 2004; 279:1845-52. [PMID: 14600156 DOI: 10.1074/jbc.m304907200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purposes of this study were to test 1) the relationship between two widely studied mitogenic effector pathways, and 2) the hypothesis that sodium-proton exchanger type 1 (NHE-1) is a regulator of extracellular signal-regulated protein kinase (ERK) activation in rat aortic smooth muscle (RASM) cells. Angiotensin II (Ang II) and 5-hydroxytryptamine (5-HT) stimulated both ERK and NHE-1 activities, with activation of NHE-1 preceding that of ERK. The concentration-response curves for 5-HT and Ang II were superimposable for both processes. Inhibition of NHE-1 with pharmacological agents or by isotonic replacement of sodium in the perfusate with choline or tetramethylammonium greatly attenuated ERK activation by 5-HT or Ang II. Similar maneuvers significantly attenuated 5-HT- or Ang II-mediated activation of MEK and Ras but not transphosphorylation of the epidermal growth factor (EGF) receptor. EGF receptor blockade attenuated ERK activation, but not NHE-1 activation by 5-HT and Ang II, suggesting that the EGF receptor and NHE-1 work in parallel to stimulate ERK activity in RASM cells, converging distal to the EGF receptor but at or above the level of Ras in the Ras-MEK-ERK pathway. Receptor-independent activation of NHE-1 by acute acid loading of RASM cells resulted in the rapid phosphorylation of ERK, which could be blocked by pharmacological inhibitors of NHE-1 or by isotonic replacement of sodium, closely linking the proton transport function of NHE-1 to ERK activation. These studies identify NHE as a new regulator of ERK activity in RASM cells.
Collapse
Affiliation(s)
- Yurii V Mukhin
- Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Department of Medicine (Nephrology Division), Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|