1
|
Alves ACDB, Santos NDS, Santos APT, da Panatta G, Speck AE, Cunha RA, Aguiar AS. Adenosine A 2A and dopamine D 2 receptor interaction controls fatigue resistance. Front Pharmacol 2024; 15:1390187. [PMID: 38860172 PMCID: PMC11163034 DOI: 10.3389/fphar.2024.1390187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction: Caffeine and the selective A2A receptor antagonist SCH58261 both have ergogenic properties, effectively reducing fatigue and enhancing exercise capacity. This study investigates in male Swiss mice the interaction between adenosine A2A receptors and dopamine D2 receptors controlling central fatigue, with a focus on the striatum where these receptors are most abundant. Methods: We employed DPCPX and SCH58261 to antagonize A1 and A2A receptors, caffeine as a non-competitive antagonist for both receptors, and haloperidol as a D2 receptor antagonist; all compounds were tested upon systemic application and caffeine and SCH58261 were also directly applied in the striatum. Behavioral assessments using the open field, grip strength, and treadmill tests allowed estimating the effect of treatments on fatigue. Results and discussion: The results suggested a complex interplay between the dopamine and adenosine systems. While systemic DPCPX had little effect on motor performance or fatigue, the application of either caffeine or SCH58261 was ergogenic, and these effects were attenuated by haloperidol. The intra-striatal administration of caffeine or SCH58261 was also ergogenic, but these effects were unaffected by haloperidol. These findings confirm a role of striatal A2A receptors in the control of central fatigue but suggest that the D2 receptor-mediated control of the ergogenic effects of caffeine and of A2A receptor antagonists might occur outside the striatum. This prompts the need of additional efforts to unveil the role of different brain regions in the control of fatigue.
Collapse
Affiliation(s)
- Ana Cristina de Bem Alves
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, Brazil
| | - Naiara de Souza Santos
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, Brazil
| | - Ana Paula Tavares Santos
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, Brazil
| | - Gabriela da Panatta
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, Brazil
| | - Ana Elisa Speck
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, Brazil
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Aderbal S. Aguiar
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, Brazil
| |
Collapse
|
2
|
Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, El Zarif T, Kale N, Rakaee M, Mouhieddine TH, Alaiwi SA, Gusev A, Rogers T, Gao J, Georgiou G, Kwiatkowski DJ, Stone E. Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell 2023; 41:1774-1787.e9. [PMID: 37774699 PMCID: PMC10591910 DOI: 10.1016/j.ccell.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.
Collapse
Affiliation(s)
- Donjeta Gjuka
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Elio Adib
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kendra Garrison
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjiao Li
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Boutz
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Amin Nassar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Talal El Zarif
- Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neil Kale
- Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mehrdad Rakaee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, USA
| | - Sarah Abou Alaiwi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Lank Genitourinary Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Gusev
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Rogers
- Children's Medical Center Research Institute, University of Texas Southwestern, Dallas, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, TX, USA; Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA
| | | | - Everett Stone
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA; Department of Oncology, University of Texas Dell Medical School, LiveSTRONG Cancer Institutes, Austin, TX, USA.
| |
Collapse
|
3
|
Załuski M, Karcz T, Drabczyńska A, Vielmuth C, Olejarz-Maciej A, Głuch-Lutwin M, Mordyl B, Siwek A, Satała G, Müller CE, Kieć-Kononowicz K. Xanthine-Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:1079. [PMID: 37509114 PMCID: PMC10377586 DOI: 10.3390/biom13071079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Anna Drabczyńska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| |
Collapse
|
4
|
Discovery of Novel Dual Adenosine A 2A and A 1 Receptor Antagonists with 1 H-Pyrazolo[3,4 -d]pyrimidin-6-amine Core Scaffold as Anti-Parkinson's Disease Agents. Pharmaceuticals (Basel) 2022; 15:ph15080922. [PMID: 35893746 PMCID: PMC9394284 DOI: 10.3390/ph15080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
New compounds with 1H-pyrazolo [3,4-d]pyrimidin-6-amine core scaffolds were synthesized and characterized in vitro to determine their affinity for human A2A and A1 receptors. Among the tested compounds, a few compounds displayed nanomolar binding affinities for both receptors. One particular compound, 11o, showed high binding activities (hA2A Ki = 13.3 nM; hA1 Ki = 55 nM) and full antagonism (hA2A IC50 = 136 nM; hA1 IC50 = 98.8 nM) toward both receptors. Further tests showed that 11o has low hepatic clearance and good pharmacokinetic properties in mice, along with high bioavailability and a high brain plasma ratio. In addition, 11o was associated with very low cardiovascular risk and mutagenic potential, and was well-tolerated in rats and dogs. When tested in an MPTP-induced mouse model of Parkinson’s disease, 11o tended to improve behavior. Moreover, 11o dose-dependently reversed haloperidol-induced catalepsy in female rats, with graded ED50 of between 3 and 10 mg/kg. Taken together, these results suggest that this potent dual A2A/A1 receptor antagonist, 11o, is a good candidate for the treatment of Parkinson’s disease with an excellent metabolic and safety profile.
Collapse
|
5
|
Gündel D, Toussaint M, Lai TH, Deuther-Conrad W, Cumming P, Schröder S, Teodoro R, Moldovan RP, Pan-Montojo F, Sattler B, Kopka K, Sabri O, Brust P. Quantitation of the A2A Adenosine Receptor Density in the Striatum of Mice and Pigs with [18F]FLUDA by Positron Emission Tomography. Pharmaceuticals (Basel) 2022; 15:ph15050516. [PMID: 35631343 PMCID: PMC9146919 DOI: 10.3390/ph15050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A2AAR–specific antagonist radiotracer [18F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone–treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time–activity curves to calculate the mean residence time (MRT) by non–compartmental analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of [18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A2AAR availability in the rotenone–treated mice compared to the control–aged group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g−1) and BPND values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non–invasive quantitation of altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET.
Collapse
Affiliation(s)
- Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Correspondence: ; Tel.: +49-341-234179-4615
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Thu Hang Lai
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany;
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4000, Australia
| | - Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany;
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Department of Research and Development, Life Molecular Imaging GmbH, 13353 Berlin, Germany
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Francisco Pan-Montojo
- Department of Psychiatry, University Hospital Munich, Ludwig–Maximilians–Universität (LMU) Munich, 80336 Munich, Germany;
- Department of Neurology, University Hospital Munich, Ludwig–Maximilians–Universität (LMU) Munich, 81377 Munich, Germany
| | - Bernhard Sattler
- Department for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; (B.S.); (O.S.)
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Osama Sabri
- Department for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; (B.S.); (O.S.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig–Holstein, 23562 Lübeck, Germany
| |
Collapse
|
6
|
Tang ML, Wen ZH, Wang JH, Wang ML, Zhang H, Liu XH, Jin L, Chang J. Discovery of Pyridone-Substituted Triazolopyrimidine Dual A 2A/A 1 AR Antagonists for the Treatment of Ischemic Stroke. ACS Med Chem Lett 2022; 13:436-442. [PMID: 35295085 PMCID: PMC8919384 DOI: 10.1021/acsmedchemlett.1c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
![]()
Ischemic stroke is
a complex systemic disease characterized by
high morbidity, disability, and mortality. The activation of the presynaptic
adenosine A2A and A1 receptors modifies a variety
of brain insults from excitotoxicity to stroke. Therefore, the discovery
of dual A2A/A1 adenosine receptor (AR)-targeting
therapeutic compounds could be a strategy for the treatment of ischemic
stroke. Inspired by two clinical phase III drugs, ASP-5854 (dual A2A/A1 AR antagonist) and preladenant (selective
A2A AR antagonist), and using the hybrid medicinal strategy,
we characterized novel pyridone-substituted triazolopyrimidine scaffolds
as dual A2A/A1 AR antagonists. Among them, compound 1a exerted excellent A2A/A1 AR binding
affinity (Ki = 5.58/24.2
nM), an antagonistic effect (IC50 = 5.72/25.9 nM), and
good metabolic stability in human liver microsomes, rat liver microsomes,
and dog liver microsomes. Importantly, compound 1a demonstrated
a dose–effect relationship in the oxygen-glucose deprivation/reperfusion
(OGD/R)-treated HT22 cell model. These findings support the development
of dual A2A/A1 AR antagonists as a potential
treatment for ischemic stroke.
Collapse
Affiliation(s)
- Mei-Lin Tang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zi-Hao Wen
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jing-Huan Wang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Mei-Ling Wang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Heyanhao Zhang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xin-Hua Liu
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Lin Jin
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jun Chang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
7
|
Lambertucci C, Marucci G, Catarzi D, Colotta V, Francucci B, Spinaci A, Varano F, Volpini R. A2A Adenosine Receptor Antagonists and their Potential in Neurological Disorders. Curr Med Chem 2022; 29:4780-4795. [PMID: 35184706 DOI: 10.2174/0929867329666220218094501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Endogenous nucleoside adenosine modulates a number of physiological effects through interaction with P1 purinergic receptors. All of them are G protein coupled receptors and, to date, four subtypes have been characterized and named A1, A2A, A2B, and A3. In recent years adenosine receptors, particularly the A2A subtype, have become attractive targets for the treatment of several neurodegenerative disorders, known to involve neuroinflammation, like Parkinson's and Alzheimer's diseases, multiple sclerosis and neuropsychiatric conditions. In fact, it has been demonstrated that inhibition of A2A adenosine receptors exerts neuroprotective effects counteracting neuroinflammatory processes and astroglial and microglial activation. The A2A adenosine receptor antagonist istradefylline, developed by Kyowa Hakko Kirin Inc., was approved in Japan as adjunctive therapy for the treatment of Parkinson's disease and very recently it was approved also by the US Food and Drug Administration. These findings pave the way for new therapeutic opportunities, so, in this review, a summary of the most relevant and promising A2A adenosine receptor antagonists will be presented along with their preclinical and clinical studies in neuroinflammation related diseases.
Collapse
Affiliation(s)
- Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Rosaria Volpini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
Liu K, Jin X, Zhang X, Lian H, Ye J. The mechanisms of nucleotide actions in insulin resistance. J Genet Genomics 2022; 49:299-307. [DOI: 10.1016/j.jgg.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
9
|
Research progress in pharmacological activities and structure-activity relationships of tetralone scaffolds as pharmacophore and fluorescent skeleton. Eur J Med Chem 2021; 227:113964. [PMID: 34743062 DOI: 10.1016/j.ejmech.2021.113964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/03/2022]
Abstract
The tetralone and tetralone derivatives, as crucial structural scaffolds of potential novel drugs targeted at multiple biological end-points, are normally found in several natural compounds and also, it can be used as parental scaffold and/or intermediate for the synthesis of a series of pharmacologically active compounds with a broad-spectrum of bioactivities including antibacterial, antitumor, CNS effect and so on. Meanwhile, SAR information of its analogues has drawn attentions among medicinal chemists, which could contribute to the further research related to tetralone derivatives aimed at multiple targets. This review encompasses pharmacological activities, SAR analysis and docking study of tetralone and its derivatives, expecting to provide a general retrospect and prospect on tetralone derivatives.
Collapse
|
10
|
Design and Synthesis of Novel Thiazolo[5,4-d]pyrimidine Derivatives with High Affinity for Both the Adenosine A 1 and A 2A Receptors, and Efficacy in Animal Models of Depression. Pharmaceuticals (Basel) 2021; 14:ph14070657. [PMID: 34358083 PMCID: PMC8308585 DOI: 10.3390/ph14070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023] Open
Abstract
New compounds with a 7-amino-2-arylmethyl-thiazolo[5,4-d]pyrimidine structure were synthesized and evaluated in vitro for their affinity and/or potency at the human (h) A1, hA2A, hA2B, and hA3 adenosine receptors (ARs). Several compounds (5, 8–10, 13, 18, 19) were characterized by nanomolar and subnanomolar binding affinities for the hA1 and the hA2A AR, respectively. Results of molecular docking studies supported the in vitro results. The 2-(2-fluorobenzyl)-5-(furan-2yl)-thiazolo[5,4-d]pyrimidin-7-amine derivative 18 (hA1 Ki = 1.9 nM; hA2A Ki = 0.06 nM) was evaluated for its antidepressant-like activity in in vivo studies, the forced swimming test (FST), the tail suspension test (TST), and the sucrose preference test (SPT) in mice, showing an effect comparable to that of the reference amitriptyline.
Collapse
|
11
|
Hagenow S, Affini A, Pioli EY, Hinz S, Zhao Y, Porras G, Namasivayam V, Müller CE, Lin JS, Bezard E, Stark H. Adenosine A 2AR/A 1R Antagonists Enabling Additional H 3R Antagonism for the Treatment of Parkinson's Disease. J Med Chem 2021; 64:8246-8262. [PMID: 34107215 DOI: 10.1021/acs.jmedchem.0c00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.
Collapse
Affiliation(s)
- Stefanie Hagenow
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Anna Affini
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| | - Elsa Y Pioli
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Institute of Pharmacology and Toxicology, School of Medicine, University of Witten/Herdecke, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Alfred-Herrhausen-Street 50, 58448 Witten, Germany
| | - Yan Zhao
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | | | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jian-Sheng Lin
- Laboratory of Integrative Physiology of the Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM UI028, CNRS UMR 5292, Claude Bernard University, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Erwan Bezard
- Motac Neuroscience Limited, SK10 4TF Macclesfield, U.K
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany
| |
Collapse
|
12
|
Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 2021; 53:3743-3767. [PMID: 33818841 DOI: 10.1111/ejn.15222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.
Collapse
Affiliation(s)
- Isabelle Waku
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Mylena S Magalhães
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Camila O Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.,Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Wang M, Hou S, Wei Y, Li D, Lin J. Discovery of novel dual adenosine A1/A2A receptor antagonists using deep learning, pharmacophore modeling and molecular docking. PLoS Comput Biol 2021; 17:e1008821. [PMID: 33739970 PMCID: PMC7978378 DOI: 10.1371/journal.pcbi.1008821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adenosine receptors (ARs) have been demonstrated to be potential therapeutic targets against Parkinson's disease (PD). In the present study, we describe a multistage virtual screening approach that identifies dual adenosine A1 and A2A receptor antagonists using deep learning, pharmacophore models, and molecular docking methods. Nineteen hits from the ChemDiv library containing 1,178,506 compounds were selected and further tested by in vitro assays (cAMP functional assay and radioligand binding assay); of these hits, two compounds (C8 and C9) with 1,2,4-triazole scaffolds possessing the most potent binding affinity and antagonistic activity for A1/A2A ARs at the nanomolar level (pKi of 7.16-7.49 and pIC50 of 6.31-6.78) were identified. Further molecular dynamics (MD) simulations suggested similarly strong binding interactions of the complexes between the A1/A2A ARs and two compounds (C8 and C9). Notably, the 1,2,4-triazole derivatives (compounds C8 and C9) were identified as the most potent dual A1/A2A AR antagonists in our study and could serve as a basis for further development. The effective multistage screening approach developed in this study can be utilized to identify potent ligands for other drug targets.
Collapse
Affiliation(s)
- Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shujing Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- * E-mail: (YW); (DL); (JL)
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- * E-mail: (YW); (DL); (JL)
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- * E-mail: (YW); (DL); (JL)
| |
Collapse
|
14
|
Pieterse L, van der Walt MM, Terre'Blanche G. C2-substituted quinazolinone derivatives exhibit A 1 and/or A 2A adenosine receptor affinities in the low micromolar range. Bioorg Med Chem Lett 2020; 30:127274. [PMID: 32631506 DOI: 10.1016/j.bmcl.2020.127274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022]
Abstract
Antagonists of the adenosine receptors (A1 and A2A subtypes) are widely researched as potential drug candidates for their role in Parkinson's disease-related cognitive deficits (A1 subtype), motor dysfunction (A2A subtype) and to exhibit neuroprotective properties (A2A subtype). Previously the benzo-α-pyrone based derivative, 3-phenyl-1H-2-benzopyran-1-one, was found to display both A1 and A2A adenosine receptor affinity in the low micromolar range. Prompted by this, the α-pyrone core was structurally modified to explore related benzoxazinone and quinazolinone homologues previously unknown as adenosine receptor antagonists. Overall, the C2-substituted quinazolinone analogues displayed superior A1 and A2A adenosine receptor affinity over their C2-substituted benzoxazinone homologues. The benzoxazinones were devoid of A2A adenosine receptor binding, with only two compounds displaying A1 adenosine receptor affinity. In turn, the quinazolinones displayed varying degrees of affinity (low micromolar range) towards the A1 and A2A adenosine receptor subtypes. The highest A1 adenosine receptor affinity and selectivity were favoured by methyl para-substitution of phenyl ring B (A1Ki = 2.50 μM). On the other hand, 3,4-dimethoxy substitution of phenyl ring B afforded the best A2A adenosine receptor binding (A2AKi = 2.81 μM) among the quinazolinones investigated. In conclusion, the quinazolinones are ideal lead compounds for further structural optimization to gain improved adenosine receptor affinity, which may find therapeutic relevance in Parkinson's disease-associated cognitive deficits and motor dysfunctions as well as exerting neuroprotective properties.
Collapse
Affiliation(s)
- Lianie Pieterse
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Mietha M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Human Metabolomics, Faculty of Natural and Agricultural Science, North-West University, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa.
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
15
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
16
|
Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Aucamp J. Synthesis and evaluation of methoxy substituted 2-benzoyl-1-benzofuran derivatives as lead compounds for the development adenosine A1 and/or A2A receptor antagonists. Bioorg Chem 2020; 94:103459. [DOI: 10.1016/j.bioorg.2019.103459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|
17
|
Attenuation Effects of Alpha-Pinene Inhalation on Mice with Dizocilpine-Induced Psychiatric-Like Behaviour. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2745453. [PMID: 31467573 PMCID: PMC6699265 DOI: 10.1155/2019/2745453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022]
Abstract
α-Pinene, an organic terpene compound found in coniferous trees, is used as a safe food additive and is contained in many essential oils. Moreover, some studies have shown that α-pinene suppresses neuronal activity. In this study, we investigated whether inhalation of α-pinene suppresses dizocilpine (MK-801-) induced schizophrenia-like behavioural abnormalities in mice. Mice inhaled α-pinene 1 h before the first MK-801 injection. Thirty minutes after MK-801 injection, the open field, spontaneous locomotor activity, elevated plus maze, Y-maze, tail suspension, hot plate, and grip strength tests were conducted as behavioural experiments. Inhalation of α-pinene suppressed the activity of mice in the spontaneous locomotor activity test and although it did not suppress the MK-801-induced increased locomotor activity in the open field test, it remarkably decreased the time that the mice remained in the central area. Inhalation of α-pinene suppressed the MK-801-induced increased total distance travelled in the Y-maze test, whereas it did not alter the MK-801-induced reduced threshold of antinociception in the hot plate test. In the tail suspension and grip strength tests, there was no effect on mouse behaviour by administration of MK-801 and inhalation of α-pinene. These results suggest that α-pinene acts to reduce MK-801-induced behavioural abnormalities resembling those seen in neuropsychiatric disorders. Therefore, both medicinal plants and essential oils containing α-pinene may have potential for therapeutic treatment of schizophrenia.
Collapse
|
18
|
Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Van der Walt MM. Methoxy substituted 2-benzylidene-1-indanone derivatives as A 1 and/or A 2A AR antagonists for the potential treatment of neurological conditions. MEDCHEMCOMM 2019; 10:300-309. [PMID: 30881617 PMCID: PMC6390816 DOI: 10.1039/c8md00540k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
A prior study reported on hydroxy substituted 2-benzylidene-1-indanone derivatives as A1 and/or A2A antagonists for the potential treatment of neurological conditions. A lead compound (1a) was identified with both A1 and A2A affinity in the micromolar range. The current study explored the structurally related methoxy substituted 2-benzylidene-1-indanone derivatives with various substitutions on ring A and B of the benzylidene indanone scaffold in order to enhance A1 and A2A affinity. This led to compounds with both A1 and A2A affinity in the nanomolar range, namely 2c (A1 K i (rat) = 41 nM; A2A K i (rat) = 97 nM) with C4-OCH3 substitution on ring A together with meta (3') hydroxy substitution on ring B and 2e (A1 K i (rat) = 42 nM; A2A K i (rat) = 78 nM) with C4-OCH3 substitution on ring A together with meta (3') and para (4') dihydroxy substitution on ring B. Additionally, 2c is an A1 antagonist. Consequently, the methoxy substituted 2-benzylidene-1-indanone scaffold is highly promising for the design of novel A1 and A2A antagonists.
Collapse
Affiliation(s)
- Helena D Janse van Rensburg
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| |
Collapse
|
19
|
Varano F, Catarzi D, Falsini M, Dal Ben D, Buccioni M, Marucci G, Volpini R, Colotta V. Novel human adenosine receptor antagonists based on the 7-amino-thiazolo[5,4-d]pyrimidine scaffold. Structural investigations at the 2-, 5- and 7-positions to enhance affinity and tune selectivity. Bioorg Med Chem Lett 2018; 29:563-569. [PMID: 30638876 DOI: 10.1016/j.bmcl.2018.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/11/2022]
Abstract
This paper describes the synthesis of novel 7-amino-thiazolo[5,4-d]pyrimidines bearing different substituents at positions 2, 5 and 7 of the thiazolopyrimidine scaffold. The synthesized compounds 2-27 were evaluated in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity (A2B and A2A) assays, in order to evaluate their affinity and potency at human adenosine receptor subtypes. The current study allowed us to support that affinity and selectivity of 7-amino-thiazolo[5,4-d]pyrimidine derivatives towards the adenosine receptor subtypes can be modulated by the nature of the groups attached at positions 2, 5 and 7 of the bicyclic scaffold. To rationalize the hypothetical binding mode of the newly synthesized compounds, we also performed docking calculations in human A2A, A1 and A3 structures.
Collapse
Affiliation(s)
- Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Michela Buccioni
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Gabriella Marucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Koch P, Brunschweiger A, Namasivayam V, Ullrich S, Maruca A, Lazzaretto B, Küppers P, Hinz S, Hockemeyer J, Wiese M, Heer J, Alcaro S, Kiec-Kononowicz K, Müller CE. Probing Substituents in the 1- and 3-Position: Tetrahydropyrazino-Annelated Water-Soluble Xanthine Derivatives as Multi-Target Drugs With Potent Adenosine Receptor Antagonistic Activity. Front Chem 2018; 6:206. [PMID: 29998095 PMCID: PMC6028563 DOI: 10.3389/fchem.2018.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Tetrahydropyrazino-annelated theophylline (1,3-dimethylxanthine) derivatives have previously been shown to display increased water-solubility as compared to the parent xanthines due to their basic character. In the present study, we modified this promising scaffold by replacing the 1,3-dimethyl residues by a variety of alkyl groups including combinations of different substituents in both positions. Substituted benzyl or phenethyl residues were attached to the N8 of the resulting 1,3-dialkyl-tetrahydropyrazino[2,1-f ]purinediones with the aim to obtain multi-target drugs that block human A1 and A2A adenosine receptors (ARs) and monoaminoxidase B (MAO-B). 1,3-Diethyl-substituted derivatives showed high affinity for A1 ARs, e.g., 15d (PSB-18339, 8-m-bromobenzyl-substituted) displayed a Ki value of 13.6 nM combined with high selectivity. 1-Ethyl-3-propargyl-substituted derivatives exhibited increased A2A AR affinity. The 8-phenethyl derivative 20h was selective for the A2A AR (Ki 149 nM), while the corresponding 8-benzyl-substituted compound 20e (PSB-1869) blocked A1 and A2A ARs with equal potency (Ki A1, 180 nM; A2A, 282 nM). The 1-ethyl-3-methyl-substituted derivative 16a (PSB-18405) bearing a m,p-dichlorobenzyl residue at N8 blocked all three targets, A1 ARs (Ki 396 nM), A2A ARs (Ki 1,620 nM), and MAO-B (IC50 106 nM) with high selectivity vs. the other subtypes (A2B and A3 ARs, MAO-A), and can thus be considered as a multi-target drug. Our findings were rationalized by molecular docking studies based on previously published X-ray structures of the protein targets. The new drugs have potential for the treatment of neurodegenerative diseases, in particular Parkinson's disease.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Andreas Brunschweiger
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Stefan Ullrich
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Beatrice Lazzaretto
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Petra Küppers
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Institute, Pharmaceutical Chemistry II, University of Bonn, Bonn, Germany
| | - Jag Heer
- UCB Celltech, UCB Pharma S.A., Slough, United Kingdom
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Katarzyna Kiec-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists. Bioorg Med Chem 2018; 26:3688-3695. [DOI: 10.1016/j.bmc.2018.05.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
|
22
|
Załuski M, Stanuch K, Karcz T, Hinz S, Latacz G, Szymańska E, Schabikowski J, Doroż-Płonka A, Handzlik J, Drabczyńska A, Müller CE, Kieć-Kononowicz K. Tricyclic xanthine derivatives containing a basic substituent: adenosine receptor affinity and drug-related properties. MEDCHEMCOMM 2018; 9:951-962. [PMID: 30108984 PMCID: PMC6071793 DOI: 10.1039/c8md00070k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022]
Abstract
A library of 27 novel amide derivatives of annelated xanthines was designed and synthesized. The new compounds represent 1,3-dipropyl- and 1,3-dibutyl-pyrimido[2,1-f]purinedione-9-ethylphenoxy derivatives including a CH2CONH linker between the (CH2)2-amino group and the phenoxy moiety. A synthetic strategy to obtain the final products was developed involving solvent-free microwave irradiation. The new compounds were evaluated for their adenosine receptor (AR) affinities. The most potent derivatives contained a terminal tertiary amino function. Compounds with nanomolar AR affinities and at the same time high water-solubility were obtained (A1 (Ki = 24-605 nM), A2A (Ki = 242-1250 nM), A2B (Ki = 66-911 nM) and A3 (Ki = 155-1000 nM)). 2-(4-(2-(1,3-Dibutyl-2,4-dioxo-1,2,3,4,7,8-hexahydropyrimido[2,1-f]purin-9(6H)-yl)ethyl)phenoxy)-N-(3-(diethylamino)propyl)acetamide (27) and the corresponding N-(2-(pyrrolidin-1-yl)ethyl)acetamide (36) were found to be the most potent antagonists of the present series. While 27 showed CYP inhibition and moderate metabolic stability, 36 was found to possess suitable properties for in vivo applications. In an attempt to explain the affinity data for the synthesized compounds, molecular modeling and docking studies were performed using homology models of A1 and A2A adenosine receptors. The potent compound 36 was used as an example for discussion of the possible ligand-protein interactions. Moreover, the compounds showed high water-solubility indicating that the approach of introducing a basic side chain was successful for the class of generally poorly soluble AR antagonists.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Katarzyna Stanuch
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Tadeusz Karcz
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Sonja Hinz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Agata Doroż-Płonka
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Anna Drabczyńska
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Christa E Müller
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs , Faculty of Pharmacy , Jagiellonian University Medical College , Kraków , Poland . ; ; Tel: +48 12 6205580
| |
Collapse
|
23
|
Benzopyrone represents a privilege scaffold to identify novel adenosine A1/A2A receptor antagonists. Bioorg Chem 2018; 77:136-143. [DOI: 10.1016/j.bioorg.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 01/12/2023]
|
24
|
Lefin R, van der Walt MM, Milne PJ, Terre'Blanche G. Imidazo[1,2-α]pyridines possess adenosine A1 receptor affinity for the potential treatment of cognition in neurological disorders. Bioorg Med Chem Lett 2017; 27:3963-3967. [DOI: 10.1016/j.bmcl.2017.07.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/01/2023]
|
25
|
Janse van Rensburg HD, Terre'Blanche G, van der Walt MM, Legoabe LJ. 5-Substituted 2-benzylidene-1-tetralone analogues as A 1 and/or A 2A antagonists for the potential treatment of neurological conditions. Bioorg Chem 2017; 74:251-259. [PMID: 28881253 DOI: 10.1016/j.bioorg.2017.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
Abstract
Adenosine A1 and A2A receptors are attracting great interest as drug targets for their role in cognitive and motor deficits, respectively. Antagonism of both these adenosine receptors may offer therapeutic benefits in complex neurological diseases, such as Alzheimer's and Parkinson's disease. The aim of this study was to explore the affinity and selectivity of 2-benzylidene-1-tetralone derivatives as adenosine A1 and A2A receptor antagonists. Several 5-hydroxy substituted 2-benzylidene-1-tetralone analogues with substituents on ring B were synthesized and assessed as antagonists of the adenosine A1 and A2A receptors via radioligand binding assays. The results indicated that hydroxy substitution in the meta and para position of phenyl ring B, displayed the highest selectivity and affinity for the adenosine A1 receptor with Ki values in the low micromolar range. Replacement of ring B with a 2-amino-pyrimidine moiety led to compound 12 with an increase of affinity and selectivity for the adenosine A2A receptor. These substitution patterns led to enhanced adenosine A1 and A2A receptor binding affinity. The para-substituted 5-hydroxy analogue 3 behaved as an adenosine A1 receptor antagonists in a GTP shift assay performed with rat whole brain membranes expressing adenosine A1 receptors. In conclusion, compounds 3 and 12, showed the best adenosine A1 and A2A receptor affinity respectively, and therefore represent novel adenosine receptor antagonists that may have potential with further structural modifications as drug candidates for neurological disorders.
Collapse
Affiliation(s)
- H D Janse van Rensburg
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - G Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - M M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - L J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
26
|
Legoabe LJ, Van der Walt MM, Terre'Blanche G. Evaluation of 2-benzylidene-1-tetralone derivatives as antagonists of A 1 and A 2A adenosine receptors. Chem Biol Drug Des 2017; 91:234-244. [PMID: 28734058 DOI: 10.1111/cbdd.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/11/2017] [Accepted: 07/08/2017] [Indexed: 11/29/2022]
Abstract
Antagonists of the adenosine receptors (A1 and A2A ) are thought to be beneficial in neurological disorders, such as Alzheimer's and Parkinson's disease. The aim of this study was to explore 2-benzylidene-1-tetralone derivatives as antagonists of A1 and/or A2A adenosine receptors. In general, the test compounds were found to be selective for the A1 adenosine receptor, with only three test compounds possessing affinity for both the A1 and A2A adenosine receptor. The 2-benzylidene-1-tetralones bearing a hydroxyl substituent at either position C5, C6 or C7 of ring A displayed favourable adenosine A1 receptor binding, while C5 hydroxy substitution led to favourable A2A adenosine receptor affinity. Interestingly, para-hydroxy substitution on ring B in combination with ring A bearing a hydroxy at position C6 or C7 provided the 2-benzylidene-1-tetralones with both A1 and A2A adenosine receptor affinity. Compounds 4 and 8 displayed the highest A1 and A2A adenosine receptor affinity with values below 7 μm. Both these compounds behaved as A1 adenosine receptor antagonists in the performed GTP shift assays. In conclusion, the 2-benzylidene-1-tetralone derivatives can be considered as lead compounds to design a new class of dual acting adenosine A1 /A2A receptor antagonists that may have potential in treating both dementia and locomotor deficits in Parkinson's disease.
Collapse
Affiliation(s)
- Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.,Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
27
|
Essawy SS, Tawfik MK, Korayem HE. Effects of adenosine receptor antagonists in MPTP mouse model of Parkinson's disease: mitochondrial DNA integrity. Arch Med Sci 2017; 13:659-669. [PMID: 28507584 PMCID: PMC5420638 DOI: 10.5114/aoms.2017.67284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION In Parkinson's disease (PD), compelling data indicate a functional link between adenosine/dopamine receptors and the progression of the neurodegenerative process. The present study was carried out to evaluate the effect of the non-selective adenosine receptor (ADR) antagonist caffeine, as well as the selective antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an ADRsA1 antagonist, and ((E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione) (KW-6002), an ADRsA2A antagonist, on the prevention of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism in mice. MATERIAL AND METHODS Mice were allocated to five groups: group I - control group; group II: MPTP group, received four injections of MPTP (20 mg/kg, i.p.) at 2 h intervals; groups III, IV, V: received MPTP and i.p. caffeine (20 mg/kg/day) or DPCPX (5 mg/kg/day) or KW-6002 (10 mg/kg/day) starting one week before MPTP injection and continuing for 2 weeks. RESULTS Therapy with caffeine or KW-6002 not only led to the reversibility of movement dysfunction and increased the concentrations of dopamine and ATP levels (p < 0.05), but also, ameliorates the dopaminergic neuron loss and restored the mtDNA and nDNA integrity (p < 0.05). Furthermore, in passive avoidance test, caffeine and DPCPX significantly (p < 0.05) reversed the MPTP-induced memory deficits, whereas the specific ADRsA2A antagonist did not. CONCLUSIONS The current results provide evidence that blockade of both ADRsA1 and ADRsA2A has therapeutic implications in alleviating MPTP-induced motor and cognitive dysfunction and might be a promising candidate for treatment of PD.
Collapse
Affiliation(s)
- Soha S. Essawy
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona Kamal Tawfik
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Horya Erfan Korayem
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
28
|
Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine. Eur J Med Chem 2017; 125:652-656. [DOI: 10.1016/j.ejmech.2016.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/07/2023]
|
29
|
Brunschweiger A, Koch P, Schlenk M, Rafehi M, Radjainia H, Küppers P, Hinz S, Pineda F, Wiese M, Hockemeyer J, Heer J, Denonne F, Müller CE. 8-Substituted 1,3-dimethyltetrahydropyrazino[2,1- f ]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors. Bioorg Med Chem 2016; 24:5462-5480. [DOI: 10.1016/j.bmc.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/15/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
|
30
|
Burbiel JC, Ghattas W, Küppers P, Köse M, Lacher S, Herzner AM, Kombu RS, Akkinepally RR, Hockemeyer J, Müller CE. 2-Amino[1,2,4]triazolo[1,5-c]quinazolines and Derived Novel Heterocycles: Syntheses and Structure-Activity Relationships of Potent Adenosine Receptor Antagonists. ChemMedChem 2016; 11:2272-2286. [PMID: 27531666 DOI: 10.1002/cmdc.201600255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022]
Abstract
2-Amino[1,2,4]triazolo[1,5-c]quinazolines were identified as potent adenosine receptor (AR) antagonists. Synthetic strategies were devised to gain access to a broad range of derivatives including novel polyheterocyclic compounds. Potent and selective A3 AR antagonists were discovered, including 3,5-diphenyl[1,2,4]triazolo[4,3-c]quinazoline (17, Ki human A3 AR 1.16 nm) and 5'-phenyl-1,2-dihydro-3'H-spiro[indole-3,2'-[1,2,4]triazolo[1,5-c]quinazolin]-2-one (20, Ki human A3 AR 6.94 nm). In addition, multitarget antagonists were obtained, such as the dual A1 /A3 antagonist 2,5-diphenyl[1,2,4]triazolo[1,5-c]quinazoline (13 b, Ki human A1 AR 51.6 nm, human A3 AR 11.1 nm), and the balanced pan-AR antagonists 5-(2-thienyl)[1,2,4]triazolo[1,5-c]quinazolin-2-amine (11 c, Ki human A1 AR 131 nm, A2A AR 32.7 nm, A2B AR 150 nm, A3 AR 47.5 nm) and 9-bromo-5-phenyl[1,2,4]triazolo[1,5-c]quinazolin-2-amine (11 q, Ki human A1 AR 67.7 nm, A2A AR 13.6 nm, A2B AR 75.0 nm, A3 AR 703 nm). In many cases, significantly different affinities for human and rat receptors were observed, which emphasizes the need for caution in extrapolating conclusions between different species.
Collapse
Affiliation(s)
- Joachim C Burbiel
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany
| | - Wadih Ghattas
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany
| | - Petra Küppers
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany
| | - Meryem Köse
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany
| | - Svenja Lacher
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany
| | - Anna-Maria Herzner
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany
| | - Rajan Subramanian Kombu
- University College of Pharmaceutical Sciences, Kakatiya University, 506 009, Warangal, India
| | - Raghuram Rao Akkinepally
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany.,University College of Pharmaceutical Sciences, Kakatiya University, 506 009, Warangal, India
| | - Jörg Hockemeyer
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany
| | - Christa E Müller
- Pharmazeutische Chemie I, Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
31
|
Jaberi E, Rohani M, Shahidi GA, Nafissi S, Arefian E, Soleimani M, Moghadam A, Arzenani MK, Keramatian F, Klotzle B, Fan JB, Turk C, Steemers F, Elahi E. Mutation inADORA1identified as likely cause of early-onset parkinsonism and cognitive dysfunction. Mov Disord 2016; 31:1004-11. [DOI: 10.1002/mds.26627] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Elham Jaberi
- School of Biology, College of Science, University of Tehran; Tehran Iran
| | - Mohammad Rohani
- Department of Neurology; Hazrat Rasool Hospital, Iran University of Medical Sciences; Tehran Iran
| | - Gholam Ali Shahidi
- Department of Neurology; Hazrat Rasool Hospital, Iran University of Medical Sciences; Tehran Iran
| | - Shahriar Nafissi
- Department of Neurology; Tehran University of Medical Sciences; Tehran Iran
| | - Ehsan Arefian
- School of Biology, College of Science, University of Tehran; Tehran Iran
| | - Masoud Soleimani
- School of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran; Tehran Iran
| | | | - Farid Keramatian
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
| | | | | | | | | | - Elahe Elahi
- School of Biology, College of Science, University of Tehran; Tehran Iran
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
| |
Collapse
|
32
|
Squarcialupi L, Falsini M, Catarzi D, Varano F, Betti M, Varani K, Vincenzi F, Dal Ben D, Lambertucci C, Volpini R, Colotta V. Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorg Med Chem 2016; 24:2794-808. [PMID: 27161878 DOI: 10.1016/j.bmc.2016.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 11/18/2022]
Abstract
A new series of 7-aminopyrazolo[4,3-d]pyrimidine derivatives (1-31) were synthesized to evaluate some structural modifications at the 2- and 5-positions aimed at shifting affinity towards the human (h) A2A adenosine receptor (AR) or both hA2A and hA1 ARs. The most active compounds were those featured by a 2-furyl or 5-methylfuran-2-yl moiety at position 5, combined with a benzyl or a substituted-benzyl group at position 2. Several of these derivatives (22-31) displayed nanomolar affinity for the hA2A AR (Ki=3.62-57nM) and slightly lower for the hA1 ARs, thus showing different degrees (3-22 fold) of hA2A versus hA1 selectivity. In particular, the 2-(2-methoxybenzyl)-5-(5-methylfuran-2-yl) derivative 25 possessed the highest hA2A and hA1 AR affinities (Ki=3.62nM and 18nM, respectively) and behaved as potent antagonist at both these receptors (cAMP assays). Its 2-(2-hydroxybenzyl) analog 26 also showed a high affinity for the hA2A AR (Ki=5.26nM) and was 22-fold selective versus the hA1 subtype. Molecular docking investigations performed at the hA2A AR crystal structure and at a homology model of the hA1 AR allowed us to represent the hypothetical binding mode of our derivatives and to rationalize the observed SARs.
Collapse
Affiliation(s)
- Lucia Squarcialupi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Falsini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Marco Betti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Katia Varani
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC), Italy
| | - Catia Lambertucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC), Italy
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S.Agostino 1, 62032 Camerino (MC), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
33
|
Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem 2016; 7:609-29. [PMID: 25921401 DOI: 10.4155/fmc.15.12] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Much progress has been made in designing analogues that can potentially confer neuroprotection against debilitating neurodegenerative disorders, yet the multifactorial pathogenesis of this cluster of diseases remains a stumbling block for the successful design of an 'ultimate' drug. However, with the growing popularity of the "one drug, multiple targets" paradigm, many researchers have successfully synthesized and evaluated drug-like molecules incorporating a propargylamine function that shows potential to serve as multifunctional drugs or multitarget-directed ligands. It is the aim of this review to highlight the reported activities of these propargylamine derivatives and their prospect to serve as drug candidates for the treatment of neurodegenerative disorders.
Collapse
|
34
|
Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists. Bioorg Med Chem Lett 2016; 26:734-738. [PMID: 26776359 DOI: 10.1016/j.bmcl.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/30/2023]
Abstract
A novel series of carbamate substituted 2-amino-4,6-diphenylpyrimidines was evaluated as potential dual adenosine A1 and A2A receptor antagonists. The majority of the synthesised compounds exhibited promising dual affinities, with A1Ki values ranging from 0.175 to 10.7 nM and A2AKi values ranging from 1.58 to 451 nM. The in vivo activity illustrated for 3-(2-amino-6-phenylpyrimidin-4-yl)phenyl morpholine-4-carboxylate (4c) is indicative of the potential of these compounds as therapeutic agents in the treatment of Parkinson's disease, although physicochemical properties may require optimisation.
Collapse
|
35
|
Das NR, Sharma SS. Cognitive Impairment Associated with Parkinson's Disease: Role of Mitochondria. Curr Neuropharmacol 2016; 14:584-92. [PMID: 26725887 PMCID: PMC4981741 DOI: 10.2174/1570159x14666160104142349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/27/2015] [Accepted: 01/01/2016] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder and is associated with some of the intellectual disabilities like cognitive dysfunctions. PD associated cognitive dysfunctions have been proved well in both preclinical and clinical set ups. Like other neurodegenerative diseases, insults to mitochondria have a significant role in the pathobiology of PD associated dementia (PDD). Neurotoxins like MPTP, mutations of the mitochondrial genes, oxidative stress, imbalanced redox mechanisms and dysregulated mitochondrial dynamics have been implicated in mitochondrial dysfunctions and have paramount importance in the pathobiology of PDD. However, the extent of contribution of mitochondrial dysfunctions towards cognitive deficits in PD has not been characterized completely. In this review we highlight on the contribution of mitochondrial dysfunction to PDD. We also highlight different behavioural tests used in nonhuman primate and rodent models for assessing cognitive deficits and some common techniques for evaluation of mitochondrial dysfunction in PDD.
Collapse
Affiliation(s)
| | - Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS Nagar, Punjab-160062, India.
| |
Collapse
|
36
|
Robinson SJ, Petzer JP, Terre'Blanche G, Petzer A, van der Walt MM, Bergh JJ, Lourens ACU. 2-Aminopyrimidines as dual adenosine A1/A2A antagonists. Eur J Med Chem 2015; 104:177-88. [PMID: 26462195 DOI: 10.1016/j.ejmech.2015.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A1 and A2A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A2AKi value of 6.34 nM and an A1Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A2A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A2A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A2A receptor antagonists.
Collapse
Affiliation(s)
- Sarel J Robinson
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Mietha M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus J Bergh
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anna C U Lourens
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
37
|
Aguiar AS, Lopes SC, Tristão FSM, Rial D, de Oliveira G, da Cunha C, Raisman-Vozari R, Prediger RD. Exercise Improves Cognitive Impairment and Dopamine Metabolism in MPTP-Treated Mice. Neurotox Res 2015; 29:118-25. [DOI: 10.1007/s12640-015-9566-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/11/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
|
38
|
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35:790-848. [PMID: 25821194 DOI: 10.1002/med.21344] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
39
|
Michel A, Downey P, Nicolas JM, Scheller D. Unprecedented therapeutic potential with a combination of A2A/NR2B receptor antagonists as observed in the 6-OHDA lesioned rat model of Parkinson's disease. PLoS One 2014; 9:e114086. [PMID: 25513815 PMCID: PMC4267740 DOI: 10.1371/journal.pone.0114086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022] Open
Abstract
In Parkinson's disease, the long-term use of dopamine replacing agents is associated with the development of motor complications; therefore, there is a need for non-dopaminergic drugs. This study evaluated the potential therapeutic impact of six different NR2B and A2A receptor antagonists given either alone or in combination in unilateral 6-OHDA-lesioned rats without (monotherapy) or with (add-on therapy) the co-administration of L-Dopa: Sch-58261+ Merck 22; Sch-58261+Co-101244; Preladenant + Merck 22; Preladenant + Radiprodil; Tozadenant + Radiprodil; Istradefylline + Co-101244. Animals given monotherapy were assessed on distance traveled and rearing, whereas those given add-on therapy were assessed on contralateral rotations. Three-way mixed ANOVA were conducted to assess the main effect of each drug separately and to determine whether any interaction between two drugs was additive or synergistic. Additional post hoc analyses were conducted to compare the effect of the combination with the effect of the drugs alone. Motor activity improved significantly and was sustained for longer when the drugs were given in combination than when administered separately at the same dose. Similarly, when tested as add-on treatment to L-Dopa, the combinations resulted in higher levels of contralateral rotation in comparison to the single drugs. Of special interest, the activity observed with some combinations could not be described by a simplistic additive effect and involved more subtle synergistic pharmacological interactions. The combined administration of A2A/NR2B-receptor antagonists improved motor behaviour in 6-OHDA rats. Given the proven translatability of this model such a combination may be expected to be effective in improving motor symptoms in patients.
Collapse
Affiliation(s)
- Anne Michel
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| | - Patrick Downey
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| | | | - Dieter Scheller
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine l'Alleud, Belgium
| |
Collapse
|
40
|
Bortolotto JW, Melo GMD, Cognato GDP, Vianna MRM, Bonan CD. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish. Neurobiol Learn Mem 2014; 118:113-9. [PMID: 25490060 DOI: 10.1016/j.nlm.2014.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/29/2022]
Abstract
Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.
Collapse
Affiliation(s)
- Josiane Woutheres Bortolotto
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Gabriela Madalena de Melo
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Giana de Paula Cognato
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, s/n°, CEP 96010-900, Pelotas, RS, Brazil
| | - Mônica Ryff Moreira Vianna
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Departamento de Ciências Morfofisiológicas, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Atack JR, Shook BC, Rassnick S, Jackson PF, Rhodes K, Drinkenburg WH, Ahnaou A, te Riele P, Langlois X, Hrupka B, De Haes P, Hendrickx H, Aerts N, Hens K, Wellens A, Vermeire J, Megens AAHP. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson's disease. ACS Chem Neurosci 2014; 5:1005-19. [PMID: 25203719 DOI: 10.1021/cn5001606] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adenosine A2A antagonists are believed to have therapeutic potential in the treatment of Parkinson's disease (PD). We have characterized the dual adenosine A2A/A1 receptor antagonist JNJ-40255293 (2-amino-8-[2-(4-morpholinyl)ethoxy]-4-phenyl-5H-indeno[1,2-d]pyrimidin-5-one). JNJ-40255293 was a high-affinity (7.5 nM) antagonist at the human A2A receptor with 7-fold in vitro selectivity versus the human A1 receptor. A similar A2A:A1 selectivity was seen in vivo (ED50's of 0.21 and 2.1 mg/kg p.o. for occupancy of rat brain A2A and A1 receptors, respectively). The plasma EC50 for occupancy of rat brain A2A receptors was 13 ng/mL. In sleep-wake encephalographic (EEG) studies, JNJ-40255293 dose-dependently enhanced a consolidated waking associated with a subsequent delayed compensatory sleep (minimum effective dose: 0.63 mg/kg p.o.). As measured by microdialysis, JNJ-40255293 did not affect dopamine and noradrenaline release in the prefrontal cortex and the striatum. However, it was able to reverse effects (catalepsy, hypolocomotion, and conditioned avoidance impairment in rats; hypolocomotion in mice) produced by the dopamine D2 antagonist haloperidol. The compound also potentiated the agitation induced by the dopamine agonist apomorphine. JNJ-40255293 also reversed hypolocomotion produced by the dopamine-depleting agent reserpine and potentiated the effects of l-dihydroxyphenylalanine (L-DOPA) in rats with unilateral 6-hydroxydopamine-induced lesions of the nigro-striatal pathway, an animal model of Parkinson's disease. Extrapolating from the rat receptor occupancy dose-response curve, the occupancy required to produce these various effects in rats was generally in the range of 60-90%. The findings support the continued research and development of A2A antagonists as potential treatments for PD.
Collapse
Affiliation(s)
- John R. Atack
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Brian C. Shook
- Janssen Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Stefanie Rassnick
- Janssen Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Paul F. Jackson
- Janssen Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Kenneth Rhodes
- Janssen Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | | | - Abdallah Ahnaou
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Paula te Riele
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Xavier Langlois
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Brian Hrupka
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Patrick De Haes
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Herman Hendrickx
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Nancy Aerts
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Koen Hens
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Annemie Wellens
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Jef Vermeire
- Janssen Research and Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | | |
Collapse
|
42
|
Brunschweiger A, Koch P, Schlenk M, Pineda F, Küppers P, Hinz S, Köse M, Ullrich S, Hockemeyer J, Wiese M, Heer J, Müller CE. 8-Benzyltetrahydropyrazino[2,1-f]purinediones: Water-Soluble Tricyclic Xanthine Derivatives as Multitarget Drugs for Neurodegenerative Diseases. ChemMedChem 2014; 9:1704-24. [DOI: 10.1002/cmdc.201402082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Indexed: 01/07/2023]
|
43
|
Uchida SI, Kadowaki-Horita T, Kanda T. Effects of the adenosine A2A receptor antagonist on cognitive dysfunction in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:169-89. [PMID: 25175966 DOI: 10.1016/b978-0-12-801022-8.00008-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is primarily characterized by motor abnormalities, but cognitive changes also occur in the early and late stages of the disease process. In PD patients, cognitive dysfunction is associated with reduced quality of life, as well as increased morbidity and mortality, resulting in increases in caregiver burden, and health-related costs. Therefore, safe and effective approaches are needed to treat cognitive dysfunction in PD patients. The underlying pathophysiology of cognitive dysfunction is complex and not fully understood, however. α-Synuclein, amyloid-related proteins, and cholinergic deficits have been reported to partially contribute to cognitive dysfunction. Changes in cortical dopamine (DA) content may also be responsible for early cognitive changes in patients with PD. Certainly, dopaminergic afferents to the frontal cortex degenerate in PD, and there is a reduction of DA content in the prefrontal cortex (PFC). It has also been reported that PFC dopaminergic input plays an important role in working memory performance. Moreover, PFC DA levels and working memory performance are significantly reduced by a 6-hydroxydopamine lesion in the PFC of a rat. Recent findings in the areas of pharmacological manipulation and genetic ablation suggest that the adenosine A2A receptor is also related to cognitive functions, especially working memory. In addition, the blockade of adenosine A2A receptors reverses cognitive dysfunction in PFC-lesioned rats, and this blocking effect may be due to an increase in PFC DA content. Therefore, adenosine A2A receptor antagonists not only improve motor performance, but they may also lead to improved cognitive function in those with PD.
Collapse
Affiliation(s)
- Shin-ichi Uchida
- Central Nervous System Research Laboratories, Research & Development Division, Kyowa Hakko Kirin Co., Ltd., Sunto-gun, Shizuoka, Japan.
| | - Takako Kadowaki-Horita
- Central Nervous System Research Laboratories, Research & Development Division, Kyowa Hakko Kirin Co., Ltd., Sunto-gun, Shizuoka, Japan
| | - Tomoyuki Kanda
- Central Nervous System Research Laboratories, Research & Development Division, Kyowa Hakko Kirin Co., Ltd., Sunto-gun, Shizuoka, Japan
| |
Collapse
|
44
|
Chen JF. Adenosine receptor control of cognition in normal and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:257-307. [PMID: 25175970 DOI: 10.1016/b978-0-12-801022-8.00012-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA; The Molecular Medicine Institute, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
45
|
Kadowaki Horita T, Kobayashi M, Mori A, Jenner P, Kanda T. Effects of the adenosine A2A antagonist istradefylline on cognitive performance in rats with a 6-OHDA lesion in prefrontal cortex. Psychopharmacology (Berl) 2013; 230:345-52. [PMID: 23748382 DOI: 10.1007/s00213-013-3158-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
RATIONALE Altered cognitive function is a common feature of both the early and later stages of Parkinson's disease (PD) that involves alterations in cortical dopamine content. Adenosine A2A antagonists, such as istradefylline, improve motor function in PD, but their effect on cognitive impairment has not been determined. OBJECTIVE The present study investigated whether impairment of working memory due to the loss of dopaminergic input into the prefrontal cortex (PFC) is reversed by administration of istradefylline. We also evaluated whether A2A antagonist administration modulates dopamine levels in the PFC. METHODS Bilateral lesions of the dopaminergic input to the PFC were produced in rats using 6-hydroxydopamine (6-OHDA). Cognitive performance was evaluated using an object recognition task and delayed alternation task. The effects of istradefylline, donepezil and methamphetamine on cognitive performance were examined. In addition, the effect of istradefylline on extracellular dopamine levels in the PFC was studied. RESULTS PFC dopamine levels and cognitive performance were significantly reduced by 6-OHDA lesioning. Istradefylline, donepezil and methamphetamine improved cognitive performance of PFC-lesioned rats. Istradefylline increased dopamine levels in the PFC in both normal and PFC-lesioned rats. CONCLUSIONS PFC dopaminergic input plays an important role in working memory performance. Blockade of A2A receptors using istradefylline reverses the changes in cognitive function, and this may be due to an increase in PFC dopamine content. Adenosine A2A receptor antagonists not only improve motor performance in PD but may also lead to improved cognition.
Collapse
Affiliation(s)
- Takako Kadowaki Horita
- Pharmacological Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd, 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | | | | | | | | |
Collapse
|
46
|
de Lera Ruiz M, Lim YH, Zheng J. Adenosine A2A Receptor as a Drug Discovery Target. J Med Chem 2013; 57:3623-50. [DOI: 10.1021/jm4011669] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Manuel de Lera Ruiz
- Department
of Chemical Research, Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Yeon-Hee Lim
- Department
of Chemical Research, Merck Research Laboratories, 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Junying Zheng
- Department
of Chemical Research, Merck Research Laboratories, 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
47
|
Koch P, Akkari R, Brunschweiger A, Borrmann T, Schlenk M, Küppers P, Köse M, Radjainia H, Hockemeyer J, Drabczyńska A, Kieć-Kononowicz K, Müller CE. 1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorg Med Chem 2013; 21:7435-52. [PMID: 24139167 DOI: 10.1016/j.bmc.2013.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC(50) human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC(50) MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Van der Walt MM, Terre’Blanche G, Petzer A, Lourens AC, Petzer JP. The adenosine A2A antagonistic properties of selected C8-substituted xanthines. Bioorg Chem 2013; 49:49-58. [DOI: 10.1016/j.bioorg.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
49
|
Adenosine 2A receptor antagonist prevented and reversed liver fibrosis in a mouse model of ethanol-exacerbated liver fibrosis. PLoS One 2013; 8:e69114. [PMID: 23874883 PMCID: PMC3715448 DOI: 10.1371/journal.pone.0069114] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/06/2013] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The effect of moderate alcohol consumption on liver fibrosis is not well understood, but evidence suggests that adenosine may play a role in mediating the effects of moderate ethanol on tissue injury. Ethanol increases the concentration of adenosine in the liver. Adenosine 2A receptor (A2AR) activation is known to enhance hepatic stellate cell (HSC) activation and A2AR deficient mice are protected from fibrosis in mice. Making use of a novel mouse model of moderate ethanol consumption in which female C57BL/6J mice were allowed continued access to 2% (vol/vol) ethanol (11% calories) or pair-fed control diets for 2 days, 2 weeks or 5 weeks and superimposed with exposure to CCl4, we tested the hypothesis that moderate ethanol consumption increases fibrosis in response to carbon tetrachloride (CCl4) and that treatment of mice with an A2AR antagonist prevents and/or reverses this ethanol-induced increase in liver fibrosis. Neither the expression or activity of CYP2E1, required for bio-activation of CCl4, nor AST and ALT activity in the plasma were affected by ethanol, indicating that moderate ethanol did not increase the direct hepatotoxicity of CCl4. However, ethanol feeding enhanced HSC activation and exacerbated liver fibrosis upon exposure to CCl4. This was associated with an increased sinusoidal angiogenic response in the liver. Treatment with A2AR antagonist both prevented and reversed the ability of ethanol to exacerbate liver fibrosis. CONCLUSION Moderate ethanol consumption exacerbates hepatic fibrosis upon exposure to CCl4. A2AR antagonism may be a potential pharmaceutical intervention to decrease hepatic fibrosis in response to ethanol.
Collapse
|
50
|
Jones N, Bleickardt C, Mullins D, Parker E, Hodgson R. A2A receptor antagonists do not induce dyskinesias in drug-naive or L-dopa sensitized rats. Brain Res Bull 2013; 98:163-9. [PMID: 23838432 DOI: 10.1016/j.brainresbull.2013.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/26/2022]
Abstract
L-dopa, the precursor to dopamine, is currently the gold standard treatment for Parkinson's disease (PD). However, chronic exposure is associated with L-dopa-induced dyskinesias (LIDs), a serious side effect characterized by involuntary movements. Adenosine A2A receptor antagonists have been studied as a novel non-dopaminergic PD treatment. Because A2A receptor antagonists do not act on dopamine receptors, it has been hypothesized that they will not induce dyskinesias characteristic of L-dopa. To test this hypothesis in a rodent model, the A2A receptor antagonists SCH 412348 (3 mg/kg), vipadenant (10 mg/kg), caffeine (30 mg/kg), or istradefylline (3 mg/kg) were chronically (19-22 days) administered to Sprague Dawley rats, and dyskinetic behaviors were scored across this chronic dosing paradigm. Unlike L-dopa, there was no evidence of dyskinetic activity resulting from any of the four A2A receptor antagonists tested. When delivered to animals previously sensitized with L-dopa (6 mg/kg), SCH 412348, vipadenant, caffeine or istradefylline treatment produced no dyskinesias. When administered in combination with L-dopa (6 mg/kg), SCH 412348 (3 mg/kg) neither exacerbated nor prevented the induction of LIDs over the course of 19 days of treatment. Collectively, our data indicate that A2A receptor antagonists are likely to have a reduced dyskinetic liability relative to L-dopa but do not block dyskinesias when coadministered with L-dopa. Clinical studies are required to fully understand the dyskinesia profiles of A2A receptor antagonists.
Collapse
Affiliation(s)
- N Jones
- Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | | | | | | | | |
Collapse
|