1
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
2
|
Meldrum OW, Belchamber KB, Chichirelo-Konstantynovych KD, Horton KL, Konstantynovych TV, Long MB, McDonnell MJ, Perea L, Garcia-Basteiro AL, Loebinger MR, Duarte R, Keir HR. ERS International Congress 2021: highlights from the Respiratory Infections Assembly. ERJ Open Res 2022; 8:00642-2021. [PMID: 35615420 PMCID: PMC9124871 DOI: 10.1183/23120541.00642-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
The European Respiratory Society International Congress 2021 took place virtually for the second year running due to the coronavirus pandemic. The Congress programme featured more than 400 sessions and 3000 abstract presentations, covering the entire field of respiratory science and medicine. In this article, early career members of the Respiratory Infections Assembly summarise a selection of sessions across a broad range of topics, including presentations on bronchiectasis, non-tuberculosis mycobacteria, tuberculosis, cystic fibrosis and COVID-19.
Collapse
Affiliation(s)
- Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Katie L. Horton
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Academic Unit of Clinical and Experimental Medicine, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Merete B. Long
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| | - Melissa J. McDonnell
- Galway University Hospitals and National University of Ireland (NUIG), Galway, Ireland
| | | | - Alberto L. Garcia-Basteiro
- ISGlobal, Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saude de Manhiça, Maputo, Mozambique
| | - Michael R. Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Raquel Duarte
- Pulmonology Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho EPE, Vila Nova de Gaia, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Holly R. Keir
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
3
|
Jia Z, Liu Y, Ji X, Zheng Y, Li Z, Jiang S, Li H, Kong Y. DAKS1, a Kunitz Scaffold Peptide from the Venom Gland of Deinagkistrodon acutus Prevents Carotid-Artery and Middle-Cerebral-Artery Thrombosis via Targeting Factor XIa. Pharmaceuticals (Basel) 2021; 14:ph14100966. [PMID: 34681191 PMCID: PMC8539665 DOI: 10.3390/ph14100966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Scaffold-based peptides (SBPs) are fragments of large proteins that are characterized by potent bioactivity, high thermostability, and low immunogenicity. Some SBPs have been approved by the FDA for human use. In the present study, we developed SBPs from the venom gland of Deinagkistrodon acutus (D. acutus) by combining transcriptome sequencing and Pfam annotation. To that end, 10 Kunitz peptides were discovered from the venom gland of D. acutus, and most of which peptides exhibited Factor XIa (FXIa) inhibitory activity. One of those, DAKS1, exhibiting strongest inhibitory activity against FXIa, was further evaluated for its anticoagulant and antithrombotic activity. DAKS1 prolonged twofold APTT at a concentration of 15 μM in vitro. DAKS1 potently inhibited thrombosis in a ferric chloride-induced carotid-artery injury model in mice at a dose of 1.3 mg/kg. Furthermore, DAKS1 prevented stroke in a transient middle cerebral-artery occlusion (tMCAO) model in mice at a dose of 2.6 mg/kg. Additionally, DAKS1 did not show significant bleeding risk at a dose of 6.5 mg/kg. Together, our results indicated that DAKS1 is a promising candidate for drug development for the treatment of thrombosis and stroke disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Kong
- Correspondence: ; Tel.: +86-025-832-712-82
| |
Collapse
|
4
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
5
|
Cohen I, Coban M, Shahar A, Sankaran B, Hockla A, Lacham S, Caulfield TR, Radisky ES, Papo N. Disulfide engineering of human Kunitz-type serine protease inhibitors enhances proteolytic stability and target affinity toward mesotrypsin. J Biol Chem 2019; 294:5105-5120. [PMID: 30700553 DOI: 10.1074/jbc.ra118.007292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/27/2019] [Indexed: 12/30/2022] Open
Abstract
Serine protease inhibitors of the Kunitz-bovine pancreatic trypsin inhibitor (BPTI) family are ubiquitous biological regulators of proteolysis. These small proteins are resistant to proteolysis, but can be slowly cleaved within the protease-binding loop by target proteases, thereby compromising their activity. For the human protease mesotrypsin, this cleavage is especially rapid. Here, we aimed to stabilize the Kunitz domain structure against proteolysis through disulfide engineering. Substitution within the Kunitz inhibitor domain of the amyloid precursor protein (APPI) that incorporated a new disulfide bond between residues 17 and 34 reduced proteolysis by mesotrypsin 74-fold. Similar disulfide engineering of tissue factor pathway inhibitor-1 Kunitz domain 1 (KD1TFPI1) and bikunin Kunitz domain 2 (KD2bikunin) likewise stabilized these inhibitors against mesotrypsin proteolysis 17- and 6.6-fold, respectively. Crystal structures of disulfide-engineered APPI and KD1TFPI1 variants in a complex with mesotrypsin at 1.5 and 2.0 Å resolution, respectively, confirmed the formation of well-ordered disulfide bonds positioned to stabilize the binding loop. Long all-atom molecular dynamics simulations of disulfide-engineered Kunitz domains and their complexes with mesotrypsin revealed conformational stabilization of the primed side of the inhibitor-binding loop by the engineered disulfide, along with global suppression of conformational dynamics in the Kunitz domain. Our findings suggest that the Cys-17-Cys-34 disulfide slows proteolysis by dampening conformational fluctuations in the binding loop and minimizing motion at the enzyme-inhibitor interface. The generalizable approach developed here for the stabilization against proteolysis of Kunitz domains, which can serve as important scaffolds for therapeutics, may thus find applications in drug development.
Collapse
Affiliation(s)
- Itay Cohen
- From the Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Matt Coban
- the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Anat Shahar
- the National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva 84105, Israel
| | - Banumathi Sankaran
- the Molecular Biophysics and Integrated Bioimaging Division, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| | - Alexandra Hockla
- the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Shiran Lacham
- From the Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Thomas R Caulfield
- the Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Evette S Radisky
- the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224,
| | - Niv Papo
- From the Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel,
| |
Collapse
|
6
|
McElvaney OJ, Gunaratnam C, Reeves EP, McElvaney NG. A specialized method of sputum collection and processing for therapeutic interventions in cystic fibrosis. J Cyst Fibros 2018; 18:203-211. [PMID: 29960875 DOI: 10.1016/j.jcf.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterized by aggressive neutrophil-dominated inflammation mediated in large part by neutrophil elastase (NE), an omnivorous protease released by activated or disintegrating neutrophils and a key therapeutic target. To date, several short-term studies have shown that anti-NE compounds can inhibit NE and have anti-inflammatory effects. However, progression to large-scale or multicenter clinical trials has been hampered by the fact that the current gold standard methodology of evaluating airway NE inhibition, bronchoalveolar lavage (BAL), is invasive, difficult to standardize across sites and excludes those with severe lung disease. Attempts to utilize sputum that is either spontaneously expectorated (SS) or induced (IS) have been hindered by poor reproducibility, often due to the various processing methods employed. In this study, we evaluate TEmperature-controlled Two-step Rapid Isolation of Sputum (TETRIS), a specialized method for the acquisition and processing of SS and IS. Using TETRIS, we show for the first time that NE activity and cytokine levels are comparable in BAL, SS and IS samples taken from the same people with CF (PWCF) on the same day once this protocol is used. We correlate biomarkers in TETRIS-processed IS and clinical outcome measures including FEV1, and show stability and reproducible inhibition of NE over time in IS processed by TETRIS. The data offer a tremendous opportunity to evaluate prognosis and therapeutic interventions in CF and to study the full spectrum of people with PWCF, many of whom have been excluded from previous studies due to being unfit for BAL or unable to expectorate sputum.
Collapse
Affiliation(s)
- O J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - C Gunaratnam
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - E P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - N G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
7
|
Camper N, Glasgow AMA, Osbourn M, Quinn DJ, Small DM, McLean DT, Lundy FT, Elborn JS, McNally P, Ingram RJ, Weldon S, Taggart CC. A secretory leukocyte protease inhibitor variant with improved activity against lung infection. Mucosal Immunol 2016; 9:669-76. [PMID: 26376365 DOI: 10.1038/mi.2015.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/28/2015] [Indexed: 02/04/2023]
Abstract
Secretory leukocyte protease inhibitor (SLPI) is an important respiratory tract host defense protein, which is proteolytically inactivated by excessive neutrophil elastase (NE) during chronic Pseudomonas infection in the cystic fibrosis (CF) lung. We generated two putative NE-resistant variants of SLPI by site-directed mutagenesis, SLPI-A16G and SLPI-S15G-A16G, with a view to improving SLPI's proteolytic stability. Both variants showed enhanced resistance to degradation in the presence of excess NE as well as CF patient sputum compared with SLPI-wild type (SLPI-WT). The ability of both variants to bind bacterial lipopolysaccharides and interact with nuclear factor-κB DNA binding sites was also preserved. Finally, we demonstrate increased anti-inflammatory activity of the SLPI-A16G protein compared with SLPI-WT in a murine model of pulmonary Pseudomonas infection. This study demonstrates the increased stability of these SLPI variants compared with SLPI-WT and their therapeutic potential as a putative anti-inflammatory treatment for CF lung disease.
Collapse
Affiliation(s)
- N Camper
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - A M A Glasgow
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - M Osbourn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - D J Quinn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - D M Small
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - D T McLean
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - F T Lundy
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - J S Elborn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - P McNally
- Our Lady's Children's Hospital, Crumlin, Ireland, UK
| | - R J Ingram
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - S Weldon
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - C C Taggart
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
8
|
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 2015; 20:1271-83. [PMID: 26360055 DOI: 10.1016/j.drudis.2015.09.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Abstract
The first candidates from the promising class of small non-antibody protein scaffolds are now moving into clinical development and practice. Challenges remain, and scaffolds will need to be further tailored toward applications where they provide real advantages over established therapeutics to succeed in a rapidly evolving drug development landscape.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Carsten Zimmermann
- University of San Diego, School of Business Administration, 5998 Alcala Park, San Diego, CA 92110, USA
| | - David Lowe
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Lutz Jermutus
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK; Trinity Hall, University of Cambridge, Trinity Lane CB2 1TJ, UK.
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia.
| |
Collapse
|
9
|
The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm 2015; 2015:293053. [PMID: 26185359 PMCID: PMC4491392 DOI: 10.1155/2015/293053] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Collapse
|
10
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
11
|
Guarino C, Legowska M, Epinette C, Kellenberger C, Dallet-Choisy S, Sieńczyk M, Gabant G, Cadene M, Zoidakis J, Vlahou A, Wysocka M, Marchand-Adam S, Jenne DE, Lesner A, Gauthier F, Korkmaz B. New selective peptidyl di(chlorophenyl) phosphonate esters for visualizing and blocking neutrophil proteinase 3 in human diseases. J Biol Chem 2014; 289:31777-31791. [PMID: 25288799 DOI: 10.1074/jbc.m114.591339] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The function of neutrophil protease 3 (PR3) is poorly understood despite of its role in autoimmune vasculitides and its possible involvement in cell apoptosis. This makes it different from its structural homologue neutrophil elastase (HNE). Endogenous inhibitors of human neutrophil serine proteases preferentially inhibit HNE and to a lesser extent, PR3. We constructed a single-residue mutant PR3 (I217R) to investigate the S4 subsite preferences of PR3 and HNE and used the best peptide substrate sequences to develop selective phosphonate inhibitors with the structure Ac-peptidyl(P)(O-C6H4-4-Cl)2. The combination of a prolyl residue at P4 and an aspartyl residue at P2 was totally selective for PR3. We then synthesized N-terminally biotinylated peptidyl phosphonates to identify the PR3 in complex biological samples. These inhibitors resisted proteolytic degradation and rapidly inactivated PR3 in biological fluids such as inflammatory lung secretions and the urine of patients with bladder cancer. One of these inhibitors revealed intracellular PR3 in permeabilized neutrophils and on the surface of activated cells. They hardly inhibited PR3 bound to the surface of stimulated neutrophils despite their low molecular mass, suggesting that the conformation and reactivity of membrane-bound PR3 is altered. This finding is relevant for autoantibody binding and the subsequent activation of neutrophils in granulomatosis with polyangiitis (formerly Wegener disease). These are the first inhibitors that can be used as probes to monitor, detect, and control PR3 activity in a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France,; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Monika Legowska
- Faculty of Chemistry, University of Gdansk, 80-952, Gdansk, Poland
| | - Christophe Epinette
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques, CNRS-Unité Mixte de Recherche (UMR),13288 Marseille, France
| | - Sandrine Dallet-Choisy
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Marcin Sieńczyk
- Wroclaw University of Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, 50-370 Wroclaw, Poland
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire, UPR4301 CNRS, 45071 Orléans, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301 CNRS, 45071 Orléans, France
| | - Jérôme Zoidakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece, and
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece, and
| | | | - Sylvain Marchand-Adam
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-952, Gdansk, Poland
| | - Francis Gauthier
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Brice Korkmaz
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France,.
| |
Collapse
|
12
|
Kovaleva M, Ferguson L, Steven J, Porter A, Barelle C. Shark variable new antigen receptor biologics - a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 2014; 14:1527-39. [PMID: 25090369 DOI: 10.1517/14712598.2014.937701] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics drugs have succeeded in achieving a commercial dominance in the global market for new therapies and large pharmaceutical companies' interest remains strong through a continued commitment to pipeline development. It is not surprising, therefore, that next-generation biologics, particularly antibody-like scaffolds that offer many of the advantages of the original biologic drugs but in simplified formats, have entered the clinic as competing substitute therapeutic products, to capture market share. AREAS COVERED Specifically, this paper will position shark-derived variable new antigen receptors (VNARs) within an overview of the existing biologics landscape including the growth, diversity and success to date of alternative scaffolds. The intention is not to provide a comprehensive review of biologics as a whole but to discuss the main competing single-domain technologies and the exciting therapeutic potential of VNAR domains as clinical candidates within this context. EXPERT OPINION The inherent ability to specifically bind target and intervene in disease-related biological processes, while reducing off-site toxicity, makes mAbs an effective, potent and now proven class of therapeutics. There are, however, limitations to these 'magic bullets'. Their size and complexity can restrict their utility in certain diseases types and disease locations. In contrast, a number of so-called alternative scaffolds, derived from both immunoglobulin- and non-immunoglobulin-based sources have been developed with real potential to overcome many of the shortcomings documented for mAb treatments. Unlike competing approaches such as Darpins and Affibodies, we now know that shark VNAR domains (like camel VHH nanobody domains), are an integral part of the adaptive immune system of these animals and have evolved naturally (but from very different starting molecules) to exhibit high affinity and selectivity for target. In addition, and again influenced by the environment in which they have evolved naturally, their small size, simple architecture, high solubility and stability, deliver additional flexibility compared to classical antibodies (and many non-natural alternative scaffolds), thereby providing an attractive basis for particular clinical indications where these attributes may offer advantages.
Collapse
Affiliation(s)
- Marina Kovaleva
- University of Aberdeen, Institute of Medical Sciences, College of Life Sciences and Medicine , Foresterhill, Aberdeen, AB25 2ZD , UK +012 2443 8545 ;
| | | | | | | | | |
Collapse
|
13
|
Griffin KL, Fischer BM, Kummarapurugu AB, Zheng S, Kennedy TP, Rao NV, Foster WM, Voynow JA. 2-O, 3-O-desulfated heparin inhibits neutrophil elastase-induced HMGB-1 secretion and airway inflammation. Am J Respir Cell Mol Biol 2014; 50:684-9. [PMID: 24325600 DOI: 10.1165/rcmb.2013-0338rc] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neutrophil elastase (NE) is a major inflammatory mediator in cystic fibrosis (CF) that is a robust predictor of lung disease progression. NE directly causes airway injury via protease activity, and propagates persistent neutrophilic inflammation by up-regulation of neutrophil chemokine expression. Despite its key role in the pathogenesis of CF lung disease, there are currently no effective antiprotease therapies available to patients with CF. Although heparin is an effective antiprotease and anti-inflammatory agent, its anticoagulant activity prohibits its use in CF, due to risk of pulmonary hemorrhage. In this report, we demonstrate the efficacy of a 2-O, 3-O-desulfated heparin (ODSH), a modified heparin with minimal anticoagulant activity, to inhibit NE activity and to block NE-induced airway inflammation. Using an established murine model of intratracheal NE-induced airway inflammation, we tested the efficacy of intratracheal ODSH to block NE-generated neutrophil chemoattractants and NE-triggered airway neutrophilic inflammation. ODSH inhibited NE-induced keratinocyte-derived chemoattractant and high-mobility group box 1 release in bronchoalveolar lavage. ODSH also blocked NE-stimulated high-mobility group box 1 release from murine macrophages in vitro, and inhibited NE activity in functional assays consistent with prior reports of antiprotease activity. In summary, this report suggests that ODSH is a promising antiprotease and anti-inflammatory agent that may be useful as an airway therapy in CF.
Collapse
|
14
|
Correa A, Pacheco S, Mechaly AE, Obal G, Béhar G, Mouratou B, Oppezzo P, Alzari PM, Pecorari F. Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins). PLoS One 2014; 9:e97438. [PMID: 24823716 PMCID: PMC4019568 DOI: 10.1371/journal.pone.0097438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (Ki = 45 nM) and CelD (Ki = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general.
Collapse
Affiliation(s)
- Agustín Correa
- Institut Pasteur de Montevideo, Recombinant Protein Unit, Montevideo, Uruguay
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Sabino Pacheco
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Ariel E. Mechaly
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Gonzalo Obal
- Institut Pasteur de Montevideo, Protein Biophysics Unit, Montevideo, Uruguay
| | - Ghislaine Béhar
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Barbara Mouratou
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Pablo Oppezzo
- Institut Pasteur de Montevideo, Recombinant Protein Unit, Montevideo, Uruguay
| | - Pedro M. Alzari
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Frédéric Pecorari
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| |
Collapse
|
15
|
Kosikowska P, Lesner A. Inhibitors of cathepsin G: a patent review (2005 to present). Expert Opin Ther Pat 2013; 23:1611-24. [PMID: 24079661 DOI: 10.1517/13543776.2013.835397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cathepsin G (CatG) is a neutral proteinase originating from human neutrophils. It displays a unique dual specificity (trypsin- and chymotrypsin-like); thus, its enzymatic activity is difficult to control. CatG is involved in the pathophysiology of several serious human diseases, such as chronic obstructive pulmonary disease (COPD), Crohn's disease, rheumatoid arthritis, cystic fibrosis and other conditions clinically manifested by excessive inflammatory reactions. For mentioned reasons, CatG was considered as good molecular target for the development of novel drugs. However, none of them have yet entered the market as novel therapeutic agents. AREAS COVERED This article presents an in-depth and detailed analysis of the therapeutic potential of CatG inhibitors based on a review of patent applications and academic publishing disclosed in patents and patent applications (1991 - 2012), with several exceptions for inhibitors retrieved from academic articles. EXPERT OPINION Among the discussed inhibitors of CatG, examples corresponding to derivatives of β-ketophosphonic acids, aminoalkylphosphonic esters and boswellic acids (BAs) could be regarded as the most promising. The most promising one seems to be analogues of compounds of Nature's origin (peptidic and BA derivates). Nevertheless, nothing is currently known about the clinical disposition of any of the CatG inhibitors discovered so far. This latter point suggests that there is still a lot of work to do in the design of stable, pharmacologically active compounds able to specifically regulate the in vivo activity of cathepsin G.
Collapse
Affiliation(s)
- Paulina Kosikowska
- University of Gdansk, Department of Bioorganic Chemistry , Wita Stwosza 63, 80-952 Gdansk , Poland +48585235095 ; +48585235472 ;
| | | |
Collapse
|
16
|
Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis). Semin Immunopathol 2013; 35:411-21. [DOI: 10.1007/s00281-013-0362-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/10/2013] [Indexed: 01/15/2023]
|
17
|
The pig as a model for investigating the role of neutrophil serine proteases in human inflammatory lung diseases. Biochem J 2012; 447:363-70. [PMID: 22860995 PMCID: PMC3492928 DOI: 10.1042/bj20120818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The serine proteases released by activated polymorphonuclear neutrophils [NSPs (neutrophil serine proteases)] contribute to a variety of inflammatory lung diseases, including CF (cystic fibrosis). They are therefore key targets for the development of efficient inhibitors. Although rodent models have contributed to our understanding of several diseases, we have previously shown that they are not appropriate for testing anti-NSP therapeutic strategies [Kalupov, Brillard-Bourdet, Dade, Serrano, Wartelle, Guyot, Juliano, Moreau, Belaaouaj and Gauthier (2009) J. Biol. Chem. 284, 34084–34091). Thus NSPs must be characterized in an animal model that is much more likely to predict how therapies will act in humans in order to develop protease inhibitors as drugs. The recently developed CFTR−/− (CFTR is CF transmembrane conductance regulator) pig model is a promising alternative to the mouse model of CF [Rogers, Stoltz, Meyerholz, Ostedgaard, Rokhlina, Taft, Rogan, Pezzulo, Karp, Itani et al. (2008) Science 321, 1837–1841]. We have isolated blood neutrophils from healthy pigs and determined their responses to the bacterial pathogens Pseudomonas aeruginosa and Staphylococcus aureus, and the biochemical properties of their NSPs. We used confocal microscopy and antibodies directed against their human homologues to show that the three NSPs (elastase, protease 3 and cathepsin G) are enzymatically active and present on the surface of triggered neutrophils and NETs (neutrophil extracellular traps). All of the porcine NSPs are effectively inhibited by human NSP inhibitors. We conclude that there is a close functional resemblance between porcine and human NSPs. The pig is therefore a suitable animal model for testing new NSP inhibitors as anti-inflammatory agents in neutrophil-associated diseases such as CF.
Collapse
|
18
|
Dubois AV, Gauthier A, Bréa D, Varaigne F, Diot P, Gauthier F, Attucci S. Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol Biol 2012; 47:80-6. [PMID: 22343221 DOI: 10.1165/rcmb.2011-0380oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled proteolysis by neutrophil serine proteases (NSPs) in lung secretions is a hallmark of cystic fibrosis (CF). We have shown that the active neutrophil elastase, protease 3, and cathepsin G in CF sputum resist inhibition in part by exogenous protease inhibitors. This resistance may be due to their binding to neutrophil extracellular traps (NETs) secreted by the activated neutrophils in CF sputum and to genomic DNA released from senescent and dead neutrophils. Treating CF sputum with DNase dramatically increases its elastase activity, which can then be stoichiometrically inhibited by exogenous elastase inhibitors. However, DNase treatment does not increase the activities of protease 3 and cathepsin G, indicating their different distribution and/or binding in CF sputum. Purified blood neutrophils secrete NETs when stimulated by the opportunistic CF bacteria Pseudomonas aeruginosa and Staphylococcus aureus. The activities of the three proteases were unchanged in these conditions, but subsequent DNase treatment produced a dramatic increase in all three proteolytic activities. Neutrophils activated with a calcium ionophore did not secrete NETs but released huge amounts of active proteases whose activities were not modified by DNase. We conclude that NETs are reservoirs of active proteases that protect them from inhibition and maintain them in a rapidly mobilizable status. Combining the effects of protease inhibitors with that of DNA-degrading agents could counter the deleterious proteolytic effects of NSPs in CF lung secretions.
Collapse
Affiliation(s)
- Alice V Dubois
- INSERM U "Pathologies Respiratoires: protéolyse & aérosolthérapie," Tours, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Petrovskaya LE, Shingarova LN, Dolgikh DA, Kirpichnikov MP. Alternative scaffold proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:581-91. [DOI: 10.1134/s1068162011050141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2011; 62:726-59. [PMID: 21079042 DOI: 10.1124/pr.110.002733] [Citation(s) in RCA: 604] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-618 Protéases et Vectorisation Pulmonaires, Université François Rabelais, Faculté de médecine, 10 Boulevard Tonnellé, Tours, France.
| | | | | | | |
Collapse
|
21
|
Zoller F, Haberkorn U, Mier W. Miniproteins as phage display-scaffolds for clinical applications. Molecules 2011; 16:2467-85. [PMID: 21407148 PMCID: PMC6259850 DOI: 10.3390/molecules16032467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/16/2022] Open
Abstract
Miniproteins are currently developed as alternative, non-immunoglobin proteins for the generation of novel binding motifs. Miniproteins are rigid scaffolds that are stabilised by alpha-helices, beta-sheets and disulfide-constrained secondary structural elements. They are tolerant to multiple amino acid substitutions, which allow for the integration of a randomised affinity function into the stably folded framework. These properties classify miniprotein scaffolds as promising tools for lead structure generation using phage display technologies. Owing to their high enzymatic resistance and structural stability, miniproteins are ideal templates to display binding epitopes for medical applications in vivo. This review summarises the characteristics and the engineering of miniproteins as a novel class of scaffolds to generate of alternative binding agents using phage display screening. Moreover, recent developments for therapeutic and especially diagnostic applications of miniproteins are reviewed.
Collapse
Affiliation(s)
- Frederic Zoller
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany; E-Mails: (F.Z.); (U.H.)
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Uwe Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany; E-Mails: (F.Z.); (U.H.)
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6221-56-7720; Fax: +49-6221-56-5473
| |
Collapse
|
22
|
Venkatasamy R, Spina D. Protease inhibitors in respiratory disease: focus on asthma and chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2010; 3:365-81. [PMID: 20477680 DOI: 10.1586/1744666x.3.3.365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are a major health burden on society and current treatment modalities for these diseases have not significantly changed over the past 40 years. The only major pharmacological advancement for the treatment of these diseases has been to increase the duration of action of bronchodilators (asthma: salmeterol; COPD: tiotropium bromide) and glucocorticosteroids (asthma: fluticasone propionate) and, increasingly, to formulate these agents in the same delivery device. Despite our increasing understanding of the cell and molecular biology of these diseases, the development of novel treatments remains beyond the reach of the scientific community. Proteases are a family of proteins with diverse biological activity, which are found in abundance within the airways of asthma and COPD, and have been implicated in the pathogenesis of these diseases. The targeting of proteases, including mast cell tryptase, neutrophil elastase and matrix metalloprotease with low-molecular-weight inhibitors, has highlighted the potential role of these enzymes in mediating certain aspects of the disease process in preclinical studies. Several challenges remain regarding the development of protease inhibitors, including the synthesis of highly potent and specific inhibitors, and target validation in man.
Collapse
Affiliation(s)
- Radhakrishnan Venkatasamy
- King's College London, Sackler Institute of Pulmonary Pharmacology, School of Biomedical and Health Science, Pharmaceutical Science Research Division, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
23
|
Quinn DJ, Weldon S, Taggart CC. Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir Med J 2010; 4:20-31. [PMID: 20448835 PMCID: PMC2864511 DOI: 10.2174/1874306401004020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.
Collapse
Affiliation(s)
| | | | - Clifford C Taggart
- Centre for Infection and Immunity, Whitla Medical Building, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
24
|
Mackerness KJ, Jose PJ, Bush A. Differences in Airway Inflammation in Cystic Fibrosis and Primary Ciliary Dyskinesia. ACTA ACUST UNITED AC 2009. [DOI: 10.1089/pai.2009.0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Kalupov T, Brillard-Bourdet M, Dadé S, Serrano H, Wartelle J, Guyot N, Juliano L, Moreau T, Belaaouaj A, Gauthier F. Structural characterization of mouse neutrophil serine proteases and identification of their substrate specificities: relevance to mouse models of human inflammatory diseases. J Biol Chem 2009; 284:34084-91. [PMID: 19833730 DOI: 10.1074/jbc.m109.042903] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is widely accepted that neutrophil serine proteases (NSPs) play a critical role in neutrophil-associated lung inflammatory and tissue-destructive diseases. To investigate NSP pathogenic role(s), various mouse experimental models have been developed that mimic acutely or chronically injured human lungs. We and others are using mouse exposure to cigarette smoke as a model for chronic obstructive pulmonary disease with or without exacerbation. However, the relative contribution of NSPs to lung disease processes as well as their underlying mechanisms remains still poorly understood. And the lack of purified mouse NSPs and their specific substrates have hampered advances in these studies. In this work, we compared mouse and human NSPs and generated three-dimensional models of murine NSPs based on three-dimensional structures of their human homologs. Analyses of these models provided compelling evidence that peptide substrate specificities of human and mouse NSPs are different despite their conserved cleft and close structural resemblance. These studies allowed us to synthesize for the first time novel sensitive fluorescence resonance energy transfer substrates for individual mouse NSPs. Our findings and the newly identified substrates should better our understanding about the role of NSPs in the pathogenesis of cigarette-associated chronic obstructive pulmonary disease as well as other neutrophils-associated inflammatory diseases.
Collapse
Affiliation(s)
- Timofey Kalupov
- INSERM U618, Protéases et Vectorisation Pulmonaires, IFR 135, Université François Rabelais de Tours, 37032 Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV) and cysteine proteases (cathepsin B) are discussed herein.
Collapse
Affiliation(s)
- Mare Cudic
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 U.S.A
| | - Gregg B. Fields
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229 U.S.A
| |
Collapse
|
27
|
Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 2009; 13:245-55. [DOI: 10.1016/j.cbpa.2009.04.627] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 12/26/2022]
|
28
|
Korkmaz B, Jaillet J, Jourdan ML, Gauthier A, Gauthier F, Attucci S. Catalytic activity and inhibition of wegener antigen proteinase 3 on the cell surface of human polymorphonuclear neutrophils. J Biol Chem 2009; 284:19896-902. [PMID: 19447886 DOI: 10.1074/jbc.m901471200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinase 3 (Pr3), the main target of anti-neutrophil cytoplasmic antibodies, is a neutrophil serine protease that may be constitutively expressed at the surface of quiescent circulating neutrophils. This raises the question of the simultaneous presence in the circulation of constitutive membrane-bound Pr3 (mPr3) and its plasma inhibitor alpha1-protease inhibitor (alpha1-Pi). We have looked at the fate of constitutive mPr3 at the surface of circulating blood neutrophils and of induced mPr3 on triggered neutrophils. We found significant Pr3 activity at the surface of activated neutrophils but not at the surface of quiescent neutrophils whatever the constitutive expression. This suggests that constitutive mPr3 is enzymatically inactive or its active site is not accessible to the substrate. Supporting this conclusion, we have not been able to demonstrate any interaction between constitutive mPr3 and alpha1-Pi, whereas induced mPr3 is cleared from the cell surface when activated cells are incubated with this inhibitor. But, unlike membrane-bound elastase that is also cleared from the surface of activated cells, mPr3 remained bound to the membrane when inhibited by elafin or by a low molecular weight chloromethyl ketone inhibitor, which shows that it binds more tightly to the neutrophil membrane. mPr3 may thus be present at the surface of circulating neutrophils in an environment replete with alpha1-Pi. The permanent presence of inactive Pr3 at the surface of quiescent neutrophils may explain why Pr3 is a major target of anti-neutrophil cytoplasmic antibodies, whose binding activates neutrophils and triggers inflammation, as in Wegener granulomatosis.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U618, Protéases et Vectorisation Pulmonaires, Faculté de Médecine, 37032 Tours Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Grönwall C, Ståhl S. Engineered affinity proteins—Generation and applications. J Biotechnol 2009; 140:254-69. [DOI: 10.1016/j.jbiotec.2009.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/05/2008] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
|
30
|
Djekic UV, Gaggar A, Weathington NM. Attacking the multi-tiered proteolytic pathology of COPD: new insights from basic and translational studies. Pharmacol Ther 2009; 121:132-46. [PMID: 19026684 PMCID: PMC4465592 DOI: 10.1016/j.pharmthera.2008.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 02/06/2023]
Abstract
Protease activity in inflammation is complex. Proteases released by cells in response to infection, cytokines, or environmental triggers like cigarette smoking cause breakdown of the extracellular matrix (ECM). In chronic inflammatory diseases like chronic obstructive pulmonary disease (COPD), current findings indicate that pathology and morbidity are driven by dysregulation of protease activity, either through hyperactivity of proteases or deficiency or dysfunction their antiprotease regulators. Animal studies demonstrate the accuracy of this hypothesis through genetic and pharmacologic tools. New work shows that ECM destruction generates peptide fragments active on leukocytes via neutrophil or macrophage chemotaxis towards collagen and elastin derived peptides respectively. Such fragments now have been isolated and characterized in vivo in each case. Collectively, this describes a biochemical circuit in which protease activity leads to activation of local immunocytes, which in turn release cytokines and more proteases, leading to further leukocyte infiltration and cyclical disease progression that is chronic. This circuit concept is well known, and is intrinsic to the protease-antiprotease hypothesis; recently analytic techniques have become sensitive enough to establish fundamental mechanisms of this hypothesis, and basic and clinical data now implicate protease activity and peptide signaling as pathologically significant pharmacologic targets. This review discusses targeting protease activity for chronic inflammatory disease with special attention to COPD, covering important basic and clinical findings in the field; novel therapeutic strategies in animal or human studies; and a perspective on the successes and failures of agents with a focus on clinical potential in human disease.
Collapse
Affiliation(s)
- Uros V Djekic
- University of Alabama at Birmingham, Department of Physiology and Biophysics
| | - Amit Gaggar
- University of Alabama at Birmingham, Department of Physiology and Biophysics
- University of Alabama at Birmingham, Department of Medicine, Division of Pulmonary and Critical Care
| | - Nathaniel M Weathington
- University of Alabama at Birmingham, Department of Physiology and Biophysics
- University of Alabama at Birmingham, Department of Medicine, Internal Medicine Residency Program
| |
Collapse
|
31
|
Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates. Nat Protoc 2008; 3:991-1000. [PMID: 18536646 DOI: 10.1038/nprot.2008.63] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neutrophil serine proteases (NSPs) elastase, proteinase 3 and cathepsin G are multifunctional proteases involved in pathogen destruction and the modulation of inflammatory processes. A fraction of secreted NSPs remains bound to the external plasma membrane, where they remain enzymatically active. This protocol describes the spectrofluorometric measurement of NSP activities on neutrophil surfaces using highly sensitive Abz-peptidyl-EDDnp fluorescence resonance energy transfer (FRET) substrates that fully discriminate between the three human NSPs. We describe FRET substrate synthesis, neutrophil purification and handling, and kinetic experiments on quiescent and activated cells. These are used to measure subnanomolar concentrations of membrane-bound or free NSPs in low-binding microplates and to quantify the activities of individual proteases in biological fluids like expectorations and bronchoalveolar lavages. The whole procedure, including neutrophil purification and kinetic measurements, can be done in 4-5 h and should not be longer because of the lifetime of neutrophils. Using this protocol will help identify the contributions of individual NSPs to the development of inflammatory diseases and may reveal these proteases to be targets for therapeutic inhibitors.
Collapse
|
32
|
Fayon M, Chiron R, Abely M. Mesure de l’inflammation pulmonaire dans la mucoviscidose. Rev Mal Respir 2008; 25:705-24. [DOI: 10.1016/s0761-8425(08)73800-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Kelly E, Greene CM, McElvaney NG. Targeting neutrophil elastase in cystic fibrosis. Expert Opin Ther Targets 2008; 12:145-57. [PMID: 18208364 DOI: 10.1517/14728222.12.2.145] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a lethal hereditary disease characterised by neutrophil-dominated lung inflammation. These abundant neutrophils produce neutrophil elastase (NE), a destructive serine protease that has direct actions on extracellular matrix proteins and has a role in the host response to inflammation and infection. OBJECTIVE This review examines the prospect of developing novel therapies for CF by targeting NE. The authors explore the functions of NE and of naturally-occurring and synthetic NE inhibitors. METHODS A literature search was conducted exploring the functions of NE and inhibitors of NE; naturally occurring and synthetic. CONCLUSIONS Targeting NE in CF offers therapeutic potential, but optimal inhibitors that can be delivered safely and effectively to the lung are still under development.
Collapse
Affiliation(s)
- Emer Kelly
- Beaumont Hospital, Department of Respiratory Research, RCSI Smurfit Building, Beaumont, Dublin 9, Ireland.
| | | | | |
Collapse
|
34
|
Hughey RP, Carattino MD, Kleyman TR. Role of proteolysis in the activation of epithelial sodium channels. Curr Opin Nephrol Hypertens 2007; 16:444-50. [PMID: 17693760 DOI: 10.1097/mnh.0b013e32821f6072] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Epithelial sodium channels mediate Na+ transport across high resistance, Na+-transporting epithelia. This review describes recent findings that indicate that epithelial sodium channels are activated by the proteolytic release of inhibitory peptides from the alpha and gamma subunits. RECENT FINDINGS Non-cleaved channels have a low intrinsic open probability that may reflect enhanced channel inhibition by external Na+--a process referred to as Na+ self-inhibition. Cleavage at a minimum of two sites within the alpha or gamma subunits is required to activate the channel, presumably by releasing inhibitory fragments. The extent of epithelial sodium channel proteolysis is dependent on channel residency time at the plasma membrane, as well as on the balance between levels of expression of proteases that activate epithelial sodium channels and inhibitors of these proteases. Regulated epithelial sodium channel proteolysis has been observed in rat kidney and in human airway epithelia. SUMMARY Proteolysis of epithelial sodium channel subunits plays a key role in modulating epithelial sodium channel activity through changes in channel open probability.
Collapse
Affiliation(s)
- Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Therapy aimed at combating excessive lung inflammation should benefit patients with cystic fibrosis. This article reviews anti-inflammatory strategies, focusing on new evidence published since 2006. RECENT FINDINGS Use of oral corticosteroids was associated with benefit in an epidemiological study but they are still not recommended; high dose inhaled corticosteroids may cause harm (effect on growth), but they can safely be withdrawn in many patients. Some small beneficial effect of ibuprofen was seen in a multicentre study, but it is unlikely that this will change practice. Altering the imbalance seen in fatty acid metabolism with omega3 polyunsaturated fatty acid supplementation may be helpful but therapeutic benefit is not yet proven. Combating cysteinyl leukotrienes has potential but benefit remains to be proved. The beneficial effect of macrolides has been confirmed in patients with milder disease, but caution is needed because of emerging resistance patterns. Renewed research interest in antiproteases has not demonstrated any significant benefit. SUMMARY The ideal therapeutic drug, with the optimal balance of benefit and harm, is not yet available.
Collapse
Affiliation(s)
- Ian M Balfour-Lynn
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK.
| |
Collapse
|
36
|
Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 2007; 90:227-42. [PMID: 18021746 DOI: 10.1016/j.biochi.2007.10.009] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/19/2007] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils form a primary line of defense against bacterial infections using complementary oxidative and non-oxidative pathways to destroy phagocytized pathogens. The three serine proteases elastase, proteinase 3 and cathepsin G, are major components of the neutrophil primary granules that participate in the non-oxidative pathway of intracellular pathogen destruction. Neutrophil activation and degranulation results in the release of these proteases into the extracellular medium as proteolytically active enzymes, part of them remaining exposed at the cell surface. Extracellular neutrophil serine proteases also help kill bacteria and are involved in the degradation of extracellular matrix components during acute and chronic inflammation. But they are also important as specific regulators of the immune response, controlling cellular signaling through the processing of chemokines, modulating the cytokine network, and activating specific cell surface receptors. Neutrophil serine proteases are also involved in the pathogenicity of a variety of human diseases. This review focuses on the structural and functional properties of these proteases that may explain their specific biological roles, and facilitate their use as molecular targets for new therapeutic strategies.
Collapse
|
37
|
Skerra A. Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 2007; 18:295-304. [PMID: 17643280 DOI: 10.1016/j.copbio.2007.04.010] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 11/15/2022]
Abstract
Originally proposed one decade ago, the idea of engineering proteins outside the immunoglobulin family for novel binding functions has evolved as a powerful technology. Several classes of protein scaffolds proved to yield reagents with specificities and affinities in a range that was previously considered unique to antibodies. Such engineered protein scaffolds are usually obtained by designing a random library with mutagenesis focused at a loop region or at an otherwise permissible surface area and by selection of variants against a given target via phage display or related techniques. Whereas a plethora of protein scaffolds has meanwhile been proposed, only few of them were actually demonstrated to yield specificities towards different kinds of targets and to offer practical benefits such as robustness, smaller size, and ease of expression that justify their use as a true alternative to conventional antibodies or their recombinant fragments. Currently, the most promising scaffolds with broader applicability are protein A, the lipocalins, a fibronectin domain, an ankyrin consensus repeat domain, and thioredoxin. Corresponding binding proteins are not only of interest as research reagents or for separation in biotechnology but also as potential biopharmaceuticals, especially in the areas of cancer, autoimmune and infectious diseases as well as for in vivo diagnostics. The medical prospects have boosted high commercial expectations, and many of the promising scaffolds are under development by biotech start-up companies. Although some issues still have to be addressed, for example immunogenicity, effector functions, and plasma half-life in the context of therapeutic use or low-cost high-throughput selection for applications in proteomics research, it has become clear that scaffold-derived binding proteins will play an increasing role in biotechnology and medicine.
Collapse
Affiliation(s)
- Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freising-Weihenstephan, Germany.
| |
Collapse
|