1
|
Xia Y, Wang X, Lin S, Dong TTX, Tsim KWK. Berberine and palmatine, acting as allosteric potential ligands of α7 nAChR, synergistically regulate inflammation and phagocytosis of microglial cells. FASEB J 2024; 38:e70094. [PMID: 39373933 DOI: 10.1096/fj.202302538rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Berberine and palmatine are isoquinoline quaternary alkaloids derived from Chinese medicinal herbs. These alkaloids have shown promising synergy in inhibiting acetylcholinesterase (AChE), indicating their potential in treating Alzheimer's disease (AD). Besides, the anti-inflammatory effects of berberine and palmatine have been widely reported, although the underlying mechanism remains unclear. Here, we found that berberine and palmatine could induce calcium ion (Ca2+) influx via activating α7 nicotinic acetylcholine receptor (α7 nAChR) in cultured microglial cells, possibly serving as its allosteric potential ligands. Furthermore, we examined the synergistic anti-inflammatory effects of berberine and palmatine in the LPS-induced microglia, that significantly suppressed the production of TNF-α and iNOS. Notably, this suppression was reversed by co-treatment with a selective antagonist of α7 nAChR. Moreover, the alkaloid-induced microglial phagocytosis was shown to be mediated by the induction of Ca2+ influx through α7 nAChR and subsequent CaMKII-Rac1-dependent pathway. Additionally, the combination of berberine and palmatine, at low concentration, protected against the LPS-induced endoplasmic reticulum stress and mitochondrial dysfunction in microglia. These findings indicate the potential of berberine and palmatine, either individually or in combination, in contributing to anti-AD drug development, which provide valuable insights into the mechanisms by which natural products, such as plant alkaloids, exert their anti-AD effects.
Collapse
Affiliation(s)
- Yingjie Xia
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Xiaoyang Wang
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Shengying Lin
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Tina T X Dong
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Nozaki S, Hijioka M, Wen X, Iwashita N, Namba J, Nomura Y, Nakanishi A, Kitazawa S, Honda R, Kamatari YO, Kitahara R, Suzuki K, Inden M, Kitamura Y. Galantamine suppresses α-synuclein aggregation by inducing autophagy via the activation of α 7 nicotinic acetylcholine receptors. J Pharmacol Sci 2024; 156:102-114. [PMID: 39179329 DOI: 10.1016/j.jphs.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024] Open
Abstract
Synucleinopathies, including Parkinson's disease and dementia with Lewy bodies, are neurodegenerative disorders characterized by the aberrant accumulation of α-synuclein (α-syn). Although no treatment is effective for synucleinopathies, the suppression of α-syn aggregation may contribute to the development of numerous novel therapeutic targets. Recent research revealed that nicotinic acetylcholine (nACh) receptor activation has neuroprotective effects and promotes the degradation of amyloid protein by activating autophagy. In an in vitro human-derived cell line model, we demonstrated that galantamine, the nAChR allosteric potentiating ligand, significantly reduced the cell number of SH-SY5Y cells with intracellular Lewy body-like aggregates by enhancing the sensitivity of α7-nAChR. In addition, galantamine promoted autophagic flux, and prevented the formation of Lewy body-resembled aggregates. In an in vivo synucleinopathy mouse model, the propagation of α-syn aggregation in the cerebral cortex was inhibited by galantamine administration for 90 days. These results suggest that α7-nAChR is expected to be a novel therapeutic target, and galantamine is a potential agent for synucleinopathies.
Collapse
Affiliation(s)
- Sora Nozaki
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masanori Hijioka
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Xiaopeng Wen
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Natsumi Iwashita
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Junya Namba
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshiaki Nomura
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Aoi Nakanishi
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Soichiro Kitazawa
- Laboratory of Structural Biology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Ryo Honda
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuji O Kamatari
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ryo Kitahara
- Laboratory of Structural Biology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yoshihisa Kitamura
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
3
|
Henderson BJ, Tetteh-Quarshie S, Olszewski NA. Modulators of nicotine reward and reinforcement. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:355-386. [PMID: 38467487 DOI: 10.1016/bs.apha.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine has been well-characterized for its ability to alter neurophysiology to promote rewarding and reinforcing properties. However, several exogenous chemicals possess properties that modulate or enhance nicotine's ability to alter neurophysiology. This chapter focuses on nicotine's impact on behavior through changes in neurophysiology and several chemical entities that in-turn modulate nicotine's ability to act as a neuromodulator.
Collapse
Affiliation(s)
- Brandon J Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States.
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| |
Collapse
|
4
|
Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 2023; 111:3414-3434.e15. [PMID: 37734381 PMCID: PMC10843525 DOI: 10.1016/j.neuron.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca2+ and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Collapse
Affiliation(s)
- Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Alissa Kunczt
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Tallini LR, da Silva CR, Jung T, Alves EDO, Baldin SL, Apel M, Timmers LFSM, Rico EP, Bastida J, Zuanazzi JAS. Acetylcholinesterase Inhibition Activity of Hippeastrum papilio (Ravenna) Van Scheepen (Amaryllidaceae) Using Zebrafish Brain Homogenates. Life (Basel) 2023; 13:1721. [PMID: 37629578 PMCID: PMC10455992 DOI: 10.3390/life13081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The Amaryllidaceae family constitutes an interesting source of exclusive alkaloids with a broad spectrum of biological activity. Galanthamine, the most relevant one, has been commercialized for the palliative treatment of Alzheimer's disease symptoms since 2001 due to its potential as an acetylcholinesterase (AChE) inhibitor. In vitro screenings against AChE by applying different Amaryllidaceae species and alkaloids have been reported in the literature; however, they are usually carried out using purified market enzymes. The main goal of this work is to evaluate the AChE inhibitory potential of Hippeastrum papilio (Amaryllidaceae) extracts using zebrafish brain homogenates. The biological assays show that the H. papilio bulb extracts present an interesting AChE inhibitory activity in comparison with the positive reference control galanthamine (IC50 values of 1.20 ± 0.10 and 0.79 ± 0.15 μg/mL, respectively). The chemical profile of H. papilio shows that this species has a high amount of galanthamine, which may contribute to the inhibitory effect on AChE activity of zebrafish brains. Computational experiments were used to build the model for zebrafish AChE and to evaluate the interactions between galanthamine and the enzymic active site. This work suggests that zebrafish could represent an important model in the search for bioactive molecules from the Amaryllidaceae family for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Camila Rockenbach da Silva
- Centro de Ciências da Vida, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil; (C.R.d.S.); (L.F.S.M.T.)
| | - Tatiana Jung
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil;
| | - Elen de Oliveira Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| | - Samira Leila Baldin
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil (E.P.R.)
| | - Miriam Apel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| | - Luis F. S. M. Timmers
- Centro de Ciências da Vida, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil; (C.R.d.S.); (L.F.S.M.T.)
- Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari, Lajeado 95914-014, RS, Brazil
| | - Eduardo Pacheco Rico
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil (E.P.R.)
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Angelo S. Zuanazzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (L.R.T.); (E.d.O.A.)
| |
Collapse
|
6
|
Sanders VR, Millar NS. Potentiation and allosteric agonist activation of α7 nicotinic acetylcholine receptors: binding sites and hypotheses. Pharmacol Res 2023; 191:106759. [PMID: 37023990 DOI: 10.1016/j.phrs.2023.106759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Considerable progress has been made in recent years towards the identification and characterisation of novel subtype-selective modulators of nicotinic acetylcholine receptors (nAChRs). In particular, this has focussed on modulators of α7 nAChRs, a nAChR subtype that has been identified as a target for drug discovery in connection with a range of potential therapeutic applications. This review focusses upon α7-selective modulators that bind to receptor sites other than the extracellular 'orthosteric' agonist binding site for the endogenous agonist acetylcholine (ACh). Such compounds include those that are able to potentiate responses evoked by orthosteric agonists such as ACh (positive allosteric modulators; PAMs) and those that are able to activate α7 nAChRs by direct allosteric activation in the absence of an orthosteric agonist (allosteric agonists or 'ago-PAMs'). There has been considerable debate about the mechanism of action of α7-selective PAMs and allosteric agonists, much of which has centred around identifying the location of their binding sites on α7 nAChRs. Based on a variety of experimental evidence, including recent structural data, there is now clear evidence indicating that at least some α7-selective PAMs bind to an inter-subunit site located in the transmembrane domain. In contrast, there are differing hypotheses about the site or sites at which allosteric agonists bind to α7 nAChRs. It will be argued that the available evidence supports the conclusion that direct allosteric activation by allosteric agonists/ago-PAMs occurs via the same inter-subunit transmembrane site that has been identified for several α7-selective PAMs.
Collapse
Affiliation(s)
- Victoria R Sanders
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Neil S Millar
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
7
|
Kobayashi A, Nakajima M, Noguchi Y, Morikawa R, Matsuo Y, Takasu M. Molecular Dynamics Simulation of the Complex of PDE5 and Evodiamine. Life (Basel) 2023; 13:life13020578. [PMID: 36836935 PMCID: PMC9968203 DOI: 10.3390/life13020578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease is an irreversible neurological disorder for which there are no effective small molecule therapeutics. A phosphodiesterase 5 (PDE5) inhibitor is a candidate medicine for the treatment of Alzheimer's disease. Rutaecarpine, an indole alkaloid found in Euodiae Fructus, has inhibitory activity for PDE5. Euodiae Fructus contains more evodiamine than rutaecarpine. Therefore, we performed molecular dynamics simulations of the complex of PDE5 and evodiamine. The results showed that the PDE5 and (-)-evodiamine complexes were placed inside the reaction center compared to the case of PDE5 and (+)-evodiamine complex. The binding of (-)-evodiamine to PDE5 increased the root-mean-square deviation and radius of gyration of PDE5. In the PDE5 with (-)-evodiamine complex, the value of the root-mean-square fluctuation of the M-loop, which is thought to be important for activity, increased. This result suggests that (-)-evodiamine may have inhibitory activity.
Collapse
Affiliation(s)
- Ayame Kobayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Motokuni Nakajima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yoh Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
- Correspondence: ; Tel.: +81-042-676-4561
| | - Ryota Morikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yukiko Matsuo
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Masako Takasu
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
8
|
Myslivecek J. Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol 2022; 13:974160. [PMID: 36148314 PMCID: PMC9486310 DOI: 10.3389/fphys.2022.974160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Li M, Zheng C, Kawada T, Uemura K, Inagaki M, Saku K, Sugimachi M. Early donepezil monotherapy or combination with metoprolol significantly prevents subsequent chronic heart failure in rats with reperfused myocardial infarction. J Physiol Sci 2022; 72:12. [PMID: 35725377 PMCID: PMC10717938 DOI: 10.1186/s12576-022-00836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Despite the presence of clinical guidelines recommending that β-blocker treatment be initiated early after reperfused myocardial infarction (RMI), acute myocardial infarction remains a leading cause of chronic heart failure (CHF). In this study, we compared the effects of donepezil, metoprolol, and their combination on the progression of cardiac remodeling in rats with RMI. The animals were randomly assigned to untreated (UT), donepezil-treated (DT), metoprolol-treated (MT), and a combination of donepezil and metoprolol (DMT) groups. On day 8 after surgery, compared to the UT, the DT and DMT significantly improved myocardial salvage, owing to the suppression of macrophage infiltration and apoptosis. After the 10-week treatment, the DT and DMT exhibited decreased heart rate, reduced myocardial infarct size, attenuated cardiac dysfunction, and decreased plasma levels of brain natriuretic peptide and catecholamine, thereby preventing subsequent CHF. These results suggest that donepezil monotherapy or combined therapy with β-blocker may be an alternative pharmacotherapy post-RMI.
Collapse
Affiliation(s)
- Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| |
Collapse
|
10
|
Natural Products from Plants and Algae for Treatment of Alzheimer’s Disease: A Review. Biomolecules 2022; 12:biom12050694. [PMID: 35625622 PMCID: PMC9139049 DOI: 10.3390/biom12050694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders including Parkinson’s disease (PD), Huntington’s disease (HD) and the most frequent, Alzheimer’s disease (AD), represent one of the most urgent medical needs worldwide. Despite a significantly developed understanding of disease development and pathology, treatments that stop AD progression are not yet available. The recent approval of sodium oligomannate (GV-971) for AD treatment in China emphasized the potential value of natural products for the treatment of neurodegenerative disorders. Many current clinical studies include the administration of a natural compound as a single and combination treatment. The most prominent mechanisms of action are anti-inflammatory and anti-oxidative activities, thus preserving cellular survival. Here, we review current natural products that are either approved or are in testing for a treatment of neurodegeneration in AD. In addition to the most important compounds of plant origin, we also put special emphasis on compounds from algae, given their neuroprotective activity and their underlying mechanisms of neuroprotection.
Collapse
|
11
|
Weber LA, Tomiello S, Schöbi D, Wellstein KV, Mueller D, Iglesias S, Stephan KE. Auditory mismatch responses are differentially sensitive to changes in muscarinic acetylcholine versus dopamine receptor function. eLife 2022; 11:74835. [PMID: 35502897 PMCID: PMC9098218 DOI: 10.7554/elife.74835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The auditory mismatch negativity (MMN) has been proposed as a biomarker of NMDA receptor (NMDAR) dysfunction in schizophrenia. Such dysfunction may be caused by aberrant interactions of different neuromodulators with NMDARs, which could explain clinical heterogeneity among patients. In two studies (N = 81 each), we used a double-blind placebo-controlled between-subject design to systematically test whether auditory mismatch responses under varying levels of environmental stability are sensitive to diminishing and enhancing cholinergic vs. dopaminergic function. We found a significant drug × mismatch interaction: while the muscarinic acetylcholine receptor antagonist biperiden delayed and topographically shifted mismatch responses, particularly during high stability, this effect could not be detected for amisulpride, a dopamine D2/D3 receptor antagonist. Neither galantamine nor levodopa, which elevate acetylcholine and dopamine levels, respectively, exerted significant effects on MMN. This differential MMN sensitivity to muscarinic versus dopaminergic receptor function may prove useful for developing tests that predict individual treatment responses in schizophrenia.
Collapse
Affiliation(s)
- Lilian Aline Weber
- Translational Neuroimaging Unit (TNU), Institute for Biomedical EngineeringInstitute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Sara Tomiello
- Translational Neuroimaging Unit (TNU), Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Dario Schöbi
- Translational Neuroimaging Unit (TNU), Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Katharina V Wellstein
- Translational Neuroimaging Unit (TNU), Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Daniel Mueller
- Institute for Clinical Chemistry, University Hospital of Zurich, Zurich, Switzerland
| | - Sandra Iglesias
- Translational Neuroimaging Unit (TNU), Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Klaas Enno Stephan
- Translational Neuroimaging Unit (TNU), Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Xia Y, Wu Q, Mak S, Liu EYL, Zheng BZY, Dong TTX, Pi R, Tsim KWK. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells. FASEB J 2022; 36:e22189. [PMID: 35129858 DOI: 10.1096/fj.202101302rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
The non-classical function of acetylcholine (ACh) has been reported in neuroinflammation that represents the modulating factor in immune responses via activation of α7 nicotinic acetylcholine receptor (α7 nAChR), i.e., a cholinergic anti-inflammatory pathway (CAP). Acetylcholinesterase (AChE), an enzyme for ACh hydrolysis, has been proposed to have a non-classical function in immune cells. However, the involvement of AChE in neuroinflammation is unclear. Here, cultured BV2 cell, a microglial cell line, and primary microglia from rats were treated with lipopolysaccharide (LPS) to induce inflammation and to explore the regulation of AChE during this process. The expression profiles of AChE, α7 nAChR, and choline acetyltransferase (ChAT) were revealed in BV2 cells. The expression of AChE (G4 form) was induced significantly in LPS-treated BV2 cells: the induction was triggered by NF-κB and cAMP signaling. Moreover, ACh or α7 nAChR agonist suppressed the LPS-induced production of pro-inflammatory cytokines, as well as the phagocytosis of microglia, by activating α7 nAChR and followed by the regulation of NF-κB and CREB signaling. The ACh-induced suppression of inflammation was abolished in AChE overexpressed cells, but did not show a significant change in AChE mutant (enzymatic activity knockout) transfected cells. These results indicate that the neuroinflammation-regulated function of AChE may be mediated by controlling the ACh level in the brain system.
Collapse
Affiliation(s)
- Yingjie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shinghung Mak
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Brody Z Y Zheng
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
13
|
Argade MD, DeCristofano L, Bhattarai N, Schulte MK, Dukat M. Evaluation of galantamine and deconstructed analogs as α7 nAChR and AChE ligands. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Myslivecek J. Social Isolation: How Can the Effects on the Cholinergic System Be Isolated? Front Pharmacol 2021; 12:716460. [PMID: 34916930 PMCID: PMC8670609 DOI: 10.3389/fphar.2021.716460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 01/31/2023] Open
Abstract
Social species form organizations that support individuals because the consequent social behaviors help these organisms survive. The isolation of these individuals may be a stressor. We reviewed the potential mechanisms of the effects of social isolation on cholinergic signaling and vice versa how changes in cholinergic signaling affect changes due to social isolation.There are two important problems regarding this topic. First, isolation schemes differ in their duration (1–165 days) and initiation (immediately after birth to adulthood). Second, there is an important problem that is generally not considered when studying the role of the cholinergic system in neurobehavioral correlates: muscarinic and nicotinic receptor subtypes do not differ sufficiently in their affinity for orthosteric site agonists and antagonists. Some potential cholinesterase inhibitors also affect other targets, such as receptors or other neurotransmitter systems. Therefore, the role of the cholinergic system in social isolation should be carefully considered, and multiple receptor systems may be involved in the central nervous system response, although some subtypes are involved in specific functions. To determine the role of a specific receptor subtype, the presence of a specific subtype in the central nervous system should be determined using search in knockout studies with the careful application of specific agonists/antagonists.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Tallini LR, Giordani RB, de Andrade JP, Bastida J, Zuanazzi JAS. Structural Diversity and Biological Potential of Alkaloids from the Genus Hippeastrum, Amaryllidaceae: an Update. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:648-657. [PMID: 34924642 PMCID: PMC8670614 DOI: 10.1007/s43450-021-00211-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The subfamily Amaryllidoideae, Amaryllidaceae, presents an exclusive group of structures known as Amaryllidaceae alkaloids, which have a broad spectrum of biological activities. These plants are classified into 59 genera, including Hippeastrum Herb., which comprises approximately 60 species distributed mainly in South America, being widely used as ornamental plants due to the beauty of its flowers. This review presents an update about the alkaloid profiling of Hippeastrum extracts published between 2012 and 2021, as well as an approach to the biological potential of these compounds. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43450-021-00211-z.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raquel B. Giordani
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN 59012-570 Brazil
| | - Jean Paulo de Andrade
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Campus Talca, 3460000 Talca, Chile
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Angelo S. Zuanazzi
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
16
|
Castro LHE, Sant'Anna CMR. Molecular Modeling Techniques Applied to the Design of Multitarget Drugs: Methods and Applications. Curr Top Med Chem 2021; 22:333-346. [PMID: 34844540 DOI: 10.2174/1568026621666211129140958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Multifactorial diseases, such as cancer and diabetes present a challenge for the traditional "one-target, one disease" paradigm due to their complex pathogenic mechanisms. Although a combination of drugs can be used, a multitarget drug may be a better choice face of its efficacy, lower adverse effects and lower chance of resistance development. The computer-based design of these multitarget drugs can explore the same techniques used for single-target drug design, but the difficulties associated to the obtention of drugs that are capable of modulating two or more targets with similar efficacy impose new challenges, whose solutions involve the adaptation of known techniques and also to the development of new ones, including machine-learning approaches. In this review, some SBDD and LBDD techniques for the multitarget drug design are discussed, together with some cases where the application of such techniques led to effective multitarget ligands.
Collapse
Affiliation(s)
| | - Carlos Mauricio R Sant'Anna
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica. Brazil
| |
Collapse
|
17
|
Lazarova M, Tancheva L, Alexandrova A, Tsvetanova E, Georgieva A, Stefanova M, Tsekova D, Vezenkov L, Kalfin R, Uzunova D, Petkova-Kirova P. Effects of New Galantamine Derivatives in a Scopolamine Model of Dementia in Mice. J Alzheimers Dis 2021; 84:671-690. [PMID: 34569967 DOI: 10.3233/jad-215165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive functions decline, is a leading cause for dementia and currently ranked as the sixth foremost cause of death. As of present, treatment of AD is symptomatic without convincing therapeutic benefits and new, effective, therapeutic agents are pursued. Due to massive loss of cholinergic neurons and decreased acetylcholine levels, cholinesterase inhibitors like galantamine, remain the backbone of pharmacological treatment of the disease. In the present study, using behavioral and biochemical methods, four newly synthesized galantamine derivatives, Gal 34, Gal 43, Gal 44, and Gal 46, were evaluated for a beneficial effect in a scopolamine model of dementia in mice. They were designed to have all the advantages of galantamine and additionally to inhibit β-secretase and exert favorable effects on plasma lipids. Behavioral tests included step-through inhibitory avoidance, T-maze, and the hole-board test, whereas biochemical evaluations involved assessment of acetylcholinesterase activity, brain monoamines levels, lipid peroxidation, catalase, glutathione peroxidase, and superoxide dismutase activities along with measurement of total glutathione. Results show that Gal 43, Gal 44, and, in particular, Gal 46 are especially effective in improving both short- and long-term memory and in the case of Gal 46 having a significant effect on exploratory activity as well. Although Gal 34 did not show behavioral effects as convincing as those of the other three galantamine derivatives, it demonstrated persuasive antioxidant and restorative capacities, making all four galantamine derivatives promising AD treatment agents and prompting further research, especially that in many of our studies they performed better than galantamine.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,National Sports Academy, Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Daniela Tsekova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Lyubomir Vezenkov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
18
|
Liu EYL, Mak S, Kong X, Xia Y, Kwan KKL, Xu ML, Tsim KWK. Tacrine Induces Endoplasmic Reticulum-Stressed Apoptosis via Disrupting the Proper Assembly of Oligomeric Acetylcholinesterase in Cultured Neuronal Cells. Mol Pharmacol 2021; 100:456-469. [PMID: 34531295 DOI: 10.1124/molpharm.121.000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Acetylcholinesterase inhibitors (AChEIs), the most developed treatment strategies for Alzheimer's disease (AD), will be used in clinic for, at least, the next decades. Their side effects are in highly variable from drug to drug with mechanisms remaining to be fully established. The withdrawal of tacrine (Cognex) in the market makes it as an interesting case study. Here, we found tacrine could disrupt the proper trafficking of proline-rich membrane anchor-linked tetrameric acetylcholinesterase (AChE) in the endoplasmic reticulum (ER). The exposure of tacrine in cells expressing AChE, e.g., neurons, caused an accumulation of the misfolded AChE in the ER. This misfolded enzyme was not able to transport to the Golgi/plasma membrane, which subsequently induced ER stress and its downstream signaling cascade of unfolded protein response. Once the stress was overwhelming, the cooperation of ER with mitochondria increased the loss of mitochondrial membrane potential. Eventually, the tacrine-exposed cells lost homeostasis and underwent apoptosis. The ER stress and apoptosis, induced by tacrine, were proportional to the amount of AChE. Other AChEIs (rivastigmine, bis(3)-cognitin, daurisoline, and dauricine) could cause the same problem as tacrine by inducing ER stress in neuronal cells. The results provide guidance for the drug design and discovery of AChEIs for AD treatment. SIGNIFICANCE STATEMENT: Acetylcholinesterase inhibitors (AChEIs) are the most developed treatment strategies for Alzheimer's disease (AD) and will be used in clinic for at least the next decades. This study reports that tacrine and other AChEIs disrupt the proper trafficking of acetylcholinesterase in the endoplasmic reticulum. Eventually, the apoptosis of neurons and other cells are induced. The results provide guidance for drug design and discovery of AChEIs for AD treatment.
Collapse
Affiliation(s)
- Etta Y L Liu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, China (E.Y.L.L.); Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang Shimin, Shanxi University of Chinese Medicine, Jinzhong, China (X.K.); Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology Shenzhen, China (S.M., X.K., Y.X., K.K.L.K., M.L.X., K.W.K.T.); and Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China (E.Y.L.L., S.M., Y.X., K.K.L.K., M.L.X., K.W.K.T.)
| | - Shinghung Mak
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, China (E.Y.L.L.); Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang Shimin, Shanxi University of Chinese Medicine, Jinzhong, China (X.K.); Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology Shenzhen, China (S.M., X.K., Y.X., K.K.L.K., M.L.X., K.W.K.T.); and Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China (E.Y.L.L., S.M., Y.X., K.K.L.K., M.L.X., K.W.K.T.)
| | - Xiangpeng Kong
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, China (E.Y.L.L.); Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang Shimin, Shanxi University of Chinese Medicine, Jinzhong, China (X.K.); Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology Shenzhen, China (S.M., X.K., Y.X., K.K.L.K., M.L.X., K.W.K.T.); and Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China (E.Y.L.L., S.M., Y.X., K.K.L.K., M.L.X., K.W.K.T.)
| | - Yingjie Xia
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, China (E.Y.L.L.); Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang Shimin, Shanxi University of Chinese Medicine, Jinzhong, China (X.K.); Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology Shenzhen, China (S.M., X.K., Y.X., K.K.L.K., M.L.X., K.W.K.T.); and Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China (E.Y.L.L., S.M., Y.X., K.K.L.K., M.L.X., K.W.K.T.)
| | - Kenneth K L Kwan
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, China (E.Y.L.L.); Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang Shimin, Shanxi University of Chinese Medicine, Jinzhong, China (X.K.); Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology Shenzhen, China (S.M., X.K., Y.X., K.K.L.K., M.L.X., K.W.K.T.); and Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China (E.Y.L.L., S.M., Y.X., K.K.L.K., M.L.X., K.W.K.T.)
| | - Miranda L Xu
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, China (E.Y.L.L.); Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang Shimin, Shanxi University of Chinese Medicine, Jinzhong, China (X.K.); Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology Shenzhen, China (S.M., X.K., Y.X., K.K.L.K., M.L.X., K.W.K.T.); and Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China (E.Y.L.L., S.M., Y.X., K.K.L.K., M.L.X., K.W.K.T.)
| | - Karl W K Tsim
- Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou, China (E.Y.L.L.); Institute of Pharmaceutical & Food Engineering, Chinese Medicine Master Studio of Wang Shimin, Shanxi University of Chinese Medicine, Jinzhong, China (X.K.); Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology Shenzhen, China (S.M., X.K., Y.X., K.K.L.K., M.L.X., K.W.K.T.); and Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China (E.Y.L.L., S.M., Y.X., K.K.L.K., M.L.X., K.W.K.T.)
| |
Collapse
|
19
|
Metz CN, Pavlov VA. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J Neurochem 2021; 158:1359-1380. [PMID: 33219523 PMCID: PMC10049459 DOI: 10.1111/jnc.15243] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Advances in understanding the regulatory functions of the nervous system have revealed neural cholinergic signaling as a key regulator of cytokine responses and inflammation. Cholinergic drugs, including the centrally acting acetylcholinesterase inhibitor, galantamine, which are in clinical use for the treatment of Alzheimer's disease and other neurodegenerative and neuropsychiatric disorders, have been rediscovered as anti-inflammatory agents. Here, we provide a timely update on this active research and clinical developments. We summarize the involvement of cholinergic mechanisms and inflammation in the pathobiology of Alzheimer's disease, Parkinson's disease, and schizophrenia, and the effectiveness of galantamine treatment. We also highlight recent findings demonstrating the effects of galantamine in preclinical and clinical settings of numerous conditions and diseases across the lifespan that are characterized by immunological, neurological, and metabolic dysfunction.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
20
|
Mladenova K, Stavrakov G, Philipova I, Atanasova M, Petrova S, Doumanov J, Doytchinova I. A Galantamine-Curcumin Hybrid Decreases the Cytotoxicity of Amyloid-Beta Peptide on SH-SY5Y Cells. Int J Mol Sci 2021; 22:7592. [PMID: 34299209 PMCID: PMC8307467 DOI: 10.3390/ijms22147592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Misfolded amyloid beta (Aβ) peptides aggregate and form neurotoxic oligomers. Membrane and mitochondrial damages, calcium dysregulation, oxidative stress, and fibril deposits are among the possible mechanisms of Aβ cytotoxicity. Galantamine (GAL) prevents apoptosis induced by Aβ mainly through the ability to stimulate allosterically the α7 nAChRs and to regulate the calcium cytosolic concentration. Here, we examined the cytoprotective effects of two GAL derivatives, namely compounds 4b and 8, against Aβ cytotoxicity on the human neuroblastoma cell line SH-SY5Y. The protective effects were tested at simultaneous administration, pre-incubation and post-incubation, with Aβ. GAL and curcumin (CU) were used in the study as reference compounds. It was found that 4b protects cells in a similar mode as GAL, while compound 8 and CU potentiate the toxic effects of Aβ. Allosteric stimulation of α7 nAChRs is suggested as a possible mechanism of the cytoprotectivity of 4b. These and previous findings characterize 4b as a prospective non-toxic multi-target agent against neurodegenerative disorders with inhibitory activity on acetylcholinesterase, antioxidant, and cytoprotective properties.
Collapse
Affiliation(s)
- Kirilka Mladenova
- Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Georgi Stavrakov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (G.S.); (M.A.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mariyana Atanasova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (G.S.); (M.A.)
| | - Svetla Petrova
- Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Jordan Doumanov
- Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (G.S.); (M.A.)
| |
Collapse
|
21
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Schöbi D, Homberg F, Frässle S, Endepols H, Moran RJ, Friston KJ, Tittgemeyer M, Heinzle J, Stephan KE. Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses. Neuroimage 2021; 237:118096. [PMID: 33940149 DOI: 10.1016/j.neuroimage.2021.118096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Drugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeutic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect in the reverse direction, i.e., to infer the status of specific neuromodulatory systems from electrophysiological measures. In this study, we provide proof-of-concept that the functional status of cholinergic (specifically muscarinic) receptors can be inferred from electrophysiological data using generative (dynamic causal) models. To this end, we used epidural EEG recordings over two auditory cortical regions during a mismatch negativity (MMN) paradigm in rats. All animals were treated, across sessions, with muscarinic receptor agonists and antagonists at different doses. Together with a placebo condition, this resulted in five levels of muscarinic receptor status. Using a dynamic causal model - embodying a small network of coupled cortical microcircuits - we estimated synaptic parameters and their change across pharmacological conditions. The ensuing parameter estimates associated with (the neuromodulation of) synaptic efficacy showed both graded muscarinic effects and predictive validity between agonistic and antagonistic pharmacological conditions. This finding illustrates the potential utility of generative models of electrophysiological data as computational assays of muscarinic function. In application to EEG data of patients from heterogeneous spectrum diseases, e.g. schizophrenia, such models might help identify subgroups of patients that respond differentially to cholinergic treatments. SIGNIFICANCE STATEMENT: In psychiatry, the vast majority of pharmacological treatments affect actions of neuromodulatory transmitters, e.g. dopamine or acetylcholine. As treatment is largely trial-and-error based, one of the goals for computational psychiatry is to construct mathematical models that can serve as "computational assays" and infer the status of specific neuromodulatory systems in individual patients. This translational neuromodeling strategy has great promise for electrophysiological data in particular but requires careful validation. The present study demonstrates that the functional status of cholinergic (muscarinic) receptors can be inferred from electrophysiological data using dynamic causal models of neural circuits. While accuracy needs to be enhanced and our results must be replicated in larger samples, our current results provide proof-of-concept for computational assays of muscarinic function using EEG.
Collapse
Affiliation(s)
- Dario Schöbi
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland
| | - Fabienne Homberg
- Boston Scientific Medizintechnik GmbH, Daniel-Goldbach-Strasse 17-27, 40880 Ratingen, Germany
| | - Stefan Frässle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland
| | - Heike Endepols
- Preclinical Imaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Rosalyn J Moran
- Department of Neuroimaging, Institute for Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London Se5 8AF, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3AR, UK
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Cluster of Excellence in Cellular Stress and Aging associated Disease (CECAD), 50931 Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland.
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3AR, UK; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| |
Collapse
|
23
|
Benfante R, Di Lascio S, Cardani S, Fornasari D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin Exp Res 2021; 33:823-834. [PMID: 31583530 DOI: 10.1007/s40520-019-01359-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
Neuroinflammation and cholinergic dysfunction, leading to cognitive impairment, are hallmarks of aging and neurodegenerative disorders, including Alzheimer's disease (AD). Acetylcholinesterase inhibitors (AChEI), the symptomatic therapy in AD, attenuate and delay the cognitive deficit by enhancing cholinergic synapses. The α7 nicotinic acetylcholine (ACh) receptor has shown a double-edged sword feature, as it binds with high affinity Aβ1-42, promoting intracellular accumulation and Aβ-induced tau phosphorylation, but also exerts neuroprotection by stimulating anti-apoptotic pathways. Moreover, it mediates peripheral and central anti-inflammatory response, being the effector player of the activation of the cholinergic anti-inflammatory pathway (CAIP), that, by decreasing the release of TNF-α, IL-1β, and IL-6, it may have a role in improving cognition. The finding in preclinical models that, in addition to their major function (choline esterase inhibition) AChEIs have neuroprotective properties mediated via α7nAChR and modulate innate immunity, possibly as a result of the increased availability of acetylcholine activating the CAIP, pave the way for new pharmacological intervention in AD and other neurological disorders that are characterized by neuroinflammation. CHRFAM7A is a human-specific gene acting as a dominant negative inhibitor of α7nAChR function, also suggesting a role in affecting human cognition and memory by altering α7nAChR activities in the central nervous system (CNS). This review will summarize the current knowledge on the cholinergic anti-inflammatory pathway in aging-related disorders, and will argue that the presence of the human-restricted CHRFAM7A gene might play a fundamental role in the regulation of CAIP and in the response to AChEI.
Collapse
Affiliation(s)
- Roberta Benfante
- CNR-Neuroscience Institute, Via Vanvitelli 32, 20129, Milan, Italy.
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Simona Di Lascio
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| | - Silvia Cardani
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| | - Diego Fornasari
- CNR-Neuroscience Institute, Via Vanvitelli 32, 20129, Milan, Italy
- Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy
| |
Collapse
|
24
|
Crews FT, Fisher R, Deason C, Vetreno RP. Loss of Basal Forebrain Cholinergic Neurons Following Adolescent Binge Ethanol Exposure: Recovery With the Cholinesterase Inhibitor Galantamine. Front Behav Neurosci 2021; 15:652494. [PMID: 33716687 PMCID: PMC7953159 DOI: 10.3389/fnbeh.2021.652494] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Binge drinking and alcohol abuse are common during adolescence and cause both cognitive deficits and lasting cholinergic pathology in the adult basal forebrain. Acetylcholine is anti-inflammatory and studies using the preclinical adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2 day on/2 day off from postnatal day [P]25 to P54) model of human adolescent binge drinking report decreased basal forebrain cholinergic neurons (BFCNs) and induction of proinflammatory genes that persist long into adulthood. Recent studies link AIE-induced neuroimmune activation to cholinergic pathology, but the underlying mechanisms contributing to the persistent loss of BFCNs are unknown. We report that treatment with the cholinesterase inhibitor galantamine (4.0 mg/kg, i.p.) administered during AIE (i.e., P25-P54) or following the conclusion of AIE (i.e., P57-P72) recovered the persistent loss of cholinergic neuron phenotype markers (i.e., ChAT, TrkA, and p75NTR) and somal shrinkage of residual ChAT + neurons known to persist in AIE-exposed adults. Galantamine treatment also recovered the AIE-increased expression of the proinflammatory receptors TLR4 and RAGE, the endogenous TLR4/RAGE agonist HMGB1, and the transcription activation marker pNF-κB p65. Interestingly, we find BFCNs express TLR4 and RAGE, and that AIE treatment increased pNF-κB p65 expression in adult ChAT + IR neurons, consistent with intracellular HMGB1-TLR4/RAGE signaling within BFCNs. AIE increased epigenetic transcription silencing markers (i.e., H3K9me2 and H3K9me3) in the adult basal forebrain and H3K9me2 occupancy at cholinergic phenotype gene promoters (i.e., ChAT and TrkA). The finding of no AIE-induced changes in total basal forebrain NeuN + neurons with galantamine reversal of AIE-induced ChAT + neuron loss, TLR4/RAGE-pNF-κB p65 signals, and epigenetic transcription silencing markers suggests that AIE does not cause cell death, but rather the loss of the cholinergic phenotype. Together, these data suggest that AIE induces HMGB1-TLR4/RAGE-pNF-κB p65 signals, causing the loss of cholinergic phenotype (i.e., ChAT, TrkA, and p75NTR) through epigenetic histone transcription silencing that result in the loss of the BFCN phenotype that can be prevented and restored by galantamine.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachael Fisher
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chloe Deason
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
25
|
Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci 2021; 78:1051-1064. [PMID: 32472188 PMCID: PMC11071962 DOI: 10.1007/s00018-020-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, β2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4β2 and α4β2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and β2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.
Collapse
Affiliation(s)
- Marie S Prevost
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Hichem Bouchenaki
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Nathalie Barilone
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Marc Gielen
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France.
- Sorbonne Université, 21, rue de l'école de médecine, 75006, Paris, France.
| | | |
Collapse
|
26
|
Mesoy SM, Lummis SCR. M4, the Outermost Helix, is Extensively Involved in Opening of the α4β2 nACh Receptor. ACS Chem Neurosci 2021; 12:133-139. [PMID: 33295751 DOI: 10.1021/acschemneuro.0c00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each of the five subunits has four transmembrane α-helices (M1-M4), with M2 lining the pore, then M1 and M3, and with M4 outermost and adjacent to the membrane lipids. Despite its remote location, M4 contributes both to receptor assembly and gating in pLGICs where it has been examined. This study probes the role of M4 residues in the α4β2 nAChR using site-directed mutagenesis to individually mutate each residue to alanine, followed by expression in HEK293 cells and then characterization using membrane potential sensitive dye and radioligand binding. Two of the resulting mutant receptors showed altered EC50s, while 13 were nonfunctional, although coexpression with the chaperones RIC3 and nAChO resulted in 4 of these responding to agonist. Of the remaining 9, radioligand binding with epibatidine showed that 8 were expressed, suggesting these residues may play a role in channel opening. These data differ from similar studies in other pLGIC, where few or no Ala mutants in M4 ablate function, and they suggest that the α4β2 nAChR M4 may play a more significant role than in related receptors.
Collapse
Affiliation(s)
- Susanne M. Mesoy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
27
|
Evidence for positive allosteric modulation of cognitive-enhancing effects of nicotine by low-dose galantamine in rats. Pharmacol Biochem Behav 2020; 199:173043. [PMID: 33022302 DOI: 10.1016/j.pbb.2020.173043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Cognitive-enhancing effects of nicotinic acetylcholine receptor (nAChR) agonists may be of therapeutic potential in disease states characterized by nAChR hypofunction; however, effects tend to be of small magnitude and unlikely clinical significance. The co-administration of a nAChR positive allosteric modulator (PAM) may enable larger effects by potentiating nAChR responses to an agonist. The acetylcholinesterase (AChE) inhibitor galantamine is a nAChR PAM at a low dose range. A recent clinical study testing effects of a single small dose of galantamine found evidence for synergistic effects with nicotine on one of several cognitive measures. In that study, residual AChE inhibition may have obscured interactions on other measures. The present study aimed at examining small galantamine doses devoid of AChE inhibitory activity in a rodent model of attention. The effects of galantamine (0.03-0.25 mg/kg s.c.) were tested in the presence and absence of nicotine (0.1 mg/kg s.c.) in rats performing the 5-Choice Serial Reaction Time Task, employing a within-subject factorial design. There were no effects on response accuracy of either nicotine or galantamine alone. However, the combination of nicotine and 0.06 mg/kg of galantamine significantly enhanced accuracy. AChE activity assays confirmed that, at this dose, galantamine was devoid of AChE inhibitory activity in the brain. The results suggest that cognitive-enhancing effects of nicotine may be potentiated or uncovered by an extremely small dose of galantamine, well below its typical therapeutic range in humans. Furthermore, these findings provide a general proof-of-principle for a nAChR agonist and PAM combination strategy for cognitive enhancement.
Collapse
|
28
|
Geerts H, Spiros A. Simulating the Effects of Common Comedications and Genotypes on Alzheimer's Cognitive Trajectory Using a Quantitative Systems Pharmacology Approach. J Alzheimers Dis 2020; 78:413-424. [PMID: 33016912 DOI: 10.3233/jad-200688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Many Alzheimer's disease patients in clinical practice are on polypharmacy for treatment of comorbidities. OBJECTIVE While pharmacokinetic interactions between drugs have been relatively well established with corresponding treatment guidelines, many medications and common genotype variants also affect central brain circuits involved in cognitive trajectory, leading to complex pharmacodynamic interactions and a large variability in clinical trials. METHODS We applied a mechanism-based and ADAS-Cog calibrated Quantitative Systems Pharmacology biophysical model of neuronal circuits relevant for cognition in Alzheimer's disease, to standard-of-care cholinergic therapy with COMTVal158Met, 5-HTTLPR rs25531, and APOE genotypes and with benzodiazepines, antidepressants, and antipsychotics, all together 9,585 combinations. RESULTS The model predicts a variability of up to 14 points on ADAS-Cog at baseline (COMTVV 5-HTTLPRss APOE 4/4 combination is worst) and a four-fold range for the rate of progression. The progression rate is inversely proportional to baseline ADAS-Cog. Antidepressants, benzodiazepines, first-generation more than second generation, and most antipsychotics with the exception of aripiprazole worsen the outcome when added to standard-of-care in mild cases. Low dose second-generation benzodiazepines revert the negative effects of risperidone and olanzapine, but only in mild stages. Non APOE4 carriers with a COMTMM and 5HTTLPRLL are predicted to have the best cognitive performance at baseline but deteriorate somewhat faster over time. However, this effect is significantly modulated by comedications. CONCLUSION Once these simulations are validated, the platform can in principle provide optimal treatment guidance in clinical practice at an individual patient level, identify negative pharmacodynamic interactions with novel targets and address protocol amendments in clinical trials.
Collapse
|
29
|
Koola MM, Looney SW, Hong H, Pillai A, Hou W. Meta-analysis of randomized controlled trials of galantamine in schizophrenia: significant cognitive enhancement. Psychiatry Res 2020; 291:113285. [PMID: 32763546 DOI: 10.1016/j.psychres.2020.113285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairments are core features of schizophrenia and the best predictor of functional outcome. Cholinergic system and alpha-7 nicotinic acetylcholine (α7nACh) receptors are strongly implicated in the pathophysiologic mechanisms associated with cognitive impairments in schizophrenia. Galantamine is not only a reversible, competitive inhibitor of acetylcholinesterase but also a type I positive allosteric modulator of α7nACh receptors. The objective of this meta-analysis was to examine the efficacy of galantamine for cognitive symptoms of schizophrenia. In the meta-analysis that included six randomized controlled trials (RCTs, N=226), cognitive impairments significantly improved with galantamine compared to placebo, with a small Hedges' g effect size of 0.233. This finding is consistent with other RCTs in schizophrenia with medications with a similar mechanism of action. On the basis of the results from all the failed (although some efficacy has been shown) RCTs to date in schizophrenia, targeting only one pathophysiologic mechanism may be insufficient to detect a clinically meaningful signal. Nicotinergic medications, like any other add-on medications, are unlikely to be effective as stand-alone medications. Hence, these medications may have to be combined with other medications with complementary mechanisms such as glutamatergic/N-methyl-D-aspartate systems to detect a meaningful effect size for the three domains of psychopathology.
Collapse
Affiliation(s)
- Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794, USA.
| | - Stephen W Looney
- Department of Population Health Sciences, Division of Biostatistics and Data Science, Augusta University, Augusta, GA, USA
| | - Houlin Hong
- Department of Family, Population and Preventive Medicine, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wei Hou
- Department of Family, Population and Preventive Medicine, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
30
|
Kan T, Yoshikawa M, Watanabe M, Miura M, Ito K, Matsuda M, Iwao K, Kobayashi H, Suzuki T, Suzuki T. Sialorphin Potentiates Effects of [Met 5]Enkephalin without Toxicity by Action other than Peptidase Inhibition. J Pharmacol Exp Ther 2020; 375:104-114. [PMID: 32759368 DOI: 10.1124/jpet.120.266080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
This dose-response study investigated the effects of sialorphin on [Met5]enkephalin (ME)-induced inhibition of contractions in mouse vas deferens and antinociception in male rats. Differences were compared among combinations of three chemical peptidase inhibitors: amastatin, captopril, and phosphoramidon. The ratio of potencies of ME in mouse vas deferens pretreated with both sialorphin (100 µM) and a mixture of the three peptidase inhibitors (1 µM each) was higher than that with the mixture of peptidase inhibitors alone at any dose. Intrathecal administration of sialorphin (100-400 nmol) significantly and dose dependently increased ME (3 nmol)-induced antinociception with the mixture of three peptidase inhibitors (10 nmol each). The degree of antinociception with a combination of any two of the peptidase inhibitors (10 nmol each) in the absence of sialorphin was less than that in the presence of sialorphin (200 nmol). Pretreatment with both sialorphin (200 nmol) and the mixture of three peptidase inhibitors (10 nmol each) produced an approximately 100-fold augmentation in ME (10 nmol)-induced antinociception, but without signs of toxicity such as motor dysfunction in rats. Radioligand receptor binding assay revealed that sialorphin did not affect either binding affinity or maximal binding capacity of [d-Ala2,N-MePhe4,Gly-ol5]enkephalin. These results indicate that sialorphin potentiates the effects of ME without toxicity by a mechanism other than peptidase inhibition and with no effect on its affinity to µ-opioid receptors. SIGNIFICANCE STATEMENT: Sialorphin is regarded as an endogenous peptidase inhibitor that interacts with enkephalin-degrading enzymes. The results of these in vitro and in vivo studies confirm that sialorphin potentiates the effects of [Met5]enkephalin without toxicity by an action other than peptidase inhibition. This suggests that sialorphin offers the advantage of reducing or negating the side effects of opioid drugs and endogenous opioid peptides.
Collapse
Affiliation(s)
- Takugi Kan
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Masanobu Yoshikawa
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Mariko Watanabe
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Masaaki Miura
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Kenji Ito
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Mitsumasa Matsuda
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Kayoko Iwao
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Kobayashi
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Takeshi Suzuki
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| | - Toshiyasu Suzuki
- Departments of Anesthesiology (T.K., M.W., M.Mi., K.I., M.Ma., Ta.S., To.S.) and Clinical Pharmacology (M.Y., H.K.) and Education and Research Support Center (K.I.), Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
31
|
Ma Y, Elefteriou F. Brain-Derived Acetylcholine Maintains Peak Bone Mass in Adult Female Mice. J Bone Miner Res 2020; 35:1562-1571. [PMID: 32282950 PMCID: PMC8087457 DOI: 10.1002/jbmr.4024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Preclinical and clinical data support a role of the sympathetic nervous system in the regulation of bone remodeling, but the contribution of parasympathetic arm of the autonomic nervous system to bone homeostasis remains less studied. In this study, we sought to determine whether acetylcholine (ACh) contributes to the regulation of bone remodeling after peak bone mass acquisition. We show that reduced central ACh synthesis in mice heterozygous for the choline transporter (ChT) leads to a decrease in bone mass in young female mice, thus independently confirming the previously reported beneficial effect of ACh signaling on bone mass accrual. Increasing brain ACh levels through the use of the blood brain barrier (BBB)-permeable acetylcholinesterase inhibitor (AChEI) galantamine increased trabecular bone mass in adult female mice, whereas a peripheral increase in ACh levels induced by the BBB-impermeable AChEI pyridostigmine caused trabecular bone loss. AChEIs did not alter skeletal norepinephrine level, and induced an overall increase in osteoblast and osteoclast densities, two findings that do not support a reduction in sympathetic outflow as the mechanism involved in the pro-anabolic effect of galantamine on the skeleton. In addition, we did not detect changes in the commitment of skeletal progenitor cells to the osteoblast lineage in vivo in AChEI-treated mice, nor a direct impact of these drugs in vitro on the survival and differentiation of osteoblast and osteoclast progenitors. Last, ChT heterozygosity and galantamine treatment triggered bone changes in female mice only, thus revealing the existence of a gender-specific skeletal response to brain ACh level. In conclusion, this study supports the stimulatory effect of central ACh on bone mass accrual, shows that it also promotes peak bone mass maintenance in adult mice, and suggests that central ACh regulates bone mass via different mechanisms in growing versus sexually mature mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yun Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. Int J Mol Sci 2020; 21:ijms21144918. [PMID: 32664647 PMCID: PMC7404387 DOI: 10.3390/ijms21144918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a key physiological phenomenon that can be pervasive when dysregulated. Persistent chronic inflammation precedes several pathophysiological conditions forming one of the critical cellular homeostatic checkpoints. With a steady global surge in inflammatory diseases, it is imperative to delineate underlying mechanisms and design suitable drug molecules targeting the cellular partners that mediate and regulate inflammation. Nicotinic acetylcholine receptors have a confirmed role in influencing inflammatory pathways and have been a subject of scientific scrutiny underlying drug development in recent years. Drugs designed to target allosteric sites on the nicotinic acetylcholine receptors present a unique opportunity to unravel the role of the cholinergic system in regulating and restoring inflammatory homeostasis. Such a therapeutic approach holds promise in treating several inflammatory conditions and diseases with inflammation as an underlying pathology. Here, we briefly describe the potential of cholinergic allosterism and some allosteric modulators as a promising therapeutic option for the treatment of neuroinflammation.
Collapse
|
33
|
Stone TW. Does kynurenic acid act on nicotinic receptors? An assessment of the evidence. J Neurochem 2020; 152:627-649. [PMID: 31693759 PMCID: PMC7078985 DOI: 10.1111/jnc.14907] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
As a major metabolite of kynurenine in the oxidative metabolism of tryptophan, kynurenic acid is of considerable biological and clinical importance as an endogenous antagonist of glutamate in the central nervous system. It is most active as an antagonist at receptors sensitive to N-methyl-D-aspartate (NMDA) which regulate neuronal excitability and plasticity, brain development and behaviour. It is also thought to play a causative role in hypo-glutamatergic conditions such as schizophrenia, and a protective role in several neurodegenerative disorders, notably Huntington's disease. An additional hypothesis, that kynurenic acid could block nicotinic receptors for acetylcholine in the central nervous system has been proposed as an alternative mechanism of action of kynurenate. However, the evidence for this alternative mechanism is highly controversial, partly because at least eight earlier studies concluded that kynurenic acid blocked NMDA receptors but not nicotinic receptors and five subsequent, independent studies designed to repeat the results have failed to do so. Many studies considered to support the alternative 'nicotinic' hypothesis have been based on the use of analogs of kynurenate such as 7-chloro-kynurenic acid, or putatively nicotinic modulators such as galantamine, but a detailed analysis of the pharmacology of these compounds suggests that the results have often been misinterpreted, especially since the pharmacology of galantamine itself has been disputed. This review examines the evidence in detail, with the conclusion that there is no confirmed, reliable evidence for an antagonist activity of kynurenic acid at nicotinic receptors. Therefore, since there is overwhelming evidence for kynurenate acting at ionotropic glutamate receptors, especially NMDAR glutamate and glycine sites, with some activity at GPR35 sites and Aryl Hydrocarbon Receptors, results with kynurenic acid should be interpreted only in terms of these confirmed sites of action.
Collapse
Affiliation(s)
- Trevor W. Stone
- Institute for Neuroscience and PsychologyUniversity of GlasgowGlasgowG12 8QQUK
- Present address:
Kennedy InstituteNDORMSUniversity of OxfordOxfordOX3 7FYUK
| |
Collapse
|
34
|
Wilkerson JL, Deba F, Crowley ML, Hamouda AK, McMahon LR. Advances in the In vitro and In vivo pharmacology of Alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology 2020; 168:108008. [PMID: 32113032 DOI: 10.1016/j.neuropharm.2020.108008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Receptors containing α4 and β2 subunits are a major neuronal nicotinic acetylcholine receptor (nAChR) subtype in the brain. This receptor plays a critical role in nicotine addiction, with potential smoking cessation therapeutics producing modulation of α4β2 nAChR. In addition, compounds that act as agonists at α4β2 nAChR may be useful for the treatment of pathological pain. Further, as the α4β2 nAChR has been implicated in cognition, therapeutics that act as α4β2 nAChR agonists are also being examined as treatments for cognitive disorders and neurological diseases that impact cognitive function, such as Alzheimer's disease and schizophrenia. This review will cover the molecular in vitro evidence that allosteric modulators of the α4β2 neuronal nAChR provide several advantages over traditional α4β2 nAChR orthosteric ligands. Specifically, we explore the concept that nAChR allosteric modulators allow for greater pharmacological selectivity, while minimizing potential deleterious off-target effects. Further, here we discuss the development and preclinical in vivo behavioral assessment of allosteric modulators at the α4β2 neuronal nAChR as therapeutics for smoking cessation, pathological pain, as well as cognitive disorders and neurological diseases that impact cognitive function. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| | - Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States
| | - Morgan L Crowley
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States.
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
35
|
Evidence for positive allosteric modulation of cognitive-enhancing effects of nicotine in healthy human subjects. Psychopharmacology (Berl) 2020; 237:219-230. [PMID: 31686175 PMCID: PMC6952331 DOI: 10.1007/s00213-019-05363-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022]
Abstract
RATIONALE Cognitive benefits of nicotinic acetylcholine receptor (nAChR) agonists are well established but have generally been of small magnitude and uncertain clinical significance. A way of raising the effect size may be to facilitate agonist-induced responses by co-administering a nAChR positive allosteric modulator (PAM). OBJECTIVE The aim was to test whether galantamine, a PAM at several nAChR subtypes, can potentiate the cognitive-enhancing effects of nicotine. METHODS Twenty-six adult never-smokers were treated, in a double-blind counterbalanced sequence, with nicotine (7 mg/24 h, transdermally) and galantamine (4 mg, p.o.) combined, nicotine alone, galantamine alone, and double placebo. A low dose of galantamine was chosen to minimize acetylcholinesterase inhibition, which was verified in blood assays. In each condition, participants were tested with three cognitive tasks. RESULTS Nicotine significantly improved reaction time (RT) and signal detection in a visuospatial attention task and the Rapid Visual Information Processing Task. Galantamine did not modulate these effects. A trend toward RT reduction by galantamine correlated with acetylcholinesterase inhibition. In a change detection task, there were no effects of nicotine or galantamine alone on accuracy or RT. However, both drugs combined acted synergistically to reduce RT. This effect was not associated with acetylcholinesterase inhibition. CONCLUSIONS A pattern consistent with allosteric potentiation of nicotine effects by galantamine was observed on one of six performance measures. This may reflect specific nAChR subtype involvement, or additional pharmacological actions of galantamine may have overshadowed similar interactions on other measures. The finding suggests that allosteric potentiation of nAChR agonist-induced cognitive benefits is possible in principle.
Collapse
|
36
|
Wang YM, Ming WZ, Liang H, Wang YJ, Zhang YH, Meng DL. Isoquinolines from national herb Corydalis tomentella and neuroprotective effect against lipopolysaccharide-induced BV2 microglia cells. Bioorg Chem 2020; 95:103489. [DOI: 10.1016/j.bioorg.2019.103489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
|
37
|
Saito T, Hisahara S, Iwahara N, Emoto MC, Yokokawa K, Suzuki H, Manabe T, Matsumura A, Suzuki S, Matsushita T, Kawamata J, Sato-Akaba H, Fujii HG, Shimohama S. Early administration of galantamine from preplaque phase suppresses oxidative stress and improves cognitive behavior in APPswe/PS1dE9 mouse model of Alzheimer's disease. Free Radic Biol Med 2019; 145:20-32. [PMID: 31536772 DOI: 10.1016/j.freeradbiomed.2019.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that progressively impairs memory and cognition. Deposition of amyloid-β (Aβ) peptides is the most important pathophysiological hallmark of AD. Oxidative stress induced by generation of reactive oxygen species (ROS) is a prominent phenomenon in AD and known to occur early in the course of AD. Several reports suggest a relationship between change in redox status and AD pathology including progressive Aβ deposition, glial cell activation, and inflammation. Galantamine is an acetylcholinesterase inhibitor and has been reported to have an oxidative stress inhibitory function. In the present study, galantamine was administered orally to AD model mice from before the appearance of Aβ plaques (preplaque phase), and in vivo change in redox status of the brain was measured using electron paramagnetic resonance (EPR) imaging. Administration of galantamine from the preplaque phase ameliorated memory decline in Morris water maze test and novel object recognition test. Monitoring of the redox status of the brain using EPR imaging showed that galantamine treatment improved the unbalanced redox state. Additionally, galantamine administration enhanced microglial function to promote Aβ clearance, reducing the Aβ-positive area in the cortex and amount of insoluble Aβ in the brain. In contrast, galantamine treatment from the preplaque phase suppressed the production of proinflammatory cytokines through neurotoxic microglial activity. Therefore, galantamine administration from the preplaque phase may have the potential of clinical application for the prevention of AD. In addition, our results demonstrate the usefulness of EPR imaging for speedy and quantitative evaluation of the efficacy of disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Taro Saito
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Naotoshi Iwahara
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan; Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Miho C Emoto
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, 002-8072, Japan
| | - Kazuki Yokokawa
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Hiromi Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Tatsuo Manabe
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Akihiro Matsumura
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Syuuichirou Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Matsushita
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan
| | - Jun Kawamata
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hideo Sato-Akaba
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Hirotada G Fujii
- Cancer Preventive Institute, Health Sciences University of Hokkaido, Ishikari, Hokkaido, 061-0293, Japan
| | - Shun Shimohama
- Department of Neurology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan.
| |
Collapse
|
38
|
Jackson A, Alkhlaif Y, Papke RL, Brunzell DH, Damaj MI. Impact of modulation of the α7 nicotinic acetylcholine receptor on nicotine reward in the mouse conditioned place preference test. Psychopharmacology (Berl) 2019; 236:3593-3599. [PMID: 31302720 PMCID: PMC6895411 DOI: 10.1007/s00213-019-05331-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE The α7 nicotinic acetylcholine receptor (nAChR) has been implicated as a target in modulating nicotine reward. However, the effect of pharmacological agents that have been shown to alter the channel properties of the α7 nAChR is not well understood in nicotine reward. OBJECTIVES This study aimed to investigate the impact of α7 nAChR pharmacological modulation on nicotine conditioned place preference (CPP) in mice by using positive allosteric modulators (PAMs) and a silent agonist. METHODS The effect of the orthosteric α7 nAChR full agonist PNU282987 (1.3 and 9 mg/kg, s.c.), Type I α7 PAM NS1738 (1 and 10 mg/kg; i.p.), the Type II α7 PAM PNU120596 (0.3, 1, and 3 mg/kg, i.p.), and the α7 silent agonist NS6740 (1 and 3 mg/kg, i.p) on nicotine CPP was measured in mice. Mice were conditioned with either saline or nicotine (0.5 mg/kg) for 3 days in the CPP paradigm. RESULTS The α7 full orthosteric agonist PNU282987 and the Type II α7 nAChR PAM PNU120596 reduced nicotine CPP, while the silent agonist NS6740 and Type I PAM NS1738 had no effect. The effects of PNU282987 and PNU120596 did not have an effect on morphine CPP. CONCLUSIONS Taken together, our results suggest that modulation of the α7 nAChR can play important roles in nicotine CPP in mice. In addition, the Type II α7 nAChR PAM PNU120596 attenuated nicotine reward suggesting that endogenous acetylcholine/choline tone is sufficient to reduce nicotine CPP. These findings highlight a beneficial effect of using α7 nAChR PAMs in nicotine reward.
Collapse
Affiliation(s)
- Asti Jackson
- Department of Psychiatry, Yale School of Medicine, 34 Park St., New Haven, CT, 06519, USA.
| | - Y. Alkhlaif
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - R. L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610-0267, USA
| | - D. H. Brunzell
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. I. Damaj
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
39
|
Aponte EA, Schöbi D, Stephan KE, Heinzle J. Computational Dissociation of Dopaminergic and Cholinergic Effects on Action Selection and Inhibitory Control. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:364-372. [PMID: 31952937 DOI: 10.1016/j.bpsc.2019.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/06/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Patients with schizophrenia make more errors than healthy subjects in the antisaccade task. In this paradigm, participants are required to inhibit a reflexive saccade to a target and to select the correct action (a saccade in the opposite direction). While the precise origin of this deficit is not clear, it has been connected to aberrant dopaminergic and cholinergic neuromodulation. METHODS To study the impact of dopamine and acetylcholine on inhibitory control and action selection, we administered two selective drugs (levodopa 200 mg/galantamine 8 mg) to healthy volunteers (N = 100) performing the antisaccade task. The computational model SERIA (stochastic early reaction, inhibition, and late action) was employed to separate the contribution of inhibitory control and action selection to empirical reaction times and error rates. RESULTS Modeling suggested that levodopa improved action selection (at the cost of increased reaction times) but did not have a significant effect on inhibitory control. By contrast, according to our model, galantamine affected inhibitory control in a dose-dependent fashion, reducing inhibition failures at low doses and increasing them at higher levels. These effects were sufficiently specific that the computational analysis allowed for identifying the drug administered to an individual with 70% accuracy. CONCLUSIONS Our results do not support the hypothesis that elevated tonic dopamine strongly impairs inhibitory control. Rather, levodopa improved the ability to select correct actions. However, inhibitory control was modulated by cholinergic drugs. This approach may provide a starting point for future computational assays that differentiate neuromodulatory abnormalities in heterogeneous diseases like schizophrenia.
Collapse
Affiliation(s)
- Eduardo A Aponte
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Dario Schöbi
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Blesa R, Toriyama K, Ueda K, Knox S, Grossberg G. Strategies for Continued Successful Treatment in Patients with Alzheimer's Disease: An Overview of Switching Between Pharmacological Agents. Curr Alzheimer Res 2019; 15:964-974. [PMID: 29895249 PMCID: PMC6142408 DOI: 10.2174/1567205015666180613112040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/11/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
Introduction: Alzheimer’s disease (AD) is the most common cause of dementia, characterized by a progressive decline in cognition and function. Current treatment options for AD include the cholines-terase inhibitors (ChEIs) donepezil, galantamine, and rivastigmine, as well as the N-methyl-D-aspartate receptor antagonist memantine. Treatment guidelines recommend the use of ChEIs as the standard of care first-line therapy. Several randomized clinical studies have demonstrated the benefits of ChEIs on cogni-tion, global function, behavior and activities of daily living. However, patients may fail to achieve sus-tained clinical benefits from ChEIs due to lack/loss of efficacy and/or safety, tolerability issues, and poor adherence to the treatment. The purpose of this review is to explore the strategies for continued successful treatment in patients with AD. Methods: Literature search was performed for articles published in PubMed and MEDLINE, using pre-specified search terms. Articles were critically evaluated for inclusion based on their titles, abstracts, and full text of the publication. Results and Conclusion: The findings of this review indicate that dose up-titration and switching between ChEIs may help to improve response to ChEI treatment and also address issues such as lack/loss of effica-cy or safety/tolerability in patients with AD. However, well-designed studies are needed to provide robust evidence.
Collapse
Affiliation(s)
- Rafael Blesa
- Memory Unit, Department of Neurology, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | | | - Sean Knox
- Novartis Pharma AG, Basel, Switzerland
| | - George Grossberg
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
41
|
Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci Rep 2019; 9:11922. [PMID: 31417133 PMCID: PMC6695423 DOI: 10.1038/s41598-019-47462-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022] Open
Abstract
Donepezil, a therapeutic drug for Alzheimer’s disease, ameliorates cognitive dysfunction through selective inhibition of acetylcholinesterase. However, recent studies have also reported off-target effects of donepezil that likely contribute to its therapeutic effects. In this study, we investigated the (i) role of donepezil in amyloid precursor protein (APP) processing and (ii) involvement of sorting nexin protein 33 (SNX33), a member of the sorting nexin protein family, in this processing. Results showed that donepezil induces an increase in SNX33 expression in primary cortical neurons. The secretion of sAPPα in culture media increased, whereas the expression of full-length APP in the cell lysate remained unchanged. Exposure of cortical cultures to donepezil led to a decrease in amyloid β (Aβ) protein levels in a concentration- and time-dependent manner. This decrease was not affected by concomitant treatment with acetylcholine receptor antagonists. SNX33 knockdown by target-specific morpholino oligos inhibited the effects of donepezil. Donepezil treatment increased cell membrane surface expression of APP in SNX33 expression-dependent manner. These results suggested that donepezil decreases the level of Aβ by increasing SNX33 expression and APP cleavage by α-secretase in cortical neurons.
Collapse
|
42
|
Spatial memory deficits in mice induced by chemotherapeutic agents are prevented by acetylcholinesterase inhibitors. Cancer Chemother Pharmacol 2019; 84:579-589. [DOI: 10.1007/s00280-019-03881-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/27/2019] [Indexed: 11/25/2022]
|
43
|
Singhal M, Merino V, Rosini M, Cavalli A, Kalia YN. Controlled Iontophoretic Delivery in Vitro and in Vivo of ARN14140-A Multitarget Compound for Alzheimer's Disease. Mol Pharm 2019; 16:3460-3468. [PMID: 31241959 DOI: 10.1021/acs.molpharmaceut.9b00252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ARN14140 is a galantamine-memantine conjugate that acts upon both cholinergic and glutamatergic pathways for better management of Alzheimer's disease. Poor oral bioavailability and pharmacokinetics meant that earlier preclinical in vivo studies employed intracerebroventricular injection to administer ARN14140 directly to the brain. The aim of the present study was to evaluate the feasibility of using constant current transdermal iontophoresis for the noninvasive systemic delivery of ARN14140 and to quantify the amounts present in the blood and the brain. Preliminary experiments in vitro were performed using porcine skin and validated with human skin. Cumulative ARN14140 permeation across the skin increased linearly with current density and concentration. Delivery efficiency (i.e., fraction of the amount applied that is delivered) reached an exceptional 76.9%. Statistically equivalent delivery was observed after iontophoresis across human and porcine skin. In vivo studies in male Wistar rats showed that iontophoretic transport of ARN14140 could be controlled using the current density (426.7 ± 42 and 1118.3 ± 73 nmol/cm2 at 0.15 and 0.5 mA/cm2 for 6 h) and demonstrated that transdermal iontophoresis was able to deliver ARN14140 noninvasively to the brain. This is the first report quantifying drug levels in the blood and the brain following transdermal iontophoresis.
Collapse
Affiliation(s)
- Mayank Singhal
- School of Pharmaceutical Sciences , University of Geneva and University of Lausanne , Geneva , Switzerland
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politecnica de València , Universitat de València , Valencia , Spain.,Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia , Universitat de València , Valencia , Spain
| | - Michela Rosini
- Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology , University of Bologna , Bologna , Italy.,Drug Discovery and Development , Istituto Italiano di Tecnologia , Genova , Italy
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences , University of Geneva and University of Lausanne , Geneva , Switzerland
| |
Collapse
|
44
|
Gomes RC, Sakata RP, Almeida WP, Coelho F. Spirocyclohexadienones as an Uncommon Scaffold for Acetylcholinesterase Inhibitory Activity. Med Chem 2019; 15:373-382. [PMID: 30411689 DOI: 10.2174/1573406414666181109114214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/04/2018] [Accepted: 10/30/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND The most important cause of dementia affecting elderly people is the Alzheimer's disease (AD). Patients affected by this progressive and neurodegenerative disease have severe memory and cognitive function impairments. Some medicines used for treating this disease in the early stages are based on inhibition of acetylcholinesterase. Population aging should contribute to increase the cases of patients suffering from Alzheimer's disease, thus requiring the development of new therapeutic entities for the treatment of this disease. METHODS The objective of this work is to identify new substances that have spatial structural similarity with donepezil, an efficient commercial drug used for the treatment of Alzheimer's disease, and to evaluate the capacity of inhibition of these new substances against the enzyme acetylcholinesterase. RESULTS Based on a previous results of our group, we prepared a set of 11 spirocyclohexadienones with different substitutions patterns in three steps and overall yield of up to 59%. These compounds were evaluated in vitro against acetylcholinesterase. We found that eight of them are able to inhibit the acetylcholinesterase activity, with IC50 values ranging from 0.12 to 12.67 µM. Molecular docking study indicated that the spirocyclohexadienone, 9e (IC50 = 0.12 µM), a mixedtype AChE inhibitor, showed a good interaction at active site of the enzyme, including the cationic (CAS) and the peripheral site (PAS). CONCLUSION We described the first study aimed at investigating the biological properties of spirocyclohexadienones as acetylcholinesterase inhibitors. Thus, we have identified an inhibitor, which provided valuable insights for further studies aimed at the discovery of more potent acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Ralph C Gomes
- LaboratOrio de SIntese de Produtos Naturais e Farmacos - Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970 - Campinas, SP, Brazil
| | - Renata P Sakata
- LaboratOrio de SIntese de Produtos Naturais e Farmacos - Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970 - Campinas, SP, Brazil
| | - Wanda P Almeida
- LaboratOrio de SIntese de Produtos Naturais e Farmacos - Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970 - Campinas, SP, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, PO Box 6029 - 13083-871, Campinas, SP - Brazil
| | - Fernando Coelho
- LaboratOrio de SIntese de Produtos Naturais e Farmacos - Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970 - Campinas, SP, Brazil
| |
Collapse
|
45
|
Guercio GD, Thomas ME, Cisneros-Franco JM, Voss P, Panizzutti R, de Villers-Sidani E. Improving cognitive training for schizophrenia using neuroplasticity enhancers: Lessons from decades of basic and clinical research. Schizophr Res 2019; 207:80-92. [PMID: 29730045 DOI: 10.1016/j.schres.2018.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/29/2023]
Abstract
Mounting evidence indicates that schizophrenia is a disorder that stems from maladaptive plasticity within neural circuits and produces broad cognitive deficits leading to loss of autonomy. A large number of studies have identified abnormalities spanning many neurotransmitter systems in schizophrenia, and as a result, a variety of drugs have been developed to attempt to treat these abnormalities and enhance cognition. Unfortunately, positive results have been limited so far. This may be in part because the scope of abnormalities in the schizophrenic brain requires a treatment capable of engaging many different neurotransmitter systems. One approach to achieving this kind of treatment has been to use neuroplasticity-based computerized cognitive training programs to stimulate the formation of more adaptive circuits. Although the number of studies implementing this approach has increased exponentially in recent years, effect sizes for cognitive gains have been modest and adherence to treatment remains an important challenge in many studies, as patients are often required to train for 40 h or more. In the present paper, we argue that cognitive training protocols will benefit from the addition of cognitive enhancers to produce more robust and longer lasting targeted neuroplasticity. Indeed, recent data from animal studies have provided support for combining plasticity-enhancing drugs with tailored behavioral training paradigms to restore normal function within dysfunctioning neural circuits. The advantages and challenges of applying this approach to patients with schizophrenia will be discussed.
Collapse
Affiliation(s)
- G D Guercio
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - M E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J M Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - P Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - R Panizzutti
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - E de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
46
|
Abstract
Low birth rates and higher life expectancy have been ravaging Japanese society. This article summarizes some of the latest medical knowledge and assistive activities, with a nod toward one nonprofit organization’s efforts to deliver better home healthcare to the elderly through housing and technologies, in the world’s first super-aging society. The response to the transforming society requires a combination of familiar customs and new technologies that create a favorable environment for mobility and continuous learning that are key to elderly health. As other countries will face similar issues, further international interdisciplinary knowledge-building will be necessary to face the challenges of super-aging societies.
Collapse
|
47
|
Novel Approach for the Search for Chemical Scaffolds with Dual Activity with Acetylcholinesterase and the α7 Nicotinic Acetylcholine Receptor-A Perspective for the Treatment of Neurodegenerative Disorders. Molecules 2019; 24:molecules24030446. [PMID: 30691196 PMCID: PMC6384821 DOI: 10.3390/molecules24030446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/29/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer’s disease, belong to the group of the most difficult and challenging conditions with very limited treatment options. Attempts to find new drugs in most cases fail at the clinical stage. New tactics to develop better drug candidates to manage these diseases are urgently needed. It is evident that better understanding of the neurodegeneration process is required and targeting multiple receptors may be essential. Herein, we present a novel approach, searching for dual active compounds interacting with acetylcholinesterase (AChE) and the α7 nicotinic acetylcholine receptor (nAChR) using computational chemistry methods including homology modelling and high throughput virtual screening. Activities of identified hits were evaluated at the two targets using the colorimetric method of Ellman and two-electrode voltage-clamp electrophysiology, respectively. Out of 87,250 compounds from a ZINC database of natural products and their derivatives, we identified two compounds, 8 and 9, with dual activity and balanced IC50 values of 10 and 5 µM at AChE, and 34 and 14 µM at α7 nAChR, respectively. This is the first report presenting successful use of virtual screening in finding compounds with dual mode of action inhibiting both the AChE enzyme and the α7 nAChR and shows that computational methods can be a valuable tool in the early lead discovery process.
Collapse
|
48
|
Pham GS, Wang LA, Mathis KW. Pharmacological potentiation of the efferent vagus nerve attenuates blood pressure and renal injury in a murine model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1261-R1271. [PMID: 30332305 DOI: 10.1152/ajpregu.00362.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent evidence suggests hypertension may be secondary to chronic inflammation that results from hypoactive neuro-immune regulatory mechanisms. To further understand this association, we used systemic lupus erythematosus (SLE) as a model of inflammation-induced hypertension. In addition to prevalent inflammatory kidney disease and hypertension, SLE patients suffer from dysautonomia in the form of decreased efferent vagal tone. Based on this, the cholinergic anti-inflammatory pathway, an endogenous vagus-to-spleen mechanism that, when activated results in decreases in systemic inflammation, may be compromised in SLE. We hypothesized that stimulation of the cholinergic anti-inflammatory pathway via pharmacological potentiation of the efferent vagus nerve would reduce inflammation and halt the development of hypertension and renal injury in SLE. Female NZBWF1 mice, an established model of murine SLE, and female control mice were treated with galantamine (4 mg/kg daily ip), an acetylcholinesterase inhibitor, or saline for 14 days. At the end of therapy, carotid catheters were surgically implanted and were used to measure mean arterial pressure before the animals were euthanized. Chronic galantamine administration attenuated both splenic and renal cortical inflammation, which likely explains why the hypertension and renal injury (i.e., glomerulosclerosis and fibrosis) typically observed in murine SLE was attenuated following therapy. Based on this, the anti-inflammatory, antihypertensive, and renoprotective effects of galantamine may be mediated through activation of the cholinergic anti-inflammatory pathway. It is possible that dysfunction of the cholinergic anti-inflammatory pathway exists in SLE at the level of the efferent vagus nerve and promoting restoration of its activity through central cholinergic receptor activation may be beneficial.
Collapse
Affiliation(s)
- Grace S Pham
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Lei A Wang
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
49
|
MacLean RR, Waters AJ, Brede E, Sofuoglu M. Effects of galantamine on smoking behavior and cognitive performance in treatment-seeking smokers prior to a quit attempt. Hum Psychopharmacol 2018; 33:e2665. [PMID: 29926988 PMCID: PMC6168949 DOI: 10.1002/hup.2665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Drugs that enhance cholinergic transmission have demonstrated promise treating addictive disorders. Galantamine, an acetylcholinesterase inhibitor, may reduce cigarette smoking in otherwise healthy treatment-seeking smokers. METHODS The current study is a double-blind, placebo-controlled, study that randomized daily smokers (n = 60) to receive one of two doses of galantamine extended release (8 or 16 mg/day), or a placebo treatment. Participants completed a smoking choice task as well as study measures and cognitive tasks in the laboratory and daily life using ecological momentary assessment. Analysis focused on smoking behavior and satisfaction, cognitive performance, and decision to smoke prior to a quit attempt. RESULTS Linear mixed models demonstrated that, compared with placebo, both doses of galantamine reduced smoking in a laboratory choice task (p = 0.006) and decreased urine cotinine levels, but not self-reported cigarettes, during the pre-quit period (p = 0.007). Treatment had minimal effect on smoking satisfaction or cognitive performance. CONCLUSIONS The results suggest that galantamine reduces nicotine intake but it is unlikely that galantamine improves cognitive performance in otherwise healthy, treatment-seeking smokers. Larger randomized clinical trials can determine if galantamine adjunctive to addiction treatment can improve smoking treatment outcomes.
Collapse
Affiliation(s)
- Robert Ross MacLean
- VA Connecticut Healthcare System, West Haven, Connecticut,Yale University School of Medicine, New Haven, Connecticut
| | - Andrew J. Waters
- Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Emily Brede
- National Institute of Health, Bethesda, Maryland
| | - Mehmet Sofuoglu
- VA Connecticut Healthcare System, West Haven, Connecticut,Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
50
|
Sparrow G, Hurd R, Carlson R, Molina A. Exploring the effects of galantamine paired with meditation and dream reliving on recalled dreams: Toward an integrated protocol for lucid dream induction and nightmare resolution. Conscious Cogn 2018; 63:74-88. [PMID: 29960246 DOI: 10.1016/j.concog.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 10/28/2022]
Abstract
An experimental home study examined the impact of a pre-sleep protocol for enhancing self-awareness, lucidity, and responsiveness in dreams. It included ingesting the cholinesterase inhibitor galantamine--which is widely reported to increase the frequency of lucid dreaming--prior to engaging in middle-of-the-night meditation and the imaginary reliving of a distressing dream while exercising new responses. Thirty-five participants completed an eight-night study, which included pre- and post-baseline nights and six conditions: waking for 40 min before returning to bed, called Wake-Back-to-Bed (WBTB); Wake-Back-to-Bed plus placebo (WBTB + P); Wake-Back-to-Bed plus galantamine (WBTB + G); meditation and dream reliving (MDR); meditation and dream reliving plus placebo (MDR + P); and meditation and dream reliving plus galantamine (MDR + G). The outcome measures included lucidity, reflectiveness, interactive behavior, role change, constructive action, and fear and threat, as measured by the participants' self-ratings. The results support the use of this protocol in further studies of lucid dream induction and nightmare/trauma resolution.
Collapse
Affiliation(s)
- Gregory Sparrow
- Dept. of Counseling, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States.
| | - Ryan Hurd
- Dept. of Psychology, John F. Kennedy University, Orinda, CA, United States
| | - Ralph Carlson
- Dept. of Educational Psychology, 1201 W. University Dr., University of Texas Rio Grande Valley, Edinburg, TX 78539, United States
| | - Ana Molina
- Dept. of Educational Psychology, 1201 W. University Dr., University of Texas Rio Grande Valley, Edinburg, TX 78539, United States
| |
Collapse
|