1
|
Sorkhdini P, Klubock-Shukla K, Sheth S, Yang D, Yang AX, Norbrun C, Introne WJ, Gochuico BR, Zhou Y. Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome. JCI Insight 2024; 9:e178381. [PMID: 39405112 PMCID: PMC11601950 DOI: 10.1172/jci.insight.178381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS), particularly types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on type 2 innate lymphoid cells (ILC2s) and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from patients with idiopathic pulmonary fibrosis and HPS. Using bleomycin-challenged WT and Hps1-/- mice, we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1-/- mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted coculture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Kiran Klubock-Shukla
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Selena Sheth
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Alina Xiaoyu Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Carmelissa Norbrun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Wendy J. Introne
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Konstantinou GN, Konstantinou GN, Koulias C, Petalas K, Makris M. Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression. J Asthma Allergy 2022; 15:1273-1291. [PMID: 36117919 PMCID: PMC9473548 DOI: 10.2147/jaa.s282039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
The complicated interaction between the central and the autonomic (sympathetic, parasympathetic, and enteric) nervous systems on the one hand and the immune system and its components, on the other hand, seems to substantially contribute to allergy pathophysiology, uncovering an under-recognized association that could have diagnostic and therapeutic potentials. Neurons connect directly with and regulate the function of many immune cells, including mast cells, the cells that have a leading role in allergic disorders. Proinflammatory mediators such as cytokines, neurotrophins, chemokines, and neuropeptides are released by immune cells, which stimulate sensory neurons. The release of neurotransmitters and neuropeptides caused by the activation of these neurons directly impacts the functional activity of immune cells and vice versa, playing a decisive role in this communication. Successful application of Pavlovian conditioning in allergic disorders supports the existence of a psychoneuroimmunological interplay in classical allergic hypersensitivity reactions. Activation of neuronal homeostatic reflexes, like sneezing in allergic rhinitis, coughing in allergic asthma, and vomiting in food allergy, offers additional evidence of a neuroimmunological interaction that aims to maintain homeostasis. Dysregulation of this interaction may cause overstimulation of the immune system that will produce profound symptoms and exaggerated hemodynamic responses that will lead to severe allergic pathophysiological events, including anaphylaxis. In this article, we have systematically reviewed and discussed the evidence regarding the role of the neuro-immune interactions in common allergic clinical modalities like allergic rhinitis, chronic rhinosinusitis, allergic asthma, food allergy, atopic dermatitis, and urticaria. It is essential to understand unknown – to most of the immunology and allergy experts – neurological networks that not only physiologically cooperate with the immune system to regulate homeostasis but also pathogenetically interact with more or less known immunological pathways, contribute to what is known as neuroimmunological inflammation, and shift homeostasis to instability and disease clinical expression. This understanding will provide recognition of new allergic phenotypes/endotypes and directions to focus on specialized treatments, as the era of personalized patient-centered medicine, is hastening apace.
Collapse
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Christopher Koulias
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
3
|
Guo DG, Wang HJ, Zhou Y, Liu XL. Advances in chromone-based reactants in the ring opening and skeletal reconstruction reaction: access to skeletally diverse salicyloylbenzene/heterocycle derivatives. Org Biomol Chem 2022; 20:4681-4698. [PMID: 35617020 DOI: 10.1039/d2ob00478j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salicyloylbenzene/heterocycles are privileged scaffolds found in many natural products and bioactive molecules. Numerous useful approaches for the preparation of these privileged scaffolds have been developed in recent years. Among these approaches, chromone-based reactants have demonstrated their importance in the synthesis of these salicyloylbenzene/heterocycle scaffolds with structural complexity and potential biological appeal. In this review, the recent advances in the synthesis of salicyloylbenzene/heterocycles are summarized and discussed according to the chromone-based reactants which could be achieved in one step via ring-opening and skeletal reconstruction reactions. Both the mechanisms and the applications of the corresponding products in organic and medicinal chemistry are also described.
Collapse
Affiliation(s)
- Dong-Gui Guo
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China. .,College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Hui-Juan Wang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Chinese Medicine, Guiyang, Guizhou 550025, P. R. China
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| |
Collapse
|
4
|
Cao Y, Rudrakshala J, Williams R, Rodriguez S, Sorkhdini P, Yang AX, Mundy M, Yang D, Palmisciano A, Walsh T, Delcompare C, Caine T, Tomasi L, Shea BS, Zhou Y. CRTH2 Mediates Pro-fibrotic Macrophage Differentiation and Promotes Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:201-214. [PMID: 35585756 DOI: 10.1165/rcmb.2021-0504oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a particularly deadly form of pulmonary fibrosis with unknown reason. In patients with IPF, high serum and lung levels of CHI3L1 can be detected and are associated with poor survival. However, the roles of CHI3L1 in these diseases have not been fully elucidated. We hypothesize that CHI3L1 interacts with CRTH2 to stimulate pro-fibrotic macrophage differentiation and the development of pulmonary fibrosis and that circulating blood monocytes from patients with IPF are hyperresponsive to CHI3L1-CRTH2 signaling. We used murine pulmonary fibrosis models to investigate the role of CRTH2 on pro-fibrotic macrophage differentiation and fibrosis development, and primary human PBMC cell culture to detect the difference of monocytes in the responses to CHI3L1 stimulation and CRTH2 inhibition between IPF patients and normal controls. Our results showed that null mutation or small molecule inhibition of CRTH2 prevents the development of pulmonary fibrosis in murine models. Furthermore, CHI3L1 stimulation induces a greater increase in CD206 expression in IPF monocytes than control monocytes. These results demonstrated that monocytes from IPF patients appear to be hyperresponsive to CHI3L1 stimulation. These studies support targeting CHI3L1-CRTH2 pathway as a promising therapeutic approach in IPF and that the sensitivity of blood monocytes to CHI3L1-induced pro-fibrotic differentiation may serve as a biomarker that predicts responsiveness to CHI3L1 or CRTH2 based interventions.
Collapse
Affiliation(s)
- Yueming Cao
- Brown University, 6752, Providence, Rhode Island, United States
| | | | - River Williams
- Brown University, 6752, Providence, Rhode Island, United States
| | - Shade Rodriguez
- Brown University, 6752, Providence, Rhode Island, United States
| | | | - Alina X Yang
- Brown University, 6752, Providence, Rhode Island, United States
| | - Miles Mundy
- Brown University, 6752, Providence, Rhode Island, United States
| | - Dongqin Yang
- Brown University, 6752, Providence, Rhode Island, United States
| | - Amy Palmisciano
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Thomas Walsh
- Rhode Island Hospital, 23325, Providence, Rhode Island, United States
| | - Cesar Delcompare
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Tanis Caine
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Luca Tomasi
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Barry S Shea
- Rhode Island Hospital, Pulmonary, Critical Care and Sleep, Providence, Rhode Island, United States
| | - Yang Zhou
- Brown University, Molecular Microbiology and Immunology, Providence, Rhode Island, United States;
| |
Collapse
|
5
|
Huang LA, Huang KX, Tu J, Kandeel F, Li J. Ramatroban-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Molecules 2021; 26:1433. [PMID: 33800801 PMCID: PMC7961607 DOI: 10.3390/molecules26051433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes remains one of the fastest growing chronic diseases and is a leading source of morbidity and accelerated mortality in the world. Loss of beta cell mass (BCM) and decreased sensitivity to insulin underlie diabetes pathogenesis. Yet, the ability to safely and directly assess BCM in individuals with diabetes does not exist. Measures such as blood glucose provide only a crude indirect picture of beta cell health. PET imaging could, in theory, allow for safe, direct, and precise characterization of BCM. However, identification of beta cell-specific radiolabeled tracers remains elusive. G-protein coupled receptor 44 (GPR44) is a transmembrane protein that was characterized in 2012 as highly beta cell-specific within the insulin-positive islets of Langerhans. Accordingly, radiolabeling of existing GPR44 antagonists could be a viable method to accelerate PET tracer development. The present study aims to evaluate and summarize published analogues of the GPR44 antagonist ramatroban to develop 18F-labeled PET tracers for BCM analysis. The 77 corresponding ramatroban analogues containing a fluorine nuclide were characterized for properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile, and 32 compounds with favorable properties were identified. This review illustrates the potential of GPR44 analogues for the development of PET tracers.
Collapse
Affiliation(s)
| | | | | | | | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.A.H.); (K.X.H.); (J.T.); (F.K.)
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW In the past decades, cysteinyl leukotrienes (CysLTs) and prostaglandin D2 have been recognized as key mediators of asthma and comorbid conditions for their potent broncho-active and proinflammatory properties. However, both the development and initial positioning of small molecules targeting these lipid mediators [i.e., leukotriene-synthesis inhibitors, CysLT-antagonists, and chemoattractant receptor homologous molecule on T-helper2-cells (CRTH2) antagonists] experienced drawbacks by lacking adequate biomarkers to define potential responders. RECENT FINDINGS New insights into the mechanisms of airway inflammation in asthma including the interaction of leukotrienes and prostanoids has uncovered potential therapeutic targets. Emerging application of biomarkers in more recent clinical studies helped identify responders to therapies targeting lipid mediators and demonstrated their clinical efficacy in distinct asthma phenotypes and endotypes. SUMMARY Interest in small molecules targeting lipid mediators in asthma and related conditions is emerging. Several clinical trials evaluating the efficacy and safety of CRTH2 (Prostaglandin D2 receptor 2) antagonists are ongoing. There is an urgent need for sensitive biomarkers to identify responders to such therapies and for monitoring of (long-term) effects. Furthermore, evaluation of effectiveness of combining different agents targeting lipid mediators or combining them with available or emerging biologics may uncover other potential benefits in certain asthma populations warranting future research.
Collapse
|
7
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
8
|
Assaf S, Hanania NA. Novel therapeutic targets and drug development for the precision treatment of COPD. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1614438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Assaf
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Oliver ET, Chichester K, Devine K, Sterba PM, Wegner C, Vonakis BM, Saini SS. Effects of an Oral CRTh2 Antagonist (AZD1981) on Eosinophil Activity and Symptoms in Chronic Spontaneous Urticaria. Int Arch Allergy Immunol 2019; 179:21-30. [PMID: 30879003 PMCID: PMC6500753 DOI: 10.1159/000496162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Approximately 50% of patients with chronic spontaneous urticaria (CSU) experience symptoms that are not fully controlled by antihistamines, indicating an unmet clinical need. OBJECTIVE To evaluate the effects of the selective CRTh2 antagonist AZD1981 on symptoms and targeted leukocytes in adults with persistent CSU despite treatment with H1-antihistamines. METHODS We performed a single-center, randomized, placebo-controlled study involving adult CSU subjects with symptoms despite daily antihistamines. The subjects underwent a 2-week placebo run-in and 4 weeks of double-blinded therapy with either AZD1981 40 mg TID or placebo, followed by a 2-week placebo washout. The primary objective was to assess the effect of AZD1981 on CSU signs and symptoms. Secondary objectives included the effects of AZD1981 on prostaglandin D2 (PGD2)-induced eosinophil shape change, circulating leukocyte subsets, CRTh2 expression on blood leukocytes, and total blood leukocyte histamine content. RESULTS Twenty-eight subjects were randomized to AZD1981 or placebo, with 26 subjects completing the study. The urticaria activity scores declined during the treatment phase in both groups, and they were significantly reduced in the AZD1981 group at the end of washout. AZD1981 treatment increased circulating eosinophils and significantly impaired PGD2-mediated eosinophil shape change. CRTh2 surface expression rose significantly on blood basophils during active treatment. No serious adverse events were observed. CONCLUSIONS This is the first study to examine the efficacy of a CRTh2 antagonist in antihistamine-refractory CSU. AZD1981 treatment was well tolerated, effectively inhibited PGD2-mediated eosinophil shape change, shifted numbers of circulating eosinophils, and reduced weekly itch scores more than hives during treatment and into washout. Further studies are needed to determine whether inhibition of the PGD2/CRTh2 pathway will be an -effective treatment for CSU.
Collapse
Affiliation(s)
- Eric Tyrell Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| | - Kris Chichester
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Devine
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia Meghan Sterba
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig Wegner
- Scientific Partnering and Alliances, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Becky Marie Vonakis
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarbjit Singh Saini
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ti H, Zhou Y, Liang X, Li R, Ding K, Zhao X. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J Med Chem 2019; 62:5944-5978. [PMID: 30682248 DOI: 10.1021/acs.jmedchem.8b01520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a very common and frequently fatal airway disease. Current therapies for COPD depend mainly on long-acting bronchodilators, which cannot target the pathogenic mechanisms of chronic inflammation in COPD. New pharmaceutical therapies for the inflammatory processes of COPD are urgently needed. Several anti-inflammatory targets have been identified based on increased understanding of the pathogenesis of COPD, which raises new hopes for targeted treatment of this fatal respiratory disease. In this review, we discuss the recent advances in bioactive low-molecular-weight drugs (LMWDs) for the treatment of COPD and, in addition to the first-line drug bronchodilators, focus particularly on low-molecular-weight anti-inflammatory agents, including modulators of inflammatory mediators, inflammasome inhibitors, protease inhibitors, antioxidants, PDE4 inhibitors, kinase inhibitors, and other agents. We also provide new insights into targeted COPD treatments using LMWDs, particularly small-molecule agents.
Collapse
Affiliation(s)
- Huihui Ti
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Yang Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH) , AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Xue Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,School of Life Sciences , The Chinese University of Hong Kong , Shatin, N.T. , Hong Kong SAR 999077 , P. R. China
| |
Collapse
|
11
|
Targeting the PGD 2/CRTH2/DP1 Signaling Pathway in Asthma and Allergic Disease: Current Status and Future Perspectives. Drugs 2018; 77:1281-1294. [PMID: 28612233 PMCID: PMC5529497 DOI: 10.1007/s40265-017-0777-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostaglandin D2 (PGD2) released by degranulating mast cells is believed to play a key role in orchestrating mechanisms of inflammation in allergies and asthma. The biological effects of PGD2 are mediated by D-prostanoid (DP1), CRTH2 (DP2), and thromboxane prostanoid (TP) receptors. The CRTH2 receptor is involved in induction of migration and activation of T helper type 2 (Th2) lymphocytes, eosinophils, and basophils; up-regulation of adhesion molecules; and promotion of pro-inflammatory Th2-type cytokines (interleukin [IL]-4, 5, 13), whereas the DP receptor is associated with relaxation of smooth muscles, vasodilation, inhibition of cell migration, and apoptosis of eosinophils. A number of CRTH2/PGD2 receptor antagonists have been investigated in asthma and allergic diseases. The CRTH2 antagonist (OC000459) or dual CRTH2 and TP receptor antagonist (ramatroban) were effective in reducing eosinophilia, nasal mucosal swelling, and clinical symptoms of allergic rhinitis, with the latter drug registered for clinical use in this indication. OC000459 and setipiprant reduced the late but not early phase of response in an allergen challenge in atopic asthmatics. In persistent asthma, some molecules induced limited improvement in lung function, quality of life, and asthma symptoms (OC000459, BI671800), but in other trials with AMG 853 and AZ1981 these findings were not confirmed. The clear discrepancy between animal studies and clinical efficacy of CRTH2 antagonism in allergic rhinitis, and lack of efficacy in a general cohort of asthmatics, highlight the issue of patient phenotyping. There is no doubt that the PGD2/CATH2/DP1 pathway plays a key role in allergic inflammation and further studies with selective or combined antagonisms in well defined cohorts of patients are needed.
Collapse
|
12
|
Spracklen CN, Chen P, Kim YJ, Wang X, Cai H, Li S, Long J, Wu Y, Wang YX, Takeuchi F, Wu JY, Jung KJ, Hu C, Akiyama K, Zhang Y, Moon S, Johnson TA, Li H, Dorajoo R, He M, Cannon ME, Roman TS, Salfati E, Lin KH, Guo X, Sheu WHH, Absher D, Adair LS, Assimes TL, Aung T, Cai Q, Chang LC, Chen CH, Chien LH, Chuang LM, Chuang SC, Du S, Fan Q, Fann CSJ, Feranil AB, Friedlander Y, Gordon-Larsen P, Gu D, Gui L, Guo Z, Heng CK, Hixson J, Hou X, Hsiung CA, Hu Y, Hwang MY, Hwu CM, Isono M, Juang JMJ, Khor CC, Kim YK, Koh WP, Kubo M, Lee IT, Lee SJ, Lee WJ, Liang KW, Lim B, Lim SH, Liu J, Nabika T, Pan WH, Peng H, Quertermous T, Sabanayagam C, Sandow K, Shi J, Sun L, Tan PC, Tan SP, Taylor KD, Teo YY, Toh SA, Tsunoda T, van Dam RM, Wang A, Wang F, Wang J, Wei WB, Xiang YB, Yao J, Yuan JM, Zhang R, Zhao W, Chen YDI, Rich SS, Rotter JI, Wang TD, Wu T, Lin X, Han BG, Tanaka T, Cho YS, Katsuya T, Jia W, Jee SH, Chen YT, Kato N, Jonas JB, Cheng CY, Shu XO, He J, Zheng W, Wong TY, Huang W, Kim BJ, Tai ES, Mohlke KL, Sim X. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum Mol Genet 2017; 26:1770-1784. [PMID: 28334899 DOI: 10.1093/hmg/ddx062] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets.
Collapse
Affiliation(s)
| | - Peng Chen
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore.,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Young Jin Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korean National Institute of Health, Osong, Chungchungbuk-do, South Korea
| | - Xu Wang
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shengxu Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Keum-Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Koichi Akiyama
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Sanghoon Moon
- Division of Structural and Functional Genomics, Center for Genome Science, Korean National Institute of Health, Osong, Chungchungbuk-do, South Korea
| | - Todd A Johnson
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Huaixing Li
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Maren E Cannon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Tamara S Roman
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Elias Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wayne H H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Duke-NUS Medical School Singapore, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Lee-Ming Chuang
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shu-Chun Chuang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Qiao Fan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Cathy S J Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Alan B Feranil
- USC-Office of Population Studies Foundation, Inc, University of San Carlos, Cebu City, Philippines.,Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
| | - Yechiel Friedlander
- Unit of Epidemiology, Hebrew University-Hadassah Braun School of Public Health, Jerusalem, Israel
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dongfeng Gu
- Department of Epidemiology and Population Genetics, Fuwai Hospital, Beijing, China
| | - Lixuan Gui
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhirong Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - James Hixson
- Human Genetics Center, University of Texas School of Public Health, Houston, TX, USA
| | - Xuhong Hou
- Shanghai Diabetes Institute, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yao Hu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Mi Yeong Hwang
- Division of Structural and Functional Genomics, Center for Genome Science, Korean National Institute of Health, Osong, Chungchungbuk-do, South Korea
| | - Chii-Min Hwu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Masato Isono
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Jyh-Ming Jimmy Juang
- College of Medicine, National Taiwan University, Taipei, Taiwan.,Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Yun Kyoung Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korean National Institute of Health, Osong, Chungchungbuk-do, South Korea
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sun-Ju Lee
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Kae-Woei Liang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Blanche Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Sing-Hui Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Jianjun Liu
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Thomas Quertermous
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Kevin Sandow
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jinxiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Liang Sun
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Pok Chien Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Shu-Pei Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Kent D Taylor
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Feijie Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Jie Wang
- Shanghai Diabetes Institute, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing, China
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Jie Yao
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Yii-Der Ida Chen
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tzung-Dau Wang
- College of Medicine, National Taiwan University, Taipei, Taiwan.,Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Lin
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Bok-Ghee Han
- Center for Genome Science, Korean National Institute of Health, Osong, Chungchungbuk-do, South Korea
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sun-Ha Jee
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Norihiro Kato
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Jost B Jonas
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Duke-NUS Medical School Singapore, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Duke-NUS Medical School Singapore, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korean National Institute of Health, Osong, Chungchungbuk-do, South Korea
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Verma AK, Manohar M, Upparahalli Venkateshaiah S, Mishra A. Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. Cytokine Growth Factor Rev 2017; 38:37-48. [PMID: 28964637 DOI: 10.1016/j.cytogfr.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
Abstract
Worldwide increase incidences of allergic diseases have heightened the interest of clinicians and researchers to understand the role of neuroendocrine cells in the recruitment and activation of inflammatory cells. Several pieces of evidence revealed the association of neuropeptides in the pathogenesis of allergic diseases. Importantly, one such peptide that is secreted by neuronal cells and immune cells exerts a wide spectrum of immunological functions as cytokine/chemokine is termed as Vasoactive Intestinal Peptide (VIP). VIP mediates immunological function through interaction with specific receptors namely VPAC-1, VPAC-2, CRTH2 and PAC1 that are expressed on several immune cells such as eosinophils, mast cells, neutrophils, and lymphocytes; therefore, provide the basis for the action of VIP on the immune system. Additionally, VIP mediated action varies according to target organ depending upon the presence of specific VIP associated receptor, involved immune cells and the microenvironment of the organ. Herein, we present an integrative review of the current understanding on the role of VIP and associated receptors in allergic diseases, the presence of VIP receptors on various immune cells with particular emphasis on the role of VIP in the pathogenesis of allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. Being crucial signal molecule of the neuroendocrine-immune network, the development of stable VIP analogue and/or antagonist may provide the future therapeutic drug alternative for the better treatment of these allergic diseases. Taken together, our current review summarizes the current understandings of VIP biology and further explore the significance of neuroendocrine cells derived VIP in the recruitment of inflammatory cells in allergic diseases that may be helpful to the investigators for planning the experiments and accordingly predicting new therapeutic strategies for combating allergic diseases. Summarized graphical abstract will help the readers to understand the significance of VIP in allergic diseases.
Collapse
Affiliation(s)
- Alok K Verma
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Murli Manohar
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anil Mishra
- Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorders Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
14
|
Peinhaupt M, Sturm EM, Heinemann A. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets. Front Med (Lausanne) 2017; 4:104. [PMID: 28770200 PMCID: PMC5515835 DOI: 10.3389/fmed.2017.00104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention.
Collapse
Affiliation(s)
- Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva M Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
El-Shazly AE, Roncarati P, Lejeune M, Lefebvre PP, Delvenne P. Tyrosine kinase inhibition is an important factor for gene expression of CRTH2 in human eosinophils and lymphocytes: A novel mechanism for explaining eosinophils recruitment by the neuro-immune axis in allergic rhinitis. Int Immunopharmacol 2017; 45:180-186. [PMID: 28222358 DOI: 10.1016/j.intimp.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
Abstract
We recently shown a novel neuro-immune competition between vasoactive intestinal peptide (VIP) and PGD2 for CRTH2 receptor, and that genistein augmented VIP and PGD2-induced eosinophil chemotaxis. However, there are neither studies on the CRTH2 gene expression in allergic rhinitis (AR) nor in the effect of tyrosine kinase inhibitors in CRTH2 gene regulation. Our Objectives were to study the gene expression modulation of CRTH2 receptor in AR patients and the effect of tyrosine kinase inhibitors (TKIs) on CRTH2 gene modulation. Nasal provocation tests, ELISA, qRT-PCR, western blot, flow cytometry and chemotaxis assays in modified micro-Boyden chambers, were all used, to achieve our objectives. Herein we show that AR patients increased the amounts of VIP and PGD2 in their nasal secretions in the early phase reaction, however CRTH2 gene expression from leukocytes recovered in their nasal secretions was upregulated only during the late phase reaction. The TKIs; Genistein, Erbstatin and Herbimycin A, induced the gene expression of CRTH2 and increased the protein content of CRTH2 in both human lymphocytes and eosinophils. This was functional as PGD2/VIP-induced eosinophil chemotaxis was augmented by the TKIs and inhibited by pervanadate, the tyrosine phosphatase inhibitor. These results open channels for therapeutic modalities targeting CRTH2 molecules in AR.
Collapse
Affiliation(s)
- A E El-Shazly
- Department of Otolaryngology and Head and Neck Surgery, Liege University Hospital-CHU, Liege, Belgium; Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium.
| | - P Roncarati
- Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium
| | - M Lejeune
- Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium
| | - P P Lefebvre
- Department of Otolaryngology and Head and Neck Surgery, Liege University Hospital-CHU, Liege, Belgium
| | - P Delvenne
- Department of Pathology, Laboratory of Experimental Pathology, University of Liege, Liege, Belgium
| |
Collapse
|
16
|
Onaka Y, Shintani N, Nakazawa T, Kanoh T, Ago Y, Matsuda T, Hashimoto R, Ohi K, Hirai H, Nagata KY, Nakamura M, Kasai A, Hayata-Takano A, Nagayasu K, Takuma K, Ogawa A, Baba A, Hashimoto H. Prostaglandin D 2 signaling mediated by the CRTH2 receptor is involved in MK-801-induced cognitive dysfunction. Behav Brain Res 2016; 314:77-86. [DOI: 10.1016/j.bbr.2016.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 02/05/2023]
|
17
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
18
|
Santus P, Radovanovic D. Prostaglandin D2 receptor antagonists in early development as potential therapeutic options for asthma. Expert Opin Investig Drugs 2016; 25:1083-92. [PMID: 27409410 DOI: 10.1080/13543784.2016.1212838] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Asthma is a chronic inflammatory disease characterized by bronchial hyper-reactivity. Although many currently available treatment regimens are effective, poor symptom control and refractory severe disease still represent major unmet needs. In the last years, numerous molecular therapeutic targets that interfere with the innate inflammatory response in asthma have been identified. Promising preliminary results concern the signaling cascade promoted by prostaglandin D2 (PGD2) and its receptor antagonists. AREAS COVERED The aim of this review is to provide the most recent clinical and preclinical data on the efficacy and safety of newly developed compounds for the treatment of allergic asthma. The authors will present an overview of the pathogenetic molecular mechanisms sustaining the chronic inflammatory response in asthma; the focus will be then directed on the mediators of the PGD2 pathway, the chemoattractant receptor-homologous molecule expressed on TH2 cells, and their latest antagonists developed. EXPERT OPINION Bronchodilators and corticosteroids are not sufficient to achieve a satisfactory management of all asthmatic patients; the development of new specific treatments appears therefore essential. The good results in terms of cellular, functional and clinical outcomes, together with an acceptable safety of the CRTh2 antagonists represent a promising start for a tailored management of allergic asthma.
Collapse
Affiliation(s)
- Pierachille Santus
- a Health Sciences Department, Pulmonary Rehabilitation Unit, Fondazione Salvatore Maugeri, Scientific Institute of Milan-IRCCS , Università degli Studi di Milano , Milan , Italy
| | - Dejan Radovanovic
- a Health Sciences Department, Pulmonary Rehabilitation Unit, Fondazione Salvatore Maugeri, Scientific Institute of Milan-IRCCS , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
19
|
Nakano Y, Kidani Y, Goto K, Furue S, Tomita Y, Inagaki N, Tanaka H, Shichijo M. Role of Prostaglandin D2 and DP1 Receptor on Japanese Cedar Pollen-Induced Allergic Rhinitis in Mice. J Pharmacol Exp Ther 2016; 357:258-63. [PMID: 26945086 DOI: 10.1124/jpet.115.229799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023] Open
Abstract
Although we previously demonstrated the contribution of the DP1receptor in nasal obstruction using animals sensitized with ovalbumin in the presence of adjuvant, the contribution of the DP1receptor in sneezing is unclear. Here, we developed a mouse model of Japanese cedar (JC:Cryptomeria japonica) pollinosis to evaluate the symptoms of sneezing. To achieve this, we used JC pollen crude extract in the absence of adjuvant to sensitize mice to develop a model closer to the pathophysiology of human JC pollinosis. The immunologic and pharmacologic features of this model are highly similar to those observed in JC pollinosis in humans. Using this model, we found that DP1receptor antagonists suppressed JC pollen extract-induced sneezing and that a DP1receptor agonist induced sneezing. Moreover, JC pollen extract-induced sneezing was diminished in DP1receptor knockout mice. In conclusion, we developed a novel mouse model of allergic rhinitis that closely mimics human JC pollinosis. A strong contribution of DP1receptor signaling to sneezing was demonstrated using this model, suggesting that DP1receptor antagonists could suppress sneezing and nasal obstruction, and therefore these agents could be a new therapeutic option for allergic rhinitis.
Collapse
Affiliation(s)
- Yoshiyuki Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yujiro Kidani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Kumiko Goto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Shingo Furue
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yasuhiko Tomita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Naoki Inagaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Hiroyuki Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Michitaka Shichijo
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| |
Collapse
|
20
|
Jandl K, Stacher E, Bálint Z, Sturm EM, Maric J, Peinhaupt M, Luschnig P, Aringer I, Fauland A, Konya V, Dahlen SE, Wheelock CE, Kratky D, Olschewski A, Marsche G, Schuligoi R, Heinemann A. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. J Allergy Clin Immunol 2016; 137:833-43. [PMID: 26792210 PMCID: PMC4954606 DOI: 10.1016/j.jaci.2015.11.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022]
Abstract
Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation.
Collapse
Affiliation(s)
- Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Eva Maria Sturm
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Jovana Maric
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Miriam Peinhaupt
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ida Aringer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; Center for Infectious Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Institute of Environmental Medicine, Experimental Asthma and Allergy Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
21
|
Abstract
Eosinophils have long been known to infiltrate tumors, and in most cases, this is associated with an improved prognosis. However, the reasons behind this infiltration and the mechanism of action of the eosinophil have remained elusive. In this article, we explore the biology of eosinophils and examine their function in homeostasis and disease states, specifically focusing on what is currently known about the association of the eosinophil with cancer.
Collapse
Affiliation(s)
- Benjamin P Davis
- Authors' Affiliation: Cincinnati Children's Hospital Medical Center, Division of Allergy and Immunology, Cincinnati, Ohio
| | | |
Collapse
|
22
|
Zhang S, Wu X, Yu S. Prostaglandin D2 receptor D-type prostanoid receptor 2 mediates eosinophil trafficking into the esophagus. Dis Esophagus 2014; 27:601-6. [PMID: 24165271 PMCID: PMC4000277 DOI: 10.1111/dote.12118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophilic esophagitis is characterized by eosinophil-predominant inflammation in the esophagus. How eosinophils migrate and infiltrate into the esophagus, however, is less clear. Our previous study demonstrated that mast cell activation led to eosinophil infiltration in the esophagus. Prostaglandin D2 (PGD2) is an important mediator released from activated mast cells. The present study aims to determine whether PGD2 induces eosinophil infiltration into the esophagus via a d-type prostanoid receptor 2 (DP2) receptor-dependent mechanism. Using an in vivo guinea pig model, PGD2, d-type prostanoid receptor 1 (DP1) agonist, or DP2 agonist were injected into the esophagus. Esophageal tissues were removed 2 hours after injections and proceeded to either hematoxylin-eosin (HE) staining or immunofluorescent staining of eosinophil major basic protein (MBP) to compare each treatment-induced eosinophil infiltration in the esophagus. In a separate study, ovalbumin (OVA)-sensitized guinea pigs were pretreated with either DP2 or DP1 antagonists, followed by inhalation of OVA to induce mast cell activation. Esophageal tissues were then processed for immunofluorescent staining of MBP. PGD2 injection in the esophagus led to an increase of eosinophil infiltration in esophageal epithelium at the injection site as revealed by HE staining. Increased infiltration of eosinophils was further confirmed by the increased presence of MBP-labeled immunopositive (MBP-LI) cells in esophageal epithelium. Injection with DP2 agonist 15(R)-PGD2, but not DP1 agonist BW 245C, mimicked the PGD2-induced response. In OVA-sensitized animals, antigen inhalation increased MBP-LI cells in esophageal epithelium. Pretreatment with DP2 antagonist BAY-u3405, but not DP1 antagonist BW 868C, inhibited the antigen inhalation-induced increase of MBP-LI cells in esophageal epithelium. These data support the hypothesis that PGD2 induces eosinophil trafficking into the esophageal epithelium via a DP2-mediated pathway, suggesting a role of DP2 antagonist in the prevention of eosinophilic esophagitis.
Collapse
Affiliation(s)
| | | | - Shaoyong Yu
- Corresponding: Shaoyong Yu, MD, MPH., Division of Gastroenterology, Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, Phone: (734) 647-5980; Fax: (734) 763-2535,
| |
Collapse
|
23
|
Liu H, Zheng M, Qiao J, Dang Y, Zhang P, Jin X. Role of prostaglandin D2 /CRTH2 pathway on asthma exacerbation induced by Aspergillus fumigatus. Immunology 2014; 142:78-88. [PMID: 24329550 DOI: 10.1111/imm.12234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/28/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023] Open
Abstract
Aspergillus fumigatus is often associated in asthmatic patients with the exacerbation of asthma symptoms. The pathomechanism of this phenomenon has not been fully understood. Here, we evaluated the immunological mechanisms and the role of the prostaglandin D2 / Chemoattractant Receptor-Homologous Molecule Expressed on Th2 Cells (CRTH2) pathway in the development of Aspergillus-associated asthma exacerbation. We studied the effects of A. fumigatus on airway inflammation and bronchial hyper-responsiveness in a rat model of chronic asthma. Inhalation delivery of A. fumigatus conidia increased the airway eosinophilia and bronchial hyper-responsiveness in ovalbumin-sensitized, challenged rats. These changes were associated with prostaglandin D2 synthesis and CRTH2 expression in the lungs. Direct inflammation occurred in ovalbumin-sensitized, challenged animals, whereas pre-treatment with an antagonist against CRTH2 nearly completely eliminated the A. fumigatus-induced worsening of airway eosinophilia and bronchial hyper-responsiveness. Our data demonstrate that production of prostaglandin D2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenic factors responsible for the A. fumigatus-induced enhancement of airway inflammation and responsiveness.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Respiratory Medicine, Shanghai First People's Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
24
|
Sandham DA, Arnold N, Aschauer H, Bala K, Barker L, Brown L, Brown Z, Budd D, Cox B, Docx C, Dubois G, Duggan N, England K, Everatt B, Furegati M, Hall E, Kalthoff F, King A, Leblanc CJ, Manini J, Meingassner J, Profit R, Schmidt A, Simmons J, Sohal B, Stringer R, Thomas M, Turner KL, Walker C, Watson SJ, Westwick J, Willis J, Williams G, Wilson C. Discovery and characterization of NVP-QAV680, a potent and selective CRTh2 receptor antagonist suitable for clinical testing in allergic diseases. Bioorg Med Chem 2013; 21:6582-91. [DOI: 10.1016/j.bmc.2013.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
|
25
|
Zhang A, Chi X, Luo G, Hei Z, Xia H, Luo C, Wang Y, Mao X, Xia Z. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation. PLoS One 2013; 8:e75262. [PMID: 24116032 PMCID: PMC3792971 DOI: 10.1371/journal.pone.0075262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022] Open
Abstract
Background Acute lung injury (ALI) is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. Methods Adult male Sprague–Dawley rats received orthotopic autologous liver transplantation (OALT) and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB) p65 translocation was assessed by Western blot. Results The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. Conclusions Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.
Collapse
Affiliation(s)
- Ailan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Xinjin Chi
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
- * E-mail:
| | - Hua Xia
- Department of Anesthesiology, the Affiliated Hospital of Luzhou Medical College, Luzhou City, People's Republic of China
| | - Chenfang Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Xiaowen Mao
- Department of Anesthesiology, Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhengyuan Xia
- Department of Anesthesiology, Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
26
|
Townley RG, Agrawal S. CRTH2 antagonists in the treatment of allergic responses involving TH2 cells, basophils, and eosinophils. Ann Allergy Asthma Immunol 2013. [PMID: 23176872 DOI: 10.1016/j.anai.2012.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Robert G Townley
- Division of Allergy and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA.
| | | |
Collapse
|
27
|
Luna-Gomes T, Bozza PT, Bandeira-Melo C. Eosinophil recruitment and activation: the role of lipid mediators. Front Pharmacol 2013; 4:27. [PMID: 23525348 PMCID: PMC3605515 DOI: 10.3389/fphar.2013.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/23/2013] [Indexed: 01/05/2023] Open
Abstract
Eosinophils are effector cells that migrate toward several mediators released at inflammatory sites to perform their multiple functions. The mechanisms driving eosinophil selective accumulation in sites of allergic inflammation are well-established and involve several steps controlled by adhesion molecules, priming agents, chemotactic, and surviving factors. Even though the majority of studies focused on role of protein mediators like IL-5 and eotaxins, lipid mediators also participate in eosinophil recruitment and activation. Among the lipid mediators with distinguish eosinophil recruitment and activation capabilities are platelet activating factor and the eicosanoids, including leukotriene B4, cysteinyl leukotrienes, and prostaglandin D2. In this review, we focused on the role of these four lipid mediators in eosinophil recruitment and activation, since they are recognized as key mediators of eosinophilic inflammatory responses.
Collapse
Affiliation(s)
- Tatiana Luna-Gomes
- Instituto de Biofïsica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
28
|
Mauser PJ, House A, Jones H, Correll C, Boyce C, Chapman RW. Pharmacological characterization of the late phase reduction in lung functions and correlations with microvascular leakage and lung edema in allergen-challenged Brown Norway rats. Pulm Pharmacol Ther 2013; 26:677-84. [PMID: 23523662 DOI: 10.1016/j.pupt.2013.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Late phase airflow obstruction and reduction in forced vital capacity are characteristic features of human asthma. Airway microvascular leakage and lung edema are also present in the inflammatory phase of asthma, but the impact of this vascular response on lung functions has not been precisely defined. This study was designed to evaluate the role of increased lung microvascular leakage and edema on the late phase changes in forced vital capacity (FVC) and peak expiratory flow (PEF) in allergen-challenged Brown Norway rats using pharmacological inhibitors of the allergic inflammatory response. Rats were sensitized and challenged with ovalbumin aerosol and forced expiratory lung functions (FVC, PEF) and wet and dry lung weights were measured 48 h after antigen challenge. Ovalbumin challenge reduced FVC (63% reduction) and PEF (33% reduction) and increased wet (65% increase) and dry (51% increase) lung weights. The antigen-induced reduction in FVC and PEF was completely inhibited by oral treatment with betamethasone and partially attenuated by inhibitors of arachidonic acid metabolism including indomethacin (cyclooxygenase inhibitor), 7-TM and MK-7246 (CRTH2 antagonists) and montelukast (CysLT1 receptor antagonist). Antagonists of histamine H1 receptors (mepyramine) and 5-HT receptors (methysergide) had no significant effects indicating that these pre-formed mast cell mediators were not involved. There was a highly significant (P < 0.005) correlation for the inhibition of FVC reduction and increase in wet and dry lung weights by these pharmacological agents. These results strongly support the hypothesis that lung microvascular leakage and the associated lung edema contribute to the reduction in forced expiratory lung functions in antigen-challenged Brown Norway rats and identify an important role for the cyclooxygenase and lipoxygenase products of arachidonic acid metabolism in these responses.
Collapse
Affiliation(s)
- Peter J Mauser
- Merck Research Laboratories, 2015, Galloping Hill Road, Kenilworth, NJ 07033-0539, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Yang Y, Tang LQ, Wei W. Prostanoids receptors signaling in different diseases/cancers progression. J Recept Signal Transduct Res 2013; 33:14-27. [DOI: 10.3109/10799893.2012.752003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
El-Shazly AE, Begon DY, Kustermans G, Arafa M, Dortu E, Henket M, Lefebvre PP, Louis R, Delvenne P. Novel association between vasoactive intestinal peptide and CRTH2 receptor in recruiting eosinophils: a possible biochemical mechanism for allergic eosinophilic inflammation of the airways. J Biol Chem 2013; 288:1374-84. [PMID: 23168411 PMCID: PMC3543020 DOI: 10.1074/jbc.m112.422675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/10/2012] [Indexed: 01/21/2023] Open
Abstract
We explored the relation between vasoactive intestinal peptide (VIP), CRTH2, and eosinophil recruitment. It is shown that CRTH2 expression by eosinophils from allergic rhinitis (AR) patients and eosinophil cell line (Eol-1 cells) was up-regulated by VIP treatment. This was functional and resulted in exaggerated migratory response of cells against PGD2. Nasal challenge of AR patients resulted in a significant increase of VIP contents in nasal secretion (ELISA), and the immunohistochemical studies of allergic nasal tissues showed significant expression of VIP in association with intense eosinophil recruitment. Biochemical assays showed that VIP-induced eosinophil chemotaxis from AR patients and Eol-1 cells was mediated through the CRTH2 receptor. Cell migration against VIP was sensitive to protein kinase C (PKC) and protein kinase A (PKA) inhibition but not to tyrosine kinase or p38 MAPK inhibition or calcium chelation. Western blot demonstrated a novel CRTH2-mediated cytosol-to-membrane translocation of PKC-ε, PKC-δ, and PKA-α, -γ, and -IIαreg in Eol-1 cells upon stimulation with VIP. Confocal images and FACS demonstrated a strong association and co-localization between VIP peptide and CRTH2 molecules. Further, VIP induced PGD2 secretion from eosinophils. Our results demonstrate the first evidence of association between VIP and CRTH2 in recruiting eosinophils.
Collapse
Affiliation(s)
- Amr E El-Shazly
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, Liege University Hospital (Centre Hospitalier Universaitaire-C.H.U.), 4000 Liege, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi K, Tsubosaka Y, Hori M, Narumiya S, Ozaki H, Murata T. Prostaglandin D2-DP signaling promotes endothelial barrier function via the cAMP/PKA/Tiam1/Rac1 pathway. Arterioscler Thromb Vasc Biol 2013; 33:565-71. [PMID: 23307871 DOI: 10.1161/atvbaha.112.300993] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Prostaglandin D(2) (PGD(2)) is one of the prostanoids produced during inflammation. Although PGD(2) is known to decrease endothelial permeability through D prostanoid (DP) receptor stimulation, the detailed mechanism is unknown. METHODS AND RESULTS Treatment with PGD(2) (0.1-3 μmol/L) or the DP receptor agonist, BW245C (0.1-3 μmol/L), dose-dependently increased transendothelial electrical resistance and decreased the FITC-dextran permeability of human umbilical vein endothelial cells. Both indicated decreased endothelial permeability. These phenomena were accompanied by Tiam1/Rac1-dependent cytoskeletal rearrangement. BW245C (0.3 μmol/L) increased the intracellular cAMP level and subsequent protein kinase A (PKA) activity. Pretreatment with PKA inhibitory peptide, but not gene depletion of exchange protein directly activated by cAMP 1 (Epac1), attenuated BW245C-induced Rac1 activation and transendothelial electric resistance increase. In vivo, application of 2.5% croton oil or histamine (100 μg) caused vascular leakage indexed by dye extravasation. Pretreatment with BW245C (1 mg/kg) attenuated the dye extravasation. Gene deficiency of DP abolished, or inhibition of PKA significantly reduced, the DP-mediated barrier enhancement. CONCLUSIONS PGD(2)-DP signaling reduces vascular permeability both in vivo and in vitro. This phenomenon is mediated by cAMP/PKA/Tiam1-dependent Epac1-independent Rac1 activation and subsequent enhancement of adherens junction in endothelial cell.
Collapse
Affiliation(s)
- Koji Kobayashi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Deppong CM, Green JM. Experimental advances in understanding allergic airway inflammation. Front Biosci (Schol Ed) 2013; 5:167-80. [PMID: 23277043 DOI: 10.2741/s364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is largely an inflammatory disease, with the development of T cell mediated inflammation in the lung following exposure to allergen or other precipitating factors. Currently, the major therapies for this disease are directed either at relief of bronchoconstriction (ie beta-agonists) or are non-specific immunomodulators (ie, corticosteroids). While much attention has been paid to factors that regulate the initiation of an inflammatory response, chronic inflammation may also be due to defects in regulatory mechanisms that limit or terminate immune responses. In this review, we explore the elements controlling both the recruitment of T cells to the lung and their function. Possibilities for future therapeutic intervention are highlighted.
Collapse
Affiliation(s)
- Christine M Deppong
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Abstract
Prostaglandin D2 (PGD2) plays a key role in many of the physiological markings of allergic inflammation including vasodilation, bronchoconstriction, vascular permeability and lymphocyte recruitment. The action of this molecule is elicited through its two primary receptors, DP and CRTH2. Activation of CRTH2 leads to lymphocyte chemotaxis, potentiation of histamine release from basophils, production of inflammatory cytokines (IL-4, IL-5 and IL-13) by Th2 cells, eosinophil degranulation and prevention of Th2 cell apoptosis. As such, antagonism of CRTH2 has been reported to ameliorate the symptoms associated with various allergen challenge animal models including murine antigen induced lung inflammation, murine cigarette smoke induced lung inflammation, murine allergic rhinitis, guinea pig PGD2-induced airflow obstruction, guinea pig airway hyper-responsiveness, sheep airway hyper-responsiveness and murine contact hypersensitivity. CRTH2 antagonists fall into four broad categories: tricyclic ramatroban analogues, indole acetic acids, phenyl/phenoxy acetic acids and non-acid-containing tetrahydroquinolines. Numerous CRTH2 antagonists have been advanced into the clinic and early reports from two Phase II trials suggest promising activity in the alleviation of atopic symptoms.
Collapse
Affiliation(s)
- L. NATHAN TUMEY
- Pfizer Global R&D Worldwide Medicinal Chemistry, MS 8220-3563, 445 Eastern Point Rd Groton, CT 06340 USA
| |
Collapse
|
34
|
Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 2012; 3:119. [PMID: 22654878 PMCID: PMC3360162 DOI: 10.3389/fimmu.2012.00119] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/24/2012] [Indexed: 01/09/2023] Open
Abstract
Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor (SCF) recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE) anchored to the high affinity IgE receptor (FcεRI), highly cytokinergic (HC) IgE recognized by FcεRI, lipid mediator sphingosine-1-phosphate (S1P), which binds to G protein-coupled receptors (GPCRs). Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT) B4, LTD4, and LTC4, and others] and chemokines (CC, CXC, C, and CX3C), which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF) β1–3, which are sensitively recognized by TGF-β serine/threonine type I and II β receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, tumor necrosis factor-α, and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | |
Collapse
|
35
|
PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2. PLoS One 2012; 7:e33329. [PMID: 22442685 PMCID: PMC3307725 DOI: 10.1371/journal.pone.0033329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/07/2012] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.
Collapse
|
36
|
Abstract
Potent, oxygenated lipid molecules called prostanoids regulate a wide variety of physiological responses and pathological processes. Prostanoids are produced by various cell types and act on target cells through specific G protein-coupled receptors. Although prostanoids have historically been considered acute inflammation mediators, studies using specific receptor knockout mice indicate that prostanoids, in fact, regulate various aspects of both innate and adaptive immunity. Each prostanoid, depending on which receptor it acts on, exerts specific effects on immune cells such as macrophages, dendritic cells, and T and B lymphocytes, often in concert with microbial ligands and cytokines, to affect the strength, quality, and duration of immune responses. Prostanoids are also relevant to immunopathology, from inflammation to autoimmunity and cancer. Here, we review the role of prostanoids in regulating immunity, their involvement in immunopathology, and areas of insight that may lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Takako Hirata
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
37
|
Crosignani S, Jorand-Lebrun C, Campbell G, Prêtre A, Grippi-Vallotton T, Quattropani A, Bouscary-Desforges G, Bombrun A, Missotten M, Humbert Y, Frémaux C, Pâquet M, El Harkani K, Bradshaw CG, Cleva C, Abla N, Daff H, Schott O, Pittet PA, Arrighi JF, Gaudet M, Johnson Z. Discovery of a Novel Series of CRTH2 (DP2) Receptor Antagonists Devoid of Carboxylic Acids. ACS Med Chem Lett 2011; 2:938-42. [PMID: 24900284 DOI: 10.1021/ml200223s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/10/2011] [Indexed: 11/28/2022] Open
Abstract
Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (K i < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 μM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development.
Collapse
Affiliation(s)
| | | | - Gordon Campbell
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Adeline Prêtre
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | | | - Anna Quattropani
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | | | - Agnes Bombrun
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Marc Missotten
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Yves Humbert
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | | | - Mikaël Pâquet
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Kamel El Harkani
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | | | - Christophe Cleva
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Nada Abla
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Hamina Daff
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Olivier Schott
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | | | | | - Marilène Gaudet
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| | - Zoë Johnson
- Merck Serono S.A., 9 chemin
des Mines, CH-1202 Geneva, Switzerland
| |
Collapse
|
38
|
IFN-γ and TNF-α potentiate prostaglandin D2-induced human eosinophil chemotaxis through up-regulation of CRTH2 surface receptor. Int Immunopharmacol 2011; 11:1864-70. [PMID: 21835268 DOI: 10.1016/j.intimp.2011.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/22/2022]
|
39
|
Chen JJ, Budelsky AL. Prostaglandin D₂ receptor CRTH2 antagonists for the treatment of inflammatory diseases. PROGRESS IN MEDICINAL CHEMISTRY 2011; 50:49-107. [PMID: 21315928 DOI: 10.1016/b978-0-12-381290-2.00002-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jian Jeffrey Chen
- Chemistry Research and Discovery, Amgen Inc., One Amgen Center Dr. Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
40
|
Crosignani S, Prêtre A, Jorand-Lebrun C, Fraboulet G, Seenisamy J, Augustine JK, Missotten M, Humbert Y, Cleva C, Abla N, Daff H, Schott O, Schneider M, Burgat-Charvillon F, Rivron D, Hamernig I, Arrighi JF, Gaudet M, Zimmerli SC, Juillard P, Johnson Z. Discovery of Potent, Selective, and Orally Bioavailable Alkynylphenoxyacetic Acid CRTH2 (DP2) Receptor Antagonists for the Treatment of Allergic Inflammatory Diseases. J Med Chem 2011; 54:7299-317. [DOI: 10.1021/jm200866y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Adeline Prêtre
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | | | - Gaële Fraboulet
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Jeyaprakashnarayanan Seenisamy
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Bommasandra, Jigani Link Road, Bangalore 560 099, India
| | - John Kallikat Augustine
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Bommasandra, Jigani Link Road, Bangalore 560 099, India
| | - Marc Missotten
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Yves Humbert
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Christophe Cleva
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Nada Abla
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Hamina Daff
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Olivier Schott
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | | | | | - Delphine Rivron
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Ingrid Hamernig
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | | | - Marilène Gaudet
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | | | - Pierre Juillard
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| | - Zoe Johnson
- Merck Serono S.A., 9 Chemin des Mines, CH-1202 Geneva, Switzerland
| |
Collapse
|
41
|
Sedej M, Schröder R, Bell K, Platzer W, Vukoja A, Kostenis E, Heinemann A, Waldhoer M. D-type prostanoid receptor enhances the signaling of chemoattractant receptor-homologous molecule expressed on T(H)2 cells. J Allergy Clin Immunol 2011; 129:492-500, 500.e1-9. [PMID: 21930295 DOI: 10.1016/j.jaci.2011.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prostaglandin (PG) D(2) is substantially involved in allergic responses and signals through the 7 transmembrane-spanning/G protein-coupled receptors, chemoattractant receptor-homologous molecule expressed on T(H)2 cells (CRTH2), and D-type prostanoid (DP) receptor. OBJECTIVE Although the proinflammatory function of CRTH2 is well recognized and CRTH2 is hence considered an important emerging pharmacotherapeutic target, the role of the DP receptor in mediating the biological effects of PGD(2) in patients with allergic inflammation has remained unclear. METHODS The cross-talk of CRTH2 and DP receptors was investigated by using both a recombinant HEK293 cell model and human eosinophils in Ca(2+) mobilization assays, coimmunoprecipitation, Western blotting, radioligand binding, and immunofluorescence. RESULTS We show that CRTH2 and DP receptors modulate one another's signaling properties and form CRTH2/DP heteromers without altering their ligand-binding capacities. We find that the DP receptor amplifies the CRTH2-induced Ca(2+) release from intracellular stores and coincidentally forfeits its own signaling potency. Moreover, desensitization or pharmacologic blockade of the DP receptor hinders CRTH2-mediated signal transduction. However, CRTH2 internalization occurs independently of the DP receptor. In cells that express both receptors, pharmacologic blockade of Gα(q/11) proteins abolishes the Ca(2+) response to both CRTH2 and DP agonists, whereas inhibition of Gα(i) proteins selectively attenuates the CRTH2-mediated response but not the DP signal. CONCLUSION Our data demonstrate the capacity of DP receptors to amplify the biological response to CRTH2 activation. Therefore the CRTH2/DP heteromer might not only represent a functional signaling unit for PGD(2) but also a potential target for the development of heteromer-directed therapies to treat allergic diseases.
Collapse
Affiliation(s)
- Miriam Sedej
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Woodward DF, Jones RL, Narumiya S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63:471-538. [PMID: 21752876 DOI: 10.1124/pr.110.003517] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is now more than 15 years since the molecular structures of the major prostanoid receptors were elucidated. Since then, substantial progress has been achieved with respect to distribution and function, signal transduction mechanisms, and the design of agonists and antagonists (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=58). This review systematically details these advances. More recent developments in prostanoid receptor research are included. The DP(2) receptor, also termed CRTH2, has little structural resemblance to DP(1) and other receptors described in the original prostanoid receptor classification. DP(2) receptors are more closely related to chemoattractant receptors. Prostanoid receptors have also been found to heterodimerize with other prostanoid receptor subtypes and nonprostanoids. This may extend signal transduction pathways and create new ligand recognition sites: prostacyclin/thromboxane A(2) heterodimeric receptors for 8-epi-prostaglandin E(2), wild-type/alternative (alt4) heterodimers for the prostaglandin FP receptor for bimatoprost and the prostamides. It is anticipated that the 15 years of research progress described herein will lead to novel therapeutic entities.
Collapse
Affiliation(s)
- D F Woodward
- Dept. of Biological Sciences RD3-2B, Allergan, Inc., 2525 Dupont Dr., Irvine, CA 92612, USA.
| | | | | |
Collapse
|
43
|
Crosignani S, Jorand-Lebrun C, Page P, Campbell G, Colovray V, Missotten M, Humbert Y, Cleva C, Arrighi JF, Gaudet M, Johnson Z, Ferro P, Chollet A. Optimization of the Central Core of Indolinone-Acetic Acid-Based CRTH2 (DP2) Receptor Antagonists. ACS Med Chem Lett 2011; 2:644-9. [PMID: 24900359 DOI: 10.1021/ml2001196] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022] Open
Abstract
New spiroindolinone antagonists of CRTH2 are described. Following identification of insufficient stability in human plasma as an important liability of the lead compounds, replacement of the spirosuccinimide core with a spirohydantoin or spiropyrrolidinone structure has yielded a compound that is fully stable in human plasma and with good potency in a human whole blood assay (IC50 = 69 nM) but shows a much lower oral bioavailability (6-9% in rodents) than the earlier compounds. Successive optimization aimed at restoring an acceptable oral bioavailability has yielded compound (S)-17a, which exhibits both stability in human plasma and a good oral bioavailability in rat (37%) and mouse (39%). This compound is also active in a mouse model of ovalbumin-induced lung inflammation following oral dosing at 30 mg/kg.
Collapse
Affiliation(s)
| | | | - Patrick Page
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | - Gordon Campbell
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | | | - Marc Missotten
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | - Yves Humbert
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | - Christophe Cleva
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | | | - Marilène Gaudet
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | - Zoe Johnson
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | - Pamela Ferro
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| | - André Chollet
- Merck Serono S.A., 9 chemin des Mines, CH-1202 Geneva, Switzerland
| |
Collapse
|
44
|
Affiliation(s)
- Takako Hirata
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
45
|
Kagawa S, Fukunaga K, Oguma T, Suzuki Y, Shiomi T, Sayama K, Kimura T, Hirai H, Nagata K, Nakamura M, Asano K. Role of prostaglandin D2 receptor CRTH2 in sustained eosinophil accumulation in the airways of mice with chronic asthma. Int Arch Allergy Immunol 2011; 155 Suppl 1:6-11. [PMID: 21646789 DOI: 10.1159/000327257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The prostaglandin D(2) (PGD(2))/CRTH2 pathway is important for eosinophil trafficking in vitro; however, genetic deficiency of CRTH2 does not suppress in vivo eosinophilic airway inflammation in acute models of asthma, and the role of CRTH2 in the pathogenesis of asthma is still ambiguous. Therefore, in the present study we explored whether the PGD(2)/CRTH2 pathway could affect the phenotypes of chronic asthma. Either CRTH2-deficient (CRTH2-/-) or wild-type mice were sensitized and exposed to ovalbumin (OVA) for 3 days (acute model) or 6 weeks (chronic model). While the magnitude of the acute eosinophilic inflammation was equivalent between CRTH2-/- and wild-type mice, the number of inflammatory cells and eosinophils in bronchoalveolar lavage fluid after chronic OVA exposure was significantly reduced in CRTH2-/- mice (18.0 ± 2.6 × 10(4) cells and 2.0 ± 0.5 × 10(4) cells) compared to wild-type mice (27.9 ± 2.5 × 10(4) cells and 6.8 ± 1.1 × 10(4) cells, p < 0.001). On the contrary, no difference was observed between CRTH2-/- and wild-type mice in terms of airway hyperresponsiveness or remodeling (goblet cell hyperplasia) in the chronic model of asthma. In conclusion, CRTH2 that mediates PGD(2) activity is essential for sustained eosinophilic inflammation in the airways, and its antagonists could exert an anti-inflammatory effect in chronic asthma.
Collapse
Affiliation(s)
- Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wegmann M. Targeting eosinophil biology in asthma therapy. Am J Respir Cell Mol Biol 2011; 45:667-74. [PMID: 21474432 DOI: 10.1165/rcmb.2011-0013tr] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Due to their role as main effector cells in immune reactions against invading parasites, eosinophils have a plethora of molecules available to destroy these complex pathogens. Their role in allergic diseases such as bronchial asthma, where they do not have to conquer pathogens, is discussed controversially. However, since eosinophils were identified by Paul Ehrlich in tissue and sputum of patients with asthma, it was regarded that their important defensive role turns into its direct opposite so that these cells cause destruction of the airway tissue, ultimately leading to the formation of disease phenotype. Thus, eosinophils were identified as a prime target in therapeutic intervention of bronchial asthma. Over the last years, a number of mediators and receptors involved in the regulation of eosinophil recruitment, chemotaxis, activation, survival, and apoptosis have been identified. Some of these molecules have been addressed in vitro and in animal models of experimental asthma to evaluate their therapeutic potential in asthma. A few of these candidates have been tested in clinical studies, which produced surprising results questioning the role of eosinophils in asthma pathogenesis. This article summarizes these approaches and gives a critical overview about further candidate molecules that have been recently discussed as targets for an eosinophil-specific asthma therapy.
Collapse
Affiliation(s)
- Michael Wegmann
- Experimental Pneumology, Research Center Borstel, Parkallee 1, D-23845 Borstel, Germany 1887402.
| |
Collapse
|
47
|
Hokari R, Kurihara C, Nagata N, Aritake K, Okada Y, Watanabe C, Komoto S, Nakamura M, Kawaguchi A, Nagao S, Urade Y, Miura S. Increased expression of lipocalin-type-prostaglandin D synthase in ulcerative colitis and exacerbating role in murine colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G401-8. [PMID: 21163901 DOI: 10.1152/ajpgi.00351.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathogenesis of ulcerative colitis (UC) is unclear, but enhancement of disease activity by usage of nonsteroidal anti-inflammatory drugs suggests involvement of prostanoid in its pathophysiology. However, biological effect of prostaglandin (PG) D(2) on intestinal inflammation remains unknown. We investigated the expression of enzymes for PGD(2) synthesis, prostaglandin D synthase (PGDS), and its relation to the activity of colitis in UC patients. The role of lipocalin-type PGDS (L-PGDS) using a murine colitis model was also assessed. Tissue samples were obtained by colonic biopsies from patients with UC. Expression levels of mRNAs for L-PGDS and hematopoietic-type PGDS were investigated by quantitative RT-PCR. COX-2 and L-PGDS expression was investigated by immunohistochemistry. Localization of L-PGDS expression was also determined by in situ hybridization. In experimental study, mice were treated with dextran sodium sulfate in the drinking water to induce colitis. The degree of colonic inflammation was compared with L-PGDS(-/-) mice and control mice. The level of L-PGDS mRNA expression was increased in UC patients in parallel with disease activity. Colocalization of L-PGDS and cyclooxygenase (COX) 2 was observed in lamina proprial infiltrating cells and muscularis mucosa in UC patients. The level of hematopoietic PGDS mRNA expression did not differ from control mucosa. Dextran sodium sulfate treatment to L-PGDS(-/-) mice showed lower disease activity than control mice. We reported for the first time the presence of L-PGDS in the COX-2-expressing cells in the mucosa of active UC patients and that only L-PGDS increased with disease activity. An animal model study suggests that PGD(2) derived from L-PGDS-expressing cells plays proinflammatory roles in colitis.
Collapse
Affiliation(s)
- Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ulven T, Kostenis E. Novel CRTH2 antagonists: a review of patents from 2006 to 2009. Expert Opin Ther Pat 2010; 20:1505-30. [PMID: 20946089 DOI: 10.1517/13543776.2010.525506] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The receptor CRTH2 (also known as DP₂) is an important mediator of the inflammatory effects of prostaglandin D₂ and has attracted much attention as a therapeutic target for the treatment of conditions such as asthma, COPD, allergic rhinitis and atopic dermatitis. AREAS COVERED IN THIS REVIEW The validation of CRTH2 as a therapeutic target and the early antagonists are summarized, CRTH2 antagonists published in the patent literature from 2006 to 2009 are comprehensively covered and a general update on the recent progress in the development of CRTH2 antagonists for the treatment of inflammatory diseases is provided. WHAT THE READER WILL GAIN Insight into the validation of CRTH2 as a therapeutic target, a comprehensive overview of the development of new CRTH2 ligands between 2006 and 2009, and a general overview of the state of the art. TAKE HOME MESSAGE Many diverse potent CRTH2 antagonists are now available, and several are in or on the way into the clinic. It is still early to draw final conclusions, but preliminary results give reason for optimism, and the prospect that we will see new CRTH2 antagonists reaching the market for the treatment of asthma, rhinitis, atopic dermatitis and/or COPD seems good.
Collapse
Affiliation(s)
- Trond Ulven
- University of Southern Denmark, Department of Physics and Chemistry, Denmark.
| | | |
Collapse
|
49
|
He R, Oyoshi MK, Wang JYT, Hodge MR, Jin H, Geha RS. The prostaglandin D₂ receptor CRTH2 is important for allergic skin inflammation after epicutaneous antigen challenge. J Allergy Clin Immunol 2010; 126:784-90. [PMID: 20713302 DOI: 10.1016/j.jaci.2010.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/01/2010] [Accepted: 07/02/2010] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cutaneous prostaglandin (PG) D₂ levels increase after scratching. Chemoattractant receptor-homologous molecule expressed on receptor on T(H)2 cells (CRTH2) mediates chemotaxis to PGD₂ and is expressed on T(H)2 cells and eosinophils, which infiltrate skin lesions in patients with atopic dermatitis. OBJECTIVE We sought to examine the role of CRTH2 in a murine model of atopic dermatitis. METHODS CRTH2(-/-) mice and wild-type control animals were epicutaneously sensitized by means of repeated application of ovalbumin (OVA) to tape-stripped skin for 7 weeks and then challenged by means of OVA application to tape-stripped previously unsensitized skin for 1 week. Skin histology was assessed by means of hematoxylin and eosin staining and immunohistochemistry. Cytokine mRNA expression was examined by means of quantitative RT-PCR. Levels of PGD₂, antibody, and cytokines were measured by means of ELISA. RESULTS PGD₂ levels significantly increased in skin 24 hours after tape stripping, although not in skin subjected to repeated sensitization with OVA. Allergic skin inflammation developed normally at sites of chronic epicutaneous sensitization with OVA in CRTH2(-/-) mice but was severely impaired in previously unsensitized skin challenged with OVA, as evidenced by significantly decreased skin infiltration with eosinophils and CD4(+) cells and impaired T(H)2 cytokine mRNA expression. Impaired skin inflammation at sites of acute OVA challenge in CRTH2(-/-) mice was not due to an impaired systemic response to epicutaneous sensitization because OVA-specific IgG1 and IgE antibody levels and OVA-driven splenocyte secretion of cytokines in these mice were comparable with those seen in wild-type control animals. CONCLUSIONS CRTH2 promotes allergic skin inflammation in response to cutaneous exposure to antigen in previously sensitized mice.
Collapse
Affiliation(s)
- Rui He
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
50
|
Mutalithas K, Guillen C, Day C, Brightling CE, Pavord ID, Wardlaw AJ. CRTH2 expression on T cells in asthma. Clin Exp Immunol 2010; 161:34-40. [PMID: 20491797 PMCID: PMC2901512 DOI: 10.1111/j.1365-2249.2010.04161.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mast cell-derived prostaglandin D2 (PGD2) is the major prostanoid found within the airway of asthmatics immediately following allergen challenge. PGD2 has been shown to have chemokinetic effects on eosinophils and T helper type 2 (Th2) cells in vitro. This occurs through the interaction of PGD2 with the G-protein-coupled chemokine receptor homologous molecule expressed on Th2 lymphocytes (CRTH2). The expression of CRTH2 has been shown to be highly selective for Th2 cells. Using flow cytometry we have studied the expression of CRTH2 on T cells in blood and bronchoalveolar lavage fluid in asthmatics and normal subjects. CRTH2 expression was confined to a small percentage of blood T cells in asthmatics (1.8%+/-0.2) and normal (1.6%+/-0.2) subjects. CRTH2 was enriched significantly on interleukin (IL)-4+/IL-13+ T cells compared to interferon (IFN)-gamma+ T cells (P<0.001). There was a small population of CRTH2+ T cells in the bronchoalveolar lavage (BAL) of asthmatics (2.3%+/-0.6) and normal subjects (0.3%+/-0.1), and there was a significant difference between the two groups (P<0.05). There were similar amounts of PGD2 in the BAL of asthma and normal subjects. Within paired blood-BAL samples from the same subject there was no increase in CRTH2+ T cells in the BAL compared to blood in asthmatics. Enrichment of CRTH2 on IL-4+ and IL-13+ T cells compared to IFN-gamma+ T cells was also seen in BAL from asthmatics (P<0.001). CRTH2 is expressed preferentially by IL-4+/IL-13+ T cells compared to IFN-gamma+ T cells. However, given their small numbers they are unlikely to have a significant involvement in the pathogenesis of asthma. CRTH2 antagonism may not diminish T cell accumulation in the asthmatic lung.
Collapse
Affiliation(s)
- K Mutalithas
- Institute for Lung Health, Department of Infection Immunity and Inflammation, University Hospitals of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|