1
|
Mild traumatic brain injury elicits time- and region-specific reductions in serotonin transporter protein expression and uptake capacity. Neuroreport 2022; 33:612-616. [DOI: 10.1097/wnr.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
3
|
Ragu Varman D, Jayanthi LD, Ramamoorthy S. Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 2020; 156:445-464. [PMID: 32797733 DOI: 10.1111/jnc.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Serotonin (5-HT) transporter (SERT) plays a crucial role in serotonergic transmission in the central nervous system, and any aberration causes serious mental illnesses. Nevertheless, the cellular mechanisms that regulate SERT function and trafficking are not entirely understood. Growing evidence suggests that several protein kinases act as modulators. Here, we delineate the molecular mechanisms by which glycogen synthase kinase-3ß (GSK3ß) regulates SERT. When mouse striatal synaptosomes were treated with the GSK3α/ß inhibitor CHIR99021, we observed a significant increase in SERT function, Vmax , surface expression with a reduction in 5-HT Km and SERT phosphorylation. To further study how the SERT molecule is affected by GSK3α/ß, we used HEK-293 cells as a heterologous expression system. As in striatal synaptosomes, CHIR99021 treatment of cells expressing wild-type hSERT (hSERT-WT) resulted in a time and dose-dependent elevation of hSERT function with a concomitant increase in the Vmax and surface transporters because of reduced internalization and enhanced membrane insertion; silencing GSK3α/ß in these cells with siRNA also similarly affected hSERT. Converting putative GSK3α/ß phosphorylation site serine at position 48 to alanine in hSERT (hSERT-S48A) completely abrogated the effects of both the inhibitor CHIR99021 and GSK3α/ß siRNA. Substantiating these findings, over-expression of constitutively active GSK3ß with hSERT-WT, but not with hSERT-S48A, reduced SERT function, Vmax , surface density, and enhanced transporter phosphorylation. Both hSERT-WT and hSERT-S48A were inhibited similarly by PKC activation or by inhibition of Akt, CaMKII, p38 MAPK, or Src kinase. These findings provide new evidence that GSK3ß supports basal SERT function and trafficking via serine-48 phosphorylation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Annamalai B, Ragu Varman D, Horton RE, Daws LC, Jayanthi LD, Ramamoorthy S. Histamine Receptors Regulate the Activity, Surface Expression, and Phosphorylation of Serotonin Transporters. ACS Chem Neurosci 2020; 11:466-476. [PMID: 31916747 DOI: 10.1021/acschemneuro.9b00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reuptake and clearance of released serotonin (5-HT) are critical in serotonergic neurotransmission. Serotonin transporter (SERT) is mainly responsible for clearing the extracellular 5-HT. Controlled trafficking, phosphorylation, and protein stability have been attributed to robust SERT activity. H3 histamine receptors (H3Rs) act in conjunction and regulate 5-HT release. H3Rs are expressed in the nervous system and located at the serotonergic terminals, where they act as heteroreceptors. Although histaminergic and serotonergic neurotransmissions are thought to be two separate events, whether H3Rs influence SERT in the CNS to control 5-HT reuptake has never been addressed. With a priori knowledge gained from our studies, we explored the possibility of using rat hippocampal synaptosomal preparations. We found that treatment with H3R/H4R-agonists immepip and (R)-(-)-α-methyl-histamine indeed resulted in a time- and concentration-dependent decrease in 5-HT transport. On the other hand, treatment with H3R/H4R-inverse agonist thioperamide caused a moderate increase in 5-HT uptake while blocking the inhibitory effect of H3R/H4R agonists. When investigated further, immepip treatment reduced the level of SERT on the plasma membrane and its phosphorylation. Likewise, CaMKII inhibitor KN93 or calcineurin inhibitor cyclosporine A also inhibited SERT function; however, an additive effect with immepip was not seen. High-speed in vivo chronoamperometry demonstrated that immepip delayed 5-HT clearance while thioperamide accelerated 5-HT clearance from the extracellular space. Immepip selectively inhibited SERT activity in the hippocampus and cortex but not in the striatum, midbrain, and brain stem. Thus, we report here a novel mechanism of regulating SERT activity by H3R-mediated CaMKII/calcineurin pathway in a brain-region-specific manner and perhaps synaptic 5-HT in the CNS that controls 5-HT clearance.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rebecca E. Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
5
|
Quinlan MA, Krout D, Katamish RM, Robson MJ, Nettesheim C, Gresch PJ, Mash DC, Keith Henry L, Blakely RD. Human Serotonin Transporter Coding Variation Establishes Conformational Bias with Functional Consequences. ACS Chem Neurosci 2019; 10:3249-3260. [PMID: 30668912 PMCID: PMC6640095 DOI: 10.1021/acschemneuro.8b00689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antidepressant-sensitive serotonin (5-HT) transporter (SERT) dictates rapid, high-affinity clearance of the neurotransmitter in both the brain and periphery. In a study of families with multiple individuals diagnosed with autism spectrum disorder (ASD), we previously identified several, rare, missense coding variants that impart elevated 5-HT transport activity, relative to wild-type SERT, upon heterologous expression as well as in ASD subject lymphoblasts. The most common of these variants, SERT Ala56, located in the transporter's cytosolic N-terminus, has been found to confer in transgenic mice hyperserotonemia, an ASD-associated biochemical trait, an elevated brain 5-HT clearance rate, and ASD-aligned behavioral changes. Hyperfunction of SERT Ala56 has been ascribed to a change in 5-HT KM, though the physical basis of this change has yet to be elucidated. Through assessments of fluorescence resonance energy transfer (FRET) between cytosolic N- and C-termini, sensitivity to methanethiosulfonates, and capacity for N-terminal tryptic digestion, we obtain evidence for mutation-induced conformational changes that support an open-outward 5-HT binding conformation in vitro and in vivo. Aspects of these findings were also evident with another naturally occurring C-terminal SERT coding variant identified in our ASD study, Asn605. We conclude that biased conformations of surface resident transporters that can impact transporter function and regulation are an unappreciated consequence of heritable and disease-associated SERT coding variation.
Collapse
Affiliation(s)
- Meagan A. Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Danielle Krout
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Rania M. Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, University of Cincinnati, Cincinnati, OH
| | | | - Paul J. Gresch
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| | - Deborah C. Mash
- Dr. Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL
| | - L. Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine
- Brain Institute, Florida Atlantic University, Jupiter, FL
| |
Collapse
|
6
|
Murthi P, Vaillancourt C. RETRACTED: Placental serotonin systems in pregnancy metabolic complications associated with maternal obesity and gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165391. [PMID: 30738809 DOI: 10.1016/j.bbadis.2019.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
The publication was retracted by request of the authors following an investigation by Monash University performed following its Procedures for Investigating Code Breaches and in accordance with the Australian Code for the Responsible Conduct of Research.
The University concluded on the balance of probability that a significant part of the text in the paper was included without knowledge, without consent and without correct attribution of the original author who, at the time, was a student at the University. The results discussed in the review article are still scientifically valid.
☆
This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
Affiliation(s)
- Padma Murthi
- Department of Medicine, School of Clinical Sciences, Department of Physiology, Monash University, Clayton, Victoria, Australia; Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, Université du Québec and Biomed Research Center, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
7
|
Simmler LD, Anacker AMJ, Levin MH, Vaswani NM, Gresch PJ, Nackenoff AG, Anastasio NC, Stutz SJ, Cunningham KA, Wang J, Zhang B, Henry LK, Stewart A, Veenstra‐VanderWeele J, Blakely RD. Blockade of the 5-HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. Br J Pharmacol 2017; 174:2716-2738. [PMID: 28585320 PMCID: PMC5522997 DOI: 10.1111/bph.13899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/05/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The psychostimulant cocaine induces complex molecular, cellular and behavioural responses as a consequence of inhibiting presynaptic dopamine, noradrenaline and 5-HT transporters. To elucidate 5-HT transporter (SERT)-specific contributions to cocaine action, we evaluated cocaine effects in the SERT Met172 knock-in mouse, which expresses a SERT coding substitution that eliminates high-affinity cocaine recognition. EXPERIMENTAL APPROACH We measured the effects of SERT Met172 on cocaine antagonism of 5-HT re-uptake using ex vivo synaptosome preparations and in vivo microdialysis. We assessed SERT dependence of cocaine actions behaviourally through acute and chronic locomotor activation, sensitization, conditioned place preference (CPP) and oral cocaine consumption. We used c-Fos, quantitative RT-PCR and RNA sequencing methods for insights into cellular and molecular networks supporting SERT-dependent cocaine actions. KEY RESULTS SERT Met172 mice demonstrated functional insensitivity for cocaine at SERT. Although they displayed wild-type levels of acute cocaine-induced hyperactivity or chronic sensitization, the pattern of acute motor activation was different, with a bias toward thigmotaxis. CPP was increased, and a time-dependent elevation in oral cocaine consumption was observed. SERT Met172 mice displayed relatively higher levels of neuronal activation in the hippocampus, piriform cortex and prelimbic cortex (PrL), accompanied by region-dependent changes in immediate early gene expression. Distinct SERT-dependent gene expression networks triggered by acute and chronic cocaine administration were identified, including PrL Akt and nucleus accumbens ERK1/2 signalling. CONCLUSION AND IMPLICATIONS Our studies reveal distinct SERT contributions to cocaine action, reinforcing the possibility of targeting specific aspects of cocaine addiction by modulation of 5-HT signalling.
Collapse
Affiliation(s)
- Linda D Simmler
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Allison M J Anacker
- Department of PsychiatryColumbia University; New York State Psychiatric InstituteNew YorkNYUSA
- Sackler Institute for Developmental PsychobiologyColumbia University; New York State Psychiatric InstituteNew YorkNYUSA
| | - Michael H Levin
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Nina M Vaswani
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Paul J Gresch
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
- Department of Biomedical ScienceCharles E. Schmidt College of Medicine and Brain InstituteJupiterFLUSA
| | - Alex G Nackenoff
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Noelle C Anastasio
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Pharmacology and ToxicologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Sonja J Stutz
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
| | - Kathryn A Cunningham
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
- Department of Pharmacology and ToxicologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Jing Wang
- Department of Biomedical InformaticsVanderbilt University School of MedicineNashvilleTNUSA
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Bing Zhang
- Department of Biomedical InformaticsVanderbilt University School of MedicineNashvilleTNUSA
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - L Keith Henry
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Adele Stewart
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
- Department of Biomedical ScienceCharles E. Schmidt College of Medicine and Brain InstituteJupiterFLUSA
| | - Jeremy Veenstra‐VanderWeele
- Department of PsychiatryColumbia University; New York State Psychiatric InstituteNew YorkNYUSA
- Sackler Institute for Developmental PsychobiologyColumbia University; New York State Psychiatric InstituteNew YorkNYUSA
| | - Randy D Blakely
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
- Department of PsychiatryVanderbilt University School of MedicineNashvilleTNUSA
- Department of Biomedical ScienceCharles E. Schmidt College of Medicine and Brain InstituteJupiterFLUSA
| |
Collapse
|
8
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
9
|
Akt-mediated regulation of antidepressant-sensitive serotonin transporter function, cell-surface expression and phosphorylation. Biochem J 2015; 468:177-90. [PMID: 25761794 DOI: 10.1042/bj20140826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study is focused on the cellular basis for Akt-mediated SERT regulation. SERT has been implicated in mood disorders. SERT is a primary target for antidepressants used in the therapeutic intervention of psychiatric disorders.
Collapse
|
10
|
Zhao R, Wang S, Huang Z, Zhang L, Yang X, Bai X, Zhou D, Qin Z, Du G. Lipopolysaccharide-induced serotonin transporter up-regulation involves PKG-I and p38MAPK activation partially through A3 adenosine receptor. Biosci Trends 2015; 9:367-76. [DOI: 10.5582/bst.2015.01168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Zhao
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | | | - Li Zhang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Xiaoyu Bai
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Dan Zhou
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Zhizhen Qin
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| |
Collapse
|
11
|
Immobility responses between mouse strains correlate with distinct hippocampal serotonin transporter protein expression and function. Int J Neuropsychopharmacol 2014; 17:1737-50. [PMID: 24833265 DOI: 10.1017/s146114571400073x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mouse strain differences in immobility and in sensitivity to antidepressants have been observed in the forced swimming test (FST) and the tail suspension test (TST). However, the neurotransmitter systems and neural substrates that contribute to these differences remain unknown. To investigate the role of the hippocampal serotonin transporter (5-HTT), we measured baseline immobility and the immobility responses to fluoxetine (FLX) in the FST and the TST in male CD-1, C57BL/6, DBA and BALB/c mice. We observed strain differences in baseline immobility time, with CD-1 mice showing the longest and DBA mice showing the shortest. In contrast, DBA and BALB/c mice showed the highest sensitivity to FLX, whereas CD-1 and C57BL/6 mice showed the lowest sensitivity. Also we found strain differences in both the total 5-HTT protein level and the membrane-bound 5-HTT level (estimated by V max) as follows: DBA>BALB/c>CD-1=C57BL/6. The uptake efficiency of the membrane-bound 5-HTT (estimated by 1/K m) was highest in DBA and BALB/c mice and lowest in CD-1 and C57BL/6 mice. A correlation analysis of subregions within the hippocampus revealed that immobility time was negatively correlated with V max and positively correlated with K m in the hippocampus. Therefore a higher uptake capacity of the membrane-bound 5-HTT in the hippocampus was associated with lower baseline immobility and greater sensitivity to FLX. These results suggest that alterations in hippocampal 5-HTT activity may contribute to mouse strain differences in the FST and the TST.
Collapse
|
12
|
Decynium-22 enhances SSRI-induced antidepressant-like effects in mice: uncovering novel targets to treat depression. J Neurosci 2013; 33:10534-43. [PMID: 23785165 DOI: 10.1523/jneurosci.5687-11.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mood disorders cause much suffering and lost productivity worldwide, compounded by the fact that many patients are not effectively treated by currently available medications. The most commonly prescribed antidepressant drugs are the selective serotonin (5-HT) reuptake inhibitors (SSRIs), which act by blocking the high-affinity 5-HT transporter (SERT). The increase in extracellular 5-HT produced by SSRIs is thought to be critical to initiate downstream events needed for therapeutic effects. A potential explanation for their limited therapeutic efficacy is the recently characterized presence of low-affinity, high-capacity transporters for 5-HT in brain [i.e., organic cation transporters (OCTs) and plasma membrane monoamine transporter], which may limit the ability of SSRIs to increase extracellular 5-HT. Decynium-22 (D-22) is a blocker of these transporters, and using this compound we uncovered a significant role for OCTs in 5-HT uptake in mice genetically modified to have reduced or no SERT expression (Baganz et al., 2008). This raised the possibility that pharmacological inactivation of D-22-sensitive transporters might enhance the neurochemical and behavioral effects of SSRIs. Here we show that in wild-type mice D-22 enhances the effects of the SSRI fluvoxamine to inhibit 5-HT clearance and to produce antidepressant-like activity. This antidepressant-like activity of D-22 was attenuated in OCT3 KO mice, whereas the effect of D-22 to inhibit 5-HT clearance in the CA3 region of hippocampus persisted. Our findings point to OCT3, as well as other D-22-sensitive transporters, as novel targets for new antidepressant drugs with improved therapeutic potential.
Collapse
|
13
|
Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 2013; 4:48-63. [PMID: 23336044 DOI: 10.1021/cn300186b] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness.
Collapse
Affiliation(s)
- Nicole L. Baganz
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| | - Randy D. Blakely
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| |
Collapse
|
14
|
Zhu CB, Lindler KM, Campbell NG, Sutcliffe JS, Hewlett WA, Blakely RD. Colocalization and regulated physical association of presynaptic serotonin transporters with A₃ adenosine receptors. Mol Pharmacol 2011; 80:458-65. [PMID: 21705486 PMCID: PMC3164334 DOI: 10.1124/mol.111.071399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/24/2011] [Indexed: 11/22/2022] Open
Abstract
Activation of A₃ adenosine receptors (A₃ARs) rapidly enhances the activity of antidepressant-sensitive serotonin (5-HT) transporters (SERTs) in vitro, ex vivo, and in vivo. A₃AR agonist stimulation of SERT activity is lost in A₃AR knockout mice. A₃AR-stimulated SERT activity is mediated by protein kinase G1 (PKGI)- and p38 mitogen-activated protein kinase (MAPK)-linked pathways that support, respectively, enhanced SERT surface expression and catalytic activation. The mechanisms by which A₃ARs target SERTs among other potential effectors is unknown. Here we present evidence that A₃ARs are coexpressed with SERT in midbrain serotonergic neurons and form a physical complex in A₃AR/hSERT cotransfected cells. Treatment of A₃AR/SERT-cotransfected Chinese hamster ovary cells with the A₃AR agonist N⁶-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (1 μM, 10 min), conditions previously reported to increase SERT surface expression and 5-HT uptake activity, enhanced the abundance of A₃AR/SERT complexes in a PKGI-dependent manner. Cotransfection of SERT with L90V-A₃AR, a hyperfunctional coding variant identified in subjects with autism spectrum disorder, resulted in a prolonged recovery of receptor/transporter complexes after A₃AR activation. Because PKGI and nitric-oxide synthetase are required for A₃AR stimulation of SERT activity, and proteins PKGI and NOS both form complexes with SERT, our findings suggest a mechanism by which signaling pathways coordinating A₃AR signaling to SERT can be spatially restricted and regulated, as well as compromised by neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chong-Bin Zhu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
15
|
Singh YS, Sawarynski LE, Dabiri PD, Choi WR, Andrews AM. Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry. Anal Chem 2011; 83:6658-66. [PMID: 21770471 DOI: 10.1021/ac2011729] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Voltammetry is widely used to investigate neurotransmission and other biological processes but is limited by poor chemical selectivity and fouling of commonly used carbon fiber microelectrodes (CFMs). We performed direct comparisons of three key coating materials purported to impart selectivity and fouling resistance to electrodes: Nafion, base-hydrolyzed cellulose acetate (BCA), and fibronectin. We systematically evaluated the impact on a range of electrode parameters. Fouling due to exposure to brain tissue was investigated using an approach that minimizes the use of animals while enabling evaluation of statistically significant populations of electrodes. We find that BCA is relatively fouling-resistant. Moreover, detection at BCA-coated CFMs can be tuned by altering hydrolysis times to minimize the impact on sensitivity losses while maintaining fouling resistance. Fibronectin coating is associated with moderate losses in sensitivity after coating and fouling. Nafion imparts increased sensitivity for dopamine and norepinephrine but not serotonin, as well as the anticipated selectivity for cationic neurotransmitters over anionic metabolites. Although Nafion has been suggested to resist fouling, both dip-coating and electrodeposition of Nafion are associated with substantial fouling, similar to levels observed at bare electrodes after exposure to brain tissue. Direct comparisons of these coatings identified unique electroanalytical properties of each that can be used to guide selection tailored to the goals and environment of specific studies.
Collapse
Affiliation(s)
- Yogesh S Singh
- Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
16
|
Daws LC, Gould GG. Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther 2011; 131:61-79. [PMID: 21447358 DOI: 10.1016/j.pharmthera.2011.03.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) was one of the first neurotransmitters for which a role in development was identified. Pharmacological and gene knockout studies have revealed a critical role for 5-HT in numerous processes, including cell division, neuronal migration, differentiation and synaptogenesis. An excess in brain 5-HT appears to be mechanistically linked to abnormal brain development, which in turn is associated with neurological disorders. Ambient levels of 5-HT are controlled by a vast orchestra of proteins, including a multiplicity of pre- and post-synaptic 5-HT receptors, heteroreceptors, enzymes and transporters. The 5-HT transporter (SERT, 5-HTT) is arguably the most powerful regulator of ambient extracellular 5-HT. SERT is the high-affinity uptake mechanism for 5-HT and exerts tight control over the strength and duration of serotonergic neurotransmission. Perturbation of its expression level or function has been implicated in many diseases, prominent among them are psychiatric disorders. This review synthesizes existing information on the ontogeny of SERT during embryonic and early postnatal development though adolescence, along with factors that influence its expression and function during these critical developmental windows. We integrate this knowledge to emphasize how inappropriate SERT expression or its dysregulation may be linked to the pathophysiology of psychiatric, cardiovascular and gastrointestinal diseases.
Collapse
Affiliation(s)
- Lynette C Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
17
|
Thompson BJ, Jessen T, Henry LK, Field JR, Gamble KL, Gresch PJ, Carneiro AM, Horton RE, Chisnell PJ, Belova Y, McMahon DG, Daws LC, Blakely RD. Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter. Proc Natl Acad Sci U S A 2011; 108:3785-90. [PMID: 21282638 PMCID: PMC3048100 DOI: 10.1073/pnas.1011920108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Serotonin [i.e., 5-hydroxytryptamine (5-HT)]-targeted antidepressants are in wide use for the treatment of mood disorders, although many patients do not show a response or experience unpleasant side effects. Psychostimulants, such as cocaine and 3,4-methylenedioxymethamphetamine (i.e., "ecstasy"), also impact 5-HT signaling. To help dissect the contribution of 5-HT signaling to the actions of these and other agents, we developed transgenic mice in which high-affinity recognition of multiple antidepressants and cocaine is eliminated. Our animals possess a modified copy of the 5-HT transporter (i.e., SERT, slc6a4) that bears a single amino acid substitution, I172M, proximal to the 5-HT binding site. Although the M172 substitution does not impact the recognition of 5-HT, this mutation disrupts high-affinity binding of many competitive antagonists in transfected cells. Here, we demonstrate that, in M172 knock-in mice, basal SERT protein levels, 5-HT transport rates, and 5-HT levels are normal. However, SERT M172 mice display a substantial loss of sensitivity to the selective 5-HT reuptake inhibitors fluoxetine and citalopram, as well as to cocaine. Through a series of biochemical, electrophysiological, and behavioral assays, we demonstrate the unique properties of this model and establish directly that SERT is the sole protein responsible for selective 5-HT reuptake inhibitor-mediated alterations in 5-HT clearance, in 5-HT1A autoreceptor modulation of raphe neuron firing, and in behaviors used to predict the utility of antidepressants.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Gamble
- Biological Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | - Rebecca E. Horton
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229
| | | | | | - Douglas G. McMahon
- Biological Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lynette C. Daws
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, TX 78229
- Department of Pharmacology, University of Texas Health Sciences Center, San Antonio, TX 78229; and
| | - Randy D. Blakely
- Departments of Pharmacology and
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
18
|
Hagan CE, Neumaier JF, Schenk JO. Rotating disk electrode voltammetric measurements of serotonin transporter kinetics in synaptosomes. J Neurosci Methods 2010; 193:29-38. [PMID: 20713085 PMCID: PMC2952731 DOI: 10.1016/j.jneumeth.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 12/13/2022]
Abstract
Altered serotonin (5-HT) signaling is implicated in several neuropsychiatric disorders, including depression, anxiety, obsessive-compulsive disorder, and autism. The 5-HT transporter (SERT) modulates 5-HT neurotransmission strength and duration. This is the first study using rotating disk electrode voltammetry (RDEV) to measure 5-HT clearance. SERT kinetics were measured in whole brain synaptosomes. Uptake kinetics of exogenous 5-HT were measured using glassy carbon electrodes rotated in 500 μL glass chambers containing synaptosomes from SERT-knockout (-/-), heterozygous (+/-), or wild-type (+/+) mice. RDEV detected 5-HT concentrations of 5nM and higher. Initial velocities were kinetically resolved with K(m) and V(max) values of 99±35 standard error of regression (SER) nM and 181±11 SER fmol/(s×mg protein), respectively in wild-type synaptosomes. The method enables control over drug and chemical concentrations, facilitating interpretation of results. Results are compared in detail to other techniques used to measure SERT kinetics, including tritium labeled assays, chronoamperometry, and fast scan cyclic voltammetry. RDEV exhibits decreased 5-HT detection limits, decreased vulnerability to 5-HT oxidation products that reduce electrode sensitivity, and also overcomes diffusion limitations via forced convection by providing a continuous, kinetically resolved signal. Finally, RDEV distinguishes functional differences between genotypes, notably, between wild-type and heterozygous mice, an experimental problem with other experimental approaches.
Collapse
Affiliation(s)
- Catherine E Hagan
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
19
|
Ramamoorthy S, Shippenberg TS, Jayanthi LD. Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther 2010; 129:220-38. [PMID: 20951731 DOI: 10.1016/j.pharmthera.2010.09.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/18/2022]
Abstract
Presynaptic biogenic amine transporters mediate reuptake of released amines from the synapse, thus regulating serotonin, dopamine and norepinephrine neurotransmission. Medications utilized in the treatment of depression, attention deficit-hyperactivity disorder and other psychiatric disorders possess high affinity for amine transporters. In addition, amine transporters are targets for psychostimulants. Altered expression of biogenic amine transporters has long been implicated in several psychiatric and degenerative disorders. Therefore, appropriate regulation and maintenance of biogenic amine transporter activity is critical for the maintenance of normal amine homoeostasis. Accumulating evidence suggests that cellular protein kinases and phosphatases regulate amine transporter expression, activity, trafficking and degradation. Amine transporters are phosphoproteins that undergo dynamic control under the influence of various kinase and phosphatase activities. This review presents a brief overview of the role of amine transporter phosphorylation in the regulation of amine transport in the normal and diseased brain. Understanding the molecular mechanisms by which phosphorylation events affect amine transporter activity is essential for understanding the contribution of transporter phosphorylation to the regulation of monoamine neurotransmission and for identifying potential new targets for the treatment of various brain diseases.
Collapse
Affiliation(s)
- Sammanda Ramamoorthy
- Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | |
Collapse
|
20
|
Steiner JA, Carneiro AMD, Wright J, Matthies HJG, Prasad HC, Nicki CK, Dostmann WR, Buchanan CC, Corbin JD, Francis SH, Blakely RD. cGMP-dependent protein kinase Ialpha associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake. Mol Brain 2009; 2:26. [PMID: 19656393 PMCID: PMC2731736 DOI: 10.1186/1756-6606-2-26] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 08/05/2009] [Indexed: 01/09/2023] Open
Abstract
Background The Na+/Cl--dependent serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling pathways. We have shown that neuronal A3 adenosine receptor activation leads to enhanced presynaptic 5-HT transport in vitro and an increased rate of SERT-mediated 5-HT clearance in vivo. SERT stimulation by A3 adenosine receptors derives from an elevation of cGMP and subsequent activation of both cGMP-dependent protein kinase (PKG) and p38 mitogen-activated protein kinase. PKG activators such as 8-Br-cGMP are known to lead to transporter phosphorylation, though how this modification supports SERT regulation is unclear. Results In this report, we explore the kinase isoform specificity underlying the rapid stimulation of SERT activity by PKG activators. Using immortalized, rat serotonergic raphe neurons (RN46A) previously shown to support 8-Br-cGMP stimulation of SERT surface trafficking, we document expression of PKGI, and to a lower extent, PKGII. Quantitative analysis of staining profiles using permeabilized or nonpermeabilized conditions reveals that SERT colocalizes with PKGI in both intracellular and cell surface domains of RN46A cell bodies, and exhibits a more restricted, intracellular pattern of colocalization in neuritic processes. In the same cells, SERT demonstrates a lack of colocalization with PKGII in either intracellular or surface membranes. In keeping with the ability of the membrane permeant kinase inhibitor DT-2 to block 8-Br-cGMP stimulation of SERT, we found that DT-2 treatment eliminated cGMP-dependent kinase activity in PKGI-immunoreactive extracts resolved by liquid chromatography. Similarly, treatment of SERT-transfected HeLa cells with small interfering RNAs targeting endogenous PKGI eliminated 8-Br-cGMP-induced regulation of SERT activity. Co-immunoprecipitation studies show that, in transporter/kinase co-transfected cells, PKGIα specifically associates with hSERT. Conclusion Our findings provide evidence of a physical and compartmentalized association between SERT and PKGIα that supports rapid, 8-Br-cGMP-induced regulation of SERT. We discuss a model wherein SERT-associated PKGIα supports sequentially the mobilization of intracellular transporter-containing vesicles, leading to enhanced surface expression, and the production of catalytic-modulatory SERT phosphorylation, leading to a maximal enhancement of 5-HT clearance capacity.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jackisch R, Gansser S, Cassel JC. Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients? Exp Neurol 2008; 213:345-53. [DOI: 10.1016/j.expneurol.2008.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/12/2008] [Accepted: 06/14/2008] [Indexed: 12/25/2022]
|
22
|
Carneiro AMD, Cook EH, Murphy DL, Blakely RD. Interactions between integrin alphaIIbbeta3 and the serotonin transporter regulate serotonin transport and platelet aggregation in mice and humans. J Clin Invest 2008; 118:1544-52. [PMID: 18317590 DOI: 10.1172/jci33374] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 01/09/2008] [Indexed: 01/08/2023] Open
Abstract
The essential contribution of the antidepressant-sensitive serotonin (5-HT) transporter SERT (which is encoded by the SLC6A4 gene) to platelet 5-HT stores suggests an important role of this transporter in platelet function. Here, using SERT-deficient mice, we have established a role for constitutive SERT expression in efficient ADP- and thrombin-triggered platelet aggregation. Additionally, using pharmacological blockers of SERT and the vesicular monoamine transporter (VMAT), we have identified a role for ongoing 5-HT release and SERT activity in efficient human platelet aggregation. We have also demonstrated that fibrinogen, an activator of integrin alphaIIbbeta3, enhances SERT activity in human platelets and that integrin alphaIIbbeta3 interacts directly with the C terminus of SERT. Consistent with these findings, knockout mice lacking integrin beta3 displayed diminished platelet SERT activity. Conversely, HEK293 cells engineered to express human SERT and an activated form of integrin beta3 exhibited enhanced SERT function that coincided with elevated SERT surface expression. Our results support an unsuspected role of alphaIIbbeta3/SERT associations as well as alphaIIbbeta3 activation in control of SERT activity in vivo that may have broad implications for hyperserotonemia, cardiovascular disorders, and autism.
Collapse
Affiliation(s)
- Ana Marin D Carneiro
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | | | | | |
Collapse
|
23
|
Steiner JA, Carneiro AMD, Blakely RD. Going with the flow: trafficking-dependent and -independent regulation of serotonin transport. Traffic 2008; 9:1393-402. [PMID: 18445122 DOI: 10.1111/j.1600-0854.2008.00757.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antidepressant-, cocaine- and 3,4-methylenedioxymethamphetamine-sensitive serotonin (5-hydroxytryptamine, 5-HT) transporters (SERTs) are expressed on presynaptic membranes of 5-HT-secreting neurons to provide efficient uptake of the biogenic amine after release. SERTs also support 5-HT transport across platelet, placental, gastrointestinal and pulmonary membranes and thus play a critical role in central nervous system and peripheral nervous system 5-HT signaling. SERTs are subject to multiple levels of posttranslational regulation that can rapidly alter 5-HT uptake and clearance rates. Specific cell surface receptors are now known to regulate SERT trafficking and/or catalytic function, with pathways activating protein kinase C, protein kinase G and p38 mitogen-activated protein kinase receiving the greatest attention. Remarkably, disease-associated mutations in SERT not only impact basal SERT activity but also selectively impact one or more SERT regulatory pathway(s). In this review, we describe both trafficking-dependent and trafficking-independent modes of SERT regulation and also the suspected roles played in regulation by SERT-associated proteins. Elucidation of the SERT 'regulome' provides important depth to our understanding of the likely origins of 5-HT-associated disorders and may help orient research to develop novel therapeutics.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Graduate Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | |
Collapse
|
24
|
Zhu CB, Steiner JA, Munn JL, Daws LC, Hewlett WA, Blakely RD. Rapid stimulation of presynaptic serotonin transport by A(3) adenosine receptors. J Pharmacol Exp Ther 2007; 322:332-40. [PMID: 17460150 DOI: 10.1124/jpet.107.121665] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inactivation of synaptic serotonin (5-hydroxytryptamine, 5-HT) is largely established through the actions of the presynaptic, antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). Recent studies have demonstrated post-translational regulation of SERT mediated by multiple Ser/Thr kinases, including protein kinases C and G (PKC and PKG) and p38 mitogen-activated protein kinase (MAPK), as well as the Ser/Thr phosphatase PP2A. Less well studied are specific surface receptors that target these signaling pathways to control SERT surface expression and/or catalytic rates. Using rat basophilic leukemia 2H3 cell line (RBL-2H3), we previously established that activation of A(3) adenosine receptors (A(3)AR) stimulates SERT activity via both PKG and p38 MAPK (Zhu et al., 2004a). Whether A(3)ARs regulate SERT in the central nervous system (CNS) is unknown. Here we report that the A(3)AR agonist N(6)-(3-iodobenzyl)-N-methyl-5'carbamoyladenosine (IB-MECA) rapidly (10 min) and selectively stimulates 5-HT transport in mouse midbrain, hippocampal, and cortical synaptosomes. IB-MECA-induced stimulation of 5-HT uptake is blocked by the selective A(3)AR antagonist 3-ethyl-5-benzyl-2-methyl-phenylethynyl-6-phenyl-1,4(+/-)dihydropyridine-3,5-dicarboxylate (MRS1191) and is absent from synaptosomes prepared from A(3)AR knockout mice. Kinetic analyses demonstrate that IB-MECA induces an increase of 5-HT transport V(max) with no significant change in K(m). As in RBL-2H3 cells, IB-MECA stimulation of synaptosomal 5-HT uptake can be blocked by preincubation with PKG antagonists N-[2-(methylamino)ethy]-5-isoquinoline-sulfonamide (H8) and DT-2 (YGRKKRRQRRRPPLRK(5)H), as well as by the p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]. Chronoamperometry studies in the anesthetized rat hippocampus support a role for A(3)ARs in SERT regulation in vivo. Together, these results identify a novel, region-specific action of CNS A(3)ARs in the modulation of SERT-mediated 5-HT transport that may be relevant for the etiology and/or therapy of 5-HT-linked brain disorders.
Collapse
Affiliation(s)
- Chong-Bin Zhu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lee FJS, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 2007; 26:2127-36. [PMID: 17380124 PMCID: PMC1852782 DOI: 10.1038/sj.emboj.7601656] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 02/27/2007] [Indexed: 11/09/2022] Open
Abstract
Altered synaptic dopamine levels have been implicated in several neurological/neuropsychiatric disorders, including drug addiction and schizophrenia. However, it is unclear what precipitates these changes in synaptic dopamine levels. One of the key presynaptic components involved in regulating dopaminergic tone is the dopamine transporter (DAT). Here, we report that the DAT is also regulated by the dopamine D2 receptor through a direct protein-protein interaction involving the DAT amino-terminus and the third intracellular loop of the D2 receptor. This physical coupling facilitates the recruitment of intracellular DAT to the plasma membrane and leads to enhanced dopamine reuptake. Moreover, mice injected with peptides that disrupt D2-DAT interaction exhibit decreased synaptosomal dopamine uptake and significantly increased locomotor activity, reminiscent of DAT knockout mice. Our data highlight a novel mechanism through which neurotransmitter receptors can functionally modulate neurotransmitter transporters, an interaction that can affect the synaptic neurotransmitter levels in the brain.
Collapse
Affiliation(s)
- Frank J S Lee
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Lin Pei
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Anna Moszczynska
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Brian Vukusic
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Paul J Fletcher
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Neuroscience, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8. Tel.: +1 416 979 4659; Fax: +1 416 979 4663; E-mail:
| |
Collapse
|
26
|
Zhu CB, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006; 31:2121-31. [PMID: 16452991 DOI: 10.1038/sj.npp.1301029] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proinflammatory cytokines and serotonergic homeostasis have both been implicated in the pathophysiology of major psychiatric disorders. We have demonstrated that activation of p38 mitogen-activated protein kinase (MAPK) induces a catalytic activation of the serotonin transporter (SERT) arising from a reduction in the SERT Km for 5-hydroxytryptamine (5-HT). As inflammatory cytokines can activate p38 MAPK, we hypothesized that they might also activate neuronal SERT. Indeed, Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) stimulated serotonin uptake in both the rat embryonic raphe cell line, RN46A, and in mouse midbrain and striatal synaptosomes. In RN46A cells, IL-1beta stimulated 5-HT uptake in a dose- and time-dependent manner, peaking in 20 min at 100 ng/ml. This was abolished by IL-1ra (20 ng/ml), an antagonist of the IL-1 receptor, and by SB203580 (5 microM), a p38 MAPK inhibitor. TNF-alpha also dose- and time-dependently stimulated 5-HT uptake that was only partially blocked by SB203580. Western blots showed that IL-1beta and TNF-alpha activated p38 MAPK, in an SB203580-sensitive manner. IL-1beta induced an SB203580-sensitive decrease in 5-HT Km with no significant change in Vmax. In contrast, TNF-alpha stimulation decreased 5-HT Km and increased SERT Vmax. SB203580 selectively blocked the TNF-alpha-induced change in SERT Km. In mouse midbrain and striatal synaptosomes, maximal stimulatory effects on 5-HT uptake occurred at lower concentrations (IL-1beta, 10 ng/ml; TNF-alpha, 20 ng/ml), and over shorter incubation times (10 min). As with RN46A cells, the effects of IL-1beta and TNF-alpha were completely (IL-1beta) or partially (TNF-alpha) blocked by SB203580. These results provide the first evidence that proinflammatory cytokines can acutely regulate neuronal SERT activity via p38 MAPK-linked pathways.
Collapse
Affiliation(s)
- Chong-Bin Zhu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8645, USA
| | | | | |
Collapse
|
27
|
Koldzic-Zivanovic N, Seitz PK, Cunningham KA, Thomas ML, Hughes TK. Serotonin regulation of serotonin uptake in RN46A cells. Cell Mol Neurobiol 2006; 26:979-87. [PMID: 16858637 DOI: 10.1007/s10571-006-9097-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/26/2005] [Indexed: 10/24/2022]
Abstract
AIM The role of the serotonin transporter (SERT) is to remove serotonin (5-HT) from the synaptic space. In vitro studies have shown that 5-HT uptake via SERT is influenced by the availability of its substrate, 5-HT. We used RN46A cells, a line that expresses SERT, to investigate 5-HT regulation of 5-HT uptake and the intracellular signaling pathways involved. RN46A cells also express mRNAs for 5-HT receptors (5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(2C)) and as cAMP and intracellular Ca(2+) are modulated by different 5-HT receptors, we studied both pathways. METHODS 5-HT uptake was determined as imipramine-inhibitable uptake of [(3)H]5-HT, intracellular cAMP was measured by RIA and intracellular Ca(2+) changes were determined using the ratiometric method of intracellular Ca(2+) imaging. RESULTS For uptake experiments, cells were kept for 30 min either with or without 1 microM 5-HT in the medium before measuring uptake. Removal of 5-HT for 30 min significantly decreased [(3)H]5-HT uptake. The absence of 5-HT for 15 min failed to induce any changes in intracellular cAMP levels. Removal of 5-HT from the medium did not change intracellular Ca(2+) levels either; however, adding 1 microM 5-HT after 5 min in 5-HT-free conditions rapidly increased intracellular Ca(2+) levels in 50% of the cells. The remaining cells showed no changes in the intracellular Ca(2+) levels. CONCLUSIONS We have shown that in RN46A cells, that endogenously express SERT and mRNAs for several 5-HT receptors, changes in 5-HT levels influence 5-HT uptake rate as well as induce changes in intracellular Ca(2+) levels. This suggests that 5-HT may utilize intracellular Ca(2+) to regulate 5-HT uptake.
Collapse
Affiliation(s)
- Nina Koldzic-Zivanovic
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston 77555-1019, USA
| | | | | | | | | |
Collapse
|
28
|
Chen R, Tilley MR, Wei H, Zhou F, Zhou FM, Ching S, Quan N, Stephens RL, Hill ER, Nottoli T, Han DD, Gu HH. Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci U S A 2006; 103:9333-8. [PMID: 16754872 PMCID: PMC1482610 DOI: 10.1073/pnas.0600905103] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are three known high-affinity targets for cocaine: the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). Decades of studies support the dopamine (DA) hypothesis that the blockade of DAT and the subsequent increase in extracellular DA primarily mediate cocaine reward and reinforcement. Contrary to expectations, DAT knockout (DAT-KO) mice and SERT or NET knockout mice still self-administer cocaine and/or display conditioned place preference (CPP) to cocaine, which led to the reevaluation of the DA hypothesis and the proposal of redundant reward pathways. To study the role of DAT in cocaine reward, we have generated a knockin mouse line carrying a functional DAT that is insensitive to cocaine. In these mice, cocaine suppressed locomotor activity, did not elevate extracellular DA in the nucleus accumbens, and did not produce reward as measured by CPP. This result suggests that blockade of DAT is necessary for cocaine reward in mice with a functional DAT. This mouse model is unique in that it is specifically designed to differentiate the role of DAT from the roles of NET and SERT in cocaine-induced biochemical and behavioral effects.
Collapse
Affiliation(s)
| | | | - Hua Wei
- Departments of *Pharmacology
| | - Fuwen Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163; and
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163; and
| | | | | | - Robert L. Stephens
- Physiology, Ohio State University, 5184b Graves Hall, 333 West 10th Avenue, Columbus, OH 43210
| | | | - Timothy Nottoli
- Section of Comparative Medicine, Yale University, 375 Congress Avenue, New Haven, CT 06520
| | | | - Howard H. Gu
- Departments of *Pharmacology
- Psychiatry
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
30
|
White KJ, Walline CC, Barker EL. Serotonin transporters: implications for antidepressant drug development. AAPS JOURNAL 2005; 7:E421-33. [PMID: 16353921 PMCID: PMC2750979 DOI: 10.1208/aapsj070242] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the complexity of the disease, several hypotheses exist to explain the etiology of depression. The monoamine theory of depression suggests that disruptions in the serotonergic and noradrenergic systems result in depressive symptoms. Therefore, the serotonin transporter (SERT) has become a pharmacological target for treating these symptoms. This review will discuss what is known about the molecular interactions of antidepressants with SERT. The effects of antidepressants on SERT regulation and expression in addition to the receptors that may be involved in mediating these effects will be addressed. Specifically, how changes to SERT expression following chronic antidepressant treatment may contribute to the therapeutic benefits of antidepressants will be discussed. Furthermore, the effects of SERT gene polymorphisms on antidepressant efficacy will be examined. Finally, a brief overview of other hypotheses of depression will be addressed as well as factors that must be considered for future antidepressant development.
Collapse
Affiliation(s)
- Kellie J. White
- Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy, 575 Stadium Mall Drive, 47907 West Lafayette, IN
| | - Crystal C. Walline
- Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy, 575 Stadium Mall Drive, 47907 West Lafayette, IN
| | - Eric L. Barker
- Dept. of Medicinal Chemistry and Molecular Pharmacology, Purdue University School of Pharmacy, 575 Stadium Mall Drive, 47907 West Lafayette, IN
| |
Collapse
|
31
|
Perez XA, Andrews AM. Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice. Anal Chem 2005; 77:818-26. [PMID: 15679349 DOI: 10.1021/ac049103g] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serotonin transporter (SERT) is a neuronal plasma membrane protein whose primary function is to take up the neurotransmitter serotonin from the extracellular space, thereby controlling the spatial and temporal aspects of serotonergic signaling in the brain. In humans, a commonly expressed genetic variant of the serotonin transporter gene results in 40% reductions in SERT expression that have been linked to increases in anxiety-related personality traits and susceptibility to stress-associated depression. Mice have been engineered to express similar reductions in SERT expression to investigate transporter-mediated control of serotonin neurotransmission and behavior. We employed carbon fiber microelectrode voltammetry (chronoamperometry) to examine serotonin clearance rates in brain liposomes (synaptosomes) prepared from mice with 50% (SERT(+/)(-)) or complete (SERT(-)(/)(-)) loss of SERT expression. Initial characterization of uptake showed that transport of serotonin was enhanced in the presence of oxygen and abolished when synaptosomes were stirred. Additionally, uptake was prevented by inclusion of the serotonin-selective reuptake inhibiting drug paroxetine in the incubation medium. Most notably, unlike prior studies using established radiochemical methods in synaptosomes, we determined 60% reductions in serotonin uptake rates in SERT(+/)(-) mice in two different brain regions-striatum and frontal cortex. Serotonin uptake was not detected in either brain region in SERT(-)(/)(-) mice. Thus, electroanalytical methods offer distinct advantages stemming from excellent temporal resolution for determining transporter kinetics. Moreover, these appear necessary for delineating moderate but biologically important changes in neurotransmitter transporter function.
Collapse
Affiliation(s)
- Xiomara A Perez
- Department of Chemistry and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802-4615, USA
| | | |
Collapse
|
32
|
Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD. p38 MAPK Activation Elevates Serotonin Transport Activity via a Trafficking-independent, Protein Phosphatase 2A-dependent Process. J Biol Chem 2005; 280:15649-58. [PMID: 15728187 DOI: 10.1074/jbc.m410858200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presynaptic, plasma membrane serotonin (5-hydroxytryptamine; 5-HT) transporters (SERTs) clear 5-HT following vesicular release and are regulated through trafficking-dependent pathways. Recently, we provided evidence for a trafficking-independent mode of SERT regulation downstream of adenosine receptor (AR) activation that is sensitive to p38 MAPK inhibitors. Here, we probe this pathway in greater detail, demonstrating elevation of 5-HT transport by multiple p38 MAPK activators (anisomycin, H(2)O(2), and UV radiation), in parallel with p38 MAPK phosphorylation, as well as suppression of anisomycin stimulation by p38 MAPK siRNA treatments. Studies with transporter-transfected Chinese hamster ovary cells reveal that SERT stimulation is shared with the human norepinephrine transporter but not the human dopamine transporter. Saturation kinetic analyses of anisomycin-SERT activity reveal a selective reduction in 5-HT K(m) supported by a commensurate increase in 5-HT potency (K(i)) for displacing surface antagonist binding. Anisomycin treatments that stimulate SERT activity do not elevate surface SERT surface density whereas stimulation is lost with preexposure of cells to the surface-SERT inactivating reagent, 2-(trimethylammonium)ethyl methane thiosulfonate. Guanylyl cyclase (1H-(1,2,4)-oxadiazolo[4,3-a]-quinoxalin-1-one) and protein kinase G inhibitors (H8, DT-2) block AR stimulation of SERT yet fail to antagonize SERT stimulation by anisomycin. We thus place p38 MAPK activation downstream of protein kinase G in a SERT-catalytic regulatory pathway, distinct from events controlling SERT surface density. In contrast, the activity of protein phosphatase 2A inhibitors (fostriecin and calyculin A) to attenuate anisomycin stimulation of 5-HT transport suggests that protein phosphatase 2A is a critical component of the pathway responsible for p38 MAPK up-regulation of SERT catalytic activity.
Collapse
Affiliation(s)
- Chong-Bin Zhu
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | | | | | | | |
Collapse
|
33
|
Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S. A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci 2005; 25:29-41. [PMID: 15634764 PMCID: PMC6725216 DOI: 10.1523/jneurosci.3754-04.2005] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 11/04/2004] [Accepted: 11/12/2004] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (SERT) is regulated by various signaling mechanisms that may operate to maintain appropriate levels of synaptic serotonin (5-HT). We demonstrate that one of the mitogen-activated protein kinases (MAPKs), p38 MAPK, regulates SERT. Treatment of rat midbrain synaptosomes with p38 MAPK-specific inhibitors, PD169316 [4-(4-fluorophenyl)-2-(4-nitrophenyl)-5-(4-pyridyl)-1H-imidazole] or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole], reduced 5-HT uptake. An additive SERT inhibition by PD169316 and beta-phorbol 12-myristate 13-acetate (beta-PMA) indicated the involvement of a protein kinase C (PKC)-independent MAPK pathway. Kinetic studies indicated a significant decrease in the transport capacity (V(max)) after PD169316 treatment of synaptosomes. Biotinylation studies showed reduced SERT proteins in the plasma membrane of synaptosomes after p38 MAPK inhibition and PKC activation. Phosphorylation studies using synaptosomes revealed decreased SERT phosphorylation by PD169316 but increased phosphorylation by beta-PMA. d-Amphetamine enhanced SERT basal phosphorylation and PD169316 blocked this effect. SERT interaction with protein phosphatase 2A catalytic subunit and syntaxin 1A decreased after PD169316 or beta-PMA treatment of synaptosomes. In synaptosomes, PKC activation but not p38 MAPK inhibition resulted in SERT redistribution from cholesterolrich lipid raft fractions to nonlipid raft fractions. The presence of phospho-p38 MAPK in synaptosomes and human embryonic kidney 293 (HEK-293) cells suggested the presence of constitutively active p38 MAPK in these preparations. Cotransfection of HEK-293 cells with SERT and a constitutively active form of MAP kinase kinase 3b(E) [MKK3b(E)] increased 5-HT transport, and RNA interference targeted to p38 MAPK inhibited 5-HT uptake, confirming the involvement of active p38 MAPK in SERT expression. Although PD169316 inhibited SERT insertion to the plasma membrane, beta-PMA increased SERT internalization in HEK-293 cells. Together, these results indicate a distinct role of p38 MAPK in SERT regulation.
Collapse
Affiliation(s)
- Devadoss J Samuvel
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
34
|
Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD. Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol 2004; 65:1462-74. [PMID: 15155839 DOI: 10.1124/mol.65.6.1462] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) transporters (SERTs) are critical determinants of synaptic 5-HT inactivation and the targets for multiple drugs used to treat psychiatric disorders. In support of prior studies, we found that short-term (5-30 min) application of the adenosine receptor (AR) agonist 5'-N-ethylcarboxamidoadenosine (NECA) induces an increase in 5-HT uptake Vmax in rat basophilic leukemia 2H3 cells that is enhanced by pretreatment with the cGMP phosphodiesterase inhibitor sildenafil. NECA stimulation is blocked by the A3 AR antagonist 3-ethyl-5-benzyl-2-methyl-phenylethynyl-6-phenyl-1,4(+/-)dihydropyridine-3,5-dicarboxylate (MRS1191), by the phospholipase C inhibitor 1-(6-[[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl] amino]hexyl)-1H-pyrrole-2,5-dione (U73122), by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, and by the guanyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Hydroxylamine, a nitric-oxide donor, and 8-bromo-cGMP, a membrane-permeant analog of cGMP, mimic the effects of NECA on 5-HT uptake, whereas the protein kinase G (PKG) inhibitor N-[2-(methylamino)ethy]-5-isoquinoline-sulfonamide (H8) blocks NECA, hydroxylamine, and 8-bromo-cGMP effects. NECA stimulation activates p38 mitogen-activated protein kinase (MAPK), whereas p38 MAPK inhibitors block NECA stimulation of SERT activity, as does the protein phosphatase 2A (PP2A) inhibitor calyculin A. 5-HT-displaceable [125I]3beta-(4-iodophenyl)-tropane-2beta-carboxylic acid methylester tartrate (RTI-55) whole-cell binding is increased by NECA or sildenafil, and both surface binding and cell surface SERT protein are elevated after NECA or sildenafil stimulation of AR/SERT-cotransfected Chinese hamster ovary cells. Whereas p38 MAPK inhibition blocks NECA stimulation of 5-HT activity, it fails to blunt stimulation of SERT surface density. Moreover, inactivation of existing surface SERTs fails to eliminate NECA stimulation of SERT. Together, these results reveal two PKG-dependent pathways supporting rapid SERT regulation by A3 ARs, one leading to enhanced SERT surface trafficking, and a separate, p38 MAPK-dependent process augmenting SERT intrinsic activity.
Collapse
Affiliation(s)
- Chong-Bin Zhu
- Department of Psychiatry, Vanderbilt School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | | | | | | | |
Collapse
|