1
|
Feng P, Chen Y, Sun K, Wei X, Ding Y, Shang J, Shi Z, Xu X, Guo J, Tian Y. Volatile oil from Acori graminei Rhizoma affected the synaptic plasticity of rats with tic disorders by modulating dopaminergic and glutamatergic systems. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118676. [PMID: 39147000 DOI: 10.1016/j.jep.2024.118676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acori graminei Rhizoma is a commonly used traditional Chinese medicine for treating TD, with its main component being calamus volatile oil. Volatile Oil from Acori graminei Rhizoma (VOA)can protect nerve cells and alleviate learning and memory disorders. However, the mechanism of anti-tic of VOA is still unclear. AIM OF THE STUDY We aimed to explore the effects of Volatile Oil from Acori Tatarinowii Rhizoma (VOA) on striatal dopaminergic and glutamatergic systems and synaptic plasticity of rats with Tic Disorder (TD), as well as its pharmaceutical mechanism against TD. MATERIALS AND METHODS This study involved 48 (three-week-old) Sprague Dawley (SD) rats, which were randomly divided into two primary groups: Control (8) and TD (40). Rats in the TD group were injected intraperitoneally with 3,3-iminodipropionitrile (IDPN) to construct the TD rat model. They were divided into five subgroups: Model, Tiapride, VOA-high, VOA-medium, and VOA-low (N = 8). After modeling, VOA was administrated to rats in the VOA groups through gavage (once/day for four consecutive weeks), while rats in the blank control and model groups received normal saline of the same volume. The animals' behavioral changes were reflected using the stereotypic and motor behavior scores. After interferences, patterns of striatal neurons and the density of dendritic spines were investigated using H&E and Golgi staining, and the ultrastructure of striatal synapses was examined using Transmission Electron Microscopy (TEM). Furthermore, Ca2+ content was determined using the Ca2+ detector, and Dopamine (DA) and Glutamate (GLU) contents in serum and striatum were detected through ELISA. Finally, DRD1, DRD2, AMPAR1, NMPAR1, DAT, VMAT2, CAMKⅡ, and CREB expression in the striatum was detected using Quantitative real-time PCR (qRT-PCR), Western Blotting (WB) and Immunohistochemical (IHC) methods. RESULTS Compared to rats in the blank control and model groups, rats in the VOA groups showed lower stereotypic behavior scores. Furthermore, rats in the VOA groups exhibited relieved, neuron damage and increased quantities of neuronal dendrites and dendritic spines Additionally, based on TEM images show that, the VOA groups showed a clear synaptic structure and increased amounts of postsynaptic dense substances and synaptic vesicles. The VOA groups also exhibited reduced Ca2+ contents, and upregulation of DRD1, DRD2, DAT, AMPAR1, and NMPAR1 and downregulation of VMAT-2, CAMKⅡ, and CREB in the striatum. CONCLUSIONS In summary, VOA could influence synaptic plasticity by tuning the dopaminergic and glutamatergic systems, thus relieving TD.
Collapse
Affiliation(s)
- Peng Feng
- Medical College, Hexi University, Zhangye, Gansu, China.
| | - Yuanhuan Chen
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Kexin Sun
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xing Wei
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanqin Ding
- Paediatrics, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, Gansu, China
| | - Jing Shang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - ZhengGang Shi
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaomin Xu
- Medical College, Hexi University, Zhangye, Gansu, China
| | - Junxiong Guo
- Institute of Traditional Chinese and Western Medicine Integration, Hexi University, Zhangye, Gansu, China
| | - Yongyan Tian
- Silk Road Traditional Chinese Medicine Research Center, Hexi University, Zhangye, Gansu, China
| |
Collapse
|
2
|
Sharp BM, Jiang Q, Kim P, Chen H. Inactivation of phosphodiesterase-4B gene in rat nucleus accumbens shell by CRISPR/Cas9 or positive allosteric modulation of the protein affects the motivation to chronically self-administer nicotine. Sci Rep 2024; 14:2562. [PMID: 38297069 PMCID: PMC10831042 DOI: 10.1038/s41598-024-53037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/27/2024] [Indexed: 02/02/2024] Open
Abstract
Large scale human genome wide association studies (GWAS) have identified a growing pool of genes associated with cigarette smoking. One of the most prominent, phosphodiesterase-4B (PDE4B), has been associated with multiple smoking phenotypes. Although PDE4B modulates the half-life of neuronal cAMP, its precise role in smoking behaviors is unknown. To address this knowledge gap, we used a reverse translational approach. We inactivated PDE4B in bilateral medial nucleus accumbens shell (NAcs) neurons by injecting AAV containing a specific gRNA in female transgenic Cas9+ Long Evans rats. These rats then were given 23-h chronic access to nicotine intravenous self-administration (IVSA) under a schedule of increasing fixed ratios (FR). With the increased effort required at FR7, nicotine SA (i.e. active presses and drug infusions) declined significantly in controls, whereas it was maintained in the mutagenized group. A progressive ratio (PR) study also showed significantly greater cumulative nicotine infusions in the PDE4B-edited group. Hence, we hypothesized that enhanced PDE4B protein activity would reduce nicotine IVSA. A positive allosteric modulator, 2-(3-(4-chloro-3-fluorophenyl)-5-ethyl-1H-1,2,4-triazol-1-yl)-N-(3,5-dichlorobenzyl)acetamide (MR-L2), was microinfused into NAcs bilaterally at FR3 or FR5; in both cohorts, MR-L2 acutely reduced nicotine IVSA. In summary, these studies show that the activity of PDE4B regulates the capacity of NAcs to maintain nicotine IVSA in face of the cost of increasing work. This finding and the results of the PR study indicate that PDE4B affects the motivation to obtain nicotine. These reverse translational studies in rats provide insight into the motivational effects of NAcs PDE4B that advance our understanding of the smoking behaviors mapped in human GWAS.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Qin Jiang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Sharp BM, Jiang Q, Kim P, Chen H. Inactivation of phosphodiesterase-4B gene in rat nucleus accumbens shell by CRISPR/Cas9 modulates the motivation to chronically self-administer nicotine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531588. [PMID: 37461457 PMCID: PMC10349965 DOI: 10.1101/2023.03.07.531588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Large scale human genome wide association studies (GWAS) have identified a growing pool of genes associated with cigarette smoking. One of the most prominent, phosphodiesterase-4B (PDE4B), has been associated with multiple smoking phenotypes. Although PDE4B modulates the half-life of neuronal cAMP, its precise role in smoking behaviors is unknown. To address this knowledge gap, we used a reverse translational approach. We inactivated PDE4B in bilateral medial nucleus accumbens shell (NAcs) neurons by injecting AAV containing a specific gRNA in female transgenic Cas9+ Long Evans rats. These rats then were given 23-hour chronic access to nicotine intravenous self-administration (IVSA) under a schedule of increasing fixed ratios (FR). With the increased effort required at FR7, nicotine SA (i.e. active presses and drug infusions) declined significantly in controls, whereas it was maintained in the mutagenized group. A progressive ratio (PR) study also showed significantly greater cumulative nicotine infusions in the mutant group. Hence, we hypothesized that enhanced PDE4B protein activity would reduce nicotine IVSA. A positive allosteric modulator,2-(3-(4-chloro-3-fluorophenyl)-5-ethyl-1H-1,2,4-triazol-1-yl)-N-(3,5-dichlorobenzyl)acetamide (MR-L2), was microinfused into NAcs bilaterally at FR3 or FR5; in both cohorts, MR-L2 acutely reduced nicotine IVSA. In summary, these studies show that the activity of PDE4B regulates the capacity of NAcs to maintain nicotine IVSA in face of the cost of increasing work. This finding and the results of the PR study indicate that PDE4B affects the motivation to obtain nicotine. These reverse translational studies in rats provide insight into the motivational effects of NAcs PDE4B that advance our understanding of the smoking behaviors mapped in human GWAS.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qin Jiang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
4
|
Toyoda H. Interaction of nicotinic acetylcholine receptors with dopamine receptors in synaptic plasticity of the mouse insular cortex. Synapse 2019; 73:e22094. [PMID: 30767273 DOI: 10.1002/syn.22094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/10/2022]
Abstract
The insular cortex plays essential roles in nicotine addiction. However, much is still unknown about its cellular and synaptic mechanisms responsible for nicotine addiction. We have previously shown that in layer 5 pyramidal neurons of the mouse insular cortex, activation of the nicotinic acetylcholine receptors (nAChRs) suppresses synaptic potentiation through enhancing GABAergic synaptic transmission, although it enhances both glutamatergic and GABAergic synaptic transmission. In the present study, we examined whether dopamine receptors might contribute to the nicotine-induced inhibition of synaptic potentiation. The nicotine-induced inhibition of synaptic potentiation was decreased in the presence of a D1 dopamine receptor antagonist SCH23390 irrespective of the presence of a D2 dopamine receptor antagonist sulpiride, suggesting that D1 dopamine receptors are involved in nicotine-induced inhibition. We also investigated how dopamine receptors might contribute to the nAChR-induced enhancement of glutamatergic and GABAergic synaptic transmission. The nAChR-induced enhancement of GABAergic synaptic transmission was decreased in the presence of SCH23390 irrespective of the presence of sulpiride, whereas that of glutamatergic synaptic transmission was not altered in the presence of SCH23390 and sulpiride. These results suggest that D1 dopamine receptors are involved in the nAChR-induced enhancement of GABAergic synaptic transmission while dopamine receptors are not involved in that of glutamatergic synaptic transmission. These observations indicate that the interaction between nAChRs and D1 dopamine receptors plays critical roles in synaptic activities in layer 5 pyramidal neurons of the mouse insular cortex. These insular synaptic changes might be associated with nicotine addiction.
Collapse
Affiliation(s)
- Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
5
|
Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int 2019; 125:35-46. [PMID: 30716356 DOI: 10.1016/j.neuint.2019.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Dopamine D2 receptors (D2Rs) mediate many of the actions of dopamine in the striatum, ranging from movement to the effortful pursuit of reward. Yet despite significant advances in linking D2Rs to striatal functions with pharmacological and genetic strategies in animals, how dopamine orchestrates its myriad actions on different cell populations -each expressing D2Rs- remains unclear. Furthermore, brain imaging and genetic studies in humans have consistently associated striatal D2R alterations with various neurological and neuropsychiatric disorders, but how and which D2Rs are involved in each case is poorly understood. Therefore, a critical first step is to engage in a refined and systematic investigation of the impact of D2R function on specific striatal cells, circuits, and behaviors. Here, I will review recent efforts, primarily in animal models, aimed at unlocking the complex and heterogeneous roles of D2Rs in striatum.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
6
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
7
|
Barron AB, Gurney KN, Meah LFS, Vasilaki E, Marshall JAR. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front Behav Neurosci 2015; 9:216. [PMID: 26347627 PMCID: PMC4539514 DOI: 10.3389/fnbeh.2015.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Effective decision-making, one of the most crucial functions of the brain, entails the analysis of sensory information and the selection of appropriate behavior in response to stimuli. Here, we consider the current state of knowledge on the mechanisms of decision-making and action selection in the insect brain, with emphasis on the olfactory processing system. Theoretical and computational models of decision-making emphasize the importance of using inhibitory connections to couple evidence-accumulating pathways; this coupling allows for effective discrimination between competing alternatives and thus enables a decision maker to reach a stable unitary decision. Theory also shows that the coupling of pathways can be implemented using a variety of different mechanisms and vastly improves the performance of decision-making systems. The vertebrate basal ganglia appear to resolve stable action selection by being a point of convergence for multiple excitatory and inhibitory inputs such that only one possible response is selected and all other alternatives are suppressed. Similar principles appear to operate within the insect brain. The insect lateral protocerebrum (LP) serves as a point of convergence for multiple excitatory and inhibitory channels of olfactory information to effect stable decision and action selection, at least for olfactory information. The LP is a rather understudied region of the insect brain, yet this premotor region may be key to effective resolution of action section. We argue that it may be beneficial to use models developed to explore the operation of the vertebrate brain as inspiration when considering action selection in the invertebrate domain. Such an approach may facilitate the proposal of new hypotheses and furthermore frame experimental studies for how decision-making and action selection might be achieved in insects.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Biological Sciences, Macquarie University North Ryde, NSW, Australia
| | - Kevin N Gurney
- Department of Psychology, The University of Sheffield Sheffield, UK
| | - Lianne F S Meah
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - Eleni Vasilaki
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - James A R Marshall
- Department of Computer Science, The University of Sheffield Sheffield, UK
| |
Collapse
|
8
|
Yi F, Zhang XH, Yang CR, Li BM. Contribution of dopamine d1/5 receptor modulation of post-spike/burst afterhyperpolarization to enhance neuronal excitability of layer v pyramidal neurons in prepubertal rat prefrontal cortex. PLoS One 2013; 8:e71880. [PMID: 23977170 PMCID: PMC3748086 DOI: 10.1371/journal.pone.0071880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 07/09/2013] [Indexed: 12/02/2022] Open
Abstract
Dopamine (DA) receptors in the prefrontal cortex (PFC) modulate both synaptic and intrinsic plasticity that may contribute to cognitive processing. However, the ionic basis underlying DA actions to enhance neuronal plasticity in PFC remains ill-defined. Using whole-cell patch-clamp recordings in layer V-VI pyramidal cells in prepubertal rat PFC, we showed that DA, via activation of D1/5, but not D2/3/4, receptors suppress a Ca(2+)-dependent, apamin-sensitive K(+) channel that mediates post-spike/burst afterhyperpolarization (AHP) to enhance neuronal excitability of PFC neurons. This inhibition is not dependent on HCN channels. The D1/5 receptor activation also enhanced an afterdepolarizing potential (ADP) that follows the AHP. Additional single-spike analyses revealed that DA or D1/5 receptor activation suppressed the apamin-sensitive post-spike mAHP, further contributing to the increase in evoked spike firing to enhance the neuronal excitability. Taken together, the D1/5 receptor modulates intrinsic mechanisms that amplify a long depolarizing input to sustain spike firing outputs in pyramidal PFC neurons.
Collapse
Affiliation(s)
- Feng Yi
- Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Han Zhang
- Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Charles R. Yang
- CNS Pharmacology and Ion Channel, Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Bao-ming Li
- Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Loss of DARPP-32 and calbindin in multiple system atrophy. J Neural Transm (Vienna) 2013; 120:1689-98. [PMID: 23715974 PMCID: PMC3834182 DOI: 10.1007/s00702-013-1039-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/14/2013] [Indexed: 11/11/2022]
Abstract
We evaluated the immunohistochemical intensities of α-synuclein, phosphorylated α-synuclein (p-syn), dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), calbindin-D 28k, calpain-cleaved carboxy-terminal 150-kDa spectrin fragment, and tyrosine hydroxylase in multiple system atrophy (MSA). The caudate head, anterior putamen, posterior putamen, substantia nigra, pontine nucleus, and cerebellar cortex from six MSA brains, six age-matched disease control brains (amyotrophic lateral sclerosis), and five control brains were processed for immunostaining by standard methods. Immunostaining for α-synuclein, p-syn, or both was increased in all areas examined in oligodendrocytes in MSA. Immunostaining for DARPP-32 and calbindin-D 28k was most prominently decreased in the posterior putamen, where neuronal loss was most prominent. Immunostaining for DARPP-32 and calbindin-D 28k was also diminished in the anterior putamen and caudate head, where neuronal loss was less prominent or absent. Calbindin immunostaining was also decreased in the dorsal tier of the substantia nigra and cerebellar cortex. Loss of immunostaining for DARPP-32 and calbindin-D 28k compared with that of neurons indicates calcium toxicity and disturbance of the phosphorylated state of proteins as relatively early events in the pathogenesis of MSA.
Collapse
|
10
|
Abstract
We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.
Collapse
Affiliation(s)
- Gabriele Scheler
- Carl Correns Foundation for Mathematical Biology, Mountain View, CA, 94040, USA
| |
Collapse
|
11
|
Fasano C, Bourque MJ, Lapointe G, Leo D, Thibault D, Haber M, Kortleven C, Desgroseillers L, Murai KK, Trudeau LÉ. Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors. Neuropharmacology 2012; 67:432-43. [PMID: 23231809 DOI: 10.1016/j.neuropharm.2012.11.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 01/01/2023]
Abstract
Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.
Collapse
Affiliation(s)
- Caroline Fasano
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Onn SP, Lin M, Liu JJ, Grace AA. Dopamine and cyclic-AMP regulated phosphoprotein-32-dependent modulation of prefrontal cortical input and intercellular coupling in mouse accumbens spiny and aspiny neurons. Neuroscience 2008; 151:802-16. [PMID: 18155847 PMCID: PMC3050628 DOI: 10.1016/j.neuroscience.2007.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/01/2007] [Accepted: 11/07/2007] [Indexed: 11/21/2022]
Abstract
The roles of dopamine and cyclic-AMP regulated phosphoprotein-32 (DARPP-32) in mediating dopamine (DA)-dependent modulation of corticoaccumbens transmission and intercellular coupling were examined in mouse accumbens (NAC) neurons by both intracellular sharp electrode and whole cell recordings. In wild-type (WT) mice bath application of the D2-like agonist quinpirole resulted in 73% coupling incidence in NAC spiny neurons, compared with baseline (9%), whereas quinpirole failed to affect the basal coupling (24%) in slices from DARPP-32 knockout (KO) mice. Thus, D2 stimulation attenuated DARPP-32-mediated suppression of coupling in WT spiny neurons, but this modulation was absent in KO mice. Further, whole cell recordings revealed that quinpirole reversibly decreased the amplitude of cortical-evoked excitatory postsynaptic potentials (EPSPs) in spiny neurons of WT mice, but this reduction was markedly attenuated in KO mice. Bath application of the D1/D5 agonist SKF 38393 did not alter evoked EPSP amplitude in WT or KO spiny neurons. Therefore, DA D2 receptor regulation of both cortical synaptic (chemical) and local non-synaptic (dye coupling) communications in NAC spiny neurons is critically dependent on intracellular DARPP-32 cascades. Conversely, in fast-spiking interneurons, blockade of D1/D5 receptors produced a substantial decrease in EPSP amplitude in WT, but not in KO mice. Lastly, in putative cholinergic interneurons, cortical-evoked disynaptic inhibitory potentials (IPSPs) were attenuated by D2-like receptor stimulation in WT but not KO slices. These data indicate that DARPP-32 plays a central role in 1) modulating intercellular coupling, 2) cortical excitatory drive of spiny and aspiny GABAergic neurons, and 3) local feedforward inhibitory drive of cholinergic-like interneurons within accumbens circuits.
Collapse
Affiliation(s)
- S-P Onn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
13
|
Zhdanov AV, Ward MW, Prehn JHM, Papkovsky DB. Dynamics of intracellular oxygen in PC12 Cells upon stimulation of neurotransmission. J Biol Chem 2007; 283:5650-61. [PMID: 18086678 DOI: 10.1074/jbc.m706439200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmission, synaptic plasticity, and maintenance of membrane excitability require high mitochondrial activity in neurosecretory cells. Using a fluorescence-based intracellular O2 sensing technique, we investigated the respiration of differentiated PC12 cells upon depolarization with 100 mm K+. Single cell confocal analysis identified a significant depolarization of the plasma membrane potential and a relatively minor depolarization of the mitochondrial membrane potential following K+ exposure. We observed a two-phase respiratory response: a first intense spike lasting approximately 10 min, during which average intracellular O2 was reduced from 85-90% of air saturation to 55-65%, followed by a second wave of smaller amplitude and longer duration. The fast rise in O2 consumption coincided with a transient increase in cellular ATP by approximately 60%, which was provided largely by oxidative phosphorylation and by glycolysis. The increase of respiration was orchestrated mainly by Ca2+ release from the endoplasmic reticulum, whereas the influx of extracellular Ca2+ contributed approximately 20%. Depletion of Ca2+ stores by ryanodine, thapsigargin, and 4-chloro-m-cresol reduced the amplitude of respiratory spike by 45, 63, and 71%, respectively, whereas chelation of intracellular Ca2+ abolished the response. Uncoupling of the mitochondria with the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone amplified the responses to K+; elevated respiration induced a profound deoxygenation without increasing the cellular ATP levels reduced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Cleavage of synaptobrevin 2 by tetanus toxin, known to reduce neurotransmission, did not affect the respiratory response to K+, whereas the general excitability of d PC12 cells increased.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building, Cork, Ireland
| | | | | | | |
Collapse
|
14
|
Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. J Neurophysiol 2007; 97:2448-64. [PMID: 17229830 DOI: 10.1152/jn.00317.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prefrontal cortex (PFC) dopamine D1/5 receptors modulate long- and short-term neuronal plasticity that may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct postsynaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term potentiation of intrinsic excitability (LTP-IE). Here, the intracellular signals that mediate this D1/5 receptor-dependent LTP-IE were determined using whole cell current-clamp recordings in layer V/VI rat pyramidal neurons from PFC slices. After blockade of all major amino acid receptors (V(hold) = -65 mV) brief tetanic stimulation (20 Hz) of local afferents or application of the D1 agonist SKF81297 (0.2-50 microM) induced LTP-IE, as shown by a prolonged (>40 min) increase in depolarizing pulse-evoked spike firing. Pretreatment with the D1/5 antagonist SCH23390 (1 microM) blocked both the tetani- and D1/5 agonist-induced LTP-IE, suggesting a D1/5 receptor-mediated mechanism. The SKF81297-induced LTP-IE was significantly attenuated by Cd(2+), [Ca(2+)](i) chelation, by inhibition of phospholipase C, protein kinase-C, and Ca(2+)/calmodulin kinase-II, but not by inhibition of adenylate cyclase, protein kinase-A, MAP kinase, or L-type Ca(2+) channels. Thus this form of D1/5 receptor-mediated LTP-IE relied on Ca(2+) influx via non-L-type Ca(2+) channels, activation of PLC, intracellular Ca(2+) elevation, activation of Ca(2+)-dependent CaMKII, and PKC to mediate modulation of voltage-dependent ion channel(s). This D1/5 receptor-mediated modulation by PKC coexists with the previously described PKA-dependent modulation of K(+) and Ca(2+) currents to dynamically regulate overall excitability of PFC neurons.
Collapse
Affiliation(s)
- Long Chen
- National Standard Lab of Pharmacology for Chinese Materia Medica, Research Center of Acupuncture and Pharmacology, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | | | | | | | | |
Collapse
|
15
|
Abstract
D1 and D2 dopamine receptors are expressed in disjoint subsets of striatal projection neurons, the direct and indirect pathways, respectively. This differential distribution of receptors forms the basis for explanations of many aspects of basal ganglia function and dysfunction, but it seems incompatible with some other important properties of striatal neurons. In this issue of Neuron, Wang et al. discover the mechanism of D2 sensitivity of long term depression at synapses on the striatal projection neuron. They show that D2 dependence of LTD does not depend on dopamine receptors of on the projection cell but is mediated by dopamine-induced changes in release of acetylcholine by interneurons that contact projection cells of both types.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Biology, University of Texas at San Antonio, 6900 N. Loop 1604 W., San Antonio, Texas 78249, USA
| |
Collapse
|
16
|
Onn SP, Wang XB, Lin M, Grace AA. Dopamine D1 and D4 receptor subtypes differentially modulate recurrent excitatory synapses in prefrontal cortical pyramidal neurons. Neuropsychopharmacology 2006; 31:318-38. [PMID: 16052247 DOI: 10.1038/sj.npp.1300829] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although dopamine (DA) effects in the prefrontal cortex (PFC) have been studied extensively, the function of steady-state ambient levels of DA in the regulation of afferent excitatory transmission in PFC pyramidal neurons remains relatively unexplored. Using intracellular sharp-electrode and whole-cell recordings combined with intracellular labeling in brain slices, we found that D1/D5 receptor blockade did not alter synaptic responses in the PFC, but D1/D5 receptor activation consistently enhanced recurrent synaptic excitation in the majority of pyramidal neurons tested. In contrast, D4 receptor blockade resulted in an evoked complex multiple spike discharge pattern that contained both early and late (presumably multisynaptic) components of the evoked response that is contingent upon the preservation of axon collaterals of the neuron under study. Moreover, GABAergic interneurons were found to play a role in both responses; blockade of GABA(a)-mediated inhibition caused bath application of DA to convert monosynaptic excitatory postsynaptic potentials (EPSPs) to complex spike bursts riding on the late component of the EPSP. On the other hand, during the blockade of GABA(a)-mediated conductances, administration of a D4 receptor antagonist failed to facilitate evoked multiple spike discharge. Morphological analysis of axon collaterals of labeled neurons revealed that neurons in which the D4 receptor blockade induced the putative polysynaptic response had axon collaterals that were largely preserved. These data suggest that DA exerts a bidirectional modulation of PFC pyramidal neurons in brain slices provided that local network connections with interneurons are preserved, with D4 receptors under tonic stimulation by ambient low levels of DA, whereas D1/D5 receptors activated upon phasic DA input.
Collapse
Affiliation(s)
- Shao-Pii Onn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
17
|
Onn SP, Wang XB. Differential modulation of anterior cingulate cortical activity by afferents from ventral tegmental area and mediodorsal thalamus. Eur J Neurosci 2005; 21:2975-92. [PMID: 15978009 DOI: 10.1111/j.1460-9568.2005.04122.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A distinct increase in cell firing activity is reported in prefrontal cortex during working memory tasks. The afferents that modulate this activity are not yet identified. Using in vivo intracellular recording and labelling of prefrontal cortical pyramidal neurons in anaesthetized rats, we systematically evaluated the influences of afferent projections arising from the ventral tegmental area (VTA) and mediodorsal thalamus (MD) by phasic electrical stimulation with a range of stimulus frequencies. Both VTA- and MD-responsive pyramidal neurons exhibited extensive intracortical axon arborization. Neither single shocks to the VTA at 0.2 Hz, nor low frequency trains of stimuli at 1-4 Hz (< 5 Hz) interrupted the periodicity of membrane bistability in bistable pyramidal neurons. However, high-frequency VTA-train stimulation (10-50 Hz) interrupted the bistability, and produced sustained membrane depolarizations accompanied by intense tonic firing in a frequency-dependent manner. Electrical stimulation of MD (10-50 Hz) did not produce sustained activity in the same PFC neurons. Thus, the sustained activity induced by high-frequency VTA trains is input selective. This effect of VTA-train stimulation was attenuated by systemic injection of the D1 receptor antagonist, SCH 23390, and blocked by acute dopamine (DA) depletion produced via alpha-methyl-para-tyrosine pre-treatment, suggesting that sustained cortical activity is mediated by DA. Chemical stimulation of VTA via intra-VTA infusion of NMDA induced sustained activity similar to VTA-train stimulation. Thus, while both VTA- and MD-responsive pyramidal neurons exhibited extensive intracortical axon arborization, VTA synapses (as opposed to MD synapses) may be critically positioned in the dendritic arborizations of anterior cingulate cortical pyramidal neurons, which may allow their modulation of sustained activity in prefrontal bistable neurons.
Collapse
Affiliation(s)
- Shao-Pii Onn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
18
|
Liu QR, Gong JP, Uhl GR. Families of Protein Phosphatase 1 Modulators Activated by Protein Kinases A and C: Focus on Brain. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:371-404. [PMID: 16096033 DOI: 10.1016/s0079-6603(04)79008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qing-Rong Liu
- Molecular Neurobiology Branch, NIDA-IRP, National Institute of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|