1
|
Zalyalova ZA, Katunina EA, Pokhabov DV, Munasipova SE, Ermakova MM. [Tremor-dominant form of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:28-35. [PMID: 38676674 DOI: 10.17116/jnevro202412404128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The article is of a review nature and is devoted to tremor, one of the maladaptive and difficult-to-treat symptoms of Parkinson's disease (PD). Along with the classic rest tremor, patients with PD may experience tremor of other modalities: postural tremor, kinetic tremor, which reflects a multimodal mechanism of tremor formation involving multiple neurotransmitter systems. The unpredictable response to therapeutic options, the ambiguous response to levodopa, also reflects the role of multiple underlying pathophysiological processes. Among the drug methods of tremor correction, preference is given to dopamine receptor agonists - due to the spectrum of their pharmaceutical action, high efficiency in relation to all leading motor and a number of non-motor manifestations. The evidence for advanced neurosurgical, non-invasive modalities is mixed, and there are insufficient comparative studies to assess their efficacy in patients with tremor-dominant forms of PD.
Collapse
Affiliation(s)
- Z A Zalyalova
- Kazan State Medical University, Kazan, Russia
- Republican Consultative and Diagnostic Center for Extrapyramidal Pathology and Botulinum Therapy, Kazan, Russia
| | - E A Katunina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center for Brain and Neurotechnology, Moscow, Russia
| | - D V Pokhabov
- Center for Innovative Neurology, Extrapyramidal Diseases and Botulinum Therapy, Krasnoyarsk, Russia
- Voino-Yasnevetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - S E Munasipova
- Kazan State Medical University, Kazan, Russia
- Republican Consultative and Diagnostic Center for Extrapyramidal Pathology and Botulinum Therapy, Kazan, Russia
| | | |
Collapse
|
2
|
Pokhabov DV, Tunik ME, Pokhabov DD, Katunina EA, Zalyalova ZA. [Postural stability and walking in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:29-32. [PMID: 37994885 DOI: 10.17116/jnevro202312311129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The article is of an overview nature and is devoted to movement disorders in Parkinson's disease. The article discusses the existing problems according to the latest literature data, a review on the treatment and rehabilitation of postural instability. Special attention in the article is paid to dopamine receptor agonists - namely, piribedil, prescribed for the correction of these disorders.
Collapse
Affiliation(s)
- D V Pokhabov
- Federal Clinical Scientifical Center of the Federal Medical Biological Agency, Krasnoyarsk, Russia
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - M E Tunik
- Federal Clinical Scientifical Center of the Federal Medical Biological Agency, Krasnoyarsk, Russia
| | - D D Pokhabov
- Federal Clinical Scientifical Center of the Federal Medical Biological Agency, Krasnoyarsk, Russia
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E A Katunina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - Z A Zalyalova
- Kazan State Medical University, Kazan, Russia
- Hospital for War Veterans, Kazan, Russia
| |
Collapse
|
3
|
Alshishani A, Hasan I, Ghanayem F, Al-khasawneh S, Abu Dayah A. Simple and rapid LC-MS/MS method for determination of Piribedil in human plasma. PHARMACIA 2022. [DOI: 10.3897/pharmacia.63.e86447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A sensitive, simple, and fast LC-MS/MS method of analysis was developed and validated for the determination of piribedil in human plasma. Piribedil was extracted by protein precipitation using acetonitrile and separated on C18 Phenomenex Gemini column (150 × 4.6mm, 5 µm) using isocratic elution of 75% of ammonium acetate buffer (10 mM) and 25% acetonitrile at a flow rate of 1 ml.min-1 over 5 min run time. Piribedil and d8-Piribedil, as internal standard, were detected and quantified in positive ion mode via MRM at m/z 299/135 and 307/135 for piribedil and d8–piribedil, respectively. The suggested method for piribedil was validated according to FDA and EMA guidelines. The standard calibration curve was linear over the concentration range of 3.4–5952 pg.ml-1. The intra-day precision was 2.45–9.94% and accuracy 92.78–99.97%. The inter-day precision was 2.14–5.47% and accuracy 95.73–101.99%. The recovery of analyte and IS was 96.94% and 111.18%, respectively. piribedil in plasma was stable at benchtop (short term) for 24 h, in autosampler tray for 48 h, in instrumentation room for 24 h (post-preparative), after 5 freeze-thaw cycles (–70 °C), and 11 days in the freezer (–70 °C). The validated method was successfully applied to a bioequivalence study of piribedil formulations involving 15 healthy Jordanian volunteers.
Collapse
|
4
|
Trace Amine-Associated Receptor 1 Contributes to Diverse Functional Actions of O-Phenyl-Iodotyramine in Mice but Not to the Effects of Monoamine-Based Antidepressants. Int J Mol Sci 2021; 22:ijms22168907. [PMID: 34445611 PMCID: PMC8396211 DOI: 10.3390/ijms22168907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022] Open
Abstract
Trace Amine-Associated Receptor 1 (TAAR1) is a potential target for the treatment of depression and other CNS disorders. However, the precise functional roles of TAAR1 to the actions of clinically used antidepressants remains unclear. Herein, we addressed these issues employing the TAAR1 agonist, o-phenyl-iodotyramine (o-PIT), together with TAAR1-knockout (KO) mice. Irrespective of genotype, systemic administration of o-PIT led to a similar increase in mouse brain concentrations. Consistent with the observation of a high density of TAAR1 in the medial preoptic area, o-PIT-induced hypothermia was significantly reduced in TAAR1-KO mice. Furthermore, the inhibition of a prepulse inhibition response by o-PIT, as well as its induction of striatal tyrosine hydroxylase phosphorylation and elevation of extracellular DA in prefrontal cortex, were all reduced in TAAR1-KO compared to wildtype mice. O-PIT was active in both forced-swim and marble-burying tests, and its effects were significantly blunted in TAAR1-KO mice. Conversely, the actions on behaviour and prefrontal cortex dialysis of a broad suite of clinically used antidepressants were unaffected in TAAR1-KO mice. In conclusion, o-PIT is a useful tool for exploring the hypothermic and other functional antidepressant roles of TAAR1. By contrast, clinically used antidepressants do not require TAAR1 for expression of their antidepressant properties.
Collapse
|
5
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Katunina EA, Ilina EP, Sadekhova GA, Gaisenuk EI. Approaches to early diagnosis of Parkinson's disease. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:119-127. [DOI: 10.17116/jnevro2019119061119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Pilipovich AA, Golubev VL. The agonist of dopamine receptors piribedil in treatment of Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:83-90. [DOI: 10.17116/jnevro20171176183-90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Millan MJ, Rivet JM, Gobert A. The frontal cortex as a network hub controlling mood and cognition: Probing its neurochemical substrates for improved therapy of psychiatric and neurological disorders. J Psychopharmacol 2016; 30:1099-1128. [PMID: 27756833 DOI: 10.1177/0269881116672342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The highly-interconnected and neurochemically-rich frontal cortex plays a crucial role in the regulation of mood and cognition, domains disrupted in depression and other central nervous system disorders, and it is an important site of action for their therapeutic control. For improving our understanding of the function and dysfunction of the frontal cortex, and for identifying improved treatments, quantification of extracellular pools of neuromodulators by microdialysis in freely-moving rodents has proven indispensable. This approach has revealed a complex mesh of autoreceptor and heteroceptor interactions amongst monoaminergic pathways, and led from selective 5-HT reuptake inhibitors to novel classes of multi-target drugs for treating depression like the mixed α2-adrenoceptor/5-HT reuptake inhibitor, S35966, and the clinically-launched vortioxetine and vilazodone. Moreover, integration of non-monoaminergic actions resulted in the discovery and development of the innovative melatonin receptor agonist/5-HT2C receptor antagonist, Agomelatine. Melatonin levels, like those of corticosterone and the "social hormone", oxytocin, can now be quantified by microdialysis over the full 24 h daily cycle. Further, the introduction of procedures for measuring extracellular histamine and acetylcholine has provided insights into strategies for improving cognition by, for example, blockade of 5-HT6 and/or dopamine D3 receptors. The challenge of concurrently determining extracellular levels of GABA, glutamate, d-serine, glycine, kynurenate and other amino acids, and of clarifying their interactions with monoamines, has also been resolved. This has proven important for characterizing the actions of glycine reuptake inhibitors that indirectly augment transmission at N-methyl-d-aspartate receptors, and of "glutamatergic antidepressants" like ketamine, mGluR5 antagonists and positive modulators of AMPA receptors (including S47445). Most recently, quantification of the neurotoxic proteins Aβ42 and Tau has extended microdialysis studies to the pathogenesis of neurodegenerative disorders, and another frontier currently being broached is microRNAs. The present article discusses the above themes, focusses on recent advances, highlights opportunities for clinical "translation", and suggests avenues for further progress.
Collapse
Affiliation(s)
- Mark J Millan
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Jean-Michel Rivet
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Alain Gobert
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| |
Collapse
|
9
|
Perez-Lloret S, Rascol O. Piribedil for the Treatment of Motor and Non-motor Symptoms of Parkinson Disease. CNS Drugs 2016; 30:703-17. [PMID: 27344665 DOI: 10.1007/s40263-016-0360-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dopamine agonists are well-established symptomatic medications for treating early and advanced Parkinson disease (PD). Piribedil was one of the first agonists to be marketed (1969) and is widely used as an extended-release oral formulation in European, Latin-American, and Asian countries. Piribedil acts as a non-ergot partial dopamine D2/D3-selective agonist, blocks alpha2-adrenoreceptors and has minimal effects on serotoninergic, cholinergic, and histaminergic receptors. Animal models support the efficacy of piribedil to improve parkinsonian motor symptoms with a lower propensity than levodopa to induce dyskinesia. In PD patients, randomized double-blind studies show that piribedil (150-300 mg/day, three times daily) is superior to placebo in improving motor disability in early PD patients. Based on such evidence, piribedil was considered in the last Movement Disorder Society Evidence-Based Medicine review as "efficacious" and "clinically useful" for the symptomatic treatment of PD, either as monotherapy or in conjunction with levodopa, in non-fluctuating early PD patients. This effect appears comparable to what is known from other D2 agonists. However, randomized controlled trials are not available to assess the effect of piribedil in managing levodopa-induced motor complications. Pilot clinical studies suggest that piribedil may improve non-motor symptoms, such as apathy, but confirmatory trials are needed. The tolerability and safety profile of piribedil fits with that of the class of dopaminergic agonists. As for other non-ergot agonists, pneumo-pulmonary, retroperitoneal, and valvular fibrotic side effects are not a concern with piribedil. The original combination of piribedil D2 dopaminergic and alpha-2 adrenergic properties deserve further investigations to better understand its antiparkinsonian profile.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Institute of Cardiology Research, University of Buenos Aires, National Research Council (CONICET-ININCA), Buenos Aires, Argentina
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences and NeuroToul Center of Excellence in Neurodegeneration (COEN), University Hospital and University of Toulouse III, Toulouse, France. .,INSERM CIC1436 and UMR1214, Toulouse, France. .,NS-Park/FCRIN Network, INSERM, Toulouse, France.
| |
Collapse
|
10
|
Jhaveri DJ, Nanavaty I, Prosper BW, Marathe S, Husain BFA, Kernie SG, Bartlett PF, Vaidya VA. Opposing effects of α2- and β-adrenergic receptor stimulation on quiescent neural precursor cell activity and adult hippocampal neurogenesis. PLoS One 2014; 9:e98736. [PMID: 24922313 PMCID: PMC4055446 DOI: 10.1371/journal.pone.0098736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 05/07/2014] [Indexed: 01/24/2023] Open
Abstract
Norepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood. In this study, we used transgenic Nestin-GFP mice and neurosphere assays to show that modulation of α2- and β-adrenergic receptor activity directly affects Nestin-GFP/GFAP-positive precursor cell population albeit in an opposing fashion. While selective stimulation of α2-adrenergic receptors decreases precursor cell activation, proliferation and immature neuron number, stimulation of β-adrenergic receptors activates the quiescent precursor pool and enhances their proliferation in the adult hippocampus. Furthermore, our data indicate no major role for α1-adrenergic receptors, as we did not observe any change in either the activation and proliferation of hippocampal precursors following selective stimulation or blockade of α1-adrenergic receptors. Taken together, our data suggest that under physiological as well as under conditions that lead to enhanced norepinephrine release, the balance between α2- and β-adrenergic receptor activity regulates precursor cell activity and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Dhanisha J. Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ishira Nanavaty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Boris W. Prosper
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Swanand Marathe
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Basma F. A. Husain
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Steven G. Kernie
- Departments of Pediatrics and Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Perry F. Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (VAV); (PFB)
| | - Vidita A. Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- * E-mail: (VAV); (PFB)
| |
Collapse
|
11
|
Kavitha CN, Kaur M, Anderson BJ, Jasinski JP, Yathirajan HS. 1-Piperonylpiperazinium 4-nitro-benzoate monohydrate. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o270-1. [PMID: 24764985 PMCID: PMC3998489 DOI: 10.1107/s160053681400261x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 11/13/2022]
Abstract
IN THE TITLE HYDRATED SALT [SYSTEMATIC NAME: 1-(1,3-benzodioxol-5-ylmeth-yl)piperazin-1-ium 4-nitro-benzoate monohydrate], C12H17N2O2 (+)·C7H4NO4 (-)·H2O, the piperazinium ring of the cation adopts a slightly distorted chair conformation. The piperonyl and piperazine rings are rotated with respect to each other with an N-C-C-C torsion angle of 45.6 (2)°. In the anion, the nitro group is almost coplanar with the adjacent benzene ring, forming a dihedral angle of only 3.9 (4)°. In the crystal, the cations, anions and water mol-ecules are linked through N-H⋯O and O-H⋯O hydrogen bonds into chains along the a axis. In addition, weaker inter-molecular C-H⋯O inter-actions are also observed within the chains. The anions form centrosymmetric couples through π-stacking inter-actions, with an inter-centroid distance of 3.681 (4) Å between the benzene rings.
Collapse
Affiliation(s)
- Channappa N. Kavitha
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Manpreet Kaur
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Brian J. Anderson
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - Jerry P. Jasinski
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - H. S. Yathirajan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
12
|
Kavitha CN, Kaur M, Anderson BJ, Jasinski JP, Yathirajan HS. 1-Piperonylpiperazinium 4-chloro-benzoate. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o283-4. [PMID: 24764993 PMCID: PMC3998456 DOI: 10.1107/s1600536814002037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 11/18/2022]
Abstract
In the title salt {systematic name: 1-[(1,3-benzodioxol-5-yl)meth-yl]piperazin-1-ium 4-chloro-benzoate}, C12H17N2O2 (+)·C7H4ClO2 (-), the piperazine ring adopts a slightly disordered chair conformation. The dioxole ring is in a flattened envelope conformation with the methyl-ene C atom forming the flap. The relative orientation of the piperonyl ring system and the piperazine rings is reflected in the N-C-C C torsion angle of 132.3 (1)°. In the anion, the mean plane of the carboxyl-ate group is twisted from that of the benzene ring by 14.8 (9)°. In the crystal, the components are linked by N-H⋯O and weak C-H⋯O hydrogen bonds, forming chains along [010].
Collapse
Affiliation(s)
- Channappa N. Kavitha
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Manpreet Kaur
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Brian J. Anderson
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - Jerry P. Jasinski
- Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
| | - H. S. Yathirajan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
13
|
Proença MB, Dombrowski PA, Da Cunha C, Fischer L, Ferraz AC, Lima MMS. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Neuropharmacology 2013; 76 Pt A:118-26. [PMID: 24012539 DOI: 10.1016/j.neuropharm.2013.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
Currently, several studies addresses the novel link between sleep and dopaminergic neurotransmission, focusing most closely on the mechanisms by which Parkinson's disease (PD) and sleep may be intertwined. Therefore, variations in the activity of afferents during the sleep cycles, either at the level of DA cell bodies in the ventral tegmental area (VTA) and/or substantia nigra pars compacta (SNpc) or at the level of dopamine (DA) terminals in limbic areas may impact functions such as memory. Accordingly, we performed striatal and hippocampal neurochemical quantifications of DA, serotonin (5-HT) and metabolites of rats intraperitoneally treated with haloperidol (1.5 mg/kg) or piribedil (8 mg/kg) and submitted to REM sleep deprivation (REMSD) and sleep rebound (REB). Also, we evaluated the effects of REMSD on motor and cognitive parameters and SNpc c-Fos neuronal immunoreactivity. The results indicated that DA release was strongly enhanced by piribedil in the REMSD group. In opposite, haloperidol prevented that alteration. A c-Fos activation characteristic of REMSD was affected in a synergic manner by piribedil, indicating a strong positive correlation between striatal DA levels and nigral c-Fos activation. Hence, we suggest that memory process is severely impacted by both D2 blockade and REMSD and was even more by its combination. Conversely, the activation of D2 receptor counteracted such memory impairment. Therefore, the present evidence reinforce that the D2 receptor is a key player in the SNpc neuronal activation mediated by REMSD, as a consequence these changes may have direct impact for cognitive and sleep abnormalities found in patients with PD. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Mariana B Proença
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Setor de Ciências Biológicas, Av. Francisco H. dos Santos s/n, 81.531-990, Caixa Postal 19031, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Le Foll B, Mulsant B, Pollock B, Graff-Guerrero A. The potential role of dopamine D₃ receptor neurotransmission in cognition. Eur Neuropsychopharmacol 2013; 23:799-813. [PMID: 23791072 PMCID: PMC3748034 DOI: 10.1016/j.euroneuro.2013.05.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 01/08/2023]
Abstract
Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson's disease and Alzheimer's disease. The primary objective of this work is to review the literature on the role of dopamine D₃ receptors in cognition, and propose dopamine D₃ receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D₃ receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included "dopamine D₃ receptor" and "cognition". The literature search identified 164 articles. The results revealed: (1) D₃ receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D₃ receptor blockade appears to enhance while D₃ receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D₃ receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D₃ receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects.
Collapse
Affiliation(s)
- Shinichiro Nakajima
- Multimodal Imaging Group-Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Canada M5T 1R8.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Serres F, Rodriguez M, Rivet JM, Galizzi JP, Lockhart B, Sharp T, Millan MJ. Blockade of α2-adrenoceptors induces Arc gene expression in rat brain in a glutamate receptor-dependent manner: a combined qPCR, in situ hybridisation and immunocytochemistry study. Neuropharmacology 2012; 63:992-1001. [PMID: 22828637 DOI: 10.1016/j.neuropharm.2012.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/27/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
Abstract
Studies of 5-HT-glutamate interactions suggest that activation of brain 5-HT(2A) receptors leads to an AMPA receptor-mediated induction of the immediate early (activity-dependent) gene, Arc (Arg3.1). In this respect, noradrenaline-glutamate interactions are poorly characterised. Here we investigated the influence on regional brain Arc gene expression of selective blockade of α(2)-adrenoceptors in rats. Several complementary techniques were used: qPCR (mRNA, discrete tissue punches), in situ hybridisation (mRNA, sections) and immunocytochemistry. The α(2)-adrenoceptor antagonist, RX 821002, dose-dependently and time-dependently (maximal effect 2 h) increased Arc mRNA levels as demonstrated both by qPCR and in situ hybridisation. The α(2)-adrenoceptor antagonist, atipamezole, also increased Arc mRNA in in situ hybridisation studies. Changes in Arc mRNA after RX 821002 were of similar magnitude in punches and intact tissue sections and region-specific, with effects being most pronounced in parietal cortex and caudate putamen, less robust in frontal cortex, and not detectable in hippocampal sub-regions. Both qPCR and in situ hybridisation studies demonstrated that RX 821002-induced Arc mRNA was blocked by the AMPA antagonist, GYKI 52466. Pretreatment with the NMDA antagonist MK 801 also prevented RX 821002-induced Arc mRNA, as did the mGluR5 antagonist MPEP, whilst the mGluR2/3 antagonist, LY341495, had no effect. Finally, immunocytochemical studies showed that RX 821002 increased Arc-immunoreactivity in cells in close apposition to α(2)-adrenoceptor-positive processes. Thus, employing three complementary techniques, these observations demonstrate that blockade of α(2)-adrenoceptors triggers brain expression of the immediate early gene, Arc, and that this effect involves the recruitment of AMPA, NMDA and mGluR5 but not mGluR2/3 glutamatergic receptors.
Collapse
Affiliation(s)
- Florence Serres
- University Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Dekeyne A, Brocco M, Loiseau F, Gobert A, Rivet JM, Di Cara B, Cremers TI, Flik G, Fone KCF, Watson DJG, Papp M, Sharp T, Serres F, Cespuglio R, Olivier B, Chan JSW, Lavielle G, Millan MJ. S32212, a Novel Serotonin Type 2C Receptor Inverse Agonist/α2-Adrenoceptor Antagonist and Potential Antidepressant: II. A Behavioral, Neurochemical, and Electrophysiological Characterization. J Pharmacol Exp Ther 2011; 340:765-80. [DOI: 10.1124/jpet.111.187534] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Kehr J, Hu XJ, Yoshitake T, Wang FH, Osborne P, Stenfors C, Ogren SO. The selective 5-HT(1A) receptor antagonist NAD-299 increases acetylcholine release but not extracellular glutamate levels in the frontal cortex and hippocampus of awake rat. Eur Neuropsychopharmacol 2010; 20:487-500. [PMID: 20413275 DOI: 10.1016/j.euroneuro.2010.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 02/12/2010] [Accepted: 03/13/2010] [Indexed: 11/28/2022]
Abstract
The effects of the HT(1A) receptor antagonist NAD-299 on extracellular acetylcholine (ACh) and glutamate (Glu) levels in the frontal cortex (FC) and ventral hippocampus (HPC) of the awake rats were investigated by the use of in vivo microdialysis. Systemic administration of NAD-299 (0.3; 1 and 3micromol/kg s.c.) caused a dose-dependent increase in ACh levels in FC and HPC (peak value of 209% and 221%, respectively) and this effect was comparable to that induced by donepezil (2.63micromol/kg s.c.). Moreover, the ACh levels in the FC increased even after repeated (14days) treatment with NAD-299 and when NAD-299 was injected locally into the nucleus basalis magnocellularis or perfused through the microdialysis probe implanted in the cortex. In contrast, NAD-299 failed to alter the extracellular levels of glutamate after systemic (3micromol/kg s.c.) or local (100microM) administration. The present data support the hypothesis that cholinergic transmission in cortico-limbic regions can be enhanced via blockade of postsynaptic 5-HT(1A) receptors, which may underlie the proposed cognitive enhancing properties of NAD-299 in models characterized by cholinergic deficit.
Collapse
Affiliation(s)
- Jan Kehr
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Millan MJ. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther 2010; 128:229-73. [PMID: 20600305 DOI: 10.1016/j.pharmthera.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other antiparkinson agents, and for optimizing their clinical exploitation.
Collapse
Affiliation(s)
- Mark J Millan
- Dept of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine (Paris), France.
| |
Collapse
|
20
|
Alpha2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment. J Neurosci 2010; 30:1096-109. [PMID: 20089918 DOI: 10.1523/jneurosci.2309-09.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants.
Collapse
|
21
|
Rozas I. Improving antidepressant drugs: update on recently patented compounds. Expert Opin Ther Pat 2009; 19:827-45. [DOI: 10.1517/13543770902932934] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Millan MJ. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics 2009; 6:53-77. [PMID: 19110199 PMCID: PMC5084256 DOI: 10.1016/j.nurt.2008.10.039] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The past decade of efforts to find improved treatment for major depression has been dominated by genome-driven programs of rational drug discovery directed toward highly selective ligands for nonmonoaminergic agents. Selective drugs may prove beneficial for specific symptoms, for certain patient subpopulations, or both. However, network analyses of the brain and its dysfunction suggest that agents with multiple and complementary modes of action are more likely to show broad-based efficacy against core and comorbid symptoms of depression. Strategies for improved multitarget exploitation of monoaminergic mechanisms include triple inhibitors of dopamine, serotonin (5-HT) and noradrenaline reuptake, and drugs interfering with feedback actions of monoamines at inhibitory 5-HT(1A), 5-HT(1B) and possibly 5-HT(5A) and 5-HT(7) receptors. Specific subsets of postsynaptic 5-HT receptors mediating antidepressant actions are under study (e.g., 5-HT(4) and 5-HT(6)). Association of a clinically characterized antidepressant mechanism with a nonmonoaminergic component of activity is an attractive strategy. For example, agomelatine (a melatonin agonist/5-HT(2C) antagonist) has clinically proven activity in major depression. Dual neurokinin(1) antagonists/5-HT reuptake inhibitors (SRIs) and melanocortin(4) antagonists/SRIs should display advantages over their selective counterparts, and histamine H(3) antagonists/SRIs, GABA(B) antagonists/SRIs, glutamatergic/SRIs, and cholinergic agents/SRIs may counter the compromised cognitive function of depression. Finally, drugs that suppress 5-HT reuptake and blunt hypothalamo-pituitary-adrenocorticotrophic axis overdrive, or that act at intracellular proteins such as GSK-3beta, may abrogate the negative effects of chronic stress on mood and neuronal integrity. This review discusses the discovery and development of dual- and triple-acting antidepressants, focusing on novel concepts and new drugs disclosed over the last 2 to 3 years.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut du Recherches Servier, Centre de Recherches de Croissy, Paris, France.
| |
Collapse
|
23
|
The melanin-concentrating hormone1 receptor antagonists, SNAP-7941 and GW3430, enhance social recognition and dialysate levels of acetylcholine in the frontal cortex of rats. Int J Neuropsychopharmacol 2008; 11:1105-22. [PMID: 18466669 DOI: 10.1017/s1461145708008894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Melanin-concentrating hormone (MCH)1 receptors are widely expressed in limbic structures and cortex. Their inactivation is associated with anxiolytic and antidepressive properties but little information is available concerning cognition. This issue was addressed using the selective antagonists, SNAP-7941 and GW3430, in a social recognition paradigm in rats. The muscarinic blocker, scopolamine (1.25 mg/kg s.c.), reduced social recognition, an action dose-dependently blocked by SNAP-7941 and GW3430 (0.63-10.0 and 20.0-80.0 mg/kg i.p., respectively) which did not themselves display amnesic properties. Further, in a protocol where a spontaneous deficit was induced by a prolonged inter-session delay, SNAP-7941 and GW3430 dose-dependently enhanced social recognition. In dialysis studies, SNAP-7941 (0.63-40.0 mg/kg i.p.) and GW3430 (10.0-40.0 mg/kg i.p.) elevated extracellular levels of acetylcholine (ACh) in the frontal cortex (FCX) of freely moving rats. The SNAP-7941 effect was specific, as it did not increase levels of ACh in ventral and dorsal hippocampus: moreover, it did not modify levels of noradrenaline, dopamine, serotonin and glutamate in FCX. Active doses of SNAP-7941 and GW3430 corresponded to doses (2.5-40.0 and 10.0-80.0 mg/kg i.p., respectively) exerting anxiolytic properties in Vogel conflict and ultrasonic vocalization tests, and antidepressant actions in forced swim, isolation-induced aggression and marble-burying procedures. In contrast to SNAP-7941 and GW3430, the benzodiazepine, diazepam, decreased social recognition and dialysate levels of ACh, while the tricyclic, imipramine, reduced social recognition and failed to enhance cholinergic transmission. In conclusion, at anxiolytic and antidepressant doses, SNAP-7941 and GW3430 improve social recognition and elevate extracellular ACh levels in FCX. This profile differentiates MCH1 receptor antagonists from conventional anxiolytic and antidepressant agents.
Collapse
|
24
|
Current Management of the Cognitive Dysfunction in Parkinson’s Disease: How Far Have We Come? Exp Biol Med (Maywood) 2008; 233:941-51. [DOI: 10.3181/0707-mr-193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) clinical features comprise both motor and nonmotor manifestations. Among the nonmotor complications, dementia is the most important. Approximately 40% of PD patients are affected by cognitive impairment. Remarkably, in addition to age, dementia is an independent predictor of mortality, whereas age at onset of PD and severity of neurological symptoms are not. In this review, I summarize the current knowledge of the pathogenesis of the PD cognitive impairment in relation to the therapies presently accessible and those that could become strategic in the near future. It is hypothesized that patients with PD show two components of cognitive dysfunction (CD): a generalized profile of subcortical dementia (PDsCD), and an overlapped pattern suggesting specific prefrontal damage with CD (PDpFCD). PDsCD is associated with structural neocortical/subcortical changes in the brain (in frontal, parietal, limbic, and temporal lobes, as well as in midbrain structures). In PDpFCD cognitive deficits comprise impairments in neuropsychological tests sensitive for frontal lobe function (discrete elements of episodic and working memory for instance), which are considered to be the consequence of dysfunction in neuronal loops connecting the prefrontal cortex and basal ganglia. Drugs reviewed for targeting PDsCD include: cholinesterase inhibitors, agents with mixed cholinergic and dopaminergic properties, antiglutamatergic drugs, mixed antiglutamatergic/dopaminergic agents; antioxidants and enhancers of mitochondrial functions, and anti-COX-2, as well as other anti-inflammatory mediators. Preliminary studies with vehicles that may target PDpFCD include piribedil, tolcapone, amantadine, and farampator. Additional agents (citicoline and neuroimmuniphilines, among others) will be outlined. A brief overview on neuroprotection and promising new biological advances in PD (deep brain stimulation, stem cells, gene therapy) also will be summarized.
Collapse
|
25
|
Marighetto A, Valerio S, Philippin JN, Bertaina-Anglade V, Drieu la Rochelle C, Jaffard R, Morain P. Comparative effects of the dopaminergic agonists piribedil and bromocriptine in three different memory paradigms in rodents. J Psychopharmacol 2008; 22:511-21. [PMID: 18308794 DOI: 10.1177/0269881107083836] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The potential memory-enhancing properties of two dopamine agonists currently used in patients with Parkinson's disease, piribedil (1, 10 mg/kg/day, subcutaneously) and bromocriptine (5 mg/kg/day, subcutaneously), were evaluated in three experiments. Although piribedil (10 mg/kg) and bromocriptine equally enhanced spontaneous object recognition in young adult rats (experiment A), only piribedil displayed beneficial effects against aging-related memory impairments in two radial-maze experiments in mice. First (experiment B), a two-stage paradigm of spatial discrimination was used to assess relational/declarative memory in aged mice; piribedil (1 and 10 mg/kg) selectively and significantly improved the performances of aged mice in the critical tests for relational/declarative memory, whereas bromocriptine had no effect. Second, in a novel working memory task (experiment C), vehicle- or bromocriptine-treated aged mice displayed, compared with (vehicle) younger controls, a severe and persistent deficit in short-term retention of successive arm-visits, performing close to chance whichever the retention interval. Performances of piribedil (10 mg/kg) group remarkably improved across testing-days and reached young adults' level. The restoration of specific mnemonic impairments, in aged mice, highlights the memory-enhancing properties of piribedil. The efficacy of this drug in treating cognitive impairment of Parkinson's disease should now be assessed in more specific models.This work was published in an abstract form: ECNP Abstracts, 2005 (P8060 & P8065).
Collapse
Affiliation(s)
- A Marighetto
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR 5228, Université de Bordeaux 1, Talence, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Millan MJ, Di Cara B, Dekeyne A, Panayi F, De Groote L, Sicard D, Cistarelli L, Billiras R, Gobert A. Selective blockade of dopamine D(3) versus D(2) receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J Neurochem 2007; 100:1047-61. [PMID: 17266737 DOI: 10.1111/j.1471-4159.2006.04262.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Though dopaminergic mechanisms modulate cholinergic transmission and cognitive function, the significance of specific receptor subtypes remains uncertain. Here, we examined the roles of dopamine D(3) versus D(2) receptors. By analogy with tacrine (0.16-2.5 mg/kg, s.c.), the selective D(3) receptor antagonists, S33084 (0.01-0.63) and SB277,011 (0.63-40.0), elicited dose-dependent, pronounced and sustained elevations in dialysis levels of acetylcholine (ACh) in the frontal cortex, but not the hippocampus, of freely-moving rats. The actions of these antagonists were stereospecifically mimicked by (+)S14297 (1.25), whereas its inactive distomer, (-)S17777, was ineffective. The preferential D(2) receptor antagonist, L741,626 (10.0), failed to modify levels of ACh. S33084 (0.01-0.63) and SB277,011 (0.16-2.5) also mimicked tacrine (0.04-0.63) by dose-dependently attenuating the deleterious influence of scopolamine (1.25) upon social memory (recognition by an adult rat of a juvenile conspecific). Further, (+)S14297 (1.25) versus (-)S17777 stereospecifically blocked the action of scopolamine. Using an intersession interval of 120 min (spontaneous loss of recognition), S33084 (0.04-0.63), SB277,011 (0.16-10.0) and (+)S14297 (0.63-10.0) likewise mimicked tacrine (0.16-2.5) in enhancing social memory. In contrast, L741,626 (0.16-10.0) displayed amnesic properties. In conclusion, selective blockade of D(3) receptors facilitates frontocortical cholinergic transmission and improves social memory in rats. These data support the pertinence of D(3) receptors as a target for treatment of disorders in which cognitive function is compromised.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, Croissy/Seine, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shao XM, Feldman JL. Efficient measurement of endogenous neurotransmitters in small localized regions of central nervous systems in vitro with HPLC. J Neurosci Methods 2006; 160:256-63. [PMID: 17092561 PMCID: PMC2441908 DOI: 10.1016/j.jneumeth.2006.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/30/2022]
Abstract
High performance liquid chromatography (HPLC) is widely used to determine neurotransmitter concentrations in the central nervous system (CNS). Finding the optimal methods to sample from CNS tissue poses a challenge for neuroscientists. Here, we describe a method that allows assay of neurotransmitters (or other chemicals) in small regions (down to 180mum in diameter) in in vitro preparations concurrently with electrophysiological recordings. The efficiency for measuring small amounts of chemicals is enhanced by a sample collecting pipette with filter paper at the tip that makes close contact with the target region in CNS tissue. With a wire plunger in the calibrated pipette controlled by a microsyringe pump, there is virtually no dead volume. Samples in a volume of 10muL (taken, e.g., at 2muL/min over 5min) can be injected into a HPLC machine with microbore columns. We demonstrate the effectiveness of this method by measuring acetylcholine (ACh) in the ventral horn and its surrounding areas of the spinal cord in en bloc brainstem-spinal cord preparations. In control conditions, endogenous ACh levels in these regions were detectable. Application of neostigmine (an inhibitor of acetylcholinesterases (AChEs)) increased ACh concentrations, and at the same time, induced tonic/seizure-like activity in efferent motor output recorded from cervical ventral nerve roots. Higher ACh concentrations in the ventral horn were differentiated from nearby regions: the lateral and midline aspects of the ventral spinal cord. In addition, ACh in the preBötzinger Complex (preBötC) and the hypoglossal nucleus in medullary slice preparations can also be measured. Our results indicate that the method proposed in this study can be used to measure neurotransmitters in small and localized CNS regions. Correlation between changes in neurotransmitters in target regions and the neuronal activities can be revealed in vitro. Our data also suggest that there is endogenous ACh release in spinal ventral motor columns at fourth cervical (C4) level that regulates the respiratory-related motor activity.
Collapse
Affiliation(s)
- Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
28
|
Brocco M, Dekeyne A, Papp M, Millan MJ. Antidepressant-like properties of the anti-Parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors. Behav Pharmacol 2006; 17:559-72. [PMID: 17021388 DOI: 10.1097/01.fbp.0000236267.41806.5b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dopamine D2/D3 receptor agonist and alpha2 adrenergic receptor antagonist, piribedil, is used clinically as monotherapy and as an adjunct to L-3,4-dihydroxyphenylalanine in the treatment of Parkinson's disease. As it appears to improve mood, we examined its actions in rodent models of antidepressant properties, in comparison with the prototypical anti-Parkinson agent, apomorphine, the D2/D3 receptor agonist, quinpirole, and the antidepressants, imipramine and fluvoxamine. In the mouse forced-swim test, acute administration of imipramine, fluvoxamine, apomorphine or quinpirole decreased immobility time, actions dose dependently mimicked by piribedil (2.5-10.0 mg/kg, subcutaneously). In rats, acute and subchronic administration of piribedil similarly reduced immobility (0.63-10.0 mg/kg, subcutaneously) and apomorphine, quinpirole and imipramine were also active in this test, whereas fluvoxamine was inactive. Both in mice and in rats, the D2/D3 receptor antagonist, raclopride, and the D2 receptor antagonist, L741,626, dose dependently blocked the antidepressant properties of piribedil, whereas the selective D3 receptor antagonists, S33084 and SB277,011, were ineffective. In a chronic mild stress model in rats, piribedil (2.5-40.0 mg/kg, subcutaneously) restored sucrose intake in stressed animals exerting its actions more rapidly (by week 1) than imipramine. Imipramine, fluvoxamine, apomorphine, quinpirole and piribedil dose dependently (0.63-10.0 mg/kg, subcutaneously) suppressed aggressive and marble-burying behaviour in mice. In the latter procedure, raclopride and L741,626, but not S33084, attenuated the actions of piribedil. Over a dose range (0.63-10.0 mg/kg, subcutaneously) equivalent to those active in models of antidepressant activity, piribedil did not stimulate locomotor behaviour. In conclusion, principally via recruitment of D2 receptors, piribedil exerts robust and specific antidepressant-like actions in diverse rodent models.
Collapse
MESH Headings
- Aggression/drug effects
- Animals
- Antidepressive Agents
- Antidepressive Agents, Second-Generation/pharmacology
- Antidepressive Agents, Tricyclic/pharmacology
- Antiparkinson Agents/pharmacology
- Behavior, Animal/drug effects
- Chronic Disease
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists
- Dose-Response Relationship, Drug
- Fluvoxamine/pharmacology
- Imipramine/pharmacology
- Male
- Mice
- Motor Activity/drug effects
- Piribedil/pharmacology
- Quinpirole/pharmacology
- Raclopride/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Social Isolation/psychology
- Stress, Psychological/psychology
- Sucrose/pharmacology
- Swimming/psychology
Collapse
Affiliation(s)
- Mauricette Brocco
- Psychopharmacology Department, Servier Research Institute, Croissy Research Center, Paris, France.
| | | | | | | |
Collapse
|
29
|
Bruno JP, Gash C, Martin B, Zmarowski A, Pomerleau F, Burmeister J, Huettl P, Gerhardt GA. Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur J Neurosci 2006; 24:2749-57. [PMID: 17156201 DOI: 10.1111/j.1460-9568.2006.05176.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microdialysis has been widely used to measure acetylcholine (ACh) release in vivo and has provided important insights into the regulation of cholinergic transmission. However, microdialysis can be constrained by limited spatial and temporal resolution. The present experiments utilize a microelectrode array (MEA) to rapidly measure ACh release and clearance in anaesthetized rats. The array electrochemically detects, on a second-by-second basis, changes in current selectively produced by the hydrolysis of ACh to choline (Ch) and the subsequent oxidation of choline and hydrogen peroxidase (H(2)O(2)) at the electrode surface. In vitro calibration of the microelectrode revealed linear responses to ACh (R(2) = 0.9998), limit of detection of 0.08 microm, and signal-to-noise ratio of 3.0. The electrode was unresponsive to ascorbic acid (AA), dopamine (DA), or norepinephrine (NE) interferents. In vivo experiments were conducted in prefrontal cortex (PFC) of anaesthetized rats. Pressure ejections of ACh (10 mm; 40 nL) through an adjoining micropipette produced a rapid rise in current, reaching maximum amplitude in approximately 1.0 s and cleared by 80% within 4-11 s. Endogenously released ACh, following local depolarization with KCl (70 mm; 40, 160 nL), was detected at values as low as 0.05 microm. These signals were volume-dependent and cleared within 4-12 s. Finally, nicotine (1.0 mm, 80 nL) stimulated ACh signals. Nicotine-induced signals reflected the hydrolysis of ACh by endogenous acetylcholinesterase (AChE) as inhibition of the enzyme following perfusion with neostigmine (10 microm) attenuated the signal (40-94%). Collectively, these data validate a novel method for rapidly measuring cholinergic transmission in vivo with a spatial and temporal resolution that far exceeds conventional microdialysis.
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, 57 Psychology Building, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Turle-Lorenzo N, Maurin B, Puma C, Chezaubernard C, Morain P, Baunez C, Nieoullon A, Amalric M. The dopamine agonist piribedil with L-DOPA improves attentional dysfunction: relevance for Parkinson's disease. J Pharmacol Exp Ther 2006; 319:914-23. [PMID: 16920993 DOI: 10.1124/jpet.106.109207] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive deficits are often associated with motor symptoms in Parkinson's disease. This study investigates the ability of piribedil ([(methylenedioxy-3,4 benzyl)-4 pyperazinyl-1]-2 pyrimidine), a D(2)/D(3) dopamine (DA) receptor agonist with antagonist activity at alpha(2A)-adrenoceptors, to restore motor and attentional deficits in nigrostriatal 6-hydroxydopamine-lesioned rats. Subjects were trained to depress a lever, detect a stimulus occurring after variable foreperiods, and release the lever quickly afterward. Striatal DA depletions produce deficits in the timing of foreperiods and prolong reaction times. Although a subchronic treatment with piribedil (0.1-2 mg/kg) is not effective, a dose of 0.3 mg/kg administered for 3 weeks significantly reverses the akinetic deficits produced by the striatal dopamine depletion and progressively improves attentional deficits. When coadministered with the dopamine prodrug l-3,4-dihydroxyphenylalanine (l-DOPA) (3 mg/kg), piribedil (0.3 mg/kg) promotes a rapid and full recovery of preoperative performance. These results suggest that administration of l-DOPA in combination with piribedil in a chronic treatment as either initial or supplemental therapy for Parkinson's disease might improve cognitive functions while reducing the risk for motor complications.
Collapse
Affiliation(s)
- Nathalie Turle-Lorenzo
- Laboratoire de Neurobiologie de la Cognition, UMR 6155 Centre National de la Recherche Scientifique-Université de Provence, Case C, 3 Place Victor Hugo, 13331 Marseille cedex 3, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
32
|
Viitamaa T, Haapalinna A, Agmo A. The adrenergic α2 receptor and sexual incentive motivation in male rats. Pharmacol Biochem Behav 2006; 83:360-9. [PMID: 16574206 DOI: 10.1016/j.pbb.2006.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 01/31/2006] [Accepted: 02/16/2006] [Indexed: 01/23/2023]
Abstract
The purpose of the present series of experiments was to determine whether drugs acting at the alpha2-adrenoceptor modify unconditioned sexual incentive motivation in the male rat. To that end a highly specific agonist, dexmedetomidine, a corresponding antagonist, atipamezole, and a less specific antagonist, yohimbine, were administered to groups of sexually inexperienced male rats. The subjects were tested in a large rectangular arena, where a sexually receptive female and an intact male were employed as incentives. The incentive animals were confined behind a wire mesh in opposite corners of the arena. The animals could see, hear and smell each other, but no sexual interaction was possible. Approach to the incentives constituted the measure of incentive motivation. In addition, the test provided data on ambulatory activity and general arousal. Dexmedetomidine, at a dose of 8 microg/kg, produced a slight reduction of sexual incentive motivation. Ambulatory activity and general arousal were also inhibited. Atipamezole, in doses of 0.1 and 0.3mg/kg enhanced the positive incentive properties of the receptive female. A high dose of 1mg/kg did not have any significant effect. Ambulatory activity was slightly reduced by the two larger doses of atipamezole. Yohimbine had a slight stimulatory effect on sexual incentive motivation at a dose (4 mg/kg) that also reduced ambulatory activity and general arousal. It is concluded that blockade of the adrenergic alpha2 receptor stimulates sexual incentive motivation in the male rat whereas stimulation of it has the opposite effect. At present it is not clear if these drug effects are caused by pre- or postsynaptic actions of the drugs, and the importance of secondary changes in other neurotransmitter systems remains unknown.
Collapse
|
33
|
Chapter 3.1 Liquid chromatographic methods used for microdialysis: an overview. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1569-7339(06)16013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Castro-Caldas A, Delwaide P, Jost W, Merello M, Williams A, Lamberti P, Aguilar M, Del Signore S, Cesaro P. The Parkinson-Control study: A 1-year randomized, double-blind trial comparing piribedil (150 mg/day) with bromocriptine (25 mg/day) in early combination with levodopa in Parkinson's disease. Mov Disord 2005; 21:500-9. [PMID: 16267842 DOI: 10.1002/mds.20750] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dopamine agonists have been recommended as early treatment for Parkinson's disease (PD), alone or combined with levodopa. Piribedil is a non-ergot selective D(2)/D(3) agonist with alpha(2) antagonist properties shown to be effective in the treatment of PD. This 12-month international, randomized, double-blind trial aimed to assess the efficacy of piribedil 150 mg versus bromocriptine 25 mg, in early combination with levodopa in Stage I to III PD patients. Motor efficacy was assessed using the Unified Parkinson's Disease Rating Scale (UPDRS III, Items 18-31) as improvement from baseline. Response rate was defined as a 30% improvement. Among the 425 randomly assigned patients, 178 were also included in a substudy on cognitive follow-up evaluated by a dysexecutive syndrome oriented battery. A relevant improvement in UPDRS III over the 12-month study duration was observed both in the piribedil and bromocriptine groups (-7.9 +/- 9.7 points from baseline versus -8.0 +/- 9.5; not significant [n.s.]) with a response rate of 58.4% and 55.3% (n.s.), respectively. Piribedil and bromocriptine resulted in similar improvement on all UPDRS III subscores. Piribedil patients required less levodopa dose increase than those on bromocriptine. Cognitive performance remained generally unchanged in both groups, with a significant effect of piribedil limited to the Wisconsin Card Sorting Test. An overall good tolerability of piribedil was observed. Early combination of piribedil 150 mg with levodopa resulted in significant long-term improvement of all motor symptoms in PD patients insufficiently controlled by levodopa alone. Taking into account both efficacy and acceptability in the long-term, piribedil proved in this bromocriptine controlled study to be an effective and safe treatment for PD.
Collapse
|
35
|
Chung YC, Li Z, Dai J, Meltzer HY, Ichikawa J. Clozapine increases both acetylcholine and dopamine release in rat ventral hippocampus: role of 5-HT1A receptor agonism. Brain Res 2004; 1023:54-63. [PMID: 15364019 DOI: 10.1016/j.brainres.2004.07.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2004] [Indexed: 11/18/2022]
Abstract
Atypical antipsychotic drugs (APDs) such as clozapine, but not the typical APD haloperidol, improve some aspects of cognition in schizophrenia. This advantage has been attributed, in part, to the ability of the atypical APDs to markedly increase acetylcholine (ACh) and dopamine (DA) release in rat medial prefrontal cortex (mPFC), while producing a minimal effect in the nucleus accumbens (NAC) or striatum. The atypical APD-induced preferential release of DA, but not ACh, in the mPFC is partially inhibited by the selective 5-HT(1A) antagonist WAY100635. However, little is known about these effects of atypical APDs in the ventral hippocampus (vHIP), another possible site of action of atypical APDs with regard to cognitive enhancement. The present study demonstrates that clozapine (10 mg/kg) comparably increases both ACh and DA release in the vHIP and mPFC. The increases in DA, but not ACh, release in both regions were partially attenuated by WAY100635 (0.2 mg/kg), which had no effect by itself on the release of either neurotransmitter in either region. Tetrodotoxin (TTX; 1 microM), a Na(+) channel blocker, in the perfusion medium, eliminated the clozapine (10 mg/kg)-induced ACh and DA release in the vHIP, indicating their neuronal origin. Haloperidol produced a slight increase in ACh release in the vHIP at 1 mg/kg, and DA release in the mPFC at 0.1 mg/kg. In conclusion, clozapine increases ACh and DA release in the vHIP and mPFC, whereas haloperidol has minimal effects on the release of these two neurotransmitters in either region. These differences may contribute, at least in part, to the superior ability of clozapine, compared to haloperidol, to improve cognition in schizophrenia. 5-HT(1A) agonism is important to the ability of clozapine and perhaps other atypical APDs to increase DA, but not ACh, release in the vHIP, as well as the mPFC. The role of hippocampus in the cognitive effects of atypical APDs warrants more intensive study.
Collapse
Affiliation(s)
- Young-Chul Chung
- Division of Psychopharmacology, Departments of Psychiatry and Pharmacology, Vanderbilt University School of Medicine, 1601 23rd Avenue South, The First Floor Laboratory Rm-1117, The Psychiatric Hospital at Vanderbilt, Nashville, TN 37212, USA
| | | | | | | | | |
Collapse
|
36
|
Paredes RG, Agmo A. Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence. Prog Neurobiol 2004; 73:179-226. [PMID: 15236835 DOI: 10.1016/j.pneurobio.2004.05.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 05/14/2004] [Indexed: 11/30/2022]
Abstract
The role of dopaminergic systems in the control of sexual behavior has been a subject of study for at least 40 years. Not surprisingly, reviews of the area have been published at variable intervals. However, the earlier reviews have been summaries of published research rather than a critical analysis of it. They have focused upon the conclusions presented in the original research papers rather than on evaluating the reliability and functional significance of the data reported to support these conclusions. During the last few years, important new knowledge concerning dopaminergic systems and their behavioral functions as well as the possible role of these systems in sexual behavior has been obtained. For the first time, it is now possible to integrate the data obtained in studies of sexual behavior into the wider context of general dopaminergic functions. To make this possible, we first present an analysis of the nature and organization of sexual behavior followed by a summary of current knowledge about the brain structures of crucial importance for this behavior. We then proceed with a description of the dopaminergic systems within or projecting to these structures. Whenever possible, we also try to include data on the electrophysiological actions of dopamine. Thereafter, we proceed with analyses of pharmacological data and release studies, both in males and in females. Consistently throughout this discussion, we make an effort to distinguish pharmacological effects on sexual behavior from a possible physiological role of dopamine. By pharmacological effects, we mean here drug-induced alterations in behavior that are not the result of the normal actions of synaptically released dopamine in the untreated animal. The conclusion of this endeavor is that pharmacological effects of dopaminergic drugs are variable in both males and females, independently of whether the drugs are administered systemically or intracerebrally. We conclude that the pharmacological data basically reinforce the notion that dopamine is important for motor functions and general arousal. These actions could, in fact, explain most of the effects seen on sexual behavior. Studies of dopamine release, in both males and females, have focused on the nucleus accumbens, a structure with at most a marginal importance for sexual behavior. Since accumbens dopamine release is associated with all kinds of events, aversive as well as appetitive, it can have no specific effect on sexual behavior but promotes arousal and activation of non-specific motor patterns. Preoptic and paraventricular nucleus release of dopamine may have some relationship to mechanisms of ejaculation or to the neuroendocrine consequences of sexual activity or they can be related to other autonomic processes associated with copulation. There is no compelling indication in existing experimental data that dopamine is of any particular importance for sexual motivation. There is experimental evidence showing that it is of no importance for sexual reward.
Collapse
Affiliation(s)
- Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Aunónoma de México-Campus Juriquilla, Querétaro, Mexico
| | | |
Collapse
|
37
|
Millan MJ, Gobert A, Roux S, Porsolt R, Meneses A, Carli M, Di Cara B, Jaffard R, Rivet JM, Lestage P, Mocaer E, Peglion JL, Dekeyne A. The serotonin1A receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] enhances cholinergic transmission and cognitive function in rodents: a combined neurochemical and behavioral analysis. J Pharmacol Exp Ther 2004; 311:190-203. [PMID: 15146031 DOI: 10.1124/jpet.104.069625] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
These studies examined the influence of the selective 5-hydroxytryptamine (serotonin) (5-HT)(1A) receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] upon cholinergic transmission and cognitive function in rodents. In the absence of acetylcholinesterase inhibitors, S15535 dose-dependently (0.04-5.0 mg/kg s.c.) elevated dialysis levels of acetylcholine in the frontal cortex and dorsal hippocampus of freely moving rats. In the cortex, the selective 5-HT(1A) receptor antagonist WAY100,635 [(N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclo-hexanecarboxamide) fumarate] dose-dependently (0.0025-0.63) blocked this action of S15535. By contrast, in dorsal hippocampus, WAY100,635 mimicked the induction of acetylcholine release by S15535. In a social recognition paradigm, S15535 dose-dependently (0.16-10.0) improved retention, an action blocked by WAY100,635 (0.16), which was ineffective alone. Furthermore, S15535 dose-dependently (0.04-2.5) and WAY100,635 reversibly abolished amnesic properties of the muscarinic antagonist scopolamine (0.63) in this procedure. Cognitive deficits provoked by scopolamine in autoshaping and Morris water-maze procedures were likewise blocked by S15535 at doses of 0.63 to 10.0 and 0.16 to 2.5, respectively. In a two-platform spatial discrimination task, in which S15535 similarly abrogates cognitive deficits elicited by scopolamine, injection of S15535 (1.0 and 10.0 microg) into dorsal hippocampus blocked amnesic effects of the 5-HT(1A) agonist 8-hydroxy-2-dipropylaminotetralin (0.5 microg). Finally, S15535 (0.16-0.63) improved performance in a spatial, delayed nonmatching to sample model in mice, and in an operant delayed nonmatching to sample model in old rats, S15535 (1.25-5.0 mg/kg p.o.) increased response accuracy and reduced latency to respond. In conclusion, S15535 reinforces frontocortical and hippocampal release of acetylcholine and displays a broad-based pattern of procognitive properties. Its actions involve both blockade of postsynaptic 5-HT(1A) receptors and engagement of 5-HT(1A) autoreceptors.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 chemin de Ronde 78290 Croissy/Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Millan MJ, Di Cara B, Hill M, Jackson M, Joyce JN, Brotchie J, McGuire S, Crossman A, Smith L, Jenner P, Gobert A, Peglion JL, Brocco M. S32504, a novel naphtoxazine agonist at dopamine D3/D2 receptors: II. Actions in rodent, primate, and cellular models of antiparkinsonian activity in comparison to ropinirole. J Pharmacol Exp Ther 2004; 309:921-35. [PMID: 14978195 DOI: 10.1124/jpet.103.062414] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
These studies evaluated the potential antiparkinsonian properties of the novel dopamine D(3)/D(2) receptor agonist S32504 [(+)-trans-3,4,4a,5,6, 10b-hexahydro-9-carbamoyl-4-propyl-2H-naphth[1,2-b]-1,4-oxazine] in comparison with those of the clinically employed agonist ropinirole. In rats with a unilateral, 6-hydroxydopamine lesion of the substantia nigra, S32504 (0.0025-0.04 mg/kg, s.c.) more potently elicited contralateral rotation than S32601 [(-)-trans-3,4,4a,5,6, 10b-hexahydro-9-carbamoyl-4-propyl-2H-naphth-[1,2-b]-1,4-oxazine (its less active enantiomer)], ropinirole, and l-3,4-dihydroxyphenylalanine (l-DOPA). Rotation elicited by S32504 was blocked by the D(2)/D(3) receptor antagonists haloperidol and raclopride and by the D(2) antagonist L741,626 [4-(4-chlorophenyl)-1-(1H-indol-3-ylmethyl)piperidin-4-ol], but not by the D(3) antagonist S33084 [(3aR,9bS)-N-[4-(8-cyano-1,3a,4,9b-tetrahydro-3H-benzopyrano[3,4-c]pyrrole-2-yl)-butyl]-(4-phenyl)benzamide]. As assessed by dialysis in both lesioned and nonlesioned animals, S32504 (0.04-2.5 mg/kg, s.c.) reduced striatal levels of acetylcholine. This effect was blocked by raclopride, haloperidol, and L741,626 but not S33084. In rats treated with reserpine, hypolocomotion was reversed by S32504 and, less potently, by ropinirole. In "unprimed" marmosets treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, both s.c. (0.01-0.04 mg/kg) and p.o. (0.04-1.25 mg/kg) administration of S32504 dose-dependently and rapidly (within 10 min) increased locomotor activity and reduced disability. Furthermore, S32504 dose-dependently reversed bradykinesia and improved posture in "L-DOPA-primed" animals, whereas eliciting less pronounced dyskinesia than l-DOPA. Finally, in terminally differentiated SH-SY5Y cells presenting a dopaminergic phenotype, S32504, but not S32601, abrogated the neurotoxic effects of 1-methyl-4-phenylpyridinium, an action inhibited by raclopride and S33084 but not L741,626. Ropinirole was weakly neuroprotective in this model. In conclusion, S32504 displays potent and stereospecific activity in rodent, primate, and cellular models of antiparkinsonian properties. Although activation of D(2) receptors is crucial to the motor actions of S32504, engagement of D(3) receptors contributes to its neuroprotective properties.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|