1
|
Morgan A, Shekhar N, Strnadová V, Pirník Z, Haasová E, Kopecký J, Pačesová A, Železná B, Kuneš J, Bardová K, Maletínská L. Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice. Biosci Rep 2024; 44:BSR20241103. [PMID: 39440369 PMCID: PMC11499387 DOI: 10.1042/bsr20241103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.
Collapse
MESH Headings
- Animals
- Male
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Obesity/metabolism
- Obesity/genetics
- Female
- Mice, Knockout
- Mice
- Diet, High-Fat/adverse effects
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/deficiency
- Prediabetic State/metabolism
- Prediabetic State/genetics
- Energy Metabolism/genetics
- Insulin Resistance
- Mice, Inbred C57BL
- Sex Factors
- Adipose Tissue, White/metabolism
Collapse
Affiliation(s)
- Alena Morgan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Nivasini Shekhar
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Eliška Haasová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
2
|
Li Y, Yuan Q, He X, Zhang Y, You C, Wu C, Li J, Xu HE, Zhao LH. Molecular mechanism of prolactin-releasing peptide recognition and signaling via its G protein-coupled receptor. Cell Discov 2024; 10:91. [PMID: 39223120 PMCID: PMC11369081 DOI: 10.1038/s41421-024-00724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Prolactin-releasing peptide (PrRP) is an RF-amide neuropeptide that binds and activates its cognate G protein-coupled receptor, prolactin-releasing peptide receptor (PrRPR), also known as GPR10. PrRP and PrRPR are highly conserved across mammals and involved in regulating a range of physiological processes, including stress response, appetite regulation, pain modulation, cardiovascular function, and potentially reproductive functions. Here we present cryo-electron microscopy structures of PrRP-bound PrRPR coupled to Gq or Gi heterotrimer, unveiling distinct molecular determinants underlying the specific recognition of the ligand's C-terminal RF-amide motif. We identify a conserved polar pocket that accommodates the C-terminal amide shared by RF-amide peptides. Structural comparison with neuropeptide Y receptors reveals both similarities and differences in engaging the essential RF/RY-amide motifs. Our findings demonstrate the general mechanism governing RF-amide motif recognition by PrRPR and RF-amide peptide receptors, and provide a foundation for elucidating activation mechanisms and developing selective drugs targeting this important peptide-receptor system.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumu Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chongzhao You
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingru Li
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Li-Hua Zhao
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Translational Center for Medicinal Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
4
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024:1-17. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
6
|
Strnadová V, Morgan A, Škrlová M, Haasová E, Bardová K, Myšková A, Sýkora D, Kuneš J, Železná B, Maletínská L. Peripheral administration of lipidized NPAF and NPFF analogs does not influence central food intake regulation but induces anxiety-like behavior. Neuropeptides 2024; 104:102417. [PMID: 38422597 DOI: 10.1016/j.npep.2024.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
RF-amide peptides influence multiple physiological processes, including the regulation of appetite, stress responses, behavior, and reproductive and endocrine functions. In this study, we examined the roles of neuropeptide FF receptors (NPFFR1 and NPFFR2) by generating several lipidized analogs of neuropeptide AF (NPAF) and 1DMe, a stable analog of neuropeptide FF (NPFF). These analogs were administered peripherally for the first time to investigate their effects on food intake and other potential physiological outcomes. Lipidized NPAF and 1DMe analogs exhibited enhanced stability and increased pharmacokinetics. These analogs demonstrated preserved high affinity for NPFFR2 in the nanomolar range, while the binding affinity for NPFFR1 was tens of nanomoles. They activated the ERK and Akt signaling pathways in cells overexpressing the NPFFR1 and NPFFR2 receptors. Acute food intake in fasted mice decreased after the peripheral administration of oct-NPAF or oct-1DMe. However, this effect was not as pronounced as that observed after the injection of palm11-PrRP31, a potent anorexigenic compound used as a comparator that binds to GPR10 and the NPFFR2 receptor with high affinity. Neither oct-1DMe nor oct-NPAF decreased food intake or body weight in mice with diet-induced obesity during long-term treatment. In mice treated with oct-1DMe, we observed decreased activity in the central zone during the open field test and decreased activity in the open arms of the elevated plus maze. Furthermore, we observed a decrease in plasma noradrenaline levels and an increase in plasma corticosterone levels, as well as an increase in Crh expression in the hypothalamus. Moreover, neuronal activity in the hypothalamus was increased after treatment with oct-1DMe. In this study, we report that oct-1DMe did not have any long-term effects on the central regulation of food intake; however, it caused anxiety-like behavior.
Collapse
Affiliation(s)
- Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Alena Morgan
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Magdalena Škrlová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eliška Haasová
- Institute of Physiology, CAS, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Institute of Physiology, CAS, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic.
| |
Collapse
|
7
|
Jörgensen SK, Karnošová A, Mazzaferro S, Rowley O, Chen HJC, Robbins SJ, Christofides S, Merkle FT, Maletínská L, Petrik D. An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis. EMBO Rep 2024; 25:351-377. [PMID: 38177913 PMCID: PMC10897398 DOI: 10.1038/s44319-023-00016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.
Collapse
Affiliation(s)
| | - Alena Karnošová
- First Faculty of Medicine, Charles University, Prague, 12108, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - Simone Mazzaferro
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Oliver Rowley
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Hsiao-Jou Cortina Chen
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Sarah J Robbins
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | | | - Florian T Merkle
- Wellcome-MRC Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - David Petrik
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
8
|
Hoang NMH, Jo W, Kim MS. Protective effect of Prolactin releasing peptide against 1,2-diacetylbenzene -induced neuroinflammation. Neuropeptides 2023; 100:102349. [PMID: 37269608 DOI: 10.1016/j.npep.2023.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Prolactin-releasing peptide (PrRP) has been investigated as a potential therapeutic for diabetes by the effect of food intake reduction, increasing leptin signaling, and insulin tolerance. Recent studies focused on its synaptogenesis and protective effects against neurodegeneration. Whereas 1,2-diacetylbenzene (DAB), a common metabolite of a neurotoxicant 1,2-diethyl benzene, causes memory impairment and neurotoxicity partly through the inflammatory process. Our present study assessed the effect of PrRP in microglia and its action in balancing the inflammation to protect against DAB. We observed that PrRP modulated NADPH oxidase - regulated NLRP3 inflammasome and PRL signaling pathways differently between physical and toxic conditions in microglia.
Collapse
Affiliation(s)
- Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Wonhee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| |
Collapse
|
9
|
Strnadová V, Karnošová A, Blechová M, Neprašová B, Holá L, Němcová A, Myšková A, Sýkora D, Železná B, Kuneš J, Maletínská L. Search for lipidized PrRP analogs with strong anorexigenic effect: In vitro and in vivo studies. Neuropeptides 2023; 98:102319. [PMID: 36669365 DOI: 10.1016/j.npep.2022.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023]
Abstract
Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that attenuates food intake and increases energy expenditure. We designed three series of new lipidized PrRP31 analogs of different lengths of fatty acids attached at amino acids 1 or 11 directly or via linkers, part of them acetylated at the N-terminus and/or modified with dichlorophenylalanine (PheCl2) at the C-terminus. We tested their affinity for and activation of signaling pathways relevant to receptors GPR10, NPFF-R2, and NPFF-R1, effect on food intake in fasted or freely fed mice and rats, and stability in rat plasma. We aimed to select a strong dual GPR10/NPFF-R2 agonist whose affinity for NPFF-1 was not enhanced. The selected potent analog was then tested for body weight-lowering potency after chronic administration in mice with diet-induced obesity. PrRP31 analogs lipidized by monocarboxylic fatty acids showed strong dual affinity for both GPR10 and NPFF-R2 and activated MAPK/ERK1/2, Akt and CREB in cells overexpressing GPR10 and NPFF-R2. The selected analog stabilized at N- and C-termini and palmitoylated through the TTDS linker to Lys11 is a powerful dual agonist GPR10/NPFF-R2 at not enhanced affinity for NPFF-R1. It showed strong anti-obesity properties in mice with diet-induced obesity and became a potential compound for further studies.
Collapse
Affiliation(s)
- Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic
| | - Alena Karnošová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic; First Faculty of Medicine, Charles University, Prague 121 08, Czech Republic
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic; Institute of Physiology, CAS, Prague 142 00, Czech Republic
| | - Lucie Holá
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic; First Faculty of Medicine, Charles University, Prague 121 08, Czech Republic
| | - Anna Němcová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic; University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic; University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - David Sýkora
- University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic; Institute of Physiology, CAS, Prague 142 00, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, CAS, Prague 166 10, Czech Republic.
| |
Collapse
|
10
|
Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect. Sci Rep 2022; 12:1696. [PMID: 35105898 PMCID: PMC8807614 DOI: 10.1038/s41598-022-05310-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) is an endogenous neuropeptide involved in appetite regulation and energy homeostasis. PrRP binds with high affinity to G-protein coupled receptor 10 (GPR10) and with lesser activity towards the neuropeptide FF receptor type 2 (NPFF2R). The present study aimed to develop long-acting PrRP31 analogues with potent anti-obesity efficacy. A comprehensive series of C18 lipidated PrRP31 analogues was characterized in vitro and analogues with various GPR10 and NPFF2R activity profiles were profiled for bioavailability and metabolic effects following subcutaneous administration in diet-induced obese (DIO) mice. PrRP31 analogues acylated with a C18 lipid chain carrying a terminal acid (C18 diacid) were potent GPR10-selective agonists and weight-neutral in DIO mice. In contrast, acylation with aliphatic C18 lipid chain (C18) resulted in dual GPR10-NPFF2R co-agonists that suppressed food intake and promoted a robust weight loss in DIO mice, which was sustained for at least one week after last dosing. Rapid in vivo degradation of C18 PrRP31 analogues gave rise to circulating lipidated PrRP metabolites maintaining dual GPR10-NPFF2R agonist profile and long-acting anti-obesity efficacy in DIO mice. Combined GPR10 and NPFF2R activation may therefore be a critical mechanism for obtaining robust anti-obesity efficacy of PrRP31 analogues.
Collapse
|
11
|
Mráziková L, Neprašová B, Mengr A, Popelová A, Strnadová V, Holá L, Železná B, Kuneš J, Maletínská L. Lipidized Prolactin-Releasing Peptide as a New Potential Tool to Treat Obesity and Type 2 Diabetes Mellitus: Preclinical Studies in Rodent Models. Front Pharmacol 2021; 12:779962. [PMID: 34867411 PMCID: PMC8637538 DOI: 10.3389/fphar.2021.779962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.
Collapse
Affiliation(s)
- Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech.,Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Anna Mengr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Lucie Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech.,Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| |
Collapse
|
12
|
Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study. Int J Mol Sci 2021; 22:ijms22168904. [PMID: 34445614 PMCID: PMC8396344 DOI: 10.3390/ijms22168904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.
Collapse
|
13
|
Constantin S, Pizano K, Matson K, Shan Y, Reynolds D, Wray S. An Inhibitory Circuit From Brainstem to GnRH Neurons in Male Mice: A New Role for the RFRP Receptor. Endocrinology 2021; 162:6132086. [PMID: 33564881 PMCID: PMC8016070 DOI: 10.1210/endocr/bqab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/31/2022]
Abstract
RFamide-related peptides (RFRPs, mammalian orthologs of gonadotropin-inhibitory hormone) convey circadian, seasonal, and social cues to the reproductive system. They regulate gonadotropin secretion by modulating gonadotropin-releasing hormone (GnRH) neurons via the RFRP receptor. Mice lacking this receptor are fertile but exhibit abnormal gonadotropin responses during metabolic challenges, such as acute fasting, when the normal drop in gonadotropin levels is delayed. Although it is known that these food intake signals to the reproductive circuit originate in the nucleus tractus solitarius (NTS) in the brainstem, the phenotype of the neurons conveying the signal remains unknown. Given that neuropeptide FF (NPFF), another RFamide peptide, resides in the NTS and can bind to the RFRP receptor, we hypothesized that NPFF may regulate GnRH neurons. To address this question, we used a combination of techniques: cell-attached electrophysiology on GnRH-driven green fluorescent protein-tagged neurons in acute brain slices; calcium imaging on cultured GnRH neurons; and immunostaining on adult brain tissue. We found (1) NPFF inhibits GnRH neuron excitability via the RFRP receptor and its canonical signaling pathway (Gi/o protein and G protein-coupled inwardly rectifying potassium channels), (2) NPFF-like fibers in the vicinity of GnRH neurons coexpress neuropeptide Y, (3) the majority of NPFF-like cell bodies in the NTS also coexpress neuropeptide Y, and (4) acute fasting increased NPFF-like immunoreactivity in the NTS. Together these data indicate that NPFF neurons within the NTS inhibit GnRH neurons, and thus reproduction, during fasting but prior to the energy deficit.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Katherine Pizano
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Kaya Matson
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Daniel Reynolds
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
- Correspondence: Dr. Susan Wray, Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive MSC 3703, Building 35, Room 3A1012, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Pražienková V, Funda J, Pirník Z, Karnošová A, Hrubá L, Kořínková L, Neprašová B, Janovská P, Benzce M, Kadlecová M, Blahoš J, Kopecký J, Železná B, Kuneš J, Bardová K, Maletínská L. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 2021; 774:145427. [PMID: 33450349 DOI: 10.1016/j.gene.2021.145427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptor GPR10 is expressed in brain areas regulating energy metabolism. In this study, the effects of GPR10 gene deficiency on energy homeostasis in mice of both sexes fed either standard chow or a high-fat diet (HFD) were studied, with a focus on neuronal activation of PrRP neurons, and adipose tissue and liver metabolism. GPR10 deficiency in males upregulated the phasic and tonic activity of PrRP neurons in the nucleus of the solitary tract. GPR10 knockout (KO) males on a standard diet displayed a higher body weight than their wild-type (WT) littermates due to an increase in adipose tissue mass; however, HFD feeding did not cause weight differences between genotypes. Expression of lipogenesis genes was suppressed in the subcutaneous adipose tissue of GPR10 KO males. In contrast, GPR10 KO females did not differ in body weight from their WT controls, but showed elevated expression of lipid metabolism genes in the liver and subcutaneous adipose tissue compared to WT controls. An attenuated non-esterified fatty acids change after glucose load compared to WT controls suggested a defect in insulin-mediated suppression of lipolysis in GPR10 KO females. Indirect calorimetry did not reveal any differences in energy expenditure among groups. In conclusion, deletion of GPR10 gene resulted in changes in lipid metabolism in mice of both sexes, however in different extent. An increase in adipose tissue mass observed in only GPR10 KO males may have been prevented in GPR10 KO females owing to a compensatory increase in the expression of metabolic genes.
Collapse
Affiliation(s)
- Veronika Pražienková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jiří Funda
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Biomedical Research Center SAS of the Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Alena Karnošová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucia Kořínková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Petra Janovská
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michal Benzce
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Jaroslav Blahoš
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
15
|
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int J Mol Sci 2019; 20:ijms20215297. [PMID: 31653061 PMCID: PMC6862262 DOI: 10.3390/ijms20215297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.
Collapse
|
16
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
17
|
Pflimlin E, Lear S, Lee C, Yu S, Zou H, To A, Joseph S, Nguyen-Tran V, Tremblay MS, Shen W. Design of a Long-Acting and Selective MEG-Fatty Acid Stapled Prolactin-Releasing Peptide Analog. ACS Med Chem Lett 2019; 10:1166-1172. [PMID: 31413801 DOI: 10.1021/acsmedchemlett.9b00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023] Open
Abstract
Anorexigenic peptides offer promise as potential therapies targeting the escalating global obesity epidemic. Prolactin-releasing peptide (PrRP), a novel member of the RFamide family secreted by the hypothalamus, shows therapeutic potential by decreasing food intake and body weight in rodent models via GPR10 activation. Here we describe the design of a long-acting PrRP using our recently developed novel multiple ethylene glycol-fatty acid (MEG-FA) stapling platform. By incorporating serum albumin binding fatty acids onto a covalent side chain staple, we have generated a series of MEG-FA stapled PrRP analogs with enhanced serum stability and in vivo half-life. Our lead compound 18-S4 exhibits good in vitro potency and selectivity against GPR10, improved serum stability, and extended in vivo half-life (7.8 h) in mouse. Furthermore, 18-S4 demonstrates a potent body weight reduction effect in a diet-induced obesity (DIO) mouse model, representing a promising long-acting PrRP analog for further evaluation in the chronic obesity setting.
Collapse
Affiliation(s)
- Elsa Pflimlin
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sam Lear
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Candy Lee
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Shan Yu
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Huafei Zou
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Andrew To
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Sean Joseph
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Van Nguyen-Tran
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Matthew S. Tremblay
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| | - Weijun Shen
- Calibr at Scripps Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Gospodarska E, Kozak LP, Jaroslawska J. Isolation and identification of endogenous RFamide-related peptides 1 and 3 in the mouse hypothalamus. J Neuroendocrinol 2019; 31:e12668. [PMID: 30521140 DOI: 10.1111/jne.12668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
Abstract
Although the RFamide-related peptide (RFRP) preproprotein sequence is known in mice, until now, the molecular structure of the mature, functional peptides processed from the target precursor molecule has not been determined. In the present study, we purified endogenous RFRP1 and RFRP3 peptides from mouse hypothalamic tissue extracts using an immunoaffinity column conjugated with specific antibodies against the mouse C-terminus of RFRP-1 and RFRP-3. Employing liquid chromatography coupled with mass spectrometry, we demonstrated that RFRP1 consists of 15 amino acid residues and RFRP3 consists of 10 amino acid residues (ANKVPHSAANLPLRF-NH2 and SHFPSLPQRF-NH2, respectively). To investigate the distribution of RFRPs in the mouse central nervous system, we performed immunohistochemical staining of the brain sections collected from wild-type and Rfrp knockout animals. These data, together with gene expression in multiple tissues, provide strong confidence that RFRP-immunoreactive neuronal cells are localised in the dorsomedial hypothalamic nucleus (DMH) and between the DMH and the ventromedial hypothalamic nuclei. The identification of RFRP1 and RFRP3 peptides and immunohistochemical visualisation of targeting RFRPs neurones in the mice brain provide the basis for further investigations of the functional biology of RFRPs.
Collapse
Affiliation(s)
- Emilia Gospodarska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Leslie P Kozak
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Julia Jaroslawska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
19
|
Zhang W, Wang L, Yu X, Jia A, Ming J, Ji Q. RFamide-related peptide-3 promotes alpha TC1 clone 6 cell survival likely via GPR147. Peptides 2018; 107:39-44. [PMID: 30081043 DOI: 10.1016/j.peptides.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/08/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is closely related to islet alpha cell mass and viability. Several types of RFamide-related peptides (RFRPs) are involved in regulating proliferation and function of islet cells. However, current understanding of the role of RFamide-related peptide-3 (RFRP-3) in pancreatic alpha cells is limited. Therefore, we investigated the expression of the RFRP-3 receptor, G protein-coupled receptor 147 (GPR147), in mouse islets and alpha TC1 clone 6 cells, and evaluated the function of RFRP-3 on alpha cells. We show that GPR147 is expressed in mouse islets and alpha cell lines. In addition, RFRP-3 promotes survival of alpha cells under conditions of hyperglycemia and serum starvation. Mechanistic evidence demonstrates that RFRP-3 activated PI3K/AKT and ERK1/2 signaling cascades and treatment with an antagonist of GPR147, 1-adamantanecarbonyl-Arg-Phe-NH₂ (RF9) blocked this function. These findings indicate a novel effect of RFRP-3 in promoting alpha cell survival, likely via GPR147.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Li Wang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Xinwen Yu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Aihua Jia
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Jie Ming
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Qiuhe Ji
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China.
| |
Collapse
|
20
|
Davis XS, Grill H. The hindbrain is a site of energy balance action for prolactin-releasing peptide: feeding and thermic effects from GPR10 stimulation of the nucleus tractus solitarius/area postrema. Psychopharmacology (Berl) 2018; 235:2287-2301. [PMID: 29796829 PMCID: PMC8019516 DOI: 10.1007/s00213-018-4925-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/07/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Prolactin-releasing peptide (PrRP) is a neuropeptide that suppresses food intake and increases body temperature when delivered to the forebrain ventricularly or parenchymally. However, PrRP's receptor GPR10 is widely distributed throughout the brain with particularly high levels found in the dorsomedial hindbrain. Thus, we hypothesized that hindbrain-directed PrRP administration would affect energy balance and motivated feeding behavior. METHODS To address this hypothesis, a range of behavioral and physiologic variables were measured in Sprague-Dawley rats that received PrRP delivered to the fourth ventricle (4V) or the nucleus of the solitary tract (NTS) at the level of the area postrema (AP). RESULTS 4V PrRP delivery decreased chow intake and body weight, in part, through decreasing meal size in ad libitum maintained rats tested at dark onset. PrRP inhibited feeding when delivered to the nucleus tractus solitarius (NTS), but not to more ventral hindbrain structures. In addition, 4V as well as direct NTS administration of PrRP increased core temperature. By contrast, 4V PrRP did not reduce ad libitum intake of highly palatable food or the motivation to work for or seek palatable foods. CONCLUSIONS The dorsomedial hindbrain and NTS/AP, in particular, are sites of action in PrRP/GPR10-mediated control of chow intake, core temperature, and body weight.
Collapse
Affiliation(s)
- X. S. Davis
- Department of Psychology, University of Pennsylvania, 433 S. University Avenue, Rm. 327, Philadelphia, PA 19104, USA
| | - H.J. Grill
- Department of Psychology, University of Pennsylvania, 433 S. University Avenue, Rm. 327, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
22
|
Ancel C, Inglis MA, Anderson GM. Central RFRP-3 Stimulates LH Secretion in Male Mice and Has Cycle Stage-Dependent Inhibitory Effects in Females. Endocrinology 2017; 158:2873-2883. [PMID: 28475692 DOI: 10.1210/en.2016-1902] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
RFamide-related peptide (RFRP)-3 is a neuropeptide thought to play an inhibitory role in the regulation of reproduction in various mammalian species, although some stimulatory effects have been reported. To date, the effects of RFRP-3 on gonadotropin secretion have been scarcely studied in mice. The aim of the current study was to characterize the effect of RFRP-3 administration on gonadotropin secretion in male and female mice. Adult intact and castrated male mice received acute central injections of 0.5 to 5 nmol of RFRP-3, and luteinizing hormone (LH) concentration was assayed in tail-tip blood samples. RFRP-3 had a dose-dependent stimulatory effect on LH secretion when administered centrally to both intact and castrated mice, and this effect was diminished when RFRP-3 was administered to kisspeptin receptor knockout mice. In female mice, central RFRP-3 had an inhibitory effect on LH secretion when administered at the time of the preovulatory LH surge in intact mice, or of an estradiol-induced LH surge in ovariectomized mice. Conversely, central RFRP-3 administration had no effect on LH levels in intact diestrus or ovariectomized, low-dose estradiol-implanted mice. Finally, peripheral administration of RFRP-3 to intact males and to females at the time of the preovulatory LH surge or during diestrus had no effect on LH secretion. Taken together, these results provide a detailed description of sex- and cycle stage-dependent effects of RFRP-3 on gonadotrophin secretion in mice. Moreover, it appears that the stimulatory effects are mediated in part by the receptor for kisspeptin, a potent stimulator of the reproductive axis.
Collapse
Affiliation(s)
- Caroline Ancel
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Megan A Inglis
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| |
Collapse
|
23
|
Lin YT, Yu YL, Hong WC, Yeh TS, Chen TC, Chen JC. NPFFR2 Activates the HPA Axis and Induces Anxiogenic Effects in Rodents. Int J Mol Sci 2017; 18:ijms18081810. [PMID: 28825666 PMCID: PMC5578197 DOI: 10.3390/ijms18081810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide FF (NPFF) belongs to the RFamide family and is known as a morphine-modulating peptide. NPFF regulates various hypothalamic functions through two receptors, NPFFR1 and NPFFR2. The hypothalamic-pituitary-adrenal (HPA) axis participates in physiological stress response by increasing circulating glucocorticoid levels and modulating emotional responses. Other RFamide peptides, including neuropeptide AF, neuropeptide SF and RFamide related peptide also target NPFFR1 or NPFFR2, and have been reported to activate the HPA axis and induce anxiety- or depression-like behaviors. However, little is known about the action of NPFF on HPA axis activity and anxiety-like behaviors, and the role of the individual receptors remains unclear. In this study, NPFFR2 agonists were used to examine the role of NPFFR2 in activating the HPA axis in rodents. Administration of NPFFR2 agonists, dNPA (intracerebroventricular, ICV) and AC-263093 (intraperitoneal, IP), time-dependently (in rats) and dose-dependently (in mice) increased serum corticosteroid levels and the effects were counteracted by the NPFF receptor antagonist, RF9 (ICV), as well as corticotropin-releasing factor (CRF) antagonist, α-helical CRF(9-41) (intravenous, IV). Treatment with NPFFR2 agonist (AC-263093, IP) increased c-Fos protein expression in the hypothalamic paraventricular nucleus and induced an anxiogenic effect, which was evaluated in mice using an elevated plus maze. These findings reveal, for the first time, that the direct action of hypothalamic NPFFR2 stimulates the HPA axis and triggers anxiety-like behaviors.
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, No. 259 Wenhwa 1st Road, Guishan, Taoyuan 333, Taiwan.
| | - Yu-Lian Yu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan.
| | - Wei-Chen Hong
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan.
| | - Ting-Shiuan Yeh
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Ting-Chun Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan.
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, No. 259 Wenhwa 1st Road, Guishan, Taoyuan 333, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital, No. 5, Fusing St., Guishan, Taoyuan 333, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
24
|
Pražienková V, Holubová M, Pelantová H, Bugáňová M, Pirník Z, Mikulášková B, Popelová A, Blechová M, Haluzík M, Železná B, Kuzma M, Kuneš J, Maletínská L. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS One 2017; 12:e0183449. [PMID: 28820912 PMCID: PMC5562305 DOI: 10.1371/journal.pone.0183449] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/06/2017] [Indexed: 01/07/2023] Open
Abstract
Analogs of anorexigenic neuropeptides, such as prolactin-releasing peptide (PrRP), have a potential as new anti-obesity drugs. In our previous study, palmitic acid attached to the N-terminus of PrRP enabled its central anorexigenic effects after peripheral administration. In this study, two linkers, γ-glutamic acid at Lys11 and a short, modified polyethylene glycol at the N-terminal Ser and/or Lys11, were applied for the palmitoylation of PrRP31 to improve its bioavailability. These analogs had a high affinity and activation ability to the PrRP receptor GPR10 and the neuropeptide FF2 receptor, as well as short-term anorexigenic effect similar to PrRP palmitoylated at the N-terminus. Two-week treatment with analogs that were palmitoylated through linkers to Lys11 (analogs 1 and 2), but not with analog modified both at the N-terminus and Lys11 (analog 3) decreased body and liver weights, insulin, leptin, triglyceride, cholesterol and free fatty acid plasma levels in a mouse model of diet-induced obesity. Moreover, the expression of uncoupling protein-1 was increased in brown fat suggesting an increase in energy expenditure. In addition, treatment with analogs 1 and 2 but not analog 3 significantly decreased urinary concentrations of 1-methylnicotinamide and its oxidation products N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-3-carboxamide, as shown by NMR-based metabolomics. This observation confirmed the previously reported increase in nicotinamide derivatives in obesity and type 2 diabetes mellitus and the effectiveness of analogs 1 and 2 in the treatment of these disorders.
Collapse
Affiliation(s)
- Veronika Pražienková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martina Bugáňová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Human and Clinical Pharmacology, University of Veterinary Medicine, Košice, Slovak Republic
| | - Barbora Mikulášková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague and General University Hospital, Prague, Czech Republic
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
25
|
Lanfray D, Richard D. Emerging Signaling Pathway in Arcuate Feeding-Related Neurons: Role of the Acbd7. Front Neurosci 2017; 11:328. [PMID: 28690493 PMCID: PMC5481368 DOI: 10.3389/fnins.2017.00328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/24/2017] [Indexed: 01/28/2023] Open
Abstract
The understanding of the mechanisms whereby energy balance is regulated is essential to the unraveling of the pathophysiology of obesity. In the last three decades, focus was put on the metabolic role played by the hypothalamic neurons expressing proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART) and the neurons co-localizing agouti-related peptide (AgRP), neuropeptide Y (NPY), and gamma-aminobutyric acid (GABA). These neurons are part of the leptin-melanocortin pathway, whose role is key in energy balance regulation. More recently, the metabolic involvement of further hypothalamic uncharacterized neuron populations has been suggested. In this review, we discuss the potential homeostatic implication of hypothalamic GABAergic neurons that produce Acyl-Coa-binding domain containing protein 7 (ACBD7), precursor of the nonadecaneuropeptide (NDN), which has recently been characterized as a potent anorexigenic neuropeptide capable of relaying the leptin anorectic/thermogenic effect via the melanocortin system.
Collapse
Affiliation(s)
- Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université LavalQuébec, QC, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université LavalQuébec, QC, Canada
| |
Collapse
|
26
|
Kovács A, László K, Zagoracz O, Ollmann T, Péczely L, Gálosi R, Lénárd L. Effects of RFamide-related peptide-1 (RFRP-1) microinjections into the central nucleus of amygdala on passive avoidance learning in rats. Neuropeptides 2017; 62:81-86. [PMID: 27993374 DOI: 10.1016/j.npep.2016.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 12/11/2016] [Indexed: 11/16/2022]
Abstract
The amygdaloid body (AMY) plays an important role in memory, learning and reward-related processes. RFRP-1 immunoreactive fibers and NPFF receptors were identified in the AMY, and previously we verified that RFRP-1 infused into the central nucleus of AMY (CeA) induced place preference. The aim of the present study was to examine the possible effects of RFRP-1 in the CeA on passive avoidance learning. Male Wistar rats were examined in two-compartment passive avoidance paradigm. Animals were shocked with 0.5mA current and subsequently were microinjected bilaterally with 50ng or 100ng RFRP-1 in volume of 0.4μl, or 20ng NPFF receptor antagonist RF9 (ANT) alone, or antagonist 15min before 50ng RFRP-1 treatments into the CeA. Fifty nanogram dose of RFRP-1 significantly increased the step-through latency time, the 100ng RFRP-1 and the ANT alone were ineffective. The effect of 50ng RFRP-1 was eliminated by the ANT pretreatment. Our results suggest that intraamygdaloid RFRP-1 enhances learning processes and memory in aversive situations and this effect can specifically be prevented by ANT pretreatment.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Olga Zagoracz
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Hungary
| | - Rita Gálosi
- Institute of Physiology, Pécs University Medical School, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
27
|
Kim JS. What's in a Name? Roles of RFamide-Related Peptides Beyond Gonadotrophin Inhibition. J Neuroendocrinol 2016; 28. [PMID: 27369805 DOI: 10.1111/jne.12407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022]
Abstract
RFamide-related peptides (RFRPs) have been heavily implicated in the control of reproductive function subsequent to their discovery more than 16 years ago. However, recent studies using genetic and pharmacological tools have challenged their importance in regulating the hypothalamic-pituitary-gonadal axis. It is generally accepted that RFRPs act as part of a wider RFamide system, which involves two receptors, called the neuropeptide FF receptors (NPFFR1 and R2), and includes the closely-related neuropeptide NPFF. NPFF has been studied ever since the 1980s and many of the functions of NPFF are also shared by RFRPs. The current review questions whether these functions of NPFF are indeed specific to just NPFF alone and presents evidence from both neuroendocrine and pharmacological perspectives. Furthermore, recently emerging new functions of RFRPs are discussed with the overall goal of clarifying the functions of RFRPs beyond the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- J S Kim
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation. Psychoneuroendocrinology 2016; 71:73-85. [PMID: 27243477 DOI: 10.1016/j.psyneuen.2016.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Neuropeptide FF (NPFF) is a morphine-modulating peptide that regulates the analgesic effect of opioids, and also controls food consumption and cardiovascular function through its interaction with two cognate receptors, NPFFR1 and NPFFR2. In the present study, we explore a novel modulatory role for NPFF-NPFFR2 in stress-related depressive behaviors. In a mouse model of chronic mild stress (CMS)-induced depression, the expression of NPFF significantly increased in the hypothalamus, hippocampus, medial prefrontal cortex (mPFC) and amygdala. In addition, transgenic (Tg) mice over-expressing NPFFR2 displayed clear depression and anxiety-like behaviors with hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis, reduced expression of glucocorticoid receptor (GR) and neurogenesis in the hippocampus. Furthermore, acute treatment of NPFFR2 agonists in wild-type (WT) mice enhanced the activity of the HPA axis, and chronic administration resulted in depressive and anxiety-like behaviors. Chronic stimulation of NPFFR2 also decreased the expression of hippocampal GR and led to persistent activation of the HPA axis. Strikingly, bilateral intra-paraventricular nucleus (PVN) injection of NPFFR2 shRNA predominately inhibits the depressive-like behavior in CMS-exposed mice. Antidepressants, fluoxetine and ketamine, effectively relieved the depressive behaviors of NPFFR2-Tg mice. We speculate that persistent NPFFR2 activation, in particular in the hypothalamus, up-regulates the HPA axis and results in long-lasting increases in circulating corticosterone (CORT), consequently damaging hippocampal function. This novel role of NPFFR2 in regulating the HPA axis and hippocampal function provides a new avenue for combating depression and anxiety-like disorder.
Collapse
|
29
|
Kuneš J, Pražienková V, Popelová A, Mikulášková B, Zemenová J, Maletínská L. Prolactin-releasing peptide: a new tool for obesity treatment. J Endocrinol 2016; 230:R51-8. [PMID: 27418033 DOI: 10.1530/joe-16-0046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 11/08/2022]
Abstract
Obesity is an escalating epidemic, but an effective noninvasive therapy is still scarce. For obesity treatment, anorexigenic neuropeptides are promising tools, but their delivery from the periphery to the brain is complicated because peptides have a low stability and limited ability to cross the blood-brain barrier. In this review, we summarize results of several studies with our newly designed lipidized analogs of prolactin-releasing peptide (PrRP). PrRP is involved in feeding and energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice. Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF (NPFF)-2 receptor. Acute peripheral administration of myristoylated and palmitoylated PrRP analogs to mice and rats induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight, improved metabolic parameters and attenuated lipogenesis in mice with diet-induced obesity. A strong anorexigenic, body weight-reducing and glucose tolerance-improving effect of palmitoylated-PrRP31 was shown also in diet-induced obese rats after its repeated 2-week-long peripheral administration. Thus, the strong anorexigenic and body weight-reducing effects of palmitoylated PrRP31 and myristoylated PrRP20 make these analogs attractive candidates for antiobesity treatment. Moreover, PrRP receptor might be a new target for obesity therapy.
Collapse
Affiliation(s)
- Jaroslav Kuneš
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic Institute of PhysiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Veronika Pražienková
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Mikulášková
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic Institute of PhysiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Zemenová
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic University of Chemistry and TechnologyPrague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
30
|
Deluca SH, Rathmann D, Beck-Sickinger AG, Meiler J. The activity of prolactin releasing peptide correlates with its helicity. Biopolymers 2016; 99:314-25. [PMID: 23426574 DOI: 10.1002/bip.22162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/30/2012] [Accepted: 09/15/2012] [Indexed: 11/09/2022]
Abstract
The prolactin releasing peptide (PrRP) is involved in regulating food intake and body weight homeostasis, but molecular details on the activation of the PrRP receptor remain unclear. C-terminal segments of PrRP with 20 (PrRP20) and 13 (PrRP8-20) amino acids, respectively, have been suggested to be fully active. The data presented herein indicate this is true for the wildtype receptor only; a 5-10-fold loss of activity was found for PrRP8-20 compared to PrRP20 at two extracellular loop mutants of the receptor. To gain insight into the secondary structure of PrRP, we used CD spectroscopy performed in TFE and SDS. Additionally, previously reported NMR data, combined with ROSETTANMR, were employed to determine the structure of amidated PrRP20. The structural ensemble agrees with the spectroscopic data for the full-length peptide, which exists in an equilibrium between α- and 3(10)-helix. We demonstrate that PrRP8-20's reduced propensity to form an α-helix correlates with its reduced biological activity on mutant receptors. Further, distinct amino acid replacements in PrRP significantly decrease affinity and activity but have no influence on the secondary structure of the peptide. We conclude that formation of a primarily α-helical C-terminal region of PrRP is critical for receptor activation.
Collapse
Affiliation(s)
- Stephanie H Deluca
- Vanderbilt University Center for Structural Biology, 5144B Biosci/MRBIII, 465 21st Avenue South, Nashville, TN 37232-8725
| | | | | | | |
Collapse
|
31
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
32
|
Zagorácz O, Kovács A, László K, Ollmann T, Péczely L, Lénárd L. Effects of direct QRFP-26 administration into the medial hypothalamic area on food intake in rats. Brain Res Bull 2015; 118:58-64. [PMID: 26385088 DOI: 10.1016/j.brainresbull.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
The RFamide peptide family comprises a number of biologically active peptides sharing RF motif at their C-terminal end. These peptides are involved in the control of multiple physiological functions including regulation of metabolism and feeding behavior. QRFP-43 as well as its 26-aminoacid residue QRFP-26 are able to cause orexigenic effect when administered to the rodents' cerebral ventricles. QRFPs have been suggested as the endogenous ligands of the previously orphan GPR103 receptors. GPR103 receptors share amino acid identity with other receptors of neuropeptides involved in feeding (NPY, NPFF, galanin). QRFP-26 expressing neurons and binding sites are densely present in the rat medial hypothalamus (MHA), an area directly responsible for the regulation of feeding. QRFP-26 was delivered to the target area by direct intrahypothalamic microinjection, and the consumption of liquid food was measured over a 60 min period. Both doses (100 and 200 ng) significantly increased food intake. Non-specific receptor antagonist BIBP3226 eliminated the orexigenic effect caused by QRFP-26 administration. Effective doses of QRFP-26 did not modify general locomotor activity and behavioral patterns examined in the open-field test. This study is the first reporting feeding modulating effects following direct intrahypothalamic QRFP-26 administration.
Collapse
Affiliation(s)
- Olga Zagorácz
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
33
|
Buffel I, Meurs A, Portelli J, Raedt R, De Herdt V, Sioncke L, Wadman W, Bihel F, Schmitt M, Vonck K, Bourguignon JJ, Simonin F, Smolders I, Boon P. Neuropeptide FF and prolactin-releasing peptide decrease cortical excitability through activation of NPFF receptors. Epilepsia 2015; 56:489-98. [PMID: 25684325 DOI: 10.1111/epi.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Drugs with a novel mechanism of action are needed to reduce the number of people with epilepsy that are refractory to treatment. Increasing attention is paid to neuropeptide systems and several anticonvulsant neuropeptides have already been described, such as galanin, ghrelin, and neuropeptide Y (NPY). Many others, however, have not been investigated for their ability to affect epileptic seizures. In this study, the potential anticonvulsant activities of three members of the RF-amide neuropeptide family, neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), and kisspeptin (Kp) and other receptor ligands (NPFF1/2 R, GPR10, and GRP54, respectively) were tested in the motor cortex stimulation model. METHODS A train of pulses with increasing intensity (0-10 mA over 150 s, 50 Hz, pulse width 2 msec) was delivered to the motor cortex of rats. The threshold intensity for eliciting a motor response (i.e., motor threshold) was determined through behavioral observation and used as a measure for cortical excitability. The threshold was determined before, during, and after the intracerebroventricular (i.c.v.) administration of various NPFF1/2 R, GPR10, and GPR54 receptor ligands. RESULTS NPFF and PrRP significantly increased the motor threshold by a maximum of 143 ± 27 and 83 ± 13 μA, respectively, for the doses of 1 nmol/h (p < 0.05). The increase of motor threshold by NPFF and PrRP was prevented by pretreatment and co-treatment with the NPFF1/2 R antagonist RF9. Pretreatment with a selective NPFF1 R antagonist also prevented the threshold increase induced by NPFF. Kp did not increase motor threshold. SIGNIFICANCE Intracerebroventricular infusion of NPFF or PrRP decreases cortical excitability in rats through activation of NPFFRs. Furthermore, the NPFF1 R is required for the NPFF-induced decrease in cortical excitability.
Collapse
Affiliation(s)
- Ine Buffel
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lénárd L, Kovács A, Ollmann T, Péczely L, Zagoracz O, Gálosi R, László K. Positive reinforcing effects of RFamide-related peptide-1 in the rat central nucleus of amygdala. Behav Brain Res 2014; 275:101-6. [DOI: 10.1016/j.bbr.2014.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022]
|
35
|
Matsui H, Masaki T, Akinaga Y, Kiba A, Takatsu Y, Nakata D, Tanaka A, Ban J, Matsumoto SI, Kumano S, Suzuki A, Ikeda Y, Yamaguchi M, Watanabe T, Ohtaki T, Kusaka M. Pharmacologic profiles of investigational kisspeptin/metastin analogues, TAK-448 and TAK-683, in adult male rats in comparison to the GnRH analogue leuprolide. Eur J Pharmacol 2014; 735:77-85. [DOI: 10.1016/j.ejphar.2014.03.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/17/2023]
|
36
|
Tachibana T, Sakamoto T. Functions of two distinct "prolactin-releasing peptides" evolved from a common ancestral gene. Front Endocrinol (Lausanne) 2014; 5:170. [PMID: 25426099 PMCID: PMC4226156 DOI: 10.3389/fendo.2014.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL) release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius-RFa (C-RFa), which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa) be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts, while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- *Correspondence: Tetsuya Tachibana, Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan e-mail:
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Japan
| |
Collapse
|
37
|
Ayachi S, Simonin F. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents. Front Endocrinol (Lausanne) 2014; 5:158. [PMID: 25324831 PMCID: PMC4183120 DOI: 10.3389/fendo.2014.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/17/2014] [Indexed: 01/04/2023] Open
Abstract
Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.
Collapse
Affiliation(s)
- Safia Ayachi
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- *Correspondence: Frédéric Simonin, UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, 300 Boulevard Sébastien Brant, Illkirch 67412, France e-mail:
| |
Collapse
|
38
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
39
|
Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology 2013; 75:164-71. [PMID: 23911743 DOI: 10.1016/j.neuropharm.2013.07.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022]
Abstract
Mammalian RF-amide peptides are encoded by five different genes and act through five different G protein-coupled receptors. RF-amide-related peptides-1 and -3, neuropeptides AF and FF, Prolactin releasing peptides, Kisspeptins and RFa peptides are currently considered endogenous peptides for NPFF1, NPFF2, GPR10, GPR54 and GPR103 receptors, respectively. However, several studies suggest that the selectivity of these peptides for their receptors is low and indicate that expression patterns for receptors and their corresponding ligands only partially overlap. In this study, we took advantage of the cloning of the five human RF-amide receptors to systematically examine their affinity for and their activation by all human RF-amide peptides. Binding experiments, performed on membranes from CHO cells expressing GPR10, GPR54 and GPR103 receptors, confirmed their high affinity and remarkable selectivity for their cognate ligands. Conversely, NPFF1 and NPFF2 receptors displayed high affinity for all RF-amide peptides. Moreover, GTPγS and cAMP experiments showed that almost all RF-amide peptides efficiently activate NPFF1 and NPFF2 receptors. As NPFF is known to modulate morphine analgesia, we undertook a systematic analysis in mice of the hyperalgesic and anti morphine-induced analgesic effects of a representative set of endogenous RF-amide peptides. All of them induced hyperalgesia and/or prevented morphine analgesia following intracerebroventricular administration. Importantly, these effects were prevented by administration of RF9, a highly selective NPFF1/NPFF2 antagonist. Altogether, our results show that all endogenous RF-amide peptides display pain-modulating properties and point to NPFF receptors as essential players for these effects.
Collapse
|
40
|
Misu R, Oishi S, Setsuda S, Noguchi T, Kaneda M, Ohno H, Evans B, Navenot JM, Peiper SC, Fujii N. Characterization of the receptor binding residues of kisspeptins by positional scanning using peptide photoaffinity probes. Bioorg Med Chem Lett 2013; 23:2628-31. [PMID: 23522565 DOI: 10.1016/j.bmcl.2013.02.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Kisspeptins, endogenous peptide ligands for GPR54, play an important role in GnRH secretion. Since in vivo administration of kisspeptins induces increased plasma LH levels, GPR54 agonists hold promise as therapeutic agents for the treatment of hormonal secretion diseases. To facilitate the design of novel potent GPR54 ligands, residues in kisspeptins that involve in the interaction with GPR54 were investigated by kisspeptin-based photoaffinity probes. Herein, we report the design and synthesis of novel kisspeptin-based photoaffinity probes, and the application to crosslinking experiments for GPR54-expressing cells.
Collapse
Affiliation(s)
- Ryosuke Misu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res 2013; 1498:33-40. [DOI: 10.1016/j.brainres.2012.12.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/09/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022]
|
42
|
Jhamandas JH, Goncharuk V. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation. Front Endocrinol (Lausanne) 2013; 4:8. [PMID: 23404625 PMCID: PMC3566396 DOI: 10.3389/fendo.2013.00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/22/2013] [Indexed: 11/29/2022] Open
Abstract
Neuropeptide FF (NPFF) is an octapeptide belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain including central cardiovascular and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat and human brain. Herein, we review evidence for the role of NPFF in central regulation of blood pressure particularly within the brainstem and the hypothalamic paraventricular nucleus (PVN). At a cellular level, NPFF demonstrates distinct responses in magnocellular and parvocellular neurons of the PVN, which regulate the secretion of neurohypophyseal hormones and sympathetic outflow, respectively. Finally, the presence of NPFF system in the human brain and its alterations within the hypertensive brain are discussed.
Collapse
Affiliation(s)
- Jack H. Jhamandas
- Division of Neurology, Department of Medicine, Centre for Neuroscience, University of AlbertaEdmonton, AB, Canada
| | - Valeri Goncharuk
- Division of Neurology, Department of Medicine, Centre for Neuroscience, University of AlbertaEdmonton, AB, Canada
- Russian Cardiology Research CenterMoscow, Russia
| |
Collapse
|
43
|
Dodd GT, Luckman SM. Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne) 2013; 4:20. [PMID: 23467899 PMCID: PMC3587801 DOI: 10.3389/fendo.2013.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/19/2013] [Indexed: 12/28/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus, and was found to act as an endogenous ligand at the G-protein-coupled receptor 10 (GPR10 or hGR3). Although originally named as it can affect the secretion of prolactin from anterior pituitary cells, the potential functions for this peptide have been greatly expanded over the past decade. Anatomical, pharmacological, and physiological studies indicate that PrRP, signaling via the GPR10 receptor, may have a wide range of roles in neuroendocrinology; such as in energy homeostasis, stress responses, cardiovascular regulation, and circadian function. This review will provide the current knowledge of the PrRP and GPR10 signaling system, its putative functions, implications for therapy, and future perspectives.
Collapse
Affiliation(s)
- Garron T. Dodd
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
| | - Simon M. Luckman
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
- *Correspondence: Simon M. Luckman, Faculty of Life Sciences, AV Hill Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK. e-mail:
| |
Collapse
|
44
|
Rizwan MZ, Poling MC, Corr M, Cornes PA, Augustine RA, Quennell JH, Kauffman AS, Anderson GM. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology 2012; 153:3770-9. [PMID: 22691552 DOI: 10.1210/en.2012-1133] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RFamide-related peptide-3 (RFRP-3) is known to inhibit the activity of GnRH neurons. It is not yet clear whether its G protein-coupled receptors, GPR147 and GPR74, are present on GnRH neurons or on afferent inputs of the GnRH neuronal network or whether RFRP-3 can inhibit gonadotropin secretion independently of GnRH. We tested the following: 1) whether GnRH is essential for the effects of RFRP-3 on LH secretion; 2) whether RFRP-3 neurons project to GnRH and rostral periventricular kisspeptin neurons in mice, and 3) whether Gpr147 and Gpr74 are expressed by these neurons. Intravenous treatment with the GPR147 antagonist RF9 increased plasma LH concentration in castrated male rats but was unable to do so in the presence of the GnRH antagonist cetrorelix. Dual-label immunohistochemistry revealed that approximately 26% of GnRH neurons from male and diestrous female mice were apposed by RFRP-3 fibers, and 19% of kisspeptin neurons from proestrous female mice were apposed by RFRP-3 fibers. Using immunomagnetic purification of GnRH and kisspeptin cells, single-cell nested RT-PCR, and in situ hybridization, we showed that 33% of GnRH neurons and 9-16% of rostral periventricular kisspeptin neurons expressed Gpr147, whereas Gpr74 was not expressed in either population. These data reveal that RFRP-3 can act at two levels of the GnRH neuronal network (i.e. the GnRH neurons and the rostral periventricular kisspeptin neurons) to modulate reproduction but is unable to inhibit gonadotropin secretion independently of GnRH.
Collapse
Affiliation(s)
- Mohammed Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin 9054, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kovács A, László K, Gálosi R, Tóth K, Ollmann T, Péczely L, Lénárd L. Microinjection of RFRP-1 in the central nucleus of amygdala decreases food intake in the rat. Brain Res Bull 2012; 88:589-95. [PMID: 22691952 DOI: 10.1016/j.brainresbull.2012.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Several members of the RFamide peptide family are known to have role in the regulation of feeding. For example, neuropeptide FF and prolactin-releasing peptide cause anorexigenic, while 26RFa and QRFP result in orexigenic effects in rodents. I.c.v. microinjection of neuropeptide RFRP-1 significantly reduced food and water intake in chicks. However, feeding related effects of RFRP-1 have not been studied in mammals yet. The central part of amygdala (CeA) is essentially involved in the regulation of feeding and body weight. RFRP-1 positive nerve cells were detected in the rat hypothalamus and RFRP-1 immunoreactive fibers were identified in the CeA. RFRP analogs bind with relatively high affinity to the NPFF1 and NPFF2 receptors (NPFF-R). RFRP-1 has potent activity for NPFF1. Significant expression of NPFF1 was detected in the CeA. To evaluate the role of RFRP-1 in feeding regulation rats were microinjected with different doses of RFRP-1 and their food intake were quantified over a 60min period. Liquid food intake of male Wistar rats was measured after bilateral intraamygdaloid administration of RFRP-1 (25, 50 or 100ng/side, RFRP-1 dissolved in 0.15M sterile NaCl/0.4μl, respectively). The 50ng dose of RFRP-1 microinjections resulted in significant decrease of food intake. The 25 and 100ng had no effect. Action of 50ng (37.8pmol) RFRP-1 was eliminated by 20ng (41.4pmol) RF9 NPFF-R antagonist pretreatment. In open-field test 50ng RFRP-1 did not modify spontaneous locomotor activity and general behavior of animals did not change. Our results are the first reporting that RFRP-1 injected to the CeA result in a decrease of liquid food consumption. This is a receptor-linked effect because it was eliminated by a NPFF-R selective antagonist.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
Chartrel N, Alonzeau J, Alexandre D, Jeandel L, Alvear-Perez R, Leprince J, Boutin J, Vaudry H, Anouar Y, Llorens-Cortes C. The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front Neuroendocrinol 2011; 32:387-97. [PMID: 21530572 DOI: 10.1016/j.yfrne.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
Abstract
Identification of novel neuropeptides and their cognate G protein-coupled receptors is essential for a better understanding of neuroendocrine regulations. The RFamide peptides represent a family of regulatory peptides that all possess the Arg-Phe-NH2 motif at their C-terminus. In mammals, seven RFamide peptides encoded by five distinct genes have been characterized. The present review focuses on 26RFa (or QRFP) which is the latest member identified in this family. 26RFa is present in all vertebrate phyla and its C-terminal domain (KGGFXFRF-NH2), which is responsible for its biological activity, has been fully conserved during evolution. 26RFa is the cognate ligand of the orphan G protein-coupled receptor GPR103 that is also present from fish to human. In all vertebrate species studied so far, 26RFa-expressing neurons show a discrete localization in the hypothalamus, suggesting important neuroendocrine activities for this RFamide peptide. Indeed, 26RFa plays a crucial role in the control of feeding behavior in mammals, birds and fish. In addition, 26RFa up-regulates the gonadotropic axis in mammals and fish. Finally, evidence that the 26RFa/GPR103 system regulates steroidogenesis, bone formation, nociceptive transmission and arterial blood pressure has also been reported. Thus, 26RFa appears to act as a key neuropeptide in vertebrates controlling vital neuroendocrine functions. The pathophysiological implication of the 26RFa/GPR103 system in human is totally unknown and some fields of investigation are proposed.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IFRMP23, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|
48
|
Maletínská L, Spolcová A, Maixnerová J, Blechová M, Zelezná B. Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides 2011; 32:1887-92. [PMID: 21872625 DOI: 10.1016/j.peptides.2011.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 11/21/2022]
Abstract
Prolactin-releasing peptide (PrRP)-induced secretion of prolactin is not currently considered a primary function of PrRP, but the development of late-onset obesity in both PrRP and PrRP receptor knock-out mice indicates the unique anorexigenic properties of PrRP. In our recent study, we showed comparable potencies of peptides PrRP31 and PrRP20 in binding, intracellular signaling and prolactin release in pituitary RC-4B/C cells, and anorexigenic effect after central administration in fasted mice. In the present study, eight analogs of PrRP20 with C-terminal Phe amide modified with a bulky side chain or a halogenated aromatic ring revealed high binding potency, activation of mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK1/2) and cAMP response element-binding protein (CREB) and prolactin release in RC-4B/C cells. In particular, [PheNO(2)(31)]PrRP20, [1-Nal(31)]PrRP20, [2-Nal(31)]PrRP20 and [Tyr(31)]PrRP20 showed not only in vitro effects comparable or higher than those of PrRP20, but also a very significant and long-lasting anorexigenic effect after central administration in fasted mice. The design of potent and long-lasting PrRP analogs with selective anorexigenic properties promises to contribute to the study of food intake disorders.
Collapse
Affiliation(s)
- Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, Prague 6, Czech Republic.
| | | | | | | | | |
Collapse
|
49
|
Findeisen M, Rathmann D, Beck-Sickinger AG. Structure-activity studies of RFamide peptides reveal subtype-selective activation of neuropeptide FF1 and FF2 receptors. ChemMedChem 2011; 6:1081-93. [PMID: 21548099 DOI: 10.1002/cmdc.201100089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/19/2011] [Indexed: 12/18/2022]
Abstract
Selectivity is a major issue in closely related multiligand/multireceptor systems. In this study we investigated the RFamide systems of hNPFF₁R and hNPFF₂R that bind the endogenous peptide hormones NPFF, NPAF, NPVF, and NPSF. By use of a systematic approach, we characterized the role of the C-terminal dipeptide with respect to agonistic properties using synthesized [Xaa 7]NPFF and [Xaa 8]NPFF analogues. We were able to identify only slight differences in potency upon changing the position of Arg 7, as all modifications resulted in identical behavior at the NPFF₁R and NPFF₂R. However, the C-terminal Phe 8 was able to be replaced by Trp or His with only a minor loss in potency at the NPFF₂R relative to the NPFF₁R. Analogues with shorter side chains, such as α-amino-4-guanidino butyric acid ([Agb 7]NPFF) or phenylglycine ([Phg 8]NPFF), decreased efficacy for the NPFF₁ R to 25-31 % of the maximal response, suggesting that these agonist-receptor complexes are more susceptible to structural modifications. In contrast, mutations to the conserved Asp 6.59 residue in the third extracellular loop of both receptors revealed a higher sensitivity toward the hNPFF₂R receptor than toward hNPFF₁R. These data provide new insight into the subtype-specific agonistic activation of the NPFF₁ and NPFF(2) receptors that are necessary for the development of selective agonists.
Collapse
Affiliation(s)
- Maria Findeisen
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | | | | |
Collapse
|
50
|
Prolactin-releasing peptide enhances synaptic transmission in rat thalamus. Neuroscience 2011; 172:1-11. [DOI: 10.1016/j.neuroscience.2010.10.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/14/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022]
|